TW202205628A - 記憶體裝置及其製造方法 - Google Patents

記憶體裝置及其製造方法 Download PDF

Info

Publication number
TW202205628A
TW202205628A TW110126355A TW110126355A TW202205628A TW 202205628 A TW202205628 A TW 202205628A TW 110126355 A TW110126355 A TW 110126355A TW 110126355 A TW110126355 A TW 110126355A TW 202205628 A TW202205628 A TW 202205628A
Authority
TW
Taiwan
Prior art keywords
conductive
spacers
dielectric
vertical
conformal
Prior art date
Application number
TW110126355A
Other languages
English (en)
Inventor
羅倫佐 弗拉汀
保羅 凡蒂尼
法比歐 佩里茲
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202205628A publication Critical patent/TW202205628A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明描述用於垂直3D記憶體裝置之方法、具有垂直3D記憶體裝置之設備及垂直3D記憶體裝置。一垂直3D記憶體裝置可包括:複數個接觸件,其與複數條數位線相關聯且延伸穿過一基板;複數個字線板,其藉由各自介電層彼此分離且包含第一複數個字線板及第二複數個字線板;一第一介電材料,其定位於該第一複數個與該第二複數個字線板之間,該第一介電材料以一蛇形形狀延伸於該基板上;一保形材料,其分別定位於該第一介電材料與該第一及第二複數個字線板之間;複數個間隔件;複數個柱,其與該複數個接觸件耦合;及複數個儲存元件,其各包括定位於一凹部中之硫屬化物材料。

Description

記憶體裝置及其製造方法
技術領域係關於一種記憶體裝置及其製造方法。
記憶體裝置廣泛用於將資訊儲存於各種電子裝置中,諸如電腦、無線通信裝置、相機、數位顯示器及類似者。
藉由程式化一記憶體裝置之不同狀態而儲存資訊。舉例而言,二進位裝置最常儲存兩個狀態之一者,其通常藉由一邏輯1或一邏輯0表示。在其他裝置中,可儲存多於兩個狀態。為存取所儲存之資訊,裝置之一組件可讀取或感測記憶體裝置中之至少一個儲存狀態。為儲存資訊,裝置之一組件可將狀態寫入或程式化於記憶體裝置中。
存在各種類型之記憶體裝置,包含磁性硬碟、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、動態RAM (DRAM)、同步動態RAM (SDRAM)、鐵電RAM (FeRAM)、磁性RAM (MRAM)、電阻式RAM (RRAM)、快閃記憶體、相變記憶體(PCM)、其他基於硫屬化物之記憶體及其他記憶體裝置。記憶體裝置可為揮發性或非揮發性。
改良記憶體裝置通常可包含增加記憶體胞元密度、增加讀取/寫入速度、增加可靠性、增加資料保留、減少功率消耗、或減少製造成本以及其他度量。可需要用於節省記憶體陣列中之空間、增加記憶體胞元密度或減少具有三維垂直架構之記憶體陣列之總功率使用的解決方案。
本專利申請案主張Fratin等人在2020年7月22日申請之讓渡給其受讓人之標題為「MEMORY DEVICE AND METHOD FOR MANUFACTURING THE SAME」之國際申請案第PCT/IB2020/020041號之優先權且該案之全部內容以引用之方式明確併入本文中。
本發明係關於具有一增加記憶體胞元密度及壓縮記憶體胞元之三維(3D)垂直自選擇記憶體陣列及其製造方法。記憶體陣列可包含導電接觸件及穿過導電材料及絕緣材料之替代層之開口之一配置,其可減小記憶體胞元之間之間隔同時保持一介電厚度以維持施加至記憶體陣列之電壓。記憶體陣列中之一記憶體胞元之一作用區域由於鄰近於其之間隔件之形成而可壓縮或縮小。
在一些實例中,一3D記憶體陣列可包含具有配置成一圖案(例如,一幾何圖案)之複數個接觸件之一基板及形成於該基板上之一第一絕緣材料(例如,一介電材料)。一導電材料之複數個平面可藉由一第二絕緣材料(例如,一介電材料)彼此分離且形成於基板材料上。導電材料之平面可為字線之實例。
在製造此一記憶體陣列期間,一溝槽可形成為分離奇數及偶數字線平面以產生「梳狀物」結構(例如,看似具有指狀物及該等指狀物之間之空間之一工具之結構)之一形狀。溝槽可具有任何幾何組態且包含以一固定距離面向彼此之梳狀物之奇數及偶數指狀物群組。在一些實例中,溝槽可形成為一蛇形形狀。溝槽可將導電材料之各平面劃分成兩個區段或兩個板。導電材料之各平面可為一字線板之一實例。在一些實例中,在溝槽內部,可以介電材料及導電材料形成複數個凹部的方式蝕刻導電材料之平面,其中各凹部可經組態以接收一儲存元件材料(例如,硫屬化物材料)。一犧牲層(例如,一保形材料)可經沈積於溝槽中且在一些情況中該犧牲層填充凹部。一絕緣材料可經沈積於溝槽中、犧牲層之頂部上。犧牲層及絕緣層可形成一蛇形形狀。在一些實例中,考慮溝槽之其他幾何組態。
可移除犧牲層及絕緣層之部分以形成開口。開口可曝露基板之部分、複數個導電接觸件及導電材料及介電材料之部分。在一些實例中,犧牲層及絕緣層之壁可曝露於開口中。間隔件可形成於犧牲層之壁上。在一些實例中,間隔件可僅形成或生長於犧牲層而非絕緣層之壁上。一儲存元件材料(例如,硫屬化物材料)可經沈積於開口中及各自兩個間隔件之間。儲存元件材料可填充藉由介電材料及導電材料形成之凹部。可從開口部分移除儲存元件材料使得僅保留凹部中之儲存元件材料。
導電柱可形成於包含凹部中之儲存元件材料之開口中。導電柱可為數位線之實例。導電柱可經配置以延伸至(例如,實質上垂直於)導電材料之平面及基板。各導電柱可與一不同導電接觸件耦合。柱可由一障壁材料及一導電材料形成。
相對於先前解決方案,一記憶體陣列之此等組態及製造方法可允許記憶體胞元之一較高密度及壓縮記憶體胞元。各記憶體胞元(例如,儲存元件材料)可在導電柱之相對側內部凹入以確保胞元隔離。相對於一些先前解決方案,此一組態可允許對胞元厚度及尺寸之一更嚴格控制。與導電柱相交之導電材料之各平面可形成藉由平面中之一第一字線板及平面中之一第二字線板定址之兩個記憶體胞元。可藉由定位於記憶體陣列之底部或頂部處之一電晶體解碼各導電柱。電晶體可為形成為一規則矩陣之一數位線選擇器之一實例。
最初在如參考圖1描述之一記憶體陣列之背景內容中描述本發明之特徵。在如參考圖2A至圖5C描述之製造步驟期間在實例性3D記憶體陣列之不同視圖之背景內容中描述本發明之特徵。藉由與如參考圖6描述之垂直3D記憶體陣列架構及參考圖8描述之記憶體設備有關之流程圖進一步繪示且參考該等流程圖描述本發明之此等及其他特徵。在參考圖7之一實例性3D記憶體胞元之背景內容中進一步描述本發明之此等及其他特徵。
圖1繪示根據本發明之態樣之一3D記憶體陣列100之一實例。記憶體陣列100可包含定位於一基板104上方之記憶體胞元之一第一陣列或層疊105及第一陣列或層疊105之頂部上之記憶體胞元之一第二陣列或層疊108。在一些實例中,記憶體陣列100可具有相對於基板104之一不同定向,諸如從圖1中展示之定向旋轉90°之一定向,其中記憶體胞元之第一陣列或層疊105可定位成鄰近記憶體胞元之第二陣列或層疊108。
記憶體陣列100可包含字線110及數位線115。第一層疊105及第二層疊108之記憶體胞元各可具有一或多個自選擇記憶體胞元。儘管用一數值指示符標記包含於圖1中之一些元件,然未標記其他對應元件,但其相同或將被理解為類似。
一記憶體胞元堆疊可包含一第一介電材料120、一儲存元件材料125 (例如,硫屬化物材料)、一第二介電材料130、一儲存元件材料135 (例如,硫屬化物材料)及一第三介電材料140。在一些實例中,第一層疊105及第二層疊108之自選擇記憶體胞元可具有共同導電線使得各層疊105及108之對應自選擇記憶體胞元可共用數位線115或字線110。
