TW202204389A - 用於顯影及醫療目的之包含螯合部分的選擇性gip受體促效劑 - Google Patents

用於顯影及醫療目的之包含螯合部分的選擇性gip受體促效劑 Download PDF

Info

Publication number
TW202204389A
TW202204389A TW110112014A TW110112014A TW202204389A TW 202204389 A TW202204389 A TW 202204389A TW 110112014 A TW110112014 A TW 110112014A TW 110112014 A TW110112014 A TW 110112014A TW 202204389 A TW202204389 A TW 202204389A
Authority
TW
Taiwan
Prior art keywords
compound
salt
solvate
hydrate
receptor
Prior art date
Application number
TW110112014A
Other languages
English (en)
Inventor
卡尊 羅倫斯
馬丁 伯沙特
托斯登 哈克
麥可 華格納
安卓雅 埃佛司
Original Assignee
瑞典商安特拉司醫療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商安特拉司醫療公司 filed Critical 瑞典商安特拉司醫療公司
Publication of TW202204389A publication Critical patent/TW202204389A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/008Peptides; Proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本發明係關於GIP(1-30)類似物,其選擇性結合且活化GIP受體,並包含能夠結合金屬離子之螯合部分;及其例如在PET顯影中或用於放射治療之用途。

Description

用於顯影及醫療目的之包含螯合部分的選擇性GIP受體促效劑
本發明係關於GIP(1-30)類似物,其選擇性結合且活化GIP受體,並包含能夠結合金屬離子之螯合部分。較佳的金屬離子為例如可藉由正電子發射斷層攝影術(PET)或單光子發射電腦斷層攝影術(SPECT)偵測之放射核種。所獲得化合物適用於視覺化表現GIP受體之細胞,尤其在胰臟中,以及在偵測及治療以GIP受體之過度表現為特徵之神經內分泌腫瘤的方法中。
GIP及GLP-1為引起促胰島素作用的兩種腸道內分泌細胞衍生之激素,佔對口服葡萄糖挑戰之胰島素反應的70%以上(Baggio等人,Gastroenterology 2007, 132, 2131)。
GIP (葡萄糖依賴性促胰島素多肽) (亦稱為hGIP或hGIP(1-42))為在食物攝取後自腸道K細胞釋放的42個胺基酸肽。GIP胺基酸序列展示為SEQ ID NO: 1: H2 N-YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ-OH
GIP及其類似物自β細胞產生葡萄糖依賴性胰島素分泌,因此在無低血糖風險的情況下進行葡萄糖控制。GIP由於其對胰島之直接作用而展現葡萄糖調節作用(Taminato等人,Diabetes 1977, 26, 480; Adrian等人,Diabetologia 1978, 14, 413; Lupi等人,Regul Pept 2010, 165, 129)。另外,GIP類似物自正常人類及糖尿病人類中之α細胞產生升糖素分泌(Chia等人,Diabetes 2009, 58, 1342; Christensen等人,Diabetes 2011, 60, 3103)。此作用具有進一步最小化缺乏低血糖感知之糖尿病受試者之低血糖風險的可能性。亦已展示GIP肽在臨床前模型中對骨骼及神經保護產生有益作用,在轉化為人類之情況下,該等作用可能在老年糖尿病受試者中具有價值(Ding等人,J Bone Miner Res 2008, 23, 536; Verma等人,Expert Opin Ther Targets 2018, 22, 615; Christensen等人,J Clin Endocrinol Metab 2018, 103, 288)。另外,臨床前資料指示,在臨床前動物模型中,GIP可具有鎮吐作用且防止由誘導噁心及嘔吐之機制(例如,PYY)誘發的嘔吐(US 2018/0298070)。
GIP(1-30)醯胺為GIP之C端截斷形式,其由人類腸道及胰島中的前驅體proGIP活體內產生(Y. Fujita等人,Am J Physiol Gastrointest Liver Physiol 2010, 298, G608)。其被描述為具有充分的生物活性,且在hGIP受體處展示與全長天然GIP (hGIP,GIP(1-42))本身相似之範圍內的高促效活性(M. Maletti等人,Diabetes 1987, 36, 1336; M .B. Wheeler等人,Endocrinology 1995, 136, 4629; L. Hansen等人,Br J Pharmacol. 2016, 173(5), 826)。Volz等人FEBS Lett. 1995年10月2日;373(1):23-9報導對於GIP(1-42)為19.3 nM且對於GIP(1-30)為11.3 nM之Kd
GIP(1-30)醯胺胺基酸序列展示為SEQ ID NO: 2: H2 N-YAEGTFISDYSIAMDKIHQQDFVNWLLAQK-NH2
PET 正電子發射斷層攝影術(PET)為通常使用的核醫學顯影技術,其能夠產生受試者之三維影像。在注射含有正電子發射放射核種之適合放射性示蹤劑之後,由於正電子湮沒,偵測到一對正交γ射線。可在計算重構之後獲得三維影像;通常藉由同時記錄CT X射線掃描來確保正確解剖位置。
用以提供三維影像之另一核醫學斷層攝影顯影技術為單光子發射電腦斷層攝影術(SPECT)。此方法係基於對由適合放射性同位素發射的γ射線之偵測。
此等方法一般用以例如藉由使用用於監測代謝活性之18-氟脫氧葡萄糖來檢查組織且監測生理過程。替代地,標記物放射性同位素可附著至特異性配位體以產生對某些組織或受體(例如,GPCR之受體)顯示特異性的放射性配位體。
藉由PET或SPECT對單一受體類型進行特異性偵測需要示蹤劑配位體與所關注受體之選擇性相互作用。
PET示蹤劑之重要前提條件為代謝穩定性,此係由於PET量測組織中之總放射性濃度且不能辨別不同的放射性標記化學實體(諸如放射性標記代謝物)。因此,具有經改善代謝穩定性之肽PET示蹤劑較佳地增強腎臟對完整PET示蹤劑之清除。
已描述具有顯影部分之選擇性GLP-1受體促效劑(WO2006024275; R.K. Selvaraju等人,Journal of Nuclear Medicine , 2013, 54, 1; O. Eriksson等人,J Clin Endocrinol Metab , 2014, 99(5), 1519)。
本發明包含顯影配位體,其與GIP受體(GIPR)選擇性地相互作用。
對GIP受體具有選擇性之顯影配位體具有用於視覺化神經內分泌腫瘤(NET)之用途。當前,將生長抑素受體靶向視為用於視覺化神經內分泌腫瘤之標準技術。並非所有的NET均過度表現生長抑素受體,但具有較低生長抑素受體含量之許多NET表現GIP受體。GIP受體靶向可提供視覺化此等NET之機會。因此,仍需要強力且選擇性結合於人類GIP受體之配位體。
來源於攜帶螯合部分之天然GIP的肽描述於文獻中。Willekens等人描述一種具有DTPA作為螯合部分之N-乙醯化GIP(1-42)類似物(S. Willekens等人,Nature Sci Rep 2018, 8, 2948)。當此類似物展示選擇性結合於GIP受體時,其由於N-乙醯化而引起緩慢受體內化(參見Ismail等人Mol. Cell. Endocrinol. , 414, 202)。經由螯合部分用放射金屬標記之完整示蹤劑及示蹤劑代謝物可在示蹤劑內化及分解後滯留於溶酶體中,從而引起目標細胞中示蹤劑積聚增強。因此,需要高內化速率以便達成高品質影像所需之高目標-背景比。
Gourni等人描述含有DOTA螯合部分之GIP(1-30)醯胺類似物,其與天然GIP(1-42)相比展示類似至略微更低的結合親和力。所測試化合物具有在1.5 nM與2.5 nM之間的IC50值及在8.5 nM與10.6 nM之間的Kd 值,從而表示對人類GIP受體之結合親和力約等同於GIP(1-30)。(E. Gourni等人,J. Nucl. Med. 2014, 55, 976)
肽受體放射核種療法(PRRT)為用以治療神經內分泌腫瘤(NET)之分子靶向療法。分子靶向療法使用藥物或其它物質來鑑別且攻擊癌細胞,同時減少對健康組織之損害。PRRT高劑量之輻射遞送至體內之腫瘤以破壞或減緩其生長且減少疾病副作用。因此,攜帶負載有適合放射核種(例如,(Y-90)3+ 、(In-111)3+ 或(Lu-177)3+ )之螯合部分(例如,DOTA)的GIP受體結合劑對治療具有升高的GIP受體表現之NET具有較高潛力。
本文中提供GIP(1-30)類似物,其強力及選擇性結合且活化GIP受體,並包含能夠結合金屬離子之螯合部分,從而使分子適用於顯影研究,例如PET研究。
