TW202207497A - 用於製造記憶體裝置之方法及經由該方法所製造之記憶體裝置 - Google Patents

用於製造記憶體裝置之方法及經由該方法所製造之記憶體裝置 Download PDF

Info

Publication number
TW202207497A
TW202207497A TW110106880A TW110106880A TW202207497A TW 202207497 A TW202207497 A TW 202207497A TW 110106880 A TW110106880 A TW 110106880A TW 110106880 A TW110106880 A TW 110106880A TW 202207497 A TW202207497 A TW 202207497A
Authority
TW
Taiwan
Prior art keywords
dielectric material
holes
layers
forming
conductive
Prior art date
Application number
TW110106880A
Other languages
English (en)
Inventor
保羅 凡蒂尼
羅倫佐 弗拉汀
帕洛 泰莎瑞爾
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202207497A publication Critical patent/TW202207497A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

揭示一種用於製造記憶體單元之一3D豎直陣列之方法。該方法包含: 在一基板上形成介電材料層之一堆疊,其包含彼此交替的第一介電材料層及第二介電材料層; 穿過介電材料層之該堆疊形成孔洞,該等孔洞暴露該基板; 經由該等孔洞選擇性地移除該等第二材料層以在相鄰的第一介電材料層之間形成空腔; 經由該等孔洞利用一導電材料填充該等空腔以形成對應導電材料層; 由該等導電材料層形成第一記憶體單元存取線; 經由該等孔洞實施一硫屬化物材料之一保形沈積; 由該沈積的硫屬化物材料形成記憶體單元儲存元件; 利用導電材料填充該等孔洞以形成對應第二記憶體單元存取線。