在一些實例中,可藉由對可包含一記憶體儲存元件之一記憶體胞元提供一電脈衝而程式化該胞元。可經由一第一存取線(例如,字線110)或一第二存取線(例如,數位線115)或其之一組合來提供脈衝。在一些情況中,在提供脈衝之後,離子可取決於記憶體胞元之極性而在記憶體儲存元件內遷移。因此,相對於記憶體儲存元件之第一側或第二側之離子之一濃度可至少部分基於第一存取線與第二存取線之間之一電壓之一極性。在一些情況中,不對稱形狀之記憶體儲存元件可引起離子更聚集於具有更大面積之一元件之部分處。記憶體儲存元件之特定部分可具有一較高電阻率且因此可產生高於記憶體儲存元件之其他部分之一臨限電壓。離子遷移之此描述表示用於達成本文中所描述之結果之自選擇記憶體胞元之一機制之一實例。一機制之此實例不應被視為限制性。本發明亦包含用於達成本文中所描述之結果之自選擇記憶體胞元之機制之其他實例。
記憶體陣列100之架構在一些情況中可被稱為一垂直3D交叉點架構,其中一記憶體胞元形成於一字線110與一數位線115之間之一拓撲交叉點處。相較於其他記憶體架構,此一交叉點架構可以較低生產成本提供相對較高密度資料儲存。舉例而言,交叉點架構相較於其他架構可具有面積縮小且因此記憶體胞元密度增加之記憶體胞元。
雖然圖1之實例展示兩個記憶體層疊105及108,但其他組態亦係可行的。在一些實例中,自選擇記憶體胞元之一單一記憶體層疊(其可被稱為一個二維記憶體)可建構於一基板104上方。在一些實例中,可以類似於三維交叉點架構中之一方式組態記憶體胞元之三個或四個記憶體層疊。
記憶體陣列100可包含具有配置成一柵格或交錯圖案之複數個接觸件的一基板104。在一些情況中,複數個接觸件可延伸穿過基板且與記憶體陣列100之一存取線耦合。記憶體陣列100可包含一導電材料之複數個平面,該複數個平面藉由形成於基板材料上之第一絕緣材料上之一第二絕緣材料彼此分離。導電材料之複數個平面之各者可包含形成於其中之複數個凹部。可藉由憑藉以下步驟之一替換程序獲得複數個平面(舉例而言,字線板):在一堆疊沈積處理步驟期間使用一犧牲層(例如,一保形層)進行蝕刻;在胞元定義之後移除保形層且用一更導電材料替換保形層。
一絕緣材料可透過第二絕緣材料及導電材料形成為一蛇形形狀。複數個導電柱可經配置成開口以實質上垂直於導電材料之複數個平面及基板延伸。複數個導電柱之每一各自者可耦合至導電接觸件之一不同者。
在一些實例中,記憶體層疊105及108可包含經組態以儲存邏輯狀態的硫屬化物材料。舉例而言,記憶體層疊105及108之記憶體胞元可為自選擇記憶體胞元之實例。硫屬化物材料可形成於複數個凹部中使得複數個凹部之每一各自者中之硫屬化物材料至少部分與複數個導電柱之一者接觸。
圖2A繪示根據如本文中揭示之實例之一實例性3D記憶體陣列200-a之一仰視圖。記憶體陣列200-a可包含形成於一基板104中且延伸穿過基板104且與記憶體陣列100之一存取線耦合的複數個導電接觸件235。舉例而言,基板104可為一介電材料,諸如一介電膜。
複數個導電接觸件235之一單一導電接觸件可經組態以將任何單一垂直柱與一電晶體(未展示)耦合。複數個導電接觸件235可經配置成一柵格圖案。在一些實例中,複數個導電接觸件235之一各自者可由至多八個其他導電接觸件235包圍。在一些實例中,複數個導電接觸件235可經配置成一交錯圖案或一六邊形圖案。舉例而言,複數個導電接觸件235之一各自者可由至多六個其他導電接觸件235包圍。
圖2B繪示根據如本文中揭示之實例之一實例性3D記憶體陣列200-b之一側視圖。記憶體陣列200-b可包含可形成於基板104中的複數個導電接觸件235。記憶體陣列200-b亦可包含一絕緣材料240之複數個堆疊平面及一導電材料245之複數個堆疊平面(例如,字線平面或字線板)。導電材料245之堆疊平面可藉由絕緣材料240之複數個平面在一z方向上彼此分離(例如,垂直分離)。舉例而言,第二絕緣材料240之一第一平面(例如,一底部平面)可形成(例如,沈積)於基板104之平面上,且接著導電材料245之一平面可形成於第二絕緣材料240之第一平面上。在一些實例中,第一絕緣材料240之一層可經沈積於基板104上。在一些實例中,導電材料245可為一導電碳層或與活性材料相容之其他導電層。在一些實例中,導電材料245可包含藉由活性材料透過一保護障壁分離的導電層。導電材料245可經組態以用作至少一個字線板。在一些實例中,導電材料245及絕緣材料240形成複數個層,諸如交替層。
第二絕緣材料240之額外平面可以如圖2B中繪示之一交替方式形成於導電材料245上。第二絕緣材料240可為一介電材料,諸如一介電膜或層。在一些實例中,第二絕緣材料240及基板104可為相同類型之絕緣材料。本文中揭示之絕緣材料之實例包含(但不限於)介電材料,諸如氧化矽。
導電材料245之複數個平面之每一各自者可處於(例如,形成) 3D記憶體陣列200-b之一不同層級。形成記憶體胞元之材料之個別平面可被稱為3D記憶體陣列200-b之一層疊。導電材料245可包括一金屬(或半金屬)材料或一半導體材料(諸如一摻雜多晶矽材料)等等(例如,由其形成)。在一些實例中,導電材料245可為一導電碳平面。
圖2B中展示導電材料245之六個平面及第二絕緣材料240之七個平面。第二絕緣材料240之第七平面可為3D記憶體陣列200-b之一最頂層。導電材料245及第二絕緣材料240之平面之數量不限於圖2B中繪示之數量。導電材料245及第二絕緣材料240可經配置成多於六個層疊或少於六個層疊。
圖3A至圖3E繪示根據如本文中揭示之實例之在可執行以形成一堆疊記憶體裝置之一系列步驟或程序期間之實例性3D記憶體陣列200-c、200-d、200-e及200-f之各種視圖。明確言之,在圖3A至圖3E中,展示形成偶數及奇數字線平面之一程序。
圖3A繪示一實例性3D記憶體陣列200-c之一俯視圖,其可為在形成一溝槽350之後圖2B中繪示之記憶體陣列200-b之一實例。圖3B繪示在繼圖3A中所繪示者之後之一程序步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-d之一截面視圖。圖3C繪示在繼圖3B中所繪示者之後之一程序步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-e之一截面視圖。圖3D繪示在繼圖3C中所繪示者之後之一程序步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-f之一截面視圖。圖3E繪示在繼圖3C中所繪示者之後之一程序步驟期間之剖面線B-B'之一實例性3D記憶體陣列200-f之一俯視圖。圖3A至圖3E繪示可執行以形成一堆疊記憶體裝置之一系列步驟或程序。
圖3A繪示形成穿過記憶體陣列200-c之導電材料245 (圖3B中展示)及第二絕緣材料240 (圖3B中展示)之交替平面之溝槽350。溝槽350可在溝槽350之底部處曝露基板104 (先前在圖2A及圖2B中展示)及導電接觸件235 (先前在圖2A及圖2B中展示)。
溝槽350可從頂部蝕刻至底部且蝕刻成一蛇形形狀。例如,溝槽350可沿一第一方向(例如,從左至右)越過導電接觸件235之一列且接著沿與該第一方向相反之一第二方向(例如,從右至左)越過導電接觸件235之一鄰近列。參考圖3A之實例,溝槽350從左至右越過導電接觸件235之一第一列,接著「轉向」並從右至左越過導電接觸件235之下一(第二)列(鄰近第一列)。溝槽350再次「轉向」並從左至右越過導電接觸件235之下一(第三)列(鄰近第二列)。溝槽350再次「轉向」並從右至左越過導電接觸件235之下一(第四)列(鄰近第三列)且接著再次「轉向」並從左至右越過圖3A之底部處之導電接觸件235之下一(第五)列(鄰近第四列)。
溝槽350可將導電材料245之各平面分叉成至少兩個部分:一第一部分308及一第二部分309。導電材料245之一平面之各部分可為一層疊之一不同存取線(例如,偶數字線或奇數字線)。舉例而言,第一部分308可為3D記憶體陣列200-c之一層疊之一第一存取線且第二部分309可為3D記憶體陣列200-c之相同層疊之一第二存取線。可基於一所使用電極之電阻率且藉由所請求之電流遞送之位準而定義形成偶數或奇數平面之指狀物之延伸部。具體言之,取決於記憶體胞元所需之厚度來定義凹部之深度。
圖3B繪示在記憶體陣列200-d之平面之各者中之導電材料245中形成複數個凹部315。舉例而言,可執行一選擇性蝕刻操作以依一等向性方式在溝槽350之側壁390及391中形成複數個凹部315。在一些實例中,溝槽350包含與一第二側壁391隔開之一第一側壁390,其中藉由第一絕緣材料240形成之第一側壁390之一第一部分392與藉由第一絕緣材料240形成之第二側壁391之一第一部分393隔開達一第一距離。藉由第一導電材料245形成之第一側壁390之一第二部分394可與藉由第一導電材料245形成之第二側壁391之一第二部分396隔開達大於第一距離之一第二距離。在一些實例中,藉由第一導電材料245形成之溝槽350之側壁390及391之部分相對於藉由第一絕緣材料240形成之溝槽350之側壁390及391之部分凹入。