本發明人已出人意料地發現,本發明之肽相較於天然GIP對人類GIP受體具有更高的親和力,選擇性活化GIP受體(相較於GLP-1及升糖素受體),且具有適合的物理化學特性(諸如可溶性),且在水溶液中化學穩定以及物理穩定。同時,本發明之肽之效力類似於或低於GIP(1-42)及GIP(1-30)之效力。出於顯影目的,較佳地,該等化合物具有較高目標結合親和力,但由於在此類應用中並不尋求促效作用,因而低效力比高效力更佳。因此,展示較強結合親和力且同時展示維持或甚至降低之效力的化合物例如對於PET顯影為極合乎需要的。
已發現本發明之化合物在允許出於顯影目的而使用該等化合物的血漿中具有穩定性。
因此,本發明之化合物充分適用於使用顯影技術(諸如PET或SPECT)活體內研究GIP受體。
相較於天然人類GIP,本發明之肽在位置30處經截斷,在10個位置中經修飾,且在經螯合部分修飾之C端處具有額外胺基酸。此等修飾出人意料地使肽具有高化學穩定性以及對GIP受體之更高親和力與實質上未改變的強力促效活性。
經發現,相較於已知GIP(1-30)類似物,本發明之肽展現更高的結合親和力(更低IC50值)。
因此,本發明提供高選擇性GIP受體促效劑,其充分適用於使用顯影技術(例如PET技術)活體內研究GIP受體。
本發明提供一種具有式(I)之肽化合物。 Tyr-Aib-Glu-Gly-Thr-Phe-Ile-Ser-Asp-Leu-Ser-Ile-Ala-Leu-Asp-Arg-Ile-His-Gln-Glu-Glu-Phe-Ile-X24-Trp-Leu-Leu-Ala-Gly-Gly-X31-R1 (I) 其中 X24表示選自Glu或Gln之胺基酸, X31表示選自以下之胺基酸:Cys(VS-DO3A)、Cys(VS-NO2A)、Cys(mal-DOTA)、Cys(mal-NOTA)、Cys(mal-NODAGA)、Lys(DOTA)、Lys(NOTA)、Lys(PEG-DOTA)及Lys(VS-DO3A), 其中DOTA、NOTA、DO3A、NO2A或NODAGA可未經負載或負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 或Re3+ , R1 表示OH或NH2 或其鹽或溶劑合物。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X31表示胺基酸Cys(VS-DO3A)或Lys(DOTA), 其中DOTA或DO3A可未經負載或負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 或Re3+
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Glu。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Glu,且 R1 為OH。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Glu,且 R1 為NH2
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Gln。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Gln,且 R1 為OH。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Gln,且 R1 為NH2
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Gln, X31為C(VS-DO3A)。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 X24為Glu, X31為K(DOTA)。
式(I)之肽化合物之特定實例為SEQ ID NO: 3及4、5及6之化合物以及其鹽或溶劑合物。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A未經負載。
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 及Re3+
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A負載有金屬離子Ga3+
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A負載有金屬離子Gd3+
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A負載有金屬放射性核素離子(Cu-64)2+ 、(Ga-68)3+ 、(Al-F-18)2+ 、(Y-86)3+
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A負載有金屬放射性核素離子(Ga-67)3+ 、(Tc-99)3+ 、(In-111)3+
本發明之另一實施例提供一種具有式(I)之肽化合物,其中 DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+
較佳的化合物為具有表1中所列之SEQ ID NO. 3至6之肽或其鹽或溶劑合物。 表1:序列
SEQ. ID 序列
1 Y-A-E-G-T-F-I-S-D-Y-S-I-A-M-D-K-I-H-Q-Q-D-F-V-N-W-L-L-A-Q-K-G-K-K-N-D-W-K-H-N-I-T-Q-OH
2 Y-A-E-G-T-F-I-S-D-Y-S-I-A-M-D-K-I-H-Q-Q-D-F-V-N-W-L-L-A-Q-K-NH2
3 Y-Aib-E-G-T-F-I-S-D-L-S-I-A-L-D-R-I-H-Q-E-E-F-I-E-W-L-L-A-G-G-K(DOTA)-NH2
4 Y-Aib-E-G-T-F-I-S-D-L-S-I-A-L-D-R-I-H-Q-E-E-F-I-E-W-L-L-A-G-G-K(DOTA(Ga))-NH2
5 Y-Aib-E-G-T-F-I-S-D-L-S-I-A-L-D-R-I-H-Q-E-E-F-I-Q-W-L-L-A-G-G-C(VS-DO3A)-NH2
6 Y-Aib-E-G-T-F-I-S-D-L-S-I-A-L-D-R-I-H-Q-E-E-F-I-Q-W-L-L-A-G-G-C(VS-DO3A(Ga))-NH2
本發明化合物能夠特異性結合於GIP受體。本發明化合物為GIP受體促效劑,如藉由觀測所測定,其能夠在GIP之受體處結合時刺激胞內cAMP形成。相較於GIP受體處之天然GIP之相對活性,該等化合物展現至少0.1%,較佳地0.5%,更佳地1.0%,且甚至更佳地10.0%之相對活性。
本發明之化合物不顯著活化GLP-1受體及升糖素受體,如藉由觀測所測定,其不能夠在以所選濃度分別在GLP-1或升糖素之受體處結合時刺激胞內cAMP形成。在如實例5中所描述之各別分析系統中,所給本發明之化合物在GLP-1受體或升糖素受體處的EC50高於100 pM,更佳地高於1000 pM,且甚至更佳地高於10000 pM。
本發明之發明人發現,如經由用於實例6之方法所測定,式I之肽化合物(其中Aib在位置2處,Leu在位置10及14處,Arg在位置16處,Glu在位置20及21處,Ile在位置23處,Glu或Gln在位置24處,Gly在位置29及30處以及連接至C端胺基酸(Lys或Cys)之螯合單元在位置31處)展示對人類GIP受體之高親和力。
此外,本發明之化合物較佳地在生理pH值下(例如,在pH 7.0、pH 7.3或pH 7.4下)在4℃、25℃或40℃下具有有利的化學穩定性。較佳地,在40℃下7天之後,此等緩衝液中之化合物之純度大於90%。
另外,本發明之化合物在位置2處攜帶Aib以穩定對抗DPP-IV裂解。已展示天然GIP出作為DPP-IV之受質,從而引起位置2處之Ala與位置3處之Glu之間的裂解(參見Mentlein等人Eur. J. Biochem. 1993, 214, 829)。併入位置2處之Aib抑制DPP-IV裂解,且因此促成增加的代謝穩定性。
此外,本發明之化合物含有能夠結合金屬離子之螯合部分,從而使分子適用於顯影研究,例如PET或SPECT研究。螯合部分表示含有電子對供給元素以確保與金屬陽離子之較強鍵結的非環狀或環狀結構。較強螯合為用作顯影模態之前提條件以便防止放射性同位素瀝出,此可導致全身毒性、增加的背景信號及所關注區域處之信號減小。最佳螯合部分之選擇視錯合放射金屬之性質而定。例示性常用螯合部分及其對應名稱列於流程1中,更多實例可例如見於T.J. Wadas等人, Chem. Rev. 2010, 110, 2858中。
Figure 02_image001
Figure 02_image003
流程1
在某些實施例中,亦即當式(I)化合物包含經基因編碼之胺基酸殘基時,本發明進一步提供一種編碼該化合物之核酸(其可為DNA或RNA)、一種包含此核酸之表現載體及一種含有此核酸或表現載體之宿主細胞。
在另一態樣中,本發明提供一種組合物,其包含與載劑摻混的本發明之化合物。在較佳實施例中,該組合物為醫藥學上可接受之組合物,且該載劑為醫藥學上可接受之載劑。本發明之化合物可呈以下之形式:金屬錯合物,例如鎵(III)錯合物;鹽,例如醫藥學上可接受之鹽;或溶劑合物,例如水合物。在又另一態樣中,本發明提供一種組合物,其用於包括診斷治療之醫學治療的方法中,特定言之用於人類藥品中。