Description

用於製造記憶體裝置之方法及經由該方法所製造之記憶體裝置
本發明係關於電子領域,且更特定言之,係關於一種用於製造電子記憶體裝置之方法及使用該方法所製造之記憶體裝置。
電子記憶體裝置(下文中,簡稱為「記憶體裝置」)廣泛地用以將資料儲存於各種電子裝置中,該等電子裝置諸如平板電腦、電腦、無線通信裝置(例如,智慧型電話)、攝影機、數位顯示器及類似物。
記憶體裝置包含配置成一或多個記憶體單元陣列之複數個記憶體單元,或記憶體陣列。每一記憶體單元用以儲存呈可程式邏輯狀態形式之資料。舉例而言,二元記憶體單元可程式化成兩種不同邏輯狀態,常常由邏輯「1」(亦稱為「SET」狀態)或邏輯「0」(亦稱為「RESET」狀態)表示。在其他系統中,可儲存超過兩種邏輯狀態。為了存取所儲存資料,電子裝置之模組/單元可讀取或感測記憶體裝置中之所儲存邏輯狀態。為了儲存資料,電子裝置之模組/單元可寫入或程式化記憶體裝置中之邏輯狀態。
記憶體裝置可屬於非揮發性類型或可屬於揮發性類型。非揮發性記憶體裝置包含能夠甚至在無外部電源的情況下在經擴展時間段內藉由維持所儲存資料之程式化邏輯狀態來保留所儲存資料之記憶體單元。揮發性記憶體裝置包含除非藉由外部電源週期性地再新否則可能隨時間推移丟失其所儲存資料之記憶體單元。
此項技術中已知若干類型的非揮發性記憶體裝置,其非詳盡列表包含唯讀記憶體裝置、快閃記憶體裝置、鐵電隨機存取記憶體(RAM)裝置、磁記憶體儲存裝置(諸如硬碟機)、光記憶體裝置(諸如CD-ROM磁碟、DVD-ROM磁碟、藍光磁碟)、相變記憶體裝置(PCM)、其他基於硫屬化物之記憶體等。
已知具有豎直三維(3D)架構之記憶體裝置,其包含3D豎直記憶體陣列,該3D豎直記憶體陣列又包含彼此豎直堆疊的複數個(例如,64個)二維(2D)記憶體陣列(亦稱為「記憶體疊組」),以便形成彼此堆疊之對應複數個層級之記憶體單元。
本發明之一個態樣提供一種用於製造記憶體單元之一3D豎直陣列之方法,其包含:在一基板上形成介電材料層之一堆疊,其包含交替的第一介電材料層及第二介電材料層;穿過介電材料層之該堆疊形成孔洞,該等孔洞暴露該基板;經由該等孔洞選擇性地移除該等第二材料層以在相鄰的第一介電材料層之間形成空腔;經由該等孔洞利用一導電材料填充該等空腔以形成對應導電材料層;由該等導電材料層形成第一記憶體單元存取線;經由該等孔洞實施一硫屬化物材料之一保形沈積;由該沈積的硫屬化物材料形成記憶體單元儲存元件;且利用導電材料填充該等孔洞以形成對應第二記憶體單元存取線。
本發明之另一態樣係關於一種用於製造記憶體單元之一3D豎直陣列之方法,其包含:在一基板上形成介電材料層之一堆疊,其包含交替的第一介電材料層及第二介電材料層;穿過介電材料層之該堆疊形成孔洞,該等孔洞暴露該基板;經由該等孔洞選擇性地移除該等第二材料層以在相鄰的第一介電材料層之間形成空腔;經由該等孔洞利用一導電材料填充該等空腔,以形成用於形成記憶體單元之一第一存取線的對應導電材料層;經由該等孔洞之凹口形成記憶體單元儲存元件;且利用導電材料填充該等孔洞以形成對應第二記憶體單元存取線。
本發明之另一態樣提供一種記憶體單元之3D豎直陣列,其包括:記憶體單元之複數個2D陣列,其堆疊在一半導體基板上方;與每一2D陣列相關聯之字線,其基本上平行於該基板延伸;呈導電柱形式之數位線,其基本上垂直於該基板延伸;該等記憶體單元,其包括形成在一字線與一數位線之間之一拓樸交叉點處的一資料儲存元件;以及與相鄰的2D陣列相關聯之字線,其藉由一介電材料彼此分隔開。
在以下詳細描述中,參考隨附圖式,其形成本文之一部分且其中藉助於說明展示特定實施例。在圖式中,類似標號貫穿若干視圖描述實質上類似組件。在不脫離本發明之範疇的情況下,可揭示其他實施例且可作出結構、邏輯及電氣改變。因此,不應在限制性意義上看待以下詳細描述。
本發明係關於一種用於製造電子記憶體裝置之方法及使用該方法所製造之記憶體裝置。
本發明之記憶體裝置為非揮發性記憶體裝置。舉例而言,3D豎直記憶體陣列已藉由特定微影製程實現為獨立晶粒。
在一些實例中,3D記憶體陣列可包括具有配置成圖案(例如,幾何圖案)之複數個觸點的基板及形成於該基板上之第一絕緣材料(例如,介電材料)。導電材料之複數個平面可藉由第二絕緣材料(例如,介電材料)彼此分隔開且形成於基板材料上。導電材料之平面可為字線之實例。
交叉點記憶體陣列為3D豎直記憶體陣列,其具有形成在第一導電存取線(例如,字線)與第二導電存取線(例如,數位線)之間的拓樸交叉點處之記憶體單元。
相較於2D架構,此3D架構允許有利地增大可置放或形成於單一晶粒或基板上之記憶體單元的數目。
此3D架構可因此減少生產成本或增大記憶體裝置之效能,或此兩者。
可藉由在具有複數個觸點之基板上形成導電材料(例如,鎢或鉬)與介電質、絕緣材料(例如,二氧化矽)之交替層的堆疊來製造交叉點記憶體陣列。形成複數個豎直堆疊的2D記憶體陣列,其中每一2D記憶體陣列與對應導電材料層相關聯。對於每一2D記憶體陣列,第一存取線(例如,字線)由相關聯的導電材料層形成,且記憶體單元資料儲存元件(例如,相變材料元件)形成為接觸該等第一存取線。形成呈導電柱形式之第二存取線(例如,數位線),其豎直跨越導電材料與介電材料之交替層直至接觸基板上之觸點為止。因此,可經由自相關聯的導電材料層獲得之第一存取線(字線)以及經由對應於導電柱之第二存取線(例如,數位線)存取2D記憶體陣列之記憶體單元(之儲存元件)(例如,程式化或讀取其邏輯狀態)。
為了形成此3D豎直配置之第一存取線、儲存元件及導電柱,其製造製程需要形成跨越導電材料與介電材料之交替層之堆疊直至到達基板的溝槽。為了形成此等溝槽,執行選擇性蝕刻操作以選擇性地移除導電材料與介電材料之交替層之堆疊的部分直至到達基板為止。
然而,隨著導電材料與介電材料之豎直堆疊層的數目增大(例如,超過64),上述選擇性蝕刻操作變得更加難以實施。實際上,蝕刻諸如鎢或鉬之導電材料之層的一部分需要在不可忽略的時間量內塗覆蝕刻劑。在豎直堆疊層的數目過高時,可在完全形成溝槽之前消耗用於選擇性蝕刻操作之遮罩。
可以較容易方式蝕刻之其他導電材料,諸如浮動閘NAND記憶體技術中所使用之多晶矽,可用作用於形成交叉點類型之3D豎直記憶體陣列的導電層。然而,其較高電阻率使得記憶體裝置受不利的潛時增加影響。
用於基於所謂的替換閘(Replacement Gate)架構製造豎直3D NAND記憶體裝置之解決方案藉由以下來嘗試解決此缺點:在基板上形成兩種不同介電(絕緣)材料之交替層(例如,二氧化矽層及氮化矽層)的堆疊,而非形成導電材料與介電材料之交替層的堆疊。根據此解決方案,在兩種介電材料中之一者中製成的層(例如,氮化矽層)為犧牲層,其用以在後續時間由導電材料層替換。
接著,藉助於蝕刻在兩種介電材料之堆疊層中產生溝槽,且形成記憶體單元及導電柱。接著穿過兩種介電材料之堆疊層蝕刻複數個狹縫,例如每四個導電柱之線一個狹縫,且經由開放的狹縫塗覆蝕刻劑以選擇性地移除犧牲層。接著利用狹縫以用待用於形成字線之導電材料(諸如鎢)填充由所移除犧牲層留下的清空的空間。
用於基於替換閘架構製造豎直3D NAND記憶體裝置之上述方法受需要形成用於移除犧牲層之專用狹縫的缺點影響,此不利地增大所得記憶體裝置之佔據面積。此外,此方法並不適合於用於製造交叉點類型之3D豎直記憶體陣列,此係由於其提供以僅在形成導電柱及記憶體單元之後利用導電材料替換犧牲層。
鑒於上述內容,本申請人已設計出用於製造包含3D豎直記憶體陣列之記憶體裝置的解決方案,該3D豎直記憶體陣列特定言之為並不受此項技術中已知的解決方案之缺點影響的交叉點類型之3D豎直記憶體陣列。