蝕刻操作可包含一或多個垂直蝕刻程序(例如,一非等向性蝕刻程序或一乾式蝕刻程序或其之一組合)或水平蝕刻程序(例如,一等向性蝕刻程序)或其之組合。舉例而言,可執行一垂直蝕刻程序以垂直地蝕刻溝槽350且可使用一水平蝕刻程序以在至少一個導電材料245中形成至少一個凹部315。可選擇蝕刻參數使得舉例而言比第二絕緣材料240更快地蝕刻導電材料245。
圖3C繪示形成一保形材料320 (例如,一犧牲材料或犧牲層)。保形材料320可經沈積至記憶體陣列200-e之溝槽350中。可藉由保形地沈積保形材料320而在凹部315 (圖3B中展示)中形成保形材料320。保形材料320接觸各溝槽350之一第一側壁390、一第二側壁391及一底壁395。儘管圖3C展示在複數個凹部315中形成保形材料320期間可在溝槽350之側壁上(例如,在面向溝槽350之不同層中之第二絕緣材料240及導電材料245之表面上)形成保形材料320,然實例不限於此。舉例而言,在一些情況中,保形材料320可僅限於不同層中之導電材料245中之複數個凹部315。在一些情況中,保形材料320可被稱為一保形層或一犧牲層。在一些情況中,保形材料320可為一介電材料,舉例而言,SiO2 、GeO2 、SiNx 、WO3 或類似者。儘管出於一闡釋性目的,保形材料320選擇為SiO2 、GeO2 、SiNx 或WO3 ,然實例不限於此。其他不同材料亦可行。
在一些情況中,可繼形成保形材料320之後執行一蝕刻操作。在蝕刻操作中,保形材料320可經蝕刻以形成一開口或溝槽350。蝕刻操作可導致保形材料320之表面(例如,面向溝槽350之表面)與第二絕緣材料240之表面(例如,面向溝槽350之表面)隔開。在一些情況中,蝕刻操作可導致保形材料320之表面(例如,面向溝槽350之表面)與第二絕緣材料240之表面(例如,面向溝槽350之表面)大致共面,且藉此形成溝槽之一連續側壁。本文中描述之蝕刻操作可為垂直蝕刻程序(例如,一非等向性蝕刻程序或一乾式蝕刻程序或其之一組合)或水平蝕刻程序(例如,一等向性蝕刻程序)。
圖3D繪示在溝槽350中記憶體陣列200-f之保形材料320之頂部上沈積一介電材料318。介電材料318可接觸保形材料320。介電材料318及保形材料320可協作以填充溝槽350。在一些情況中,介電材料318可為一絕緣材料之一實例。在一些實例中,保形材料320可選擇性地回蝕以與介電材料318形成一共面表面。可取決於一所要厚度來定義凹入之深度。在一些情況中,介電材料318可為Al2 O3 、TiO2 、HfO2 或類似者。然而,介電材料之實例可不限於上文提及之介電材料。
圖3E繪示根據本發明之一實例之在沈積介電材料318 (如圖3D中展示)之後之一實例性3D記憶體陣列200-f之一俯視圖。在圖3E中,形成於溝槽350中之保形材料320及介電材料318將導電材料245之各平面分叉成一第一部分308及一第二部分309。
圖4A至圖4F繪示根據如本文中揭示之實例之在可執行以形成一堆疊記憶體裝置之一系列步驟或程序期間之實例性3D記憶體陣列200-g、200-h、200-i、200-j及200-k之各種視圖。具體言之,圖4A至圖4F繪示用於在圖3D及圖3E中繪示之記憶體陣列200-f中形成記憶體胞元之程序。
圖4A繪示一記憶體陣列200-g之一俯視圖,其可為在形成開口360之後圖3E中繪示之記憶體陣列200-f之一實例。圖4B繪示在繼圖4A中所繪示者之後之一程序步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-h之一截面視圖。圖4C繪示在繼圖4B中所繪示者之後之一程序步驟期間之剖面線B-B'之實例性3D記憶體陣列200-i之一俯視圖。圖4D繪示在繼圖4C中所繪示者之後之一程序步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-j之一截面視圖。圖4E繪示在繼圖4D中所繪示者之後之一程序步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-k之一截面視圖。圖4F繪示在繼圖4D中所繪示者之後之一程序步驟期間之剖面線B-B'之實例性3D記憶體陣列200-k之一俯視圖。
圖4A繪示通過記憶體陣列200-g之導電材料245之平面之任一者之一俯視圖。可藉由蝕除介電材料318及/或保形材料320之一部分而形成一溝槽350中之複數個開口360。開口360意欲定位成與複數個接觸件235對準使得形成開口360曝露延伸穿過基板104 (圖4B中展示)之複數個接觸件235 (圖4B中展示)之至少一部分。蝕刻程序可為一垂直蝕刻程序。在一些實例中,蝕刻操作可不蝕除保形材料320之全部部分,舉例而言,其中未形成複數個開口360。
圖4B繪示根據本發明之一實例之一實例性3D記憶體陣列200-h之一截面視圖。如圖4B中展示,複數個凹部315可形成於平面之各者中之導電材料245中。舉例而言,可執行一選擇性蝕刻操作以依一完全或部分等向性方式形成複數個凹部315。可選擇蝕刻化學以選擇性地到達一導電材料245。可藉由在溝槽350中形成開口360而曝露接觸件235。
圖4C繪示根據本發明之一實例之一實例性3D記憶體陣列200-i之一俯視圖。如圖4C中展示,複數個間隔件380可形成(例如)於凹部315 (圖4B中展示)中藉由用於形成開口360之蝕刻操作曝露之保形材料320之壁上。在一些情況中,如圖4C中展示,可存在小於形成於各自兩個間隔件之間之凹部315的一進一步凹部,其可用於形成下文描述之一儲存元件材料465。在一些情況中,可藉由一區域選擇性原子層沈積(ALD)形成間隔件380。藉由採用區域選擇性ALD,間隔件380可僅形成或生長於保形材料320而非介電材料318之壁上。在一些情況中,間隔件380之材料之一實例可為一介電材料,諸如SiO2 。然而,實例可不限於此。
在一些情況中,為允許將間隔件380材料選擇性地沈積於保形材料320上,可選擇區域選擇性ALD,其由作為抑制劑之乙醯丙酮、作為Si前驅體之雙(二乙氨基)矽烷(BDEAS)及作為共反應劑之O2 電漿組成。在一些情況中,保形材料320可選擇為SiO2 、GeO2 、SiNx 或WO3 ,而介電材料310可選擇為Al2 O3 、TiO2 或HfO2 ,以便確保間隔件380 (例如,SiO2 )僅生長於保形材料320之壁上而不生長於介電材料318之壁上。在一些情況中,保形材料320及介電材料318可選擇為彼此不同之其他材料,只要間隔件380可僅生長於保形材料320之壁上。
在一些情況中,如圖4C中展示,間隔件380之生長可在保形材料320之壁處開始且沿曝露於開口360中之導電材料245之側壁繼續進行。在一些情況中,當形成一所要厚度之間隔件380時,間隔件380之生長可停止。在一些情況中,間隔件380之厚度可取決於記憶體胞元之作用區域之一所要大小。
圖4D繪示根據本發明之一實例之一實例性3D記憶體陣列200-j之一截面視圖。如圖4D中展示,可藉由將一儲存元件材料465保形地沈積至溝槽350中而在複數個凹部315中形成儲存元件材料465。儲存元件材料465可經沈積以接觸藉由蝕刻保形材料320曝露之溝槽350之側壁390及391以及一底壁395。當儲存元件材料465接觸溝槽350之底壁395時,儲存元件材料465覆蓋曝露之接觸件235。在一些情況中,儲存元件材料465可進一步接觸曝露於溝槽350中之間隔件380 (圖4D中未展示)之側壁。在一些情況中,儲存元件材料465之一部分可定位於各自兩個間隔件380之間。
儲存元件材料465可為硫屬化物材料(諸如硫屬化物合金及/或玻璃)之一實例,其可充當一自選擇儲存元件材料(例如,可充當一選擇裝置及一儲存元件兩者之一材料)。舉例而言,儲存元件材料465可回應於一施加電壓(諸如一程式脈衝)。對於小於一臨限電壓之一施加電壓,儲存元件材料465可保持在一非導電狀態(例如,一「關斷」狀態)。替代地,回應於大於臨限電壓之一施加電壓,儲存元件材料465可進入一導電狀態(例如,一「接通」狀態)。
儲存元件材料465可藉由施加滿足一程式化臨限值之一脈衝(例如,一程式化脈衝)而程式化為一目標狀態。程式化脈衝之振幅、形狀或其他特性可經組態以引起儲存元件材料465展現目標狀態。舉例而言,在施加程式化脈衝之後,儲存元件材料465之離子可重佈於整個儲存元件中,藉此更改在施加一讀取脈衝時偵測到之記憶體胞元之一電阻。在一些情況中,儲存元件材料465之臨限電壓可基於施加程式化脈衝而變化。