本發明之化合物及其調配物可主要用以較佳地使用PET技術來視覺化活受試者及相關組織中之GIP受體。
應注意,本發明係關於申請專利範圍中之所敍述特徵之所有可能組合。在申請專利範圍中,字組「包含」不排除其他要素或步驟,且不定冠詞「一(a/an)」不排除複數。某些措施敍述於相互不同的附屬申請專利範圍中之純粹事實並不指示不能有利地使用此等措施之一組合。
定義 本發明之胺基酸序列含有天然存在之胺基酸的習知一字母及三字母代碼,以及其他胺基酸之一般認可的三字母代碼,諸如Aib (α-胺基-異丁酸)或Nle (正白胺酸)。
本發明提供如上文所定義之肽化合物。
本發明之肽化合物包含由肽(亦即甲醯胺鍵)連接的胺基羧酸之直鏈主鏈。較佳地,除非另外指示,否則胺基羧酸為α-胺基羧酸,且更佳為L-α-胺基羧酸。肽化合物包含具有31個胺基羧酸之主鏈序列。
為避免疑慮,在本文中所提供之定義中,一般意欲肽部分之序列至少在聲明允許變化之彼等位置中之一者處不同於天然GIP。可將肽部分內之胺基酸視為在習知N端至C端方向上自1至42連續編號。應相應地構建對肽部分內之「位置」的引用,如應引用天然艾生丁-4 (exendin-4)及其他分子內之位置,例如在GIP中,Tyr在位置1處,Ala在位置2處,…,Met在位置14處,…且Gln在位置42處。
在另一態樣中,本發明提供一種組合物,其包含與載劑摻混的如本文中所描述之本發明之化合物、金屬錯合物或其鹽或溶劑合物。
本發明亦提供一種組合物,其中該組合物為醫藥學上可接受之組合物,且載劑為醫藥學上可接受之載劑。
肽合成 熟習此項技術者瞭解用以製備描述於本發明中之肽的多種不同方法。此等方法包括但不限於合成途徑及重組基因表現。因此,製備此等肽之一種方式為在溶液中或在固體載體上進行合成以及後續分離及純化。製備肽之一種不同方式為在宿主細胞進行基因表現,在宿主細胞中已引入編碼肽之DNA序列。替代地,可在不利用細胞系統之情況下實現基因表現。上文所描述之方法亦可以任何方式組合。
用以製備本發明之肽的較佳方式為在適合的樹脂上進行固相合成。固相肽合成為公認的方法(參見例如:Stewart及Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, Ill., 1984; E. Atherton及R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989)。固相合成係藉由將N端受保護之胺基酸及其羧基端連接至攜帶可裂解連接子之惰性固體載體來起始。此固體載體可為允許初始胺基酸偶合之任何聚合物,例如三苯甲基樹脂、氯三苯甲基樹脂、Wang樹脂或Rink醯胺樹脂,其中羧基(或Rink樹脂之羧醯胺)與樹脂之連接對酸敏感(在使用Fmoc策略時)。聚合物載體必須在肽合成期間在用以使α-胺基去保護的條件下穩定。
在第一胺基酸已偶合至固體載體之後,移除此胺基酸之α-胺基保護基。剩餘受保護胺基酸接著使用適當醯胺偶合劑以由肽序列表示之次序依序偶合,所述醯胺偶合劑例如BOP、HBTU、HATU或DIC (N,N'-二異丙基碳化二亞胺)/HOBt (1-羥基苯并三唑),其中BOP、HBTU及HATU與三級胺鹼一起使用。替代地,經釋放之N端可經除胺基酸以外的基團(例如,羧酸等)進行官能化。
最後,肽自樹脂裂解且去保護。此可藉由使用金氏(King's)混合液來實現(D.S. King, C.G.Fields, G.B.Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266)。視需要,接著可藉由層析(例如,製備型RP-HPLC)來純化原材料。
接著藉由連接含有能夠整合金屬離子(例如,Ga3+ )之螯合部分的側鏈來進一步修飾合成肽。在其中肽主鏈中之連接點為離胺酸的彼等情況下,可藉由與適合的醯胺化基團(例如,羥基丁二醯亞胺酯)或與乙烯基碸基團之反應經由麥可加成(Michael addition)來連接側鏈。在其他情況下,當連接側為半胱胺酸之硫醇時,可藉由與順丁烯二醯亞胺官能基或與乙烯基碸基團之反應經由麥可加成來連接側鏈。原材料接著可視需要去保護,且藉由層析(例如,製備型RP-HPLC)來純化。連接至本發明之化合物的側鏈係概述於表2中。
對於本發明之化合物,可使用表3中所列之建構嵌段。除建構嵌段VS-DO3A及VS-NO2A之外,此等建構嵌段為可商購的。VS-DO3A之合成係描述於實例1中,可以類似方式來執行VS-NO2A之合成。 表2:側鏈
側鏈 側鏈結構 側鏈名稱
mal-DOTA
Figure 02_image005
2,5-二側氧基-1-{2-[2-(4,7,10-三羧基甲基-1,4,7,10-四氮雜-環十二-1-基)-乙醯胺基]-乙基}-吡咯啶-3-基
mal-NOTA
Figure 02_image007
1-{2-[2-(4,7-雙羧基甲基-[1,4,7]三氮雜環壬烷-1-基)-乙醯胺基]-乙基}-2,5-二側氧基-吡咯啶-3-基
mal-NODAGA
Figure 02_image009
1-{2-[(S)-4-(4,7-雙羧基甲基-[1,4,7]三氮雜環壬烷-1-基)-4-羧基-丁醯基胺基]-乙基}-2,5-二側氧基-吡咯啶-3-基
DOTA
Figure 02_image011
(4,7,10-三羧基甲基-1,4,7,10-四氮雜-環十二-1-基)-乙醯基
NOTA
Figure 02_image013
(4,7-雙羧基甲基-[1,4,7]三氮雜環壬烷-1-基)-乙醯基
PEG-NOTA
Figure 02_image015
3-{2-[2-(2-{2-[3-(1-{2-[2-(4,7-雙羧基甲基-[1,4,7]三氮雜環壬烷-1-基)-乙醯胺基]-乙基}-2,5-二側氧基-吡咯啶-3-基氫硫基)-丙醯基胺基]-乙氧基}-乙氧基)-乙氧基]-乙氧基}-丙醯基
VS-NO2A
Figure 02_image017
2-[2-(4,7-雙羧基甲基-[1,4,7]三氮雜環壬烷-1-基)-乙磺醯基]-乙基
VS-DO3A
Figure 02_image019
2-[2-(4,7,10-三羧基甲基-1,4,7,10-四氮雜-環十二-1-基)-乙烷磺醯基]-乙基
表3:側鏈建構嵌段
側鏈建構嵌段 建構嵌段結構
mal-DOTA建構嵌段
Figure 02_image021
mal-NOTA建構嵌段
Figure 02_image023
mal-NODAGA建構嵌段
Figure 02_image025
DOTA建構嵌段
Figure 02_image027
NOTA建構嵌段
Figure 02_image029
SPDP-dPEG4-NHS酯
Figure 02_image031
VS-NO2A建構嵌段
Figure 02_image033
VS-DO3A建構嵌段
Figure 02_image035
肽之側鏈處的錯合部分可進一步填充有合適的金屬離子,例如Ga3+ 。為達成此,在合適的溶劑中將具有側鏈之肽與所要陽離子之合適的鹽一起加熱。原材料隨後可視需要藉由層析(例如製備型RP-HPLC或SPE)來純化。
效力 如本文中所使用,術語「效力」或「試管內效力」為在基於細胞之分析中對化合物活化GIP、GLP-1或升糖素之受體之能力的量度。數值上,「效力」或「試管內效力」表述為「EC50值」,其為化合物在劑量-反應實驗中誘導半最大反應增加(例如,胞內cAMP之形成)的有效濃度。
結合 如本文中所使用,術語「結合」較佳地係指化合物結合於人類GIP受體之能力。有時,亦可參考術語「親和力」而非「結合」。更佳地,如本文中所使用,術語「結合」係指化合物在結合分析中自各別受體置換放射性標記化合物(例如,自GIP受體置換[125 I]GIP)之能力,如方法中所描述及實例中所展示。數值上,「結合」表述為「IC50值」,其為化合物在劑量-反應實驗中自受體置換放射性標記化合物中之一半的有效濃度。
本發明之化合物較佳地具有10 nM或更小,較佳地8 nM或更小,更佳地5 nM或更小,更佳地3.13 nM或更小,且甚至更佳地1 nM或更小的hGIP受體之IC50。hGIP受體之IC50可如本文中之方法中所描述且如用於產生實例6中所描述的結果來測定。
治療用途與診斷用途 術語診斷用途係指用於偵測及/或定量活受試者及相關組織中之GIP受體的用途。
此包括但不限於測定結合於特定組織中之GIP受體的給定劑量之治療劑之受體佔用狀態。
GIP受體廣泛表現於包括以下之周邊組織中:胰島、脂肪組織、胃、小腸、心臟、骨骼、肺、腎臟、睪丸、腎上腺皮質、垂體、內皮細胞、氣管、脾、胸腺、甲狀腺及大腦。與其作為促胰島素激素之生物功能一致,胰臟β細胞在人類中表現最高含量之GIP受體。受體佔用研究表示鑑別影響GIP受體之治療劑之最佳劑量的選項,包括例如選擇性GIP受體促效劑,例如揭示於WO 2012/055770、WO 2018/181864、WO 2019/211451及WO 2016/066744中之化合物;雙重GLP-1/GIP促效劑,例如RG-7685 (MAR-701)、RG-7697 (MAR-709,NN9709)、BHM081、BHM089、BHM098、LBT-6030、ZP-I-70、TAK-094、SAR438335、泰帕肽(Tirzepatide) (LY3298176),或揭示於WO2014/096145、WO2014/096148、WO2014/096149、WO2014/096150及WO2020/023386中之化合物;或三重GLP-1/升糖素/GIP受體促效劑(例如,三重促效劑1706(NN9423)、HM15211)。此外,GIP受體閃爍攝影術尤其可適用於診斷以強力表現GIP受體之細胞之增加的存在為特徵的疾病,例如胃、十二指腸、回腸、胰臟及支氣管神經內分泌腫瘤,以及胰島素瘤及甲狀腺髓樣癌。