藉由特定地參考圖式,該等圖式皆共用由三個正交方向x、y及z識別之同一參考系, 1 說明根據本發明之實施例的3D豎直記憶體陣列100之一部分的實例。3D豎直記憶體陣列100包含記憶體單元之一或多個(較佳複數個) 2D陣列(或疊組) 105(i)(i=1、2、…),該等記憶體單元之2D陣列(或疊組) 105(i)在平行於方向x及y延伸的基板104 (例如,由介電材料製成或包含介電材料)上方沿著平行於方向z的方向彼此堆疊。在圖1中所說明的例示性3D豎直記憶體陣列100部分中,可見記憶體單元之僅三個疊組之部分,亦即通用疊組105(i)及兩個相鄰的疊組105(i-1)及105(i+1),其中疊組105(i-1)在疊組105(i)下方且疊組105(i+1)在疊組105(i)上方。
3D豎直記憶體陣列100包括用於每一疊組105(i)之相關聯字線110(i),其基本上平行於基板104以相對於基板104之對應距離(沿著方向z)延伸。例如,字線110(i+1)與疊組105(i+1)相關聯且字線110(i-1)與疊組105(i-1)相關聯。
3D豎直記憶體陣列100亦包括呈導電柱形式之數位線115 (圖式中僅描繪一個),其基本上垂直於基板104延伸(亦即,沿著方向z延伸)。
疊組105(i)之記憶體單元可包含自選擇記憶體單元。
每一疊組105(i)之每一記憶體單元包含以儲存元件材料製成或包含儲存元件材料之資料儲存元件125(i),該儲存元件材料諸如硫屬化物材料,例如硫屬化物合金及/或玻璃,其可充當自選擇資料儲存元件材料,亦即可充當選擇裝置及資料儲存元件之材料。
3D豎直記憶體陣列100之架構可稱為交叉點架構,其中記憶體單元形成在字線110(i)與數位線115之間的拓樸交叉點處,其中通用資料儲存元件125(i)接觸與疊組105(i)及對應數位線115相關聯的對應字線110(i)。此交叉點架構可提供相較於其他記憶體架構具有較低生產成本之相對高密度資料儲存。舉例而言,交叉點架構可具有相較於其他架構具有減小的面積且因而具有增大的記憶體單元密度之記憶體單元。
根據此架構,屬於通用疊組105(i)之記憶體單元豎直堆疊(沿著方向z)在底層疊組105(i-1)之記憶體單元上方,具有位於資料儲存元件125(i-1)上方且藉助於介電(絕緣)材料部分128(i)與該等資料儲存元件125(i-1)電絕緣的資料儲存元件125(i),該介電(絕緣)材料部分128(i)位於資料儲存元件125(i)與125(i-1)之間。資料儲存元件125(i+1)可位於介電(絕緣)材料部分128(i+2)與介電(絕緣)材料部分128(i+1)之間。資料儲存元件125(i-1)可位於介電(絕緣)材料部分128(i)與介電(絕緣)材料部分128(i-1)之間。
基板104可包含配置成柵格或交錯圖案之複數個觸點(圖1中不可見)。舉例而言,複數個觸點可延伸穿過基板104且與記憶體陣列100之存取線(諸如數位線115)耦接。
記憶體單元可經由選定字線110(i)及選定數位線115存取以接收程式及/或讀取脈衝。
通用資料儲存元件125(i)可回應於所施加電壓,諸如程式脈衝。對於小於臨限電壓之所施加電壓,資料儲存元件125(i)可保持在非導電狀態中,例如對應於「RESET」狀態(或邏輯「0」)。回應於大於臨限電壓之所施加電壓,資料儲存元件125(i)可進入導電狀態,例如對應於「SET」狀態(或邏輯「1」)。
資料儲存元件125(i)可藉由施加滿足程式化臨限值之脈衝(例如,程式脈衝)來程式化為目標邏輯狀態。程式脈衝之幅值、形狀或其他特性可經組態以使得資料儲存元件125(i)呈現目標邏輯狀態。舉例而言,在施加程式脈衝之後,資料儲存元件125(i)之離子可在整個資料儲存元件125(i)中重新分佈,藉此改變在施加讀取脈衝時所偵測到之記憶體單元之電阻。在一些情況下,資料儲存元件125(i)之臨限電壓可基於施加程式脈衝而變化。在其他實施例中,資料儲存元件125(i)可藉由施加至選定字線110(i)及位元線(115)之正或負極性之一或多個脈衝而程式化為目標邏輯狀態。
可藉由將讀取脈衝施加至儲存元件125(i)來感測、偵測或讀取由資料儲存元件125(i)儲存之邏輯狀態。讀取脈衝之幅值、形狀或其他特性可經組態以允許感測組件判定資料儲存元件125(i)中儲存何種邏輯狀態。舉例而言,在一些情況下,讀取脈衝之幅值經組態為處於一位準,該位準為資料儲存元件125(i)將針對諸如「SET」狀態(或邏輯「1」)之第一邏輯狀態進行傳導(例如,電流傳導經過材料)但將不針對諸如「RESET」狀態(或邏輯「0」)之第二邏輯狀態傳導(例如,極少至無電流傳導經過材料)。
在一些情況下,施加至資料儲存元件125(i)之脈衝(無論程式脈衝或讀取脈衝)的極性可影響正執行之操作的結果。舉例而言,第一極性之讀取脈衝可導致資料儲存元件125(i)呈現第一邏輯狀態,而第二極性之讀取脈衝可導致資料儲存元件125(i)呈現不同的第二邏輯狀態。此可由於資料儲存元件125中之離子或其他材料之不對稱分佈而發生。類似原理適用於程式脈衝及其他脈衝或電壓。
可充當資料儲存元件125(i)之硫屬化物材料之實例包括銦(In)-銻(Sb)-碲(Te)(IST)材料,諸如In2Sb2Te5、In1Sb2Te4、In1Sb4Te7等,及鍺(Ge)-銻(Sb)-碲(Te)(GST)材料,諸如Ge8Sb5Te8、Ge2Sb2Te5、Ge1Sb2Te4、Ge1Sb4Te7、Ge4Sb4Te7等,或其他硫屬化物材料,包括例如在操作期間並不改變相之合金(例如,基於硒之硫屬化物合金)。此外,硫屬化物材料可包括極少濃度的其他摻雜劑材料。硫屬化物材料之其他實例可包括碲-砷(As)-鍺(OTS)材料、Ge、Sb、Te、矽(Si)、鎳(Ni)、鎵(Ga)、As、銀(Ag)、錫(Sn)、金(Au)、鉛(Pb)、鉍(Bi)、銦(In)、硒(Se)、氧(O)、硫(S)、氮(N)、碳(C)、釔(Y)及鈧(Sc)材料,及其組合。如本文中所使用,加連字符化學組合物標記指示包括於特定混合物或化合物中的元素且意欲表示涉及所指示元素之所有化學計量。在一些實例中,硫屬化物材料可為硫屬化物玻璃或非晶硫屬化物材料。在一些實例中,主要具有硒(Se)、砷(As)及鍺(Ge)之硫屬化物材料可稱為SAG合金。
在一些實例中,SAG合金可包括矽(Si),且此類硫屬化物材料可稱為SiSAG合金。在一些實例中,硫屬化物玻璃可包括各自呈原子或分子形式的額外元素,諸如氫(H)、氧(O)、氮(N)、氯(Cl)或氟(F)。在一些實例中,可經由使用各種化學物種之摻雜來控制導電率。舉例而言,摻雜可包括將第3族(例如,硼(B)、鎵(Ga)、銦(In)、鋁(Al)等)或第4族(錫(Sn)、碳(C)、矽(Si)等)元素併入至組合物中。
現將藉由參考圖2A、2B、3A、3B、4A、4B、5A至5C、6A、6B、7A至7C、8A至8C、9A、9B、10A、10B、11A、11B及12來描述根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法。
圖2A及圖2B中說明根據實施例的製造方法之第一階段,其中 2A 為自平行於方向x及y之平面獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的底視圖,且 2B 為自平行於方向x及z之平面獲取之同一陣列的側視圖。