可藉由將讀取脈衝施加至儲存元件材料465而感測、偵測或讀取藉由儲存元件材料465儲存之狀態。讀取脈衝之振幅、形狀或其他特性可經組態以允許一感測組件判定儲存於儲存元件材料465上之狀態。舉例而言,在一些情況中,讀取脈衝之振幅經組態為處於一位準,即儲存元件材料465針對一第一狀態將處於一「接通」狀態(例如,電流經傳導通過材料)但針對一第二狀態將處於一「關斷」狀態(例如,幾乎無電流經傳導通過材料)。
在一些情況中,施加至儲存元件材料465之脈衝之極性(程式化或讀取)可影響執行之操作之結果。舉例而言,若儲存元件材料465儲存一第一狀態,則一第一極性之一讀取脈衝可導致儲存元件材料465展現一「接通」狀態而一第二極性之一讀取脈衝可導致儲存元件材料465展現一「關斷」狀態。此可能係由於在儲存元件材料465儲存一狀態時儲存元件材料465中之離子或其他材料之不對稱分佈而發生。類似原理適用於程式化脈衝及其他脈衝或電壓。
可充當儲存元件材料465之硫屬化物材料之實例包含銦(In)-锑(Sb)-碲(Te) (IST)材料(諸如In2 Sb2 Te5 、In1 Sb2 Te4 、In1 Sb4 Te7 等)及鍺(Ge)-锑(Sb)-碲(Te) (GST)材料(諸如Ge8 Sb5 Te8 、Ge2 Sb2 Te5 、Ge1 Sb2 Te4 、Ge1 Sb4 Te7 、Ge4 Sb4 Te7 或等)以及其他硫屬化物材料,包含(例如)在操作期間不會改變相位之合金(例如,硒基硫屬化物合金)。此外,硫屬化物材料可包含較小濃度之其他摻雜劑材料。硫屬化物材料之其他實例可包含碲-砷(As)-鍺(OTS)材料、Ge、Sb、Te、矽(Si)、鎳(Ni)、鎵(Ga)、As、銀(Ag)、錫(Sn)、金(Au)、鉛(Pb)、鉍(Bi)、銦(In)、硒(Se)、氧(O)、硫(S)、氮(N)、碳(C)、釔(Y)及鈧(Sc)材料及其之組合。如本文中使用之連字符化學組合物符號指示包含於一特定混合物或化合物中之元素,且意欲表示涉及所指示元素之全部化學計量。在一些實例中,硫屬化物材料可為硫屬化物玻璃或非晶硫屬化物材料。在一些實例中,主要具有硒(Se)、砷(As)及鍺(Ge)之硫屬化物材料可被稱為SAG合金。在一些實例中,SAG合金可包含矽(Si)且此硫屬化物材料可被稱為SiSAG合金。在一些實例中,硫屬化物玻璃可包含各呈原子或分子形式之額外元素,諸如氫(H)、氧(O)、氮(N)、氯(Cl)或氟(F)。在一些實例中,可透過使用各種化學物種進行摻雜來控制電導率。舉例而言,摻雜可包含將第3族(例如,硼(B)、鎵(Ga)、銦(In)、鋁(Al)等)或第4族(錫(Sn)、碳(C)、矽(Si)等)元素併入組合物中。
圖4E繪示根據本發明之一實例之一實例性3D記憶體陣列200-k之一截面視圖。可繼形成儲存元件材料465之後執行一蝕刻操作使得儲存元件材料465之表面(例如,面向溝槽350之表面)與第二絕緣材料240之表面(例如,面向溝槽350之表面)大致共面,如圖4D中繪示。儲存元件材料465之蝕刻可形成一連續側壁且移除儲存元件材料465之頂層466 (圖4C中展示),藉此儲存元件材料465之胞元僅形成於凹部中。在各凹部中,儲存元件材料465之各胞元可接觸一單一導電材料245 (例如,定位成鄰近儲存元件材料465之胞元之一單一導電材料245)及至少兩個介電層(例如,定位於儲存元件材料465之胞元之頂部上及儲存元件材料465之胞元之底部上之一頂部介電層及一底部介電層),如圖4D中展示。儲存元件材料465之蝕刻可提供其中儲存元件材料465彼此分離之一組態。儲存元件材料465之蝕刻亦可曝露基板104中之接觸件235。在一些實例中,間隔件380可定位於儲存元件材料465之胞元之任一側上(如圖4F中展示)。
圖4F繪示根據本發明之一實例之一實例性3D記憶體陣列200-k之一俯視圖。如圖4F中繪示,形成於溝槽350中之保形材料320、間隔件380及儲存元件材料465可將導電材料245之各平面分叉成一第一部分308及一第二部分309。一平面之各部分可為一字線板之一實例。
圖5A至圖5C繪示根據如本文中揭示之實例之在可執行以形成一堆疊記憶體裝置之一系列步驟或程序期間之實例性3D記憶體陣列200-l及200-m之各種視圖。具體言之,圖5A至圖5C繪示在形成凹入自選擇記憶體胞元之後填充開口360之程序。
圖5A繪示一記憶體陣列200-l之一俯視圖,其可為在形成凹入自選擇記憶體胞元之後圖4F中繪示之記憶體陣列200-k之一實例。圖5B係在繼圖5A中所繪示者之後之一處理步驟期間通過圖4E中繪示之導電材料245之平面之任一者之一記憶體陣列200-m的一俯視圖。圖5C繪示在繼圖5B中所繪示者之後之一處理步驟期間沿剖面線A-A'之一實例性3D記憶體陣列200-m之一截面視圖。
圖5A繪示一記憶體陣列200-l之一俯視圖,其中一障壁材料570經沈積至溝槽350之開口360中。在一些實施方案中,障壁材料570接觸第一絕緣材料240 (未展示)、第二絕緣材料240 (未展示)、間隔件380及儲存元件材料465之至少一個部分。在一些實例中,障壁材料570與一活性材料相容。在一些實例中,障壁材料570可為一導電材料或具有一導電材料之一障壁層。舉例而言,障壁層可包括氧化鋁。在一些實例中,可執行一蝕刻操作以為將導電材料沈積至溝槽350中騰出空間。在一些情況中,障壁材料570可被稱為一障壁層。
圖5B繪示一記憶體陣列200-m之一俯視圖,其中一導電材料575經沈積至溝槽350之開口360中。一導電材料575可經沈積於開口360中以形成一導電柱580。導電柱580可包含障壁材料570及導電材料575。在一些實例中,導電柱580可形成為與溝槽350之側壁390及391 (圖4D中展示)上之儲存元件材料465接觸且與如圖5B中展示之間隔件380接觸。在一些實例中,導電柱580可包括與導電材料575相同之材料。在一些實例中,導電柱580可為一數位線。導電柱580可為一圓柱體。儘管圖5B將導電柱580繪示為一實心柱,然在一些實例中,導電柱580可為一中空圓柱體或環形(例如,一管)。導電柱580可包括一金屬(或半金屬)材料或一半導體材料(諸如一摻雜多晶矽材料)等等。然而,可使用其他金屬、半金屬或半導體材料。
形成於複數個開口360之每一各自者中之導電柱580經配置以實質上正交於導電材料245及第二絕緣材料240之交替平面延伸(未展示)。形成於複數個開口360之每一各自者中之間隔件380、儲存元件材料465及導電柱580形成為一實質上正方形形狀。然而,本發明之實例不限於精確或準精確正方形形狀。例如,間隔件380、儲存元件材料465及導電柱580可形成為任何形狀,包含例如圓形或卵形形狀。
圖5C繪示根據本發明之一實例之一實例性3D記憶體陣列200-m之一側視圖。如圖5C中繪示,一罩蓋層585 (例如,一絕緣材料,諸如一介電層)可經沈積以罩蓋記憶體陣列200-m之導電柱580。
記憶體陣列200-m可包含複數個垂直堆疊。每一各自堆疊可包含導電柱580、耦合至導電柱580之一導電接觸件235、形成為與第一部分308及導電柱580接觸之儲存元件材料465、及形成為與第二部分309及導電柱580接觸之儲存元件材料465。
導電柱580可與導電接觸件235及第一絕緣材料240接觸,且與形成於凹部315中之儲存元件材料465及間隔件380 (圖5C中未展示)接觸。在一些情況中,儲存元件材料465部分(例如,不完全)形成於導電柱580周圍。
儘管為清楚起見且以免混淆本發明之實例而在圖5C中未展示,然其他材料可形成於儲存元件材料465及/或導電柱580之前、之後及/或之間(舉例而言)以形成黏著層或障壁以防止材料之相互擴散及/或減輕組合物混合。
圖6展示繪示根據本發明之態樣之用於製造一3D記憶體陣列之一方法600之一流程圖。可藉由一製造系統或與一製造系統相關聯之一或多個控制器實施方法600之操作。在一些實例中,一或多個控制器可執行一指令集以控制製造系統之一或多個功能元件以執行所描述功能。額外地或替代地,一或多個控制器可使用專用硬體來執行所描述功能之態樣。
在S610,方法600可包含形成延伸穿過一基板之複數個導電接觸件,各導電接觸件與複數條數位線之一各自者相關聯。可根據本文中描述之方法來執行S610之操作。
在S620,方法600可包含形成運用複數個介電層之一各自者彼此分離的複數個導電層,該複數個導電層經組態為字線。可根據本文中描述之方法來執行S620之操作。
在S630,方法600可包含形成穿過複數個導電層及複數個介電層之一溝槽,該溝槽曝露基板且將該複數個導電層劃分成一第一組字線及一第二組字線。可根據本文中描述之方法來執行S630之操作。