熟習此項技術者將能夠視既定顯影技術選擇適合的金屬離子以進行負載。此金屬離子包括但不限於用於MRI之(Gd-68)3+ ,用於PET之(Cu-64)2+ 、(Ga-68)3+ 、(Al-F-18)2+ 或(Y-86)3+ ,或用於SPECT量測之(Ga-67)3+ 、(Tc-99m)3+ 或(In-111)3+
術語「治療用途」指示描述於本發明中之肽用於放射治療的應用。此涉及用適合的放射核種(如(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 或(Re-188)3+ )負載該肽、純化及品質控制。
若可獲得>98%之負載功效,則將製劑視為適合的。放射性製劑可作為可接受之醫藥組合物之一部分注射至患者中。醫師視關於例如預期用途(治療或診斷)、疾病狀態(良性或惡性)、腫瘤大小及位置以及所負載放射性同位素之考慮因素而選擇施加劑量。
醫藥組合物 術語「醫藥組合物」指示含有在混合時相容且可投與之成分的混合物。醫藥組合物可包括一或多種生物活性分子。另外,醫藥組合物可包括載劑、溶劑、佐劑、潤滑劑、擴增劑、穩定劑及其他組分,不論將此等組分視為活性成分抑或非活性成分。對熟習製備醫藥組合物之技術者的指南可例如發現於Remington: The Science and Practice of Pharmacy, (第20版)編 A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins中。
本發明之GIP衍生物或其金屬錯合物或鹽或溶劑合物與作為醫藥組合物之部分的可接受之醫藥載劑、稀釋劑或賦形劑結合投與。「醫藥學上可接受之載劑」為生理學上可接受,同時保留與其一起投與之物質之治療特性的載劑。標準可接受之醫藥載劑及其調配物為熟習此項技術者所已知,且描述於例如Remington: The Science and Practice of Pharmacy, (第20版)編 A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins中。一種例示性醫藥學上可接受之載劑為生理鹽水溶液。
可接受之醫藥載劑或稀釋劑包括在適用於經口、經直腸、經鼻或非經腸(包括皮下、肌內、靜脈內、皮內及經皮)投與之調配物中使用的彼等醫藥載劑或稀釋劑。本發明之化合物將通常靜脈內投與。
術語「鹽」或「醫藥學上可接受之鹽」意謂安全且有效用於哺乳動物中的本發明化合物之鹽。醫藥學上可接受之鹽可包括但不限於酸加成鹽及鹼鹽。酸加成鹽之實例包括氯化物、硫酸鹽、硫酸氫鹽、磷酸(氫)鹽、乙酸鹽、三氟乙酸鹽、檸檬酸鹽、甲苯磺酸鹽或甲磺酸鹽。鹼鹽之實例包括具有無機陽離子之鹽,例如鹼金屬或鹼土金屬鹽,諸如鈉鹽、鉀鹽、鎂鹽或鈣鹽;及具有有機陽離子之鹽,諸如胺鹽。醫藥學上可接受之鹽之其他實例描述於以下中:Remington: The Science and Practice of Pharmacy, (第20版)編 A. R.Gennaro A. R., 2000, Lippencott Williams & Wilkins,或Handbook of Pharmaceutical Salts, Properties, Selection and Use, P. H. Stahl, C. G. Wermuth編, 2002, 由Verlag Helvetica Chimica Acta, Zurich, Switzerland及Wiley-VCH, Weinheim, Germany聯合出版。
術語「溶劑合物」意謂本發明之化合物或其鹽與溶劑分子(例如,有機溶劑分子及/或水)的複合物。
術語「金屬錯合物」意謂本發明之化合物與(例如,過渡金屬之)金屬離子的螯合錯合物,其中多齒(多重鍵結)配位體為經由若干配位體之原子而鍵結至金屬離子的化合物之一部分;(與金屬離子具有2、3或4個鍵之配位體為常見的)。
本發明之醫藥組合物為適用於非經腸(例如,皮下、肌內、皮內或靜脈內)、經口(oral)、經直腸、局部及經口(peroral) (例如,舌下)投與之彼等醫藥組合物,但在各個別情況下,最適合的投與模式視生物活性成分之特定用途及在各情況下使用之式(I)化合物之性質而定。通常,預期用於本發明之化合物的投與途徑為靜脈內投與。
方法 所採用之縮寫如下: AA              胺基酸 ACN            乙腈 Aib              α-胺基-異丁酸,2-甲基丙胺酸 cAMP          環狀單磷酸腺苷 Boc             三級丁氧羰基 BSA            牛血清白蛋白 BOP            (苯并三唑-1-基氧基)參(二甲胺基)鏻六氟磷酸鹽 tBu              三級丁基 CT              電腦斷層攝影術 CTC            2-氯三苯甲基氯 DCM           二氯甲烷 DIC             N,N'-二異丙基碳化二亞胺 DIPEA         N,N-二異丙基乙胺 DMEM        達爾伯克改良伊格爾培養基(Dulbecco's modified Eagle's medium) DMF           二甲基甲醯胺 EDT            乙二硫醇 FA               甲酸 FBS             胎牛血清 Fmoc           茀基甲氧羰基 GCG            升糖素 GIP             葡萄糖依賴性促胰島素多肽 GIPR           GIP受體 GLP-1         升糖素樣肽1 GLP-1R       GLP-1受體 HATU          2-(1H-7-氮雜苯并三唑-1-基)-1,1,3,3-四甲基脲鎓六氟磷酸鹽 HBSS          漢克氏平衡鹽溶液(Hanks' Balanced Salt solution) HBTU         2-(1H-苯并三唑-1-基)-1,1,3,3-四甲基-脲鎓六氟磷酸鹽 HOBt           1-羥基苯并三唑 HPLC          高效液相層析 LC/MS        液相層析/質譜 M                莫耳 MBHA         4-甲基苯甲基羥胺 ml               毫升 mM             毫莫耳濃度 mmol           毫莫耳 µM              微莫耳濃度 µmol           微莫耳 n.a.              不可用 n.d.             未測定 nM              奈莫耳濃度 nmol            奈莫耳 NMP           N-甲基吡咯啶酮 MRI            磁共振顯影 Pbf              2,2,4,6,7-五甲基二氫-苯并呋喃-5-磺醯基 PEG            聚乙二醇 PET             正電子發射斷層攝影術 pM              皮莫耳濃度 PRRT           肽受體放射核種療法 RP-HPLC     逆相高效液相層析 s.c.              皮下 SPE             固相萃取 SPECT        單光子發射電腦斷層攝影術 TFA             三氟乙酸 TFE             三氟乙醇 TRIS           參(羥基甲基)-胺基甲烷 Trt               三苯甲基 UHPLC       超高效液相層析 UV              紫外線
肽化合物之通用合成 材料: 對於固相肽合成,使用Rink-Amide樹脂(4-(2',4'-二甲氧基苯基-Fmoc-胺甲基)-苯氧基乙醯胺基-降白胺醯基胺基甲基樹脂)。Rink-Amide樹脂係購自Novabiochem,其負載為0.35-0.43 mmol/g。
受Fmoc保護之天然及特殊胺基酸係購自Protein Technologies Inc.、Senn Chemicals、Merck Biosciences、Novabiochem、Iris Biotech或Bachem。在整個合成中使用以下標準胺基酸:Fmoc-L-Ala-OH、Fmoc-L-Arg(Pbf)-OH、Fmoc-L-Asn(Trt)-OH、Fmoc-L-Asp(OtBu)-OH、Fmoc-L-Gln(Trt)-OH、Fmoc-L-Glu(OtBu)-OH、Fmoc-Gly-OH、Fmoc-L-His(Trt)-OH、Fmoc-L-Ile-OH、Fmoc-L-Leu-OH、Fmoc-L-Lys(Boc)-OH、Fmoc-L-Phe-OH、Fmoc-L-Pro-OH、Fmoc-L-Ser(tBu)-OH、Fmoc-L-Thr(tBu)-OH、Fmoc-L-Trp(Boc)-OH、Fmoc-L-Tyr(tBu)-OH、Fmoc-L-Val-OH、Fmoc-L-Cys(Trt)-OH、Fmoc-Aib-OH。