圖2A及圖2B中所說明之方法之階段包含提供由介電材料製成或包含介電材料的基板104,以及形成延伸穿過基板104之複數個導電觸點202。
根據一實施例,每一導電觸點202經組態以例如經由選擇器電晶體(未說明)接觸對應數位線(參看圖1)。可根據柵格圖案配置複數個導電觸點202。舉例而言,導電觸點202可由多達八個其他導電觸點202包圍。根據未說明之其他實施例,複數個導電觸點202可配置成交錯圖案或六邊形圖案。
根據一實施例,該方法之此階段進一步包含在基板104上形成兩種不同介電(絕緣)材料之交替層之堆疊,該等交替層包含第一介電材料層204及第二介電材料層206。根據一實施例,第一介電材料層204包含二氧化矽層,且第二介電材料層206包含氮化矽層。每一第一介電材料層204及第二介電材料層206相對於基板104處於不同層級(亦即,沿著方向z處於不同距離處)。
根據本發明之一實施例,第一介電材料層204及第二介電材料層206藉助於一連串沈積操作形成。
雖然圖式中說明七個第一介電材料層204及六個第二介電材料層206,但必須瞭解,根據本發明之實施例的概念可應用於不同(例如,更高)數目個層,諸如64個。
如在下文中將更詳細地描述,根據本發明之一實施例,第一介電材料層204將用於在屬於已完成的3D豎直記憶體陣列100 (參看圖1)之相鄰疊組105(i)、105(i-1)的記憶體單元之資料儲存元件125(i)與125(i-1)之間產生介電材料部分128(i)。
如在下文中將更詳細地描述,根據一實施例,第二介電層206為犧牲層,其用以在後續方法階段中由待用於形成與已完成的3D豎直記憶體陣列100之疊組105(i)相關聯的字線110(i)之導電材料的層替換。
圖3A及圖3B中說明根據本發明之實施例的製造方法之下一階段,其中 3A 為自平行於方向x及y且跨越第二介電材料層206之截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖,且 3B 為自平行於方向y及z且跨越三個導電觸點202之截面平面B-B'獲取之同一陣列之一部分的截面視圖。
圖3A及圖3B中所說明的方法之階段包含形成穿過交替的第一介電材料層204及第二介電材料層206直至暴露底層基板104及導電觸點202之溝槽305。
根據本發明之一實施例,溝槽305藉助於利用適合的圖案化遮罩(未說明)之選擇性蝕刻操作形成。
由於第一介電材料層204及第二介電材料層206皆由諸如二氧化矽及氮化矽之介電材料製成或包含該等介電材料(其相較於諸如鎢或鉬之導電材料可更易於蝕刻),故即使在第一介電材料層204及第二介電材料層206的數目較大的情況下,亦可適當地實施選擇性蝕刻操作。實際上,蝕刻操作可以相對快速及有效的方式實施,且底層基板104可有利地在消耗用於選擇性蝕刻操作之遮罩之前暴露。如上文已提及,若實情為必須蝕刻大量導電材料(例如,鉬或鎢)層,則用於蝕刻操作之遮罩將在蝕刻到達底層基板104之前消耗其自身。
根據本發明之一實施例,自上方觀察,溝槽305具有螺旋狀形狀。根據本發明之一實施例,溝槽305可在第一方向(例如,平行於方向x,自左至右)上越過一列導電觸點202,且接著在與第一方向相對的第二方向(例如,平行於方向x,自右向左)上越過相鄰的一列導電觸點202。參考圖3A,溝槽305平行於方向x自左至右越過第一列導電觸點202,接著「轉向」且平行於方向x自右向左越過下一(第二)列導電觸點202 (沿著方向y與第一列導電觸點202相鄰)。溝槽305接著再次「轉向」,且平行於方向x自左至右越過下一(第三)列導電觸點202 (沿著方向y與第二列導電觸點202相鄰),諸如此類。
溝槽305配置成將每一第一介電材料層204及第二介電材料層206分為至少兩個部分:第一部分204(a)、206(a)及第二部分204(b)、206(b)(圖3A中僅可見部分206(a)及206(b))。如在下文中將詳細地描述,根據本發明之實施例,每一第二介電材料層206之(獨立)部分206(a)及206(b)將由具有相同形狀之對應導電材料部分替換,且形成與已完成的3D豎直記憶體陣列100之對應疊組105(i)相關聯的交錯字線110(i)(例如,偶數字線110(i)及奇數字線110(i))。
圖4A及圖4B中說明根據本發明之實施例的製造方法之下一階段,其中 4A 為自平行於方向x及y且跨越第二介電材料層206之截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖,且 4B 為自平行於方向y及z且跨越三個導電觸點202之截面平面B-B'獲取之同一陣列之一部分的截面視圖。
圖4A及圖4B中所說明的方法之階段包含利用介電材料405 (諸如基板104之相同介電材料)完全填充(例如,經由沈積製程)溝槽305,直至到達頂部介電材料層204且形成覆蓋該頂部介電材料層204之頂蓋層410為止。
圖5A、圖5B及圖5C中說明根據本發明之實施例的製造方法之下一階段,其中 5A 為自截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖, 5B 為自截面平面B-B'獲取之同一陣列之一部分的截面視圖,且 5C 為自並行於截面平面B-B'且沿著方向x與後者位移以便位於相鄰的導電觸點202之對之間的截面平面C-C'獲取之同一陣列之一部分的截面視圖。
圖5A至圖5C中所說明的方法之階段包含針對每一導電觸點202形成各別孔洞狀溝槽505,其在螺旋狀溝槽305內部沿著方向z跨越頂蓋層410及介電材料405直至暴露導電觸點202。此等孔洞狀溝槽505將用以定義形成數位線115之導電柱。
根據本發明之一實施例,孔洞狀溝槽505之形成藉助於選擇性豎直蝕刻操作實施,該選擇性豎直蝕刻操作係關於僅蝕刻螺旋狀溝槽及頂蓋層410內部介電材料405 (之部分),而不侵蝕形成第一介電材料層204及第二介電材料層206之介電材料。
圖6A及圖6B中說明根據本發明之實施例的製造方法之下一階段,其中 6A 為自截面平面B-B'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列之一部分的截面視圖,且 6B 為自截面平面C-C'獲取之同一陣列之一部分的截面視圖。
圖6A及圖6B中所說明的方法之階段提供以利用先前產生的孔洞狀溝槽505 (其隨後將用於產生對應於數位線115之導電柱),以提供自跨越陣列之大量不同點對所有堆疊的第一介電材料層204及第二介電材料層206之存取。
根據本發明之一實施例,利用孔洞狀溝槽505移除第二介電材料層206之介電材料。
根據本發明之一實施例,執行等向性蝕刻操作以選擇性地移除第二介電材料層206之介電材料。根據本發明之一實施例,經由孔洞狀溝槽505提供蝕刻劑,其經組態以選擇性地移除第二介電材料層206之介電材料(例如,氮化矽),而不侵蝕第一介電材料層204之介電材料。由於孔洞狀溝槽505跨越3D陣列結構以高數目及高密度(諸如每60 nm)分佈,故蝕刻劑可容易地到達所有(亦即,沿著方向z以任何深度)第二介電材料層206且在相鄰的第一介電材料層204之間沿著方向x及y傳播,同時蝕刻及移除第二介電材料層206。以此方式,根據本發明之此實施例,可有效地移除第二介電材料層206。
其中清空的空腔605形成在相鄰的第一介電材料層204之間之所得分層配置由包含螺旋狀溝槽305之介電材料405、頂蓋層410及基板104的介電材料結構機械支撐。