在S640,方法600可包含沈積接觸溝槽之一第一側壁及一第二側壁之一保形材料。可根據本文中描述之方法來執行S640之操作。
在S650,方法600可包含在溝槽中沈積接觸保形材料之一第一介電材料。可根據本文中描述之方法來執行S650之操作。
在S660,方法600可包含藉由蝕刻保形材料之一部分及第一介電材料之一部分而在一各自接觸件上方形成一開口。可根據本文中描述之方法來執行S660之操作。
在S670,方法600可包含在開口中選擇性地在保形材料之壁處沿第一及第二組字線之側壁形成(例如,生長)複數個間隔件。可根據本文中描述之方法來執行S670之操作。
在S680,方法600可包含將經組態以儲存資訊之與各自兩個間隔件之間之第一及第二組字線之側壁接觸之硫屬化物材料沈積至開口中。可根據本文中描述之方法來執行S680之操作。
若吾人概述本發明之方法之核心步驟,吾人可稱在記憶體陣列之主要3D垂直結構已形成為交替導電及介電層之一堆疊時,方法繼續形成通過3D記憶體陣列結構之複數個導電層及複數個介電層之一溝槽。
溝槽曝露基板且將複數個導電層劃分成一第一組字線及一第二組字線。
在藉由溝槽形成之開口中形成或生長複數個間隔件,其接觸至少第一及第二組字線,因此減小開口大小。
複數個間隔件之各者僅定位於字線與藉由溝槽形成而曝露之一保形材料之間之一各自隅角壁處。
接著,沿字線用硫屬化物材料填充間隔件之間之間隙。
最後,在S690,方法600可包含在開口中沈積一導電材料以形成經組態為數位線之一導電柱。
應注意,在一些實例中,舉例而言,透過一區域選擇性原子層沈積(ALD)以與先前參考圖4C描述類似之一方式獲得間隔件生長或形成。
額外地或替代地,用於製造一3D記憶體陣列之方法600可進一步包括蝕刻硫屬化物材料之一部分以形成開口之一連續側壁,及將一障壁材料沈積至開口中並接觸開口之連續側壁。在一些實例中,硫屬化物材料可包括:一第一壁,其接觸複數個導電層之一各自者;一第二壁,其接觸複數個介電層之一各自者;一第三壁,其接觸複數個介電層之一進一步各自者;一第四壁,其接觸障壁材料;一第五壁,其接觸一各自間隔件;及一第六壁,其接觸一進一步各自間隔件。
額外地或替代地,用於製造一3D記憶體陣列之方法600可進一步包括蝕刻障壁材料以曝露接觸件,及將接觸障壁材料及接觸件之一導電材料沈積至開口中。在一些實例中,導電材料可經組態為一數位線。
在一些實例中,形成溝槽之步驟可包括執行一垂直蝕刻程序以垂直地蝕刻溝槽,及在垂直蝕刻程序之後執行一水平蝕刻程序以在導電層中形成至少一個凹部。在一些實例中,垂直蝕刻程序可包括一非等向性蝕刻程序或一乾式蝕刻程序或其之一組合。在一些實例中,水平蝕刻程序可包括一等向性蝕刻程序。
在一些實例中,形成溝槽之步驟可曝露延伸穿過基板之複數個接觸件之至少一部分。
在一些實例中,溝槽可以一蛇形形狀延伸穿過複數個導電層及複數個介電層。在一些實例中,溝槽可包括與第二側壁隔開之第一側壁,其中藉由介電層形成之第一側壁之一第一部分與藉由介電層形成之第二側壁之一第一部分隔開達一第一距離,且藉由複數個導電層形成之第一側壁之一第二部分與藉由複數個導電層形成之第二側壁之一第二部分隔開達大於第一距離之一第二距離。
在一些實例中,藉由複數個導電層形成之溝槽之側壁之部分可相對於藉由介電層形成之溝槽之側壁之部分凹入。
在一些實例中,複數個間隔件之各者可僅定位於保形材料之一各自壁處。在一些實例中,舉例而言,複數個間隔件之各者可僅透過一區域選擇性原子層沈積(ALD)以與先前參考圖4C描述類似之一方式生長於保形材料之各自壁處。在一些實例中,複數個間隔件之各者可由一介電材料組成。
在一些實例中,保形材料可為不同於第一介電材料之一第二介電材料,使得一間隔件可僅透過一區域選擇性原子層沈積(ALD)形成或生長於保形材料之壁上。
在一些實例中,如本文中描述之一設備可執行一方法(諸如方法600)。設備可包含用於形成延伸穿過一基板之複數個導電接觸件的特徵、構件或指令(例如,儲存可由一處理器執行之指令之一非暫時性電腦可讀媒體),各導電接觸件與複數條數位線之一各自者相關聯。
本文中描述之設備之一些實例可進一步包含用於形成運用複數個介電層之一各自者彼此分離之複數個導電層的操作、特徵、構件或指令,該複數個導電層經組態為字線。
本文中描述之設備之一些實例可進一步包含用於形成穿過複數個導電層及複數個介電層之一溝槽的操作、特徵、構件或指令,該溝槽曝露基板且將該複數個導電層劃分成一第一組字線及一第二組字線。
本文中描述之設備之一些實例可進一步包含用於沈積接觸溝槽之一第一側壁及一第二側壁之一保形材料的操作、特徵、構件或指令。
本文中描述之設備之一些實例可進一步包含用於在溝槽中沈積接觸保形材料之一第一介電材料的操作、特徵、構件或指令。
本文中描述之設備之一些實例可進一步包含用於藉由蝕刻保形材料之一部分及第一介電材料之一部分而在一各自接觸件上方形成一開口的操作、特徵、構件或指令。
本文中描述之設備之一些實例可進一步包含用於在開口中選擇性地在保形材料之壁處沿第一及第二組字線之側壁形成或生長複數個間隔件的操作、特徵、構件或指令。
本文中描述之設備之一些實例可進一步包含用於將經組態以儲存資訊之與各自兩個間隔件之間之第一及第二組字線之側壁接觸之硫屬化物材料沈積至開口中的操作、特徵、構件或指令。
本文中描述之設備之一些實例可進一步包含用於以下各者之操作、特徵、構件或指令:蝕刻硫屬化物材料之一部分以形成開口之一連續側壁;將接觸開口之連續側壁之一障壁材料沈積至開口中;蝕刻障壁材料以曝露接觸件;且將接觸障壁材料及接觸件之一導電材料沈積至開口中。
本文中描述之設備之一些實例可進一步包含用於在開口中沈積一導電材料以形成經組態為數位線之一導電柱的操作、特徵、構件或指令。
在本文中描述之方法600及設備之一些實例中,該組間隔件之各者僅定位於保形材料之一各自壁處。在本文中描述之方法600及設備之一些實例中,複數個間隔件之各者僅透過一ALD形成於保形材料之各自壁處。在本文中描述之方法600及設備之一些實例中,ALD包括作為一抑制劑之乙醯丙酮、作為Si前驅體之BDEAS及作為一共反應劑之O2 電漿。
本文中描述之方法600及設備之一些實例可進一步包含用於以下各者之操作、特徵、構件或指令:蝕刻硫屬化物材料之一部分以形成開口之一連續側壁;且將接觸開口之連續側壁之一障壁材料沈積至開口中。
在本文中描述之方法600及設備之一些實例中,硫屬化物材料包含:一第一壁,其接觸複數個導電層之一各自者;一第二壁,其接觸複數個介電層之一各自者;一第三壁,其接觸複數個介電層之一進一步各自者;一第四壁,其接觸障壁材料;一第五壁,其接觸一各自間隔件;及一第六壁,其接觸一進一步各自間隔件。
本文中描述之方法600及設備之一些實例可進一步包含用於以下各者之操作、特徵、構件或指令:蝕刻障壁材料以曝露接觸件;且將接觸障壁材料及接觸件之一第二導電材料沈積至開口中。
在本文中描述之方法600及設備之一些實例中,形成溝槽可進一步包含用於以下各者之操作、特徵、構件或指令:執行一垂直蝕刻程序以垂直地蝕刻溝槽;且在垂直蝕刻程序之後執行一水平蝕刻程序以在複數個導電層中形成至少一個凹部。
在本文中描述之方法600及設備之一些實例中,垂直蝕刻程序包含一非等向性蝕刻程序或一乾式蝕刻程序或其之一組合。
在本文中描述之方法600及設備之一些實例中,溝槽包含與第二側壁隔開之第一側壁,其中藉由複數個介電層形成之第一側壁之一第一部分與藉由複數個介電層形成之第二側壁之一第一部分隔開達一第一距離,且藉由複數個導電層形成之第一側壁之一第二部分與藉由複數個導電層形成之第二側壁之一第二部分隔開達大於第一距離之一第二距離。
在一些實例中,如本文中描述之一設備可執行一方法(諸如製造一垂直3D記憶體陣列之一方法)。設備可包含用於以下各者之特徵、構件或指令(例如,儲存可由一處理器執行之指令之一非暫時性電腦可讀媒體):形成穿過3D記憶體陣列之複數個導電層及複數個介電層之一溝槽,該溝槽曝露一基板且將複數個導電層劃分成一第一組字線及一第二組字線;在溝槽中之一開口中形成接觸至少第一及第二組字線之複數個間隔件,因此減小開口之一大小;沿第一及第二組字線用硫屬化物材料填充複數個間隔件之間之一間隙;且在開口中沈積一導電材料。
在本文中描述之方法及設備之一些實例中,複數個間隔件之各者可僅定位於字線與藉由形成開口而曝露之一保形材料之間之一各自隅角壁處。
在本文中描述之方法及設備之一些實例中,形成複數個間隔件包含一區域選擇性ALD。
在本文中描述之方法及設備之一些實例中,複數個間隔件之各者僅基於區域選擇性ALD形成於一保形材料之一各自隅角壁處。