使用標準Fmoc化學物質及HBTU/DIPEA活化在Prelude肽合成器(Protein Technologies Inc)上執行固相肽合成。DMF用作溶劑。去保護:20%哌啶/DMF,持續2×2.5 min。洗滌:7×DMF。偶合:2:5:10 200 mM AA/500 mM HBTU/2M DIPEA於DMF 2×中,持續20 min。洗滌:5×DMF。在最後去保護之後的最終洗滌:9×DCM,樹脂經N2 乾燥。
用由82.5% TFA、5%苯酚、5%水、5%硫代苯甲醚、2.5% EDT組成之金氏裂解混合液使已合成之所有肽自樹脂裂解。接著使粗肽沈澱於二乙基醚或二異丙基醚中,離心,且凍乾。藉由分析型HPLC分析且藉由ESI質譜來分析肽(參見表4)。藉由習知製備型RP-HPLC純化程序純化粗肽。
一般製備型 HPLC 純化程序 在Äkta純化器系統、Jasco semiprep HPLC系統、Agilent 1100 HPLC系統或類似HPLC系統上純化粗肽。視待純化之粗肽之量而定使用具有不同大小且具有不同流動速率之製備型RP-C18-HPLC管柱,例如已使用以下管柱:Waters XSelect CSH C18 OBD Prep 5μm 30×250mm、Waters SunFire C18 OBD Prep 5μm 30×250mm及Waters SunFire C18 OBD Prep 5μm 50×150mm。乙腈(B)及水+0.1% TFA (A)或乙腈(B)及水+0.1% FA (A)用作溶離劑。收集且凍乾含產物之溶離份以獲得通常呈TFA鹽形式之純化產物。
分析型 HPLC /UHPLC
方法 A 在214 nm處偵測 管柱:在50℃下之Waters ACQUITY UPLC® CSH™ C18 1.7 µm (150×2.1mm) 溶劑:H2 O+0.05% TFA:ACN+0.045% TFA (流速0.5 ml/min) 梯度:80:20 (0 min)至80:20 (3 min)至25:75 (23 min)至5:95 (23.5 min)至5:95 (26.5 min)至80:20 (27 min)至80:20 (33 min) 視情況使用質量分析儀:LCT Premier,電噴霧陽離子模式
方法 B 在214 nm處偵測 管柱:在50℃下之Waters ACQUITY UPLC® CSH™ C18 1.7 µm (150×2.1 mm) 溶劑:H2 O+0.05% TFA:ACN+0.035% TFA (流速0.5 ml/min) 梯度:80:20 (0 min)至80:20 (3 min)至25:75 (23 min)至2:98 (23.5 min)至2:98 (30.5 min)至80:20 (31 min)至80:20 (37 min) 質量分析儀:Agilent 6230 Accurate-Mass TOF或Agilent 6550 iFunnel Q-TOF;皆配備有Dual Agilent Jet Stream ESI離子源。
方法 C 在214 nm處偵測 管柱:在70℃下之Waters ACQUITY UPLC® CSH™ C18 1.7 µm (150×2.1 mm) 溶劑:H2 O+0.05% TFA:ACN+0.035% TFA (流速0.5 ml/min) 梯度:63:37 (0 min)至63:37 (3 min)至45:55 (23 min)至2:98 (23.5 min)至2:98 (30.5 min)至63:37 (31 min)至63:37 (38 min) 質量分析儀:Agilent 6230 Accurate-Mass TOF、Agilent Jet Stream ESI
方法 D 在215 nm及280 nm處偵測 管柱:在40℃下之Waters ACQUITY UPLC® BEH130 C18 1.7 µm管柱(2.1×100 mm) 溶劑:H2 O+0.1% FA:ACN+0.1% FA (流速0.5 ml/min) 梯度:90:10 (0 min)至10:90 (19.2 min)至10:90 (20 min)
溶解度評定 對於溶解度測試,將化合物以0.5 mg/mL之目標濃度添加至水性緩衝液中,且振盪若干分鐘。視如目視檢查所判斷的剩餘材料之存在而定,化合物經測定在目標濃度下在各別緩衝系統中可溶。 溶解度緩衝系統A) 100 mM磷酸鹽緩衝液pH 7.4 溶解度緩衝系統B)乙酸鹽緩衝液pH 4.5 溶解度緩衝液系統C) 100 mM組胺酸緩衝液pH 5.5 溶解度緩衝液系統D) 10 mM甘胺酸pH 2.5 溶解度緩衝液系統E) 10 mM甘胺酸pH 2.0 溶解度緩衝液系統F) 50 mM TRIS緩衝液、30 mM間甲酚、85 mM氯化鈉、8 µM聚山梨醇酯20 pH 7.3
肽之化學穩定性測試 對於化學穩定性測試,目標濃度為含有間甲酚(30 mM)、氯化鈉(85 mM)及聚山梨醇酯20 (8 µM)之pH 7.3 TRIS緩衝液(50 mM)中的0.5 mg/mL純化合物。將溶液在4℃或40℃下儲存7天。此後,藉由UHPLC (分析性UHPLC方法D)分析溶液。
7天之後的「純度%」由第7天時之相對純度%相對於t0時之相對純度%來定義,公式如下 純度%=[(相對純度% t7)×100)]/相對純度% t0
在t0時之相對純度%係藉由t0時之肽之峰面積除以t0時之所有峰面積之和來計算,公式如下 t0相對純度%=[(t0峰面積)×100]/t0所有峰面積之和
同樣,t7相對純度%係藉由t7時之肽之峰面積除以t7時之所有峰面積之和來計算,公式如下 t7相對純度%=[(t7峰面積)×100]/t7所有峰面積之和
肽之血漿穩定性測試 在37℃下將來自食蟹獼猴之血漿(0.5 mL)與[68 Ga]Ga-S02-GIP-T4 (SEQ ID NO: 4) (3-5 MBq)一起培育0 min、10 min、45 min及90 min。接著,將0.5 mL之乙腈添加至沈澱蛋白中,且在4℃下以13200 rpm將小瓶(Eppendorf 5415R離心機,Eppendorf AG, Hamburg, Germany)離心1 min。將上清液轉移至在4℃下以13200 rpm離心1 min的0.2 μm耐綸濾膜(Corning Incorporated, Corning, NY, USA)中。在孔型自造NaI (Tl)閃爍計數器中量測上清液、集結粒及濾膜之放射活性,且針對死區時間及衰變進行校正。資料用以計算樣本之回收率(>95%)。將上清液(0.5 mL)用1.5 mL之去離子水稀釋且外加10 µL之標準參考物(具有1 mg/mL濃度之S02-GIP-T4溶液),且使用連接至稀釋器(Gilson)之自動化固相萃取控制器(ASPEC Gilson)及與UV偵測器串聯耦接的放射偵測器(Radiomatic 610TR, Packard, USA)在UV放射HPLC (Gilson, Middleton, USA)上進行分析(1.8 mL)。在來自相同供應商的具有10×10 mm C18安全防護件之Xbridge Prep BEH130 C18 (肽分離技術) 250mm×10mm, 5µm上執行分離。以6 ml/min之流動速率操作HPLC系統。移動相由含0.1% TFA之MilliQ:含0.1% TFA之乙腈組成。將梯度溶離模式用於分離(梯度:0-5 min:20-45%,5-7 min:45%,7-10 min:45-80%,10-15 min:80%)。將偵測器之出口連接至ASPEC之臂上的切換閥以實現自動溶離份收集。收集到五個溶離份,且藉由孔型閃爍計數器量測溶離份中之放射活性。分析放射HPLC放射色層分析譜的所有峰之曲線下面積。各時間點處之完整放射性標記肽之量計算為C放射色層分析譜上之所有峰之和之百分比。
GIP GLP-1 及升糖素受體 功效 之試管內細胞分析 藉由量測分別穩定表現人類GIP、GLP-1或升糖素受體之重組PSC-HEK-293細胞株之cAMP反應的功能分析來測定化合物在人類葡萄糖依賴性促胰島素多肽(GIP)、升糖素樣肽-1 (GLP-1)或升糖素(GCG)受體處之促效作用。
384 型式 使細胞在置於37℃下之T-175培養燒瓶中在培養基(DMEM/10% FBS)中生長至接近匯合,且在2 ml小瓶中在含有濃度為1千萬至5千萬個細胞/毫升之10% DMSO的細胞培養基中進行收集。各小瓶含有1.8 ml細胞。將小瓶在異丙醇中緩慢冷凍至−80℃,且接著轉移於液氮中以供儲存。
在其使用之前,將冷凍細胞在37℃下迅速解凍,且用20 ml細胞緩衝液(1× HBSS;20 mM HEPES,具有0.1% BSA)洗滌(在900 rpm下5 min)。將細胞再懸浮於分析緩衝液(細胞緩衝液加2 mM IBMX)中,且調整至1百萬個細胞/毫升之細胞密度。
對於量測cAMP產生,將5 µl細胞(最終5000個細胞/孔)及5 µl之測試化合物添加至384孔盤,隨後在室溫下培育30 min。
使用來自Cisbio Corp.之套組基於HTRF (均相時差式螢光)來測定所產生之cAMP。根據製造商之說明書(Cisbio)執行cAMP分析。
在添加稀釋於裂解緩衝液(套組組分)中之HTRF試劑之後,將盤培育1 h,隨後量測在665/620 nm處之螢光比率。藉由測定引起50%最大反應活化(EC50)之濃度來定量促效劑之試管內效力。