圖7A、圖7B及圖7C中說明根據本發明之實施例的製造方法之下一階段,其中 7A 為自截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖, 7B 為自截面平面B-B'獲取之同一陣列之一部分的截面視圖,且圖7C為自截面平面C-C'獲取之同一陣列之一部分的截面視圖。
圖7A、圖7B及圖7C中所說明的方法之階段提供以再次利用孔洞狀溝槽505,此次用於存取空腔605且利用諸如鎢或鉬之導電材料填充該等空腔605 (例如,藉助於沈積製程),以便在第一介電材料層204之間形成對應的導電材料層705。在此階段期間,每一孔洞狀溝槽505之底部以及其側邊亦將由導電材料覆蓋。導電材料層705將用於形成與已完成的3D豎直記憶體陣列100之疊組105(i)相關聯的字線110(i)。
同樣,由於孔洞狀溝槽505跨越3D陣列結構以高數目及高密度分佈,故導電材料可容易地達到所有(亦即,沿著方向z以任何深度)空腔605且沿著方向x及y傳播。以此方式,根據本發明之此實施例,可有效地填充空腔605,且以極有效方式產生導電材料層705。
由於螺旋狀溝槽305之介電材料405,每一導電材料層705分為第一導電材料部分705(a)及第二導電材料部分705(b)。根據本發明之一實施例,每一導電材料層705之(獨立)部分705(a)及705(b)將形成與已完成的3D豎直記憶體陣列100之對應疊組105(i)相關聯的交錯字線110(i)(例如,用於奇數字線110(i)之部分705(a)及用於偶數字線110(i)之部分705(b))。
圖8A、圖8B及圖8C中說明根據本發明之實施例的製造方法之下一階段,其中 8A 為自截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖, 8B 為自截面平面B-B'獲取之同一陣列之一部分的截面視圖,且圖8C為自截面平面C-C'獲取之同一陣列之一部分的截面視圖。
圖8A、圖8B、圖8C中所說明的製造方法之階段提供以在孔洞狀溝槽505處在每一導電材料層705中形成複數個凹口805。舉例而言,每一凹口805以面朝各別孔洞狀溝槽505的方式形成。
根據本發明之一實施例,凹口805藉助於以等向性方式在孔洞狀溝槽505之側壁中進行的蝕刻操作形成。
凹口805以如下方式形成:通用孔洞狀溝槽505之側壁沿著方向x彼此間隔開第一距離d1 (在該孔洞狀溝槽505中之面向彼此的第一介電材料層204之部分之間),而該孔洞狀溝槽505處之面向彼此的凹口805之對包含沿著方向x彼此間隔開高於第一距離d1之第二距離d2的側壁(參看圖8B)。
如在下文中將描述,凹口805將用於形成已完成的3D豎直記憶體陣列100之記憶體單元的資料儲存元件125(i)。
圖9A及圖9B中說明根據本發明之實施例的製造方法之下一階段,其中 9A 為自截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖,且 9B 為自截面平面B-B'獲取之同一陣列之一部分的截面視圖。
圖9A及圖9B中所說明的製造方法之階段提供以將例如硫屬化物合金及/或玻璃之硫屬化物材料905保形沈積至孔洞狀溝槽505中(例如,側壁方向保形沈積)。硫屬化物材料905以覆蓋孔洞狀溝槽505之底部及側壁的方式沈積,從而填充形成於導電材料層705中的凹口805。以此方式,硫屬化物材料905接觸導電材料層705 (其部分705(a)及705(b))。
圖10A及圖10B中說明根據本發明之實施例的製造方法之下一階段,其中 10A 為自截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖,且 10B 為自截面平面B-B'獲取之同一陣列之一部分的截面視圖。
圖10A及圖10B中所說明的製造方法之階段提供以實施一選擇性蝕刻操作,該選擇性蝕刻操作係關於移除沈積於孔洞狀溝槽505中之硫屬化物材料905的過量部分,以此方式使得硫屬化物材料905之剩餘部分形成已完成的3D豎直記憶體陣列100之記憶體單元的資料儲存元件125(i)。
根據本發明之一實施例,該蝕刻操作以如下方式實施:資料儲存元件125(i)之側表面(亦即,其面朝孔洞狀溝槽505之表面)與第一介電材料層204之面朝孔洞狀溝槽505之部分的表面基本上共面,且沿著方向y彼此間隔開相同距離d1 (參看圖10B)。
在每一凹口805中,對應儲存元件125(i)因此形成,該對應儲存元件125(i)(參看圖10B): -  沿著方向y接觸導電材料層705之對應部分705(a)或705(b),且 -  沿著方向z接觸兩個第一介電材料層204之兩個對應部分。
參考圖10B以及圖1 (後者說明已完成的3D豎直記憶體陣列100之一部分),導電材料層705之接觸疊組105(i)之通用儲存元件125(i)的部分705(a)或705(b)對應於用於存取儲存元件125(i)之對應字線110(i),而兩個第一介電材料層204之接觸通用儲存元件125(i)的兩個部分對應於介電材料部分128(i)及128(i+1),其允許儲存元件125(i)與屬於相鄰的疊組105(i+1)、105(i-1)之儲存元件125(i+1)及125(i-1)電絕緣。
此階段之蝕刻操作亦以自孔洞狀溝槽505之底部移除硫屬化物材料905以暴露導電觸點202的方式實施。
圖11A及圖11B中說明根據本發明之實施例的製造方法之下一階段,其中 11A 為自截面平面A-A'獲取之中間(亦即,部分地製造的) 3D豎直記憶體陣列的截面視圖,且 11B 為自截面平面B-B'獲取之同一陣列之一部分的截面視圖。
圖11A及圖11B中所說明的製造方法之階段提供以利用導電材料填充孔洞狀溝槽505,以便形成沿著方向z延伸且接觸儲存元件125(i)的導電柱,諸如導電柱1005及導電柱1005'。
根據本發明之一實施例,導電柱1005之導電材料根據側壁方向保形沈積操作沈積。在此特定情況中,導電材料必須與側壁方向保形沈積操作相容。
根據此實施例,導電柱1005之導電材料可與用於產生導電材料層705之導電材料相同,只要此等導電材料與側壁方向保形沈積操作相容即可。
根據本發明之實施例已完成的3D豎直記憶體陣列100接著藉由利用相同介電材料覆蓋在頂蓋層410中開放之溝槽305以便亦覆蓋導電柱1005而獲得,如自截面平面B-B'獲取之 12 中所說明的截面視圖中所展示。
相較於利用已知方法獲得之3D豎直記憶體陣列,可利用本文所描述之根據本發明之實施例的製造方法製造的3D豎直記憶體陣列更加緊密,從而需要更少佔據面積。尤其相較於上文所提及之用於基於替換閘架構製造豎直3D NAND記憶體裝置之已知方法,獲得較高記憶體單元密度。實際上,雖然用於基於替換閘架構製造豎直3D NAND記憶體裝置之已知方法由於為了移除犧牲層而強制存在大量專用狹縫(例如,每四個導電柱)而導致空間浪費,但根據本發明之實施例的製造方法亦有利地利用孔洞狀溝槽(用於產生導電柱)以用於用對應於字線之導電層替換犧牲層。
此外,本文所描述之根據本發明之實施例的製造方法尤其適合於製造交叉點類型之3D豎直記憶體陣列,此係由於其提供以在形成儲存元件及導電柱之前利用導電材料層替換犧牲層。
根據 13 中所說明的本發明之一實施例,在儲存元件125(i)之硫屬化物材料與導電材料層705及/或導電柱1005之導電材料之間的相容性問題的情況下,可將障壁(圖13中利用標號1305識別)插入於導電材料層705與儲存元件125(i)之間,及/或可將障壁(圖13中利用標號1310識別)插入於導電柱1005與儲存元件125(i)之間,以避免材料之間的交叉污染。
