TW202147764A - 整流器觸發技術 - Google Patents

整流器觸發技術 Download PDF

Info

Publication number
TW202147764A
TW202147764A TW110102478A TW110102478A TW202147764A TW 202147764 A TW202147764 A TW 202147764A TW 110102478 A TW110102478 A TW 110102478A TW 110102478 A TW110102478 A TW 110102478A TW 202147764 A TW202147764 A TW 202147764A
Authority
TW
Taiwan
Prior art keywords
rectifier
circuit
capacitor
trigger
triggered
Prior art date
Application number
TW110102478A
Other languages
English (en)
Inventor
瑟夏奇里 勞 寶奇
法布利斯 布隆科
Original Assignee
英商Arm股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Arm股份有限公司 filed Critical 英商Arm股份有限公司
Publication of TW202147764A publication Critical patent/TW202147764A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • H02H9/046Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere responsive to excess voltage appearing at terminals of integrated circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/06Circuits specially adapted for rendering non-conductive gas discharge tubes or equivalent semiconductor devices, e.g. thyratrons, thyristors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Rectifiers (AREA)

Abstract

本文中所描述之各種實施方案係關於一種具有在被觸發時提供一經整流電壓之開關電路的器件。該器件可包含與電荷儲存電路串聯耦合之二極體電路。該二極體電路及該電荷儲存電路可操作以觸發該開關電路。該二極體電路可包含一或多個二極體,且該電荷儲存電路可包含至少一個電荷儲存組件。

Description

整流器觸發技術
本章節旨在提供與暸解本文中所描述之各種科技相關之資訊。如本章節之標題所暗示,此係相關技術之討論,該討論絕不應暗示其係先前技術。大體上,相關技術可被認為或可不被認為係先前技術。因此,應暸解,本章節中之任何陳述應鑑於此而閱讀,且不被作為對先前技術之任何認可。
在一些電子架構中,靜電放電(ESD)可指代一積體電路(IC)中之帶電組件之間之一電力突波。在一些情境中,ESD可藉由電接觸發生,此可導致ESD誘發之缺陷(例如,電氣短路、介電質崩潰等)。小規模ESD事件可誘發對高度敏感之電子組件及器件的損壞,當經受錯誤ESD電流及/或電壓突波時,該等電子組件及器件可遭受永久性損壞。回應於ESD,電子器件設計者及製造商已試圖在IC中建立特定保護電路及沿各種製造步驟之靜電保護實踐。因而,習知ESD保護電路可針對特定科技及設計限制最佳化或調諧。不幸的是,ESD保護器件(具有ESD觸發電壓及保持電壓)措施在遠離操作電壓位準工作時可係相對無效的。因此,存在改良ESD保護電路之佈局及設計之需求。
本文中所描述之各種實施方案指代整流器觸發方案及技術。例如,本文中所描述之各種方案及技術可提供一種電容器耦合(CC)二極體觸發(DT)矽控整流器(SCR),其有效地實施一最佳化觸發電路,該最佳化觸發電路使得SCR成為一有效靜電放電(ESD)保護器件以支援且保護晶片級的積體電路(IC)使其等免受ESD突波之影響。在一些實施方案中,CC-DT-SCR可具有有利面積及洩漏優勢,連同在過度雜訊及閂鎖(LU)注入下對錯誤觸發之較小敏感性。本文中所描述之各種實施方案可提供各種有用觸發方案及技術用於增加對各種雜訊及閂鎖(LU)條件之抗擾度,同時保持其ESD效能。
本文中將參考圖1A至圖5詳細描述整流器觸發方案及技術之各種實施方案。
圖1A至圖1B繪示根據本文中所描述之各種實施方案之整流器電路102之各種圖。特定言之,圖1A展示具有矽控整流器(SCR)電路110A之整流器電路102A之一圖100A,且圖1B亦展示具有電流觸發鉗位(CTC)電路110B之鉗位電路102B之另一圖100B。SCR 110A及CTC 110B可用各種類型之開關組態來實施,該等開關組態在被一二極體-電容器結構(DT/CC)觸發時提供一經整流電壓。
在各種實施方案中,整流電路102可實施為具有各種積體電路(IC)組件之一系統或一器件,該等積體電路(IC)組件經配置且耦合在一起作為提供一實體電路設計及相關結構之零件之一集合或組合。在一些實例中,一種將整流器電路102設計、提供且構建為一積體系統或器件之方法可涉及使用本文中所描述之各種IC電路組件以實施與其等相關聯之各種整流器觸發方案及技術。此外,整流器電路102可與一單個晶片上之運算電路及相關組件整合,且整流器電路102可在用於電子、行動及物聯網(IoT)應用(包含感測器節點)之嵌入式系統中實施。
在各種實施方案中,整流器電路102可用於用一改良觸發電路改良靜電放電(ESD)保護,該改良觸發電路在ESD下提供較低觸發電壓,同時藉由在IC電源接通時具有一較高觸發電壓來保持對錯誤觸發之一高抗擾度。因此,整流器電路102可稱為具有曝露於在一墊(PAD)處提供的一墊電壓之