96 孔型式 使用來自Cisbio Corp. (目錄號62AM4PEC)之套組基於HTRF (均相時差式螢光)來測定細胞之cAMP含量。對於製備,將細胞分離至T-175培養燒瓶中且在培養基(DMEM/10% FBS)中整夜生長至接近匯合。接著移除培養基,且用不含鈣及鎂之PBS洗滌細胞,隨後用阿庫酶(accutase) (Sigma-Aldrich目錄號A6964)處理蛋白酶。將剝離細胞洗滌且再懸浮於分析緩衝液(1× HBSS;20 mM HEPES、0.1%BSA、2 mM IBMX)中,並測定細胞密度。接著將細胞稀釋至400000個細胞/毫升,且將25 µl等分試樣分配至96孔盤之孔中。對於量測,將含25 µl測試化合物之分析緩衝液添加至孔中,隨後在室溫下培育30分鐘。在添加稀釋於裂解緩衝液(套組組分)中之HTRF試劑之後,將盤培育1小時,隨後量測在665/620 nm處之螢光比率。藉由測定引起50%最大反應活化(EC50)之濃度來定量促效劑之試管內效力。
與人類 GIP 受體之結合的試管內 分析
(1)由過度表現GIPR之HEK-293細胞製備膜 使以重組方式過度表現GIPR之HEK-293細胞生長至50%匯合,用溫熱1×PBS (Gibco)洗滌,且在HEPES/EDTA緩衝液(100 mM HEPES pH 7.5,5 mM EDTA)中剝離。藉由在4℃及3000×g下離心來採集細胞,且將集結粒儲存於-80℃下直至進一步處理。
在冰上解凍之後,將集結粒再懸浮於HEPES/EDTA緩衝液中,且使用Ultra-Turray T25在冰上均質化1 min。在後續超音波處理之後,藉由在1000×g及4℃下離心來移除細胞碎片。接著在100000×g及4℃下在真空下將上清液超離心30 min。將集結粒再懸浮於HEPES/EDTA/NaCl緩衝液(20 mM HEPES,1 mM EDTA,150 mM NaCl;將1份完整迷你蛋白酶抑制劑混合液添加至10 ml緩衝液中)中,且經由BCA蛋白分析來測定蛋白含量。
(2)量測測試化合物與人類GIPR之結合活性 對於量測與GIPR之結合活性,在分析緩衝液[50 mM HEPES (pH 7.4,WAKO)、5 mM EGTA (WAKO)、5 mM MgCI2 (WAKO)及0.005% Tween 20 (BioRad)]中,將最終濃度為100 pM之[125 I]GIP (PerkinElmer)及10種濃度之測試化合物與塗佈有表現GIPR之HEK-293細胞膜(1微克/孔蛋白質)的PVT-WGA SPA珠粒(0.125 mg/孔;Perkin-Elmer)混合,且在室溫下培育2 h。將特異性結合經計算為分別在不存在(總結合)及存在(非特異性結合) 1 μM未標記之冷參考配位體之情況下結合的經[125 I]標記之熱配位體之量之間的差。
實例 藉由以下實例進一步說明本發明。
實例 1 :合成VS-DO3A建構嵌段([4,10-雙羧基甲基-7-(2-乙烯磺醯基-乙基)-1,4,7,10-四氮雜-環十二-1-基]-乙酸)
Figure 02_image037
在0℃下向DO3A-tBu (4,10-雙-三級丁氧基羰基甲基-1,4,7,10-四氮雜-環十二-1-基)-乙酸三級丁酯(2.5 g)於DMF (10 mL)中之溶液中添加雙乙烯碸(5 mL)於DMF/水1:1 (20 mL)中之溶液。使混合物達至室溫且攪拌2 h。直接藉由RP層析來純化混合物以得到VS-DO3A-tBu ([4,10-雙-三級丁氧基羰基甲基-7-(2-乙烯磺醯基-乙基)-1,4,7,10-四氮雜-環十二-1-基]-乙酸三級丁酯)。
將VS-DO3A-tBu於TFA/水19:1 (75 mL)中之溶液在室溫下攪拌1天。小心地蒸發TFA,且冷凍乾燥剩餘溶液以得到不經進一步純化即直接使用之粗VS-DO3A ([4,10-雙羧基甲基-7-(2-乙烯磺醯基-乙基)-1,4,7,10-四氮雜-環十二-1-基]-乙酸)。
實例 2 :合成SEQ ID NO: 3 以0.2 mmol規模在Novabiochem Rink-Amide樹脂(4-(2',4'-二甲氧基苯基-Fmoc-胺甲基)-苯氧基乙醯胺基-正亮胺醯基胺基甲基樹脂)上,100-200目,0.43 mmol/g之負載進行如方法中所描述的固相合成。Fmoc合成策略與HBTU/DIPEA活化一起應用。在位置1中,Fmoc-Tyr-OH用於固相合成方案中。用金氏混合液使肽自樹脂裂解(D. S. King, C. G. Fields, G. B. Fields,Int. J. Peptide Protein Res . 36, 1990, 255-266)。使用乙腈/水(具有0.1% TFA)梯度在Waters管柱(Sunfire,Prep C18)上經由製備型HPLC純化粗產物。藉由LC-MS來確認經純化肽中間物之分子質量。
將84 mg之此肽中間物溶解於12 mL H2 O及2 mL ACN中。添加166 µL三乙胺以將pH調整至pH 11.3。將溶液冷卻至0℃,且歷經5分鐘逐滴添加DOTA-NHS酯(27 mg,1.5當量;CAS-Nr. 170908-81-3)於3 mL之0.1% TFA/ACN中的溶液。pH對照展示10.3之pH。將反應混合物在0℃下攪拌1 h。接著添加額外DOTA-NHS酯(18 mg,1當量)。繼續攪拌另外1.5 h。藉由添加水性AcOH直至達pH4來終止反應。藉由凍乾來移除溶劑。使用乙腈/水(具有0.1%甲酸)梯度在Waters管柱(X-Select CSH,Prep C18)上經由製備型HPLC純化粗產物。
最後,藉由LC-MS來確認經純化肽之分子質量。
實例 3 :合成SEQ ID NO: 4 將21.59 mg SEQ ID NO: 3懸浮於18 mL pH4.6乙酸鹽緩衝液中。添加6.13 mg硫酸鎵(III)水合物,且將反應混合物加熱至80℃持續15分鐘。在冷卻至RT之後,用H2 O/ACN稀釋混合物。藉由小心地添加水性NaOH將pH調整至pH7.4。接著藉由凍乾來移除溶劑。使用乙腈/水(具有0.1% TFA)梯度在Waters管柱(X-Select CSH,Prep C18)上經由製備型HPLC純化粗產物。
最後,藉由LC-MS來確認經純化肽之分子質量。
實例 4 :合成SEQ ID NO: 5 以0.1 mmol規模在Novabiochem Rink-Amide樹脂(4-(2',4'-二甲氧基苯基-Fmoc-胺甲基)-苯氧基乙醯胺基-正亮胺醯基胺基甲基樹脂)上,100至200目,0.35 mmol/g之負載進行如方法中所描述的固相合成。Fmoc合成策略與HBTU/DIPEA活化一起應用。在位置1中,Fmoc-Tyr-OH用於固相合成方案中。用金氏混合液使肽自樹脂裂解(D. S. King, C. G. Fields, G. B. Fields,Int. J. Peptide Protein Res . 36, 1990, 255-266)。使用乙腈/水(具有0.1% TFA)梯度在Waters管柱(X-Select CSH,Prep C18)上經由製備型HPLC純化粗產物。藉由LC-MS來確認經純化肽中間物之分子質量。
將36.7 mg之此肽中間物溶解於5 mL pH9.2硼酸鹽緩衝液中。添加幾滴ACN以得到略微混濁的反應混合物。添加12.1 mg (2.5當量) VS-DO3A建構嵌段([4,10-雙羧基甲基-7-(2-乙烯磺醯基-乙基)-1,4,7,10-四氮雜-環十二-1-基]-乙酸(參見實例1)。藉由逐滴添加pH10緩衝液將pH自pH5再調節至pH7.1。將反應混合物在RT下攪拌整夜。接著添加20 mL水,且藉由凍乾來移除溶劑。使用乙腈/水(具有0.1% TFA)梯度在Waters管柱(X-Select CSH,Prep C18)上經由製備型HPLC純化粗產物。
最後,藉由LC-MS來確認經純化肽之分子質量。
以類似方式,可合成肽SEQ ID NO: 6。 表4:合成肽之清單以及分子量計算值與分子量實驗值之比較
SEQ ID NO 單同位素質量計算值 質量實驗值 單同位素或平均質量 滯留時間[min] 方法
3 3920.00 3920.01 單同位素 11.1 B
4 3985.90 3985.91 單同位素 11.2 B
5 3971.94 3971.94 單同位素 10.4 B
實例 5 :關於GIP、GLP-1及升糖素受體之效力之試管內資料 藉由以下操作來測定之肽化合物在GIP、GLP-1及升糖素受體處之功效:使表現人類GIP (hGIPR)、人類GLP-1受體(hGLP-1R)及升糖素受體(hGCGR)之細胞暴露於增加濃度的所列化合物,且如方法中所描述來量測所形成之cAMP。
在人類GIP受體(hGIPR)處具有促效活性的GIP(1-30)類似物之結果展示於表5中。 表5:表述為GIP、GLP-1及升糖素受體處之GIP(1-30)類似物之EC50值的效力(以pM指示)
SEQ ID NO EC50 hGIP R [pM] EC50 hGLP-1 R [pM] EC50 hGCGR [pM] 孔型式
1 0.49 >10000 >10000 96
1 0.19 >10000 >10000 384
2 0.40 >10000 >10000 96
3 1.13 >10000 >10000 96
4 1.09 >10000 >10000 96
5 0.22 >10000 >10000 384
hGLP-1 >10000 1.26 >10000 96
hGLP-1 >10000 0.70 >10000 384
人類升糖素 >10000 42.3 0.49 96