如上文已提及,本文所描述之根據本發明之實施例的製造方法係基於利用導電材料層(導電材料層705)替換犧牲介電層(第一介電材料層204),從而利用孔洞狀溝槽505,其對於在記憶體陣列之主動部分(亦即,記憶體單元所位於之部分)中形成對應於數位線115之導電柱1005為必要的。
然而,為了存取3D豎直記憶體陣列之(豎直堆疊的)字線110(i)(例如,用於提供程式及/或讀取脈衝),一或多個存取部分例如位於一或多個主動部分之邊緣中之一或多者處,其中導電材料層705具有交錯的長度,以便在一或多個主動部分之一或多個邊緣上形成「階梯(step)」,如 14 之側視圖中所說明。
存取部分之每一各別「階梯」對應於3D豎直記憶體陣列之各別層,且包含接觸對應導電材料層705之導電存取觸點1405。在一些實施例中,圖14中描繪的階梯可根據修整及蝕刻技術形成。
由於存取部分不包含記憶體單元,故並不需要用於形成對應於數位線115之導電柱1005的孔洞狀溝槽505。此外,存取部分具有不可忽略的長度(例如,沿著方向x),以便足夠長以容納數個階梯,其又視堆疊的導電材料層705的數目而定(例如,3至4 μm)。
缺少孔洞狀溝槽505以及存取部分之不可忽略的長度可能使得其並不適合於利用先前所描述的方法(利用導電材料層替換犧牲介電層)直接製造。
實際上,為了存取存取部分之各種層以自其移除犧牲介電層,可提供蝕刻劑所經過的最近孔洞狀溝槽505 (亦即,在陣列之主動部分中)可能太遠而不能允許有效移除犧牲介電層。類似地,可提供導電材料以用於取代犧牲介電層所經過的相同最近孔洞狀溝槽505可能太遠而不能允許有效形成導電材料層。
此外,即使實際上自存取部分移除犧牲介電層,剩餘介電材料層仍將由於存取部分的大小過大而塌陷。
出於此原因,根據 15 中所說明的本發明之一實施例,專用(例如,線性)溝槽1505 (在功能上類似於參考圖3A、圖3B所描述之溝槽305)形成且填充有介電材料(如同參考圖4A、圖4B所描述之利用介電材料405填充溝槽305),且孔洞狀溝槽1510形成在該等專用溝槽1505中。
根據本發明之一實施例,有利地利用孔洞狀溝槽1510以移除犧牲介電層且利用導電材料層替換其,如同先前所描述的孔洞狀溝槽505。
此外,填充有介電材料之專用溝槽1505充當支撐結構,其有利地避免存取部分之剩餘介電材料層在移除犧牲層之後塌陷。
圖16說明展示本發明之方法之步驟的圖。描繪用於製造記憶體單元之3D豎直陣列之方法1600的若干步驟。可根據上文參考圖2至圖13及圖14至圖15之描述實施步驟1610至1680。方法1600之圖中已省略一些細節以避免混淆方法流程。方法1600可包含:在步驟1610處,在基板上形成介電材料層之堆疊,其包含彼此交替的第一介電材料層及第二介電材料層;在步驟1620處,穿過介電材料層之堆疊形成孔洞,該等孔洞暴露基板;在步驟1630處,經由該等孔洞選擇性地移除第二材料層以在相鄰的第一介電材料層之間形成空腔;在步驟1640處,經由該等孔洞利用導電材料填充該等空腔以形成對應導電材料層;在步驟1650處,由該等導電材料層形成第一記憶體單元存取線;在步驟1660處,經由該等孔洞實施硫屬化物材料之保形沈積;在步驟1670處,由該沈積的硫屬化物材料形成記憶體單元儲存元件;且在步驟1680處,利用導電材料填充該等孔洞以形成對應第二記憶體單元存取線。
先前描述呈現且詳細地論述若干實施例;然而,在不脫離由隨附申請專利範圍定義之範疇的情況下,對所描述實施例以及不同實施例之若干改變為可能的。
100:3D豎直記憶體陣列 104:基板 105(i):疊組 105(i-1):疊組 105(i+1):疊組 110(i):字線 115:數位線 125(i):資料儲存元件 125(i-1):資料儲存元件 125(i+1):資料儲存元件 128(i):介電材料部分 128(i+1):介電材料部分 202:導電觸點 204:第一介電材料層 204(a):第一部分 204(b):第二部分 206:第二介電材料層 206(a):第一部分 206(b):第二部分 305:溝槽 405:介電材料 410:頂蓋層 505:孔洞狀溝槽 605:空腔 705:導電材料層 705(a):第一導電材料部分 705(b):第二導電材料部分 805:凹口 905:硫屬化物材料 1005:導電柱 1005':導電柱 1305:障壁 1310:障壁 1405:導電存取觸點 1505:專用溝槽 1510:孔洞狀溝槽 1600:方法 1610:步驟 1620:步驟 1630:步驟 1640:步驟 1650:步驟 1660:步驟 1670:步驟 1680:步驟 A-A':截面平面 B-B':截面平面 C-C':截面平面 d1:第一距離 d2:第二距離
圖1說明根據本發明之實施例的3D豎直記憶體陣列100之一部分的實例;
圖2A、圖2B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第一階段;
圖3A、圖3B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第二階段;
圖4A、圖4B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第三階段;
圖5A至圖5C說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第四階段;
圖6A、圖6B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第五階段;
圖7A至圖7C說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第六階段;
圖8A至圖8C說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第七階段;
圖9A、圖9B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第八階段;
圖10A、圖10B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第九階段;
圖11A、圖11B說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第十階段;
圖12說明根據本發明之實施例的用於製造對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之方法的第十一階段;
圖13說明根據本發明之實施例的對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之一部分;
圖14說明根據本發明之實施例的對應於圖1之3D豎直記憶體陣列100的3D豎直記憶體陣列之存取部分,且
圖15說明根據本發明之實施例的用於製造圖14之存取部分之方法的階段,且
圖16說明展示本發明之方法之步驟的圖。
100:3D豎直記憶體陣列
104:基板
105(i):疊組
105(i-1):疊組
105(i+1):疊組
110(i):字線
115:數位線
125(i):資料儲存元件
125(i-1):資料儲存元件
125(i+1):資料儲存元件
128(i):介電材料部分
128(i+1):介電材料部分