在本文中描述之方法及設備之一些實例中,區域選擇性ALD包含作為一抑制劑之乙醯丙酮、作為Si前驅體之BDEAS及作為一共反應劑之O2 電漿。在本文中描述之方法及設備之一些實例中,複數個間隔件之各者由一介電材料組成。在本文中描述之方法及設備之一些實例中,複數個間隔件之各者包括一介電材料。在本文中描述之方法及設備之一些實例中,可在以下各者之一群組中選擇介電材料:SiO2 、GeO2 、SiNx 或WO3
圖7A展示一通用記憶體胞元700之一示意性俯視圖或平面圖,其中根據本發明之方法縮小作用區域。
在已實施從610至650之報告方法步驟之後,可界定用於實現垂直結構之胞元作用區域及位元線柱之一腔710。該腔藉由蝕刻保形材料720之一部分及第一介電材料730之一部分而形成穿過一各自接觸件上方之一開口。
在實質上大於所需,否則將無法蝕刻整個堆疊之腔710界定之後,選擇性蝕刻允許最初移除中心介電材料730且接著繼續蝕刻其他介電保形材料720直至一側之字線層740e及另一側之字線層740o。
圖7A之示意圖可對應於方法步驟660結束時之情境。
此時,如圖6之步驟670中及圖7B之示意性實例中所報告,一進一步介電層750僅憑藉區域選擇性ALD技術選擇性地形成或生長於介電保形層720之壁上作為一間隔件。換言之,舉例而言,以與先前參考圖4C描述類似之一方式憑藉區域選擇性生長實現一間隔件材料750。
在此步驟中,抑制劑分子選擇性地吸附於非生長區域(即,字線區域740e、740o及介電區域730)上,從而以前驅體分子僅吸附於藉由保形介電材料720表示之生長區域上的方式阻止前驅體吸附。
由於間隔件750之效應,留在凹入腔內部之孔760相對於腔較窄。在步驟680,硫屬化物材料770經沈積於腔中且特定言之沈積於窄孔760中。可舉例而言運用一非等向性蝕刻從腔側壁而非鄰近面向間隔件750對之間之字線740e及740o之區移除經沈積之硫屬化物材料。應注意,藉由可屏蔽硫屬化物使之免受非等向性蝕刻之突出絕緣材料240 (圖7中未展示,因為在平行於圖式之一不同平面上)垂直屏蔽相對於腔710凹入之此區。各自兩個介電層中之突出絕緣材料240可在垂直方向上限制活性硫屬化物材料770。
結構可完成將一導電材料780沈積至中心開口中以形成經組態為數位線之導電柱,舉例而言如步驟690中描述。因此,在一些實例中,硫屬化物材料770與一字線740e及740o、各自兩個間隔件750及數位線導電柱780之一側壁接觸。在垂直方向上,例如,在圖7中描繪之平面外,可藉由突出絕緣材料240 (例如,藉由各自兩個介電層)限制硫屬化物材料。換言之,在記憶體胞元中用於儲存及自選擇之硫屬化物材料770之體積及與字線740e及740o之接觸面積小於其在不存在間隔件750之情況下將具有者。
圖8係根據如本文中揭示之實例之呈一記憶體裝置800之形式之一設備之一方塊圖。如本文中使用,一「設備」可係指(但不限於)各種結構或結構組合之任一者,諸如(舉例而言)一電路或電路系統、一或若干晶粒、一或若干模組、一或若干裝置、或一或若干系統。如圖7中展示,記憶體裝置800可包含一3D記憶體陣列810。3D記憶體陣列810可類似於先前結合圖5B描述之3D記憶體陣列200-m。儘管為清楚起見且以免混淆本發明之實施例,圖8展示一單一3D記憶體陣列810,然記憶體裝置800可包含任何數目個3D記憶體陣列810。
如圖8中展示,記憶體裝置800可包含耦合至3D記憶體陣列810的解碼電路系統820。解碼電路系統820可包含於與3D記憶體陣列810相同之實體裝置(例如,相同晶粒)上。解碼電路系統820可包含於通信耦合至包含3D記憶體陣列810之實體裝置之一單獨實體裝置上。
解碼電路系統820可在對3D記憶體陣列810執行之程式化及/或感測操作期間接收且解碼位址信號以存取3D記憶體陣列810之如上文參考圖1提及之記憶體胞元。舉例而言,解碼電路系統820可包含用於在一程式化或感測操作期間選擇3D記憶體陣列810之一特定記憶體胞元以存取的解碼器電路系統之部分。例如,可使用解碼器電路系統之一第一部分來選擇一字線且可使用解碼器電路系統之一第二部分來選擇一數位線。
圖8中繪示之實例可包含未繪示以免混淆本發明之實例之額外電路系統、邏輯及/或組件。舉例而言,記憶體裝置800可包含一控制器以發送命令以對3D記憶體陣列810執行操作(諸如感測(例如,讀取)、程式化(例如,寫入)、移動及/或擦除資料之操作以及其他操作)。此外,記憶體裝置800可包含位址電路系統以鎖存透過輸入/輸出(I/O)電路系統經由I/O連接器提供之位址信號。此外,記憶體裝置800可包含與記憶體陣列810分離及/或除記憶體陣列810以外的一主記憶體,諸如(例如)一DRAM或SDRAM。
此處描述一垂直3D記憶體裝置。垂直3D記憶體裝置可包含:複數個接觸件,其與複數條數位線相關聯且延伸穿過一基板;複數個字線板,其藉由各自介電層彼此分離且包含第一複數個字線板及第二複數個字線板;一第一介電材料,其定位於第一複數個與第二複數個字線板之間,該第一介電材料以一蛇形形狀延伸於基板上;一保形材料,其分別定位於第一介電材料與第一及第二複數個字線板之間;複數個間隔件,其沿第一及第二複數個字線板之側壁定位於保形材料之各自壁處;複數個柱,其形成於複數個接觸件上且與該複數個接觸件耦合;及複數個儲存元件,其各包括定位於藉由一各自字線板、一各自柱、各自兩個間隔件及各自兩個介電層形成之一凹部中之硫屬化物材料。
在一些實例中,複數個間隔件之各者僅定位於保形材料之一各自壁處。在一些實例中,複數個間隔件之各者僅透過一ALD形成於保形材料之各自壁處。在一些實例中,複數個間隔件之各者由一介電材料組成。在一些實例中,複數個間隔件之各者包括一介電材料。在一些實例中,保形材料係不同於第一介電材料之一第二介電材料,其經組態用於僅透過一ALD在保形材料之各自壁上選擇性地形成間隔件。
在一些實例中,複數個柱之一柱進一步包含接觸硫屬化物材料之至少部分的一障壁材料及接觸該障壁材料且經組態為一數位線的一導電材料。在一些實例中,保形材料可選擇為SiO2 、GeO2 、SiNx 或WO3 ,而第一介電材料可選擇為Al2 O3 、TiO2 或HfO2
在一些實例中,形成於複數個接觸件上方之複數個柱中斷以蛇形形狀延伸於基板上方之第一介電材料之一連續性。在一些實例中,該組接觸件經配置成一交錯圖案。在一些實例中,複數個接觸件經配置成一柵格。
在一些實例中,垂直3D記憶體裝置可進一步包含經組態以在對該垂直3D記憶體裝置執行之一程式化操作或感測操作期間選擇一各自字線及一各自數位線的電路系統。
可使用各種不同科技及技術之任一者來表示本文中描述之資訊及信號。舉例而言,可藉由電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子或其之任何組合表示可貫穿上文描述引用之資料、指令、命令、資訊、信號、位元、符號及晶片。
可運用經設計以執行本文中描述之功能之一通用處理器、一數位信號處理器(DSP)、一特定應用積體電路(ASIC)、一場可程式化閘陣列(FPGA)或其他可程式化邏輯裝置、離散閘或電晶體邏輯、離散硬體組件或其之任何組合來實施或執行結合本文中之揭示內容描述之各種闡釋性方塊及模組。一通用處理器可為一微處理器,但在替代例中,處理器可為任何處理器、控制器、微控制器或狀態機。一處理器亦可實施為運算裝置之一組合(例如,一DSP及一微處理器之一組合、多個微處理器、結合一DSP核心之一或多個微處理器或任何其他此組態)。
可在硬體、藉由一處理器執行之軟體、韌體或其之任何組合中實施本文中描述之功能。若在藉由一處理器執行之軟體中實施,則可將功能作為一或多個指令或程式碼儲存於一電腦可讀媒體上或經由一電腦可讀媒體傳輸。其他實例及實施方案係在本發明及隨附發明申請專利範圍之範疇內。舉例而言,歸因於軟體之性質,可使用由一處理器執行之軟體、硬體、韌體、硬接線或此等之任一者之組合來實施上文描述之功能。實施功能之特徵亦可實體上定位在各種位置處,包含經分佈使得在不同實體位置處實施功能之部分。
再者,如本文中使用,包含在發明申請專利範圍中,如一物項清單(舉例而言,以諸如「…之至少一者」或「…之一或多者」之一片語開始之一物項清單)中使用之「或」指示一包含清單,使得(舉例而言) A、B或C之至少一者之一清單意謂A或B或C或AB或AC或BC或ABC (即,A及B及C)。再者,如本文中使用,片語「基於」不應被解釋為對一條件閉集之一參考。舉例而言,在不脫離本發明之範疇的情況下,被描述為「基於條件A」之一例示性步驟可基於一條件A及一條件B兩者。換言之,如本文中使用,片語「基於」應以與片語「至少部分基於」相同之方式進行解釋。