人類升糖素 >10000 16.0 0.19 384
如表5中之較高EC50值所展示,與天然GIP (SEQ ID NO: 1)或GIP(1-30)經截斷肽相比,由SEQ ID NO: 3、4及5表示之本發明肽具有更低效力,亦即活化人類GIP受體之能力。
實例 6 :人類GIP受體之試管內親和力資料(結合分析) 如方法中所描述來測定肽化合物對人類GIP受體之親和力。
結果展示於表6中。 表6.表述為人類GIP受體處之IC50值的親和力(以nM為單位)
SEQ ID NO IC50 hGIPR [nM]
1 3.13
2 1.3
4 0.25
5 0.22
hGLP-1 >10000
如表6中之較低IC50值所展示,本發明肽具有相對於GIP(1-30)及天然GIP分別改良大約5倍及12倍的結合親和力。
實例 7 :溶解度 在各別溶解度緩衝液系統中製備肽樣本,且如方法中所描述來評定溶解度。結果在表7中給出。 表7.肽之溶解度
SEQ ID NO 溶解度緩衝液系統 可溶量[mg/ml]
3 A ≥0.5
3 B <0.5
3 C ≥0.5
3 D ≥0.5
3 E ≥0.5
3 F ≥0.5
實例 8 :化學穩定性 如方法中所描述來評定肽化合物之化學穩定性。結果在表8中給出。 表8:肽之化學穩定性
SEQ ID NO 溫度 7天之後的純度%
3 4℃ > 97
40℃ > 97
實例 9 血漿穩定性 如方法中所描述來評定SEQ ID NO: 4之血漿穩定性。
肽在來自NHP之血漿中顯示出穩定性,其中超過92%之放射性信號在90分鐘培育之後自完整肽產生。 表9:SEQ ID NO: 4於NHP血漿中之穩定性
時間(min) 完整肽(%)
0 99.5
15 98.65
45 96.31
90 92.98
本發明肽於血漿中之所顯示穩定性顯著高於先前針對GIP(1-42)所報導之穩定性(Deacon CF, Nauck MA, Meier J, Hücking K, Holst JJ.J Clin Endocrinol Metab . 2000;85(10):3575-3581)。
本發明進一步由以下條目表徵: 條目1.式I化合物 Tyr-Aib-Glu-Gly-Thr-Phe-Ile-Ser-Asp-Leu-Ser-Ile-Ala-Leu-Asp-Arg-Ile-His-Gln-Glu-Glu-Phe-Ile-X24-Trp-Leu-Leu-Ala-Gly-Gly-X31-R1 (I) X24表示選自Glu或Gln之胺基酸, X31表示選自以下之胺基酸:Cys(VS-DO3A)、Cys(VS-NO2A)、Cys(mal-DOTA)、Cys(mal-NOTA)、Cys(mal-NODAGA)、Lys(DOTA)、Lys(NOTA)、Lys(PEG-DOTA)及Lys(VS-DO3A), 其中DOTA、NOTA、DO3A、NO2A或NODAGA可未經負載或負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 或Re3+ , R1 表示OH或NH2 或其鹽或溶劑合物。 條目2.如條目1之化合物,其能夠活化人類GIP受體。 條目3.如條目1至2之化合物,其為該人類GIP受體處之促效劑。 條目4.如條目1至3之化合物,其能夠在使用表現該人類GIP受體之全細胞的分析中活化該人類GIP受體。 條目5.如條目1至4之化合物,其對hGIP受體具有如藉由實例5之方法所測定的10 pM或更小的EC50。 條目6.如條目1至4之化合物,其對hGIP受體具有如藉由實例5之方法所測定的5 pM或更小的EC50。 條目7.如條目1至4之化合物,其對hGIP受體具有如藉由實例5之方法所測定的2 pM或更小的EC50。 條目8.如條目1至7之化合物,其對hGIP受體具有比在該人類GLP-1受體處更低的EC50。 條目9.如條目1至8中任一項之化合物,其對hGLP-1受體具有如藉由實例5之方法所測定的100 pM或更大的EC50。 條目10.如條目1至8中任一項之化合物,其對hGLP-1受體具有如藉由實例5之方法所測定的1000 pM或更大的EC50。 條目11.如條目1至8中任一項之化合物,其對hGLP-1受體具有如藉由實例5之方法所測定的10000 pM或更大的EC50。 條目12.如條目1至11之化合物,其對hGIP受體具有比在該人類升糖素受體處更低的EC50。 條目13.如條目1至11中任一項之化合物,其對人類升糖素受體具有如藉由實例5之方法所測定的100 pM或更大的EC50。 條目14.如條目1至11中任一項之化合物,其對人類升糖素受體具有如藉由實例5之方法所測定的1000 pM或更大的EC50。 條目15.如條目1至11中任一項之化合物,其對人類升糖素受體具有如藉由實例5之方法所測定的10000 pM或更大的EC50。 條目16.如條目1至15中任一項之化合物,其如使用實例6之方法所測定以100 nM或更小的IC50結合於hGIP受體。 條目17.如條目1至15中任一項之化合物,其如使用實例6之方法所測定以10 nM或更小的IC50結合於hGIP受體。 條目18.如條目1至15中任一項之化合物,其如使用實例6之方法所測定以3.13 nM或更小的IC50結合於hGIP受體。 條目19.如條目1至15中任一項之化合物,其如使用實例6之方法所測定以1 nM或更小的IC50結合於hGIP受體。 條目20.如條目1至19中任一項之化合物,其對於金屬離子負載程序具有至少0.5 mg/ml之溶解度。 條目21.如條目1至20中任一項之化合物,其在儲存於溶液中時具有高化學穩定性。 條目22.如條目1至20中任一項之化合物,其具有高化學穩定性,在40℃下在pH 7.3之溶液中7天之後,相對純度損失不超過10%。 條目23.如條目1至20中任一項之化合物,其具有高化學穩定性,在40℃下在pH 7.3之溶液中7天之後,相對純度損失不超過5%。 條目24.如條目1至20中任一項之化合物,其具有高化學穩定性,在40℃下在pH 7.3之溶液中7天之後,相對純度損失不超過3%。 條目25.如條目1至24中任一項之化合物,其可用於活體內使人類中之GIP受體表現細胞顯影。 條目26.如條目1至24中任一項之化合物,其可用於活體內使人類胰臟中之GIP受體表現細胞顯影。 條目27.如條目1至26中任一項之具有式(I)之化合物,其中 X31表示胺基酸Cys(VS-DO3A)或Lys(DOTA), 其中DOTA或DO3A可未經負載或負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 或Re3+ 。 條目28.如條目1至27中任一項之具有式(I)之化合物,其中 X24為Glu。 條目29.如條目1至28中任一項之具有式(I)之化合物,其中 X24為Glu,且 R1 為OH。 條目30.如條目1至28中任一項之具有式(I)之化合物,其中 X24為Glu,且 R1 為NH2 。 條目31.如條目1至27中任一項之具有式(I)之化合物,其中 X24為Gln。 條目32.如條目1至27中任一項之具有式(I)之化合物,其中 X24為Gln,且 R1 為OH。 條目33.如條目1至27中任一項之具有式(I)之化合物,其中 X24為Gln,且 R1 為NH2 。 條目34.如條目1至27中任一項之具有式(I)之化合物,其中 X24為Gln, X31為C(VS-DO3A)。 條目35.如條目1至27中任一項之具有式(I)之化合物,其中 X24為Glu, X31為K(DOTA)。 條目36.SEQ ID NO: 3及5之化合物,以及其鹽或溶劑合物。 條目37.SEQ ID NO: 4及6之化合物,以及其鹽或溶劑合物。 條目38.如條目1至27中任一項之具有式(I)之化合物,其中 DOTA或DO3A未經負載。 條目39.如條目1至27中任一項之具有式(I)之化合物,其中 DOTA或DO3A負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 及Re3+ 。 條目40.如條目39之具有式(I)之化合物,其中 DOTA或DO3A負載有金屬離子Ga3+ 。 條目41.如條目39之具有式(I)之化合物,其中 DOTA或DO3A負載有金屬離子Gd3+ 。 條目42.如條目39之具有式(I)之化合物,其中 DOTA或DO3A負載有金屬放射性核素離子(Cu-64)2+ 、(Ga-68)3+ 、(Al-F-18)2+ 、(Y-86)3+ 。 條目43.如條目39之具有式(I)之化合物,其中 DOTA或DO3A負載有金屬放射性核素離子(Ga-67)3+ 、(Tc-99)3+ 、(In-111)3+ 。 條目44.如條目39之具有式(I)之化合物,其中 DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+ 。 條目45.一種如條目1至36中任一項之具有式(I)之化合物的用途,其用於肽受體放射核種療法(PRRT)中,其中DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+ 。 條目46.一種如條目1至36中任一項之具有式(I)之化合物的用途,其用以治療具有升高的GIP受體表現之神經內分泌腫瘤(NET),其中DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+ 。 條目47.如條目45或46之用途,其中該放射性核素為(Lu-177)3+
 