Claims (20)

  1. 一種用於製造記憶體單元之一3D豎直陣列之方法,其包含: 在一基板上形成介電材料層之一堆疊,其包含交替的第一介電材料層及第二介電材料層; 穿過介電材料層之該堆疊形成孔洞,該等孔洞暴露該基板; 經由該等孔洞選擇性地移除該等第二材料層以在相鄰的第一介電材料層之間形成空腔; 經由該等孔洞利用一導電材料填充該等空腔以形成對應導電材料層; 由該等導電材料層形成第一記憶體單元存取線; 經由該等孔洞實施一硫屬化物材料之一保形沈積; 由該沈積的硫屬化物材料形成記憶體單元儲存元件;及 利用導電材料填充該等孔洞以形成對應第二記憶體單元存取線。
  2. 如請求項1之方法,其中經由該等孔洞選擇性地移除該等第二材料層包含:經由該等孔洞提供一蝕刻劑。
  3. 如請求項1之方法,其中經由該等孔洞選擇性地移除該等第二材料層包含:執行一選擇性等向性蝕刻操作。
  4. 如請求項1至3中任一項之方法,其進一步包含: 穿過介電材料層之該堆疊形成一溝槽,該溝槽暴露該基板,以及 利用一第三介電材料填充該溝槽,其中穿過介電材料層之該堆疊形成該等孔洞包含在填充該溝槽之該第三介電材料中形成該等孔洞。
  5. 如請求項4之方法,其中穿過介電材料層之該堆疊形成該溝槽包含:執行一選擇性豎直蝕刻操作。
  6. 如請求項4之方法,其中在填充該溝槽之該第三介電材料中形成該等孔洞包含:執行一選擇性豎直蝕刻操作。
  7. 如請求項4之方法,其中該基板包含該第三介電材料。
  8. 如請求項4之方法,其中穿過介電材料層之該堆疊形成該溝槽在第二介電材料之一對應第一部分中及在該第二介電材料之一第二部分中再分每一第二介電材料層,從而利用一導電材料填充該等空腔以使得: 利用導電材料層之一對應第一部分替換第二介電材料之每一第一部分,且 利用導電材料層之一對應第二部分替換第二介電材料之每一第二部分。
  9. 如請求項8之方法,其中由該等導電材料層形成該等第一記憶體單元存取線包含由該導電材料之該等第一部分及該等第二部分形成該等第一記憶體單元存取線。
  10. 如請求項4之方法,其進一步包含: 在記憶體單元之該3D豎直陣列之一存取部分中穿過介電材料層之該堆疊形成一另一溝槽; 利用該第三介電材料填充該另一溝槽; 在填充該另一溝槽之該第三介電材料中形成其他孔洞; 經由該等其他孔洞在該存取部分中選擇性地移除該等第二材料層,以在該存取部分中在相鄰的第一介電材料層之間形成其他空腔;及 經由該等其他孔洞利用一導電材料填充該等其他空腔,以在該存取部分中形成對應導電材料層。
  11. 如請求項1至3中任一項之方法,其進一步包含形成延伸穿過該基板之複數個導電觸點,每一導電觸點與一各別第二存取記憶體線相關聯。
  12. 如請求項11之方法,其中穿過介電材料層之該堆疊形成該等孔洞包含:在該等導電觸點處形成孔洞以暴露該等導電觸點。
  13. 如請求項12之方法,其中利用導電材料填充該等孔洞包含使該等導電觸點與該導電材料接觸。
  14. 一種用於製造記憶體單元之一3D豎直陣列之方法,其包含: 在一基板上形成介電材料層之一堆疊,其包含交替的第一介電材料層及第二介電材料層; 穿過介電材料層之該堆疊形成孔洞,該等孔洞暴露該基板; 經由該等孔洞選擇性地移除該等第二材料層以在相鄰的第一介電材料層之間形成空腔; 經由該等孔洞利用一導電材料填充該等空腔,以形成用於形成記憶體單元之一第一存取線的對應導電材料層; 經由該等孔洞之凹口形成記憶體單元儲存元件;及 利用導電材料填充該等孔洞以形成對應第二記憶體單元存取線。
  15. 如請求項14之方法,其進一步包含在該孔洞處在該等導電材料層中形成複數個凹口,經由該等孔洞之該等凹口實施一硫屬化物材料之一保形沈積以便利用該硫屬化物材料填充該等凹口。
  16. 如請求項15之方法,其中形成該複數個凹口包含在該等孔洞之側壁中執行一等向性蝕刻操作。
  17. 如請求項14至15中任一項之方法,其中該第一介電材料包含二氧化矽。
  18. 一種記憶體單元之3D豎直陣列,其包括: 記憶體單元之複數個2D陣列,其堆疊在一半導體基板上方; 與每一2D陣列相關聯之字線,其基本上平行於該基板延伸; 呈導電柱形式之數位線,其基本上垂直於該基板延伸; 該等記憶體單元,其包括形成在一字線與一數位線之間之一拓樸交叉點處的一資料儲存元件;及 與相鄰的2D陣列相關聯之字線,其藉由一介電材料彼此分隔開。
  19. 如請求項18之3D豎直陣列,其中該第二介電材料包含二氧化矽及氮化矽中之一者。
  20. 如請求項18至19中任一項之3D豎直陣列,其中該等字線及該等數位線由包括鎢或鉬之一導電材料形成。
TW110106880A 2020-03-18 2021-02-26 用於製造記憶體裝置之方法及經由該方法所製造之記憶體裝置 TW202207497A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2020/000102 WO2021186199A1 (en) 2020-03-18 2020-03-18 Method for manufacturing a memory device and memory device manufactured through the same method
WOPCT/IB2020/000102 2020-03-18