提供本文中之描述以使熟習此項技術者能夠進行或使用本發明。熟習此項技術者將明白本發明之各種修改,且本文中定義之通用原理可應用於其他變動而不脫離本發明之範疇。因此,本發明不限於本文中描述之實例及設計而應符合與本文中揭示之原理及新穎特徵一致之最寬範疇。
100:三維(3D)記憶體陣列 104:基板 105:第一陣列或層疊 108:第二陣列或層疊 110:字線 115:數位線 120:第一介電材料 125:儲存元件材料 130:第二介電材料 135:儲存元件材料 140:第三介電材料 200-a:三維(3D)記憶體陣列 200-b:三維(3D)記憶體陣列 200-c:三維(3D)記憶體陣列 200-d:三維(3D)記憶體陣列 200-e:三維(3D)記憶體陣列 200-f:三維(3D)記憶體陣列 200-g:三維(3D)記憶體陣列 200-h:三維(3D)記憶體陣列 200-i:三維(3D)記憶體陣列 200-j:三維(3D)記憶體陣列 200-k:三維(3D)記憶體陣列 200-l:三維(3D)記憶體陣列 200-m:三維(3D)記憶體陣列 235:導電接觸件 240:第二絕緣材料 245:導電材料 308:第一部分 309:第二部分 315:凹部 318:介電材料 320:保形材料 350:溝槽 360:開口 380:間隔件 390:第一側壁 391:第二側壁 392:第一部分 393:第一部分 394:第二部分 395:底壁 396:第二部分 465:儲存元件材料 466:頂層 570:障壁材料 575:導電材料 580:導電柱 585:罩蓋層 600:方法 610:方法步驟 620:方法步驟 630:方法步驟 640:方法步驟 650:方法步驟 660:方法步驟 670:步驟 680:步驟 690:步驟 700:通用記憶體胞元 710:腔 720:保形材料 730:第一介電材料 740e:字線層/字線區域 740o:字線層/字線區域 750:介電層/間隔件材料 760:孔 770:硫屬化物材料 780:導電材料/數位線導電柱 800:記憶體裝置 810:三維(3D)記憶體陣列 820:解碼電路系統
圖1繪示根據如本文中揭示之實例之一垂直3D記憶體陣列之一實例。
圖2A繪示根據如本文中揭示之實例之一實例性3D記憶體陣列之一仰視圖。
圖2B繪示根據如本文中揭示之實例之一實例性3D記憶體陣列之一側視圖。
圖3A至圖3E繪示根據如本文中揭示之實例之實例性3D記憶體陣列之各種視圖。
圖4A至圖4F繪示根據如本文中揭示之實例之實例性3D記憶體陣列之各種視圖。
圖5A至圖5C繪示根據如本文中揭示之實例之實例性3D記憶體陣列之各種視圖。
圖6展示繪示根據如本文中揭示之實例之製造一3D記憶體陣列之一方法之一流程圖。
圖7A、圖7B及圖7C繪示根據如本文中揭示之實例之3D記憶體胞元之一實例之各種示意性俯視圖。
圖8係根據如本文中揭示之實例之呈一記憶體裝置之形式之一設備之一方塊圖。
720:保形材料
730:第一介電材料
740e:字線層/字線區域
750:介電層/間隔件材料
770:硫屬化物材料
780:導電材料/數位線導電柱

Claims (28)

  1. 一種垂直3D記憶體裝置,其包括: 複數個接觸件,其與複數條數位線相關聯且延伸穿過一基板; 複數個字線板,其藉由各自介電層彼此分離且包含第一複數個字線板及第二複數個字線板; 一第一介電材料,其定位於該第一複數個與該第二複數個字線板之間,該第一介電材料以一蛇形形狀延伸於該基板上; 一保形材料,其分別定位於該第一介電材料與該第一及第二複數個字線板之間; 複數個間隔件,其沿該第一及第二複數個字線板之側壁定位於該保形材料之各自壁處; 複數個柱,其形成於該複數個接觸件上且與該複數個接觸件耦合;及 複數個儲存元件,其各包括定位於藉由一各自字線板、一各自柱、各自兩個間隔件及各自兩個介電層形成之一凹部中的硫屬化物材料。
  2. 如請求項1之垂直3D記憶體裝置,其中: 該複數個間隔件之各者定位於該保形材料之一各自壁處。
  3. 如請求項2之垂直3D記憶體裝置,其中: 該複數個間隔件之各者透過一區域選擇性原子層沈積(ALD)形成於該保形材料之該各自壁處。
  4. 如請求項1之垂直3D記憶體裝置,其中: 該複數個間隔件之各者包括一介電材料。
  5. 如請求項1之垂直3D記憶體裝置,其中: 該保形材料係不同於該第一介電材料之一第二介電材料,其經組態用於僅透過一區域選擇性原子層沈積(ALD)在該保形材料之該等各自壁上選擇性地形成間隔件。
  6. 如請求項1之垂直3D記憶體裝置,其中: 該複數個柱之一柱進一步包括接觸該硫屬化物材料之至少部分的一障壁材料及接觸該障壁材料且經組態為一數位線的一導電材料。
  7. 如請求項1之垂直3D記憶體裝置,其中: 該保形材料可選擇為SiO2 、GeO2 、SiNx 或WO3 ;且 該第一介電材料可選擇為Al2 O3 、TiO2 或HfO2
  8. 如請求項1之垂直3D記憶體裝置,其中: 形成於該複數個接觸件上之該複數個柱中斷以該蛇形形狀延伸於該基板上之該第一介電材料之一連續性。
  9. 如請求項1之垂直3D記憶體裝置,其中: 該複數個接觸件經配置成一交錯圖案。
  10. 如請求項1之垂直3D記憶體裝置,其中: 該複數個接觸件經配置成一柵格。
  11. 如請求項1之垂直3D記憶體裝置,其進一步包括: 電路系統,其經組態以在對該垂直3D記憶體裝置執行之一程式化操作或感測操作期間選擇一各自字線及一各自數位線。
  12. 一種製造一垂直3D記憶體陣列之方法,其包括: 形成延伸穿過一基板之複數個導電接觸件,其各與複數條數位線之一各自數位線相關聯; 形成運用複數個介電層之一各自者彼此分離之複數個導電層,該複數個導電層經組態為字線; 形成穿過該複數個導電層及該複數個介電層之一溝槽,該溝槽曝露該基板且將該複數個導電層劃分成一第一組字線及一第二組字線; 沈積接觸該溝槽之一第一側壁及一第二側壁之一保形材料; 在該溝槽中沈積接觸該保形材料之一第一介電材料; 藉由蝕刻該保形材料之一部分及該第一介電材料之一部分而在一各自接觸件上形成一開口; 在該開口中選擇性地在該保形材料之壁處沿該等第一及第二組字線之側壁形成複數個間隔件; 將經組態以儲存資訊之與藉由該蝕刻曝露之該開口之一側壁及一底壁接觸之硫屬化物材料沈積至該開口中及各自兩個間隔件之間;及 在該開口中沈積一導電材料以形成經組態為數位線之一導電柱。
  13. 如請求項12之方法,其中: 該複數個間隔件之各者定位於該保形材料之一各自壁處。
  14. 如請求項13之方法,其中: 該複數個間隔件之各者透過一區域選擇性原子層沈積(ALD)形成於該保形材料之該各自壁處。
  15. 如請求項14之方法,其中該區域選擇性原子層沈積(ALD)包括作為一抑制劑之乙醯丙酮、作為一Si前驅體之雙(二乙氨基)矽烷(BDEAS)及作為一共反應劑之O2 電漿。
  16. 如請求項12之方法,其進一步包括: 蝕刻該硫屬化物材料之一部分以形成該開口之一連續側壁;且 將接觸該開口之該連續側壁之一障壁材料沈積至該開口中。
  17. 如請求項16之方法,其中: 該硫屬化物材料包括:一第一壁,其接觸該複數個導電層之一各自者;一第二壁,其接觸該複數個介電層之一各自者;一第三壁,其接觸該複數個介電層之一進一步各自者;一第四壁,其接觸該障壁材料;一第五壁,其接觸一各自間隔件;及一第六壁,其接觸一進一步各自間隔件。
  18. 如請求項17之方法,其進一步包括: 蝕刻該障壁材料以曝露該接觸件;及 將接觸該障壁材料及該接觸件之一第二導電材料沈積至該開口中。
  19. 如請求項12之方法,其中形成該溝槽包括: 執行一垂直蝕刻程序以垂直地蝕刻該溝槽;及 在該垂直蝕刻程序之後執行一水平蝕刻程序以在該複數個導電層中形成至少一個凹部。
  20. 如請求項19之方法,其中: 該垂直蝕刻程序包括一非等向性蝕刻程序或一乾式蝕刻程序或其之一組合。
  21. 如請求項12之方法,其中: 該溝槽包括與該第二側壁隔開之該第一側壁,其中藉由該複數個介電層形成之該第一側壁之一第一部分與藉由該複數個介電層形成之該第二側壁之一第一部分隔開達一第一距離,且藉由該複數個導電層形成之該第一側壁之一第二部分與藉由該複數個導電層形成之該第二側壁之一第二部分隔開達大於該第一距離之一第二距離。
  22. 一種製造一垂直3D記憶體陣列之方法,其包括: 形成穿過該3D記憶體陣列之複數個導電層及複數個介電層之一溝槽,該溝槽曝露一基板且將該複數個導電層劃分成一第一組字線及一第二組字線; 在該溝槽中之一開口中形成接觸至少該等第一及第二組字線之複數個接觸件,因此減小該開口之一大小; 沿該等第一及第二組字線用硫屬化物材料填充該複數個間隔件之間之一間隙; 在該開口中沈積一導電材料。