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004

Claims (60)

  1. 一種具有式(I)之肽化合物或其鹽、或水合物或溶劑合物: Tyr-Aib-Glu-Gly-Thr-Phe-Ile-Ser-Asp-Leu-Ser-Ile-Ala-Leu-Asp-Arg-Ile-His-Gln-Glu-Glu-Phe-Ile-X24-Trp-Leu-Leu-Ala-Gly-Gly-X31-R1 (I) 其中 X24表示選自Glu或Gln之胺基酸, X31表示選自以下之胺基酸:Cys(VS-DO3A)、Cys(VS-NO2A)、Cys(mal-DOTA)、Cys(mal-NOTA)、Cys(mal-NODAGA)、Lys(DOTA)、Lys(NOTA)、Lys(PEG-DOTA)及Lys(VS-DO3A), 其中DOTA、NOTA、DO3A、NO2A或NODAGA可未經負載或負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 或Re3+ , R1 表示OH或NH2
  2. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其能夠活化人類GIP受體。
  3. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其為該人類GIP受體處之促效劑。
  4. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其能夠在使用表現該人類GIP受體之全細胞的分析中活化該人類GIP受體。
  5. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGIP受體具有如藉由實例5之方法所測定的10 pM或更小的EC50。
  6. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGIP受體具有如藉由實例5之方法所測定的5 pM或更小的EC50。
  7. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGIP受體具有如藉由實例5之方法所測定的2 pM或更小的EC50。
  8. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGIP受體具有比在該人類GLP-1受體處更低的EC50。
  9. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGLP-1受體具有如藉由實例5之方法所測定的100 pM或更大的EC50。
  10. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGLP-1受體具有如藉由實例5之方法所測定的1000 pM或更大的EC50。
  11. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGLP-1受體具有如藉由實例5之方法所測定的10000 pM或更大的EC50。
  12. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對hGIP受體具有比在人類升糖素受體處更低的EC50。
  13. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對人類升糖素受體具有如藉由實例5之方法所測定的100 pM或更大的EC50。
  14. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對人類升糖素受體具有如藉由實例5之方法所測定的1000 pM或更大的EC50。
  15. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對人類升糖素受體具有如藉由實例5之方法所測定的10000 pM或更大的EC50。
  16. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其如使用實例6之方法所測定以100 nM或更小的IC50結合於該hGIP受體。
  17. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其如使用實例6之方法所測定以10 nM或更小的IC50結合於該hGIP受體。
  18. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其如使用實例6之方法所測定以3.13 nM或更小的IC50結合於該hGIP受體。
  19. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其如使用實例6之方法所測定以1 nM或更小的IC50結合於該hGIP受體。
  20. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其對於金屬離子負載程序具有至少0.5 mg/ml之溶解度。
  21. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其具有如藉由在90分鐘之後的完整肽%所測定的至少90%,諸如至少92%之血漿中的穩定性;及/或如藉由在45分鐘之後的完整肽%所測定的至少90%,諸如至少95%之血漿中的穩定性。
  22. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其具有高化學穩定性,在40℃下在pH 7.3之溶液中7天之後,相對純度損失不超過10%。
  23. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其具有高化學穩定性,在40℃下在pH 7.3之溶液中7天之後,相對純度損失不超過5%。
  24. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其具有高化學穩定性,在40℃下在pH 7.3之溶液中7天之後,相對純度損失不超過3%。
  25. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其可用於活體內使人類中之GIP受體表現細胞顯影。
  26. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其可用於活體內使人類胰臟中之GIP受體表現細胞顯影。
  27. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X31表示胺基酸Cys(VS-DO3A)或Lys(DOTA), 其中DOTA或DO3A可未經負載或負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 或Re3+
  28. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Glu。
  29. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Glu,且 R1 為OH。
  30. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Glu,且 R1 為NH2
  31. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Gln。
  32. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Gln,且 R1 為OH。
  33. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Gln,且 R1 為NH2
  34. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Gln, X31為C(VS-DO3A)。
  35. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 X24為Glu, X31為K(DOTA)。
  36. 如請求項1至27中任一項之化合物、或其鹽、或水合物或溶劑合物,其選自由SEQ ID NO: 3至6之化合物及其鹽、水合物或溶劑合物組成之群。
  37. 如請求項36之化合物或其鹽、或水合物或溶劑合物,其選自由SEQ ID NO: 3及5以及其鹽、水合物或溶劑合物組成之群。
  38. 如請求項36之化合物或其鹽、或水合物或溶劑合物,其選自由SEQ ID NO: 4及6以及其鹽、水合物或溶劑合物組成之群。
  39. 如請求項1之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A未經負載。
  40. 如請求項1至27中任一項之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A負載有選自以下之金屬離子:Gd3+ 、Ga3+ 、Cu2+ 、(Al-F)2+ 、Y3+ 、Tc3+ 、In3+ 、Lu3+ 及Re3+
  41. 如請求項40之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A負載有金屬離子Ga3+
  42. 如請求項40之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A負載有金屬離子Gd3+
  43. 如請求項40之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A負載有金屬放射性核素離子(Cu-64)2+ 、(Ga-68)3+ 、(Al-F-18)2+ 、(Y-86)3+
  44. 如請求項40之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A負載有金屬放射性核素離子(Ga-67)3+ 、(Tc-99)3+ 、(In-111)3+
  45. 如請求項40之化合物或其鹽、或水合物或溶劑合物,其中該化合物具有式(I),其中 DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+
  46. 一種如請求項1至37中任一項之化合物或其鹽、或水合物或溶劑合物的用途,其用於製造用於肽受體放射核種療法(PRRT)之藥物,其中該化合物具有式(I),其中DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+
  47. 一種如請求項1至37中任一項之化合物或其鹽、或水合物或溶劑合物的用途,其用於製造用於治療具有升高的GIP受體表現之神經內分泌腫瘤(NET)的藥物,其中該化合物具有式(I),其中DOTA或DO3A負載有選自以下之金屬放射性核素離子:(Cu-67)2+ 、(Y-90)3+ 、(In-111)3+ 、(Lu-177)3+ 、(Re-186)3+ 及(Re-188)3+
  48. 如請求項46之用途,其中該放射性核素為(Lu-177)3+
  49. 如請求項47之用途,其中該放射性核素為(Lu-177)3+
  50. 一種如請求項1至45中任一項之化合物或其鹽、或水合物或溶劑合物的用途,其用於製造藥品,特定言之用於人類用途。
  51. 一種如請求項1至45中任一項之化合物或其鹽、或水合物或溶劑合物的用途,其用於製造用於視覺化活受試者中之GIP受體的組合物。
  52. 一種如請求項1至45中任一項之化合物或其鹽、或水合物或溶劑合物之用途,其用於製造用於評定活體內GIP受體促效劑之受體佔有率的組合物。
  53. 一種如請求項42之化合物或其鹽、或水合物或溶劑合物之用途,其用於製造用於藉由MRI來視覺化活受試者及相關組織中之GIP受體的組合物。
  54. 一種如請求項41之化合物或其鹽、或水合物或溶劑合物之用途,其用於製造用於藉由PET來視覺化活受試者中之GIP受體的組合物。
  55. 一種如請求項44之化合物或其鹽、或水合物或溶劑合物之用途,其用於製造用於藉由SPECT來視覺化活受試者中之GIP受體的組合物。
  56. 一種如請求項45之化合物或其鹽、或水合物或溶劑合物之用途,其用於製造用於放射治療之組合物。
  57. 如請求項50之用途,其中該化合物或其鹽、或水合物或溶劑合物以活性劑形式與至少一種醫藥學上可接受之載劑一起存在於醫藥組合物中。
  58. 如請求項51之用途,其中該化合物或其鹽、或水合物或溶劑合物以活性劑形式與至少一種醫藥學上可接受之載劑一起存在於醫藥組合物中。
  59. 如請求項52之用途,其中該化合物或其鹽、或水合物或溶劑合物以活性劑形式與至少一種醫藥學上可接受之載劑一起存在於醫藥組合物中。
  60. 一種醫藥組合物,其包含至少一種如請求項1至45中任一項之化合物或其鹽、或水合物或溶劑合物,或其生理學上可接受之鹽或溶劑,及醫藥學上可接受之載劑。
TW110112014A 2020-03-31 2021-03-31 用於顯影及醫療目的之包含螯合部分的選擇性gip受體促效劑 TW202204389A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20315081 2020-03-31
EP20315081.8 2020-03-31

Publications (1)

Publication Number Publication Date
TW202204389A true TW202204389A (zh) 2022-02-01

Family

ID=70482569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110112014A TW202204389A (zh) 2020-03-31 2021-03-31 用於顯影及醫療目的之包含螯合部分的選擇性gip受體促效劑

Country Status (8)

Country Link
US (1) US20230127047A1 (zh)
EP (1) EP4171662A1 (zh)
JP (1) JP2023520769A (zh)
CN (1) CN115348876A (zh)
AU (1) AU2021250319A1 (zh)
CA (1) CA3173517A1 (zh)
TW (1) TW202204389A (zh)
WO (1) WO2021198229A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043153B4 (de) 2004-09-03 2013-11-21 Philipps-Universität Marburg Erfindung betreffend GLP-1 und Exendin
US9023986B2 (en) 2010-10-25 2015-05-05 Hoffmann-La Roche Inc. Glucose-dependent insulinotropic peptide analogs
AR094180A1 (es) 2012-12-21 2015-07-15 Sanofi Sa Derivados de exendina-4
AU2015340586B2 (en) 2014-10-29 2020-04-30 Zealand Pharma A/S GIP agonist compounds and methods
JOP20180028A1 (ar) 2017-03-31 2019-01-30 Takeda Pharmaceuticals Co مركب ببتيد
EP3788063B1 (en) 2018-05-04 2023-08-09 Novo Nordisk A/S Gip derivatives and uses thereof
CR20210040A (es) 2018-07-23 2021-02-12 Lilly Co Eli Compuestos coagonistas de gip/glp1

Also Published As

Publication number Publication date
EP4171662A1 (en) 2023-05-03
CA3173517A1 (en) 2021-10-07
AU2021250319A1 (en) 2022-12-01
US20230127047A1 (en) 2023-04-27
JP2023520769A (ja) 2023-05-19
WO2021198229A1 (en) 2021-10-07
CN115348876A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
JP7534498B2 (ja) Grpr陽性ガンの検出、診断及び治療のためのgrprアンタゴニスト
JP5047795B2 (ja) Glp−1およびエキセンディンに関する発明
JP6979180B2 (ja) 診断及び治療のための、改善された薬物動態及びコレシストキニン−2受容体(cck2r)への標的化
Tatsi et al. [111 In-DOTA] Somatostatin-14 analogs as potential pansomatostatin-like radiotracers-first results of a preclinical study
Tatsi et al. [DOTA] Somatostatin-14 analogs and their 111In-radioligands: Effects of decreasing ring-size on sst1–5 profile, stability and tumor targeting
US20070066516A1 (en) Compounds comprising cyclized somatostatin receptor binding peptides
Azad et al. Design, synthesis and in vitro characterization of Glucagon-Like Peptide-1 derivatives for pancreatic beta cell imaging by SPECT
US20130323171A1 (en) Radiolabeled bbn analogs for pet imaging of gastrin-releasing peptide receptors
TW202204389A (zh) 用於顯影及醫療目的之包含螯合部分的選擇性gip受體促效劑
EP1257575B1 (en) Radiolabeled vasoactive intestinal peptide analogs for diagnosis and radiotherapy
WO2004081031A2 (en) Thiol-mediated drug attachment to targeting peptides
JP6986516B2 (ja) イメージング目的のためのキレート部分を含む選択的グルカゴン受容体アゴニスト
JP4318985B2 (ja) ソマトスタチンアナログ誘導体およびその利用
US20120259092A1 (en) Npy antagonists
Rangger et al. Design and evaluation of novel radiolabelled VIP derivatives for tumour targeting
JP2005538966A (ja) 金属錯体形成により環化した標識ソマトスタチン同族体骨格
TW201440791A (zh) 具有放射性鎵結合部位之多肽及其放射性鎵複合體
Petrou et al. Synthesis and sst2 binding profiles of new [Tyr3] octreotate analogs
Cheng et al. HSDAVFTDNYTKLRKQ-NIe-AVKK-(3-OCH3, 4-OH)-FLNSSV-GABA-L-(Dap-(BMA) 2)-64Cu
WO2006114324A1 (en) Compounds comprising cyclized somatostatin receptor binding peptides
Tatsi et al. pansomatostatin-like radiotracers-first results of a preclinical study