Publications (1)

Publication Number Publication Date
TW202207497A true TW202207497A (zh) 2022-02-16

Family

ID=77771664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106880A TW202207497A (zh) 2020-03-18 2021-02-26 用於製造記憶體裝置之方法及經由該方法所製造之記憶體裝置

Country Status (6)

Country Link
US (1) US11943938B2 (zh)
JP (1) JP2023517739A (zh)
KR (1) KR20220139988A (zh)
CN (1) CN115516654A (zh)
TW (1) TW202207497A (zh)
WO (1) WO2021186199A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11984165B2 (en) * 2022-05-24 2024-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with reduced area

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120120537A (ko) 2011-04-25 2012-11-02 에스케이하이닉스 주식회사 3차원 크로스 포인트 셀 구조를 갖는 플래시 메모리 제조방법
KR20140127577A (ko) 2013-04-25 2014-11-04 에스케이하이닉스 주식회사 3차원 저항 가변 메모리 장치 및 그 제조방법
US9666799B2 (en) * 2014-10-31 2017-05-30 Sandisk Technologies Llc Concave word line and convex interlayer dielectric for protecting a read/write layer
US9876055B1 (en) * 2016-12-02 2018-01-23 Macronix International Co., Ltd. Three-dimensional semiconductor device and method for forming the same
KR102036882B1 (ko) * 2017-06-07 2019-10-25 한양대학교 산학협력단 역 상 변화 특성을 갖는 상 변화 메모리 소자 및 이를 이용하여 고집적 3차원 아키텍처를 갖는 상 변화 메모리
US10262730B1 (en) 2017-10-16 2019-04-16 Sandisk Technologies Llc Multi-state and confined phase change memory with vertical cross-point structure
CN107968091A (zh) 2017-11-16 2018-04-27 长江存储科技有限责任公司 一种共源极钨墙与钨栅极之间高质量间隙层的3d nand制备方法

Also Published As

Publication number Publication date
US11943938B2 (en) 2024-03-26
US20220051944A1 (en) 2022-02-17
WO2021186199A1 (en) 2021-09-23
CN115516654A (zh) 2022-12-23
JP2023517739A (ja) 2023-04-26
KR20220139988A (ko) 2022-10-17

Similar Documents

Publication Publication Date Title
US11923289B2 (en) Stack of horizontally extending and vertically overlapping features, methods of forming circuitry components, and methods of forming an array of memory cells
US11925036B2 (en) Three-dimensional memory array
TWI750695B (zh) 用於記憶體裝置之分割柱架構
EP3607595B1 (en) Three dimensional memory array and fabrication method thereof
KR102233131B1 (ko) 3차원 메모리 어레이들
TW202205628A (zh) 記憶體裝置及其製造方法
US11818902B2 (en) Vertical 3D memory device and method for manufacturing the same
US20230097079A1 (en) Improved vertical 3d memory device and accessing method
TW202207497A (zh) 用於製造記憶體裝置之方法及經由該方法所製造之記憶體裝置
TWI758962B (zh) 垂直3d記憶體裝置及其製造方法
US20220302211A1 (en) Memory device and method for manufacturing the same