  23. 如請求項22之方法,其中: 該複數個間隔件之各者定位於該等字線與藉由形成該開口而曝露之一保形材料之間之一各自隅角壁處。
  24. 如請求項22之方法,其中: 形成該複數個間隔件包括一區域選擇性原子層沈積(ALD)。
  25. 如請求項24之方法,其中: 該複數個間隔件之各者基於該區域選擇性原子層沈積(ALD)形成於一保形材料之一各自隅角壁處。
  26. 如請求項24之方法,其中該區域選擇性原子層沈積(ALD)包括作為一抑制劑之乙醯丙酮、作為一Si前驅體之雙(二乙氨基)矽烷(BDEAS)及作為一共反應劑之O2 電漿。
  27. 如請求項22之方法,其中: 該複數個間隔件之各者包括一介電材料。
  28. 如請求項27之方法,其中: 可在以下之一群組中選擇該介電材料:SiO2 、GeO2 、SiNx 或WO3
TW110126355A 2020-07-22 2021-07-19 記憶體裝置及其製造方法 TW202205628A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/IB2020/020041 2020-07-22
PCT/IB2020/020041 WO2022018476A1 (en) 2020-07-22 2020-07-22 Memory device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW202205628A true TW202205628A (zh) 2022-02-01

Family

ID=79728534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126355A TW202205628A (zh) 2020-07-22 2021-07-19 記憶體裝置及其製造方法

Country Status (3)

Country Link
US (1) US20220302210A1 (zh)
TW (1) TW202205628A (zh)
WO (1) WO2022018476A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809829B (zh) * 2022-02-07 2023-07-21 南亞科技股份有限公司 具有輪廓修飾子之半導體元件結構的製備方法
US11854832B2 (en) 2022-02-07 2023-12-26 Nanya Technology Corporation Semiconductor device structure having a profile modifier
US11894259B2 (en) 2022-02-07 2024-02-06 Nanya Technology Corporation Method for manufacturing the same having a profile modifier

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
EP2017906B1 (en) * 2007-07-17 2011-03-23 STMicroelectronics Srl Process for manufacturing a copper compatible chalcogenide phase change memory element and corresponding phase change memory element
US9227456B2 (en) * 2010-12-14 2016-01-05 Sandisk 3D Llc Memories with cylindrical read/write stacks
US9450023B1 (en) * 2015-04-08 2016-09-20 Sandisk Technologies Llc Vertical bit line non-volatile memory with recessed word lines
FR3043842B1 (fr) * 2015-11-13 2017-12-15 Commissariat Energie Atomique Procede de fabrication d’une memoire pcram
SG11201807260RA (en) * 2016-03-15 2018-09-27 Agency Science Tech & Res Memory device and method of forming the same
US20180211703A1 (en) * 2017-01-23 2018-07-26 Western Digital Technologies, Inc. High-density 3d vertical reram with bidirectional threshold-type selector
US10424728B2 (en) * 2017-08-25 2019-09-24 Micron Technology, Inc. Self-selecting memory cell with dielectric barrier
US10381409B1 (en) * 2018-06-07 2019-08-13 Sandisk Technologies Llc Three-dimensional phase change memory array including discrete middle electrodes and methods of making the same
US10700128B1 (en) * 2018-12-21 2020-06-30 Micron Technology, Inc. Three-dimensional memory array
KR20210083125A (ko) * 2019-12-26 2021-07-06 에스케이하이닉스 주식회사 저항 변화 구조물을 구비하는 비휘발성 메모리 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809829B (zh) * 2022-02-07 2023-07-21 南亞科技股份有限公司 具有輪廓修飾子之半導體元件結構的製備方法
US11854832B2 (en) 2022-02-07 2023-12-26 Nanya Technology Corporation Semiconductor device structure having a profile modifier
US11894259B2 (en) 2022-02-07 2024-02-06 Nanya Technology Corporation Method for manufacturing the same having a profile modifier

Also Published As

Publication number Publication date
WO2022018476A1 (en) 2022-01-27
US20220302210A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
TWI743745B (zh) 三維記憶體裝置之架構及其相關之方法
KR102608677B1 (ko) 3 차원 메모리 어레이
TWI750695B (zh) 用於記憶體裝置之分割柱架構
TW202205628A (zh) 記憶體裝置及其製造方法
US10930707B2 (en) Memory device with a split pillar architecture
US11818902B2 (en) Vertical 3D memory device and method for manufacturing the same
TW202147569A (zh) 改良的垂直3d記憶體裝置及存取方法
US11943938B2 (en) Method for manufacturing a memory device and memory device manufactured through the same method
TWI758962B (zh) 垂直3d記憶體裝置及其製造方法
TW202220190A (zh) 記憶體裝置及其製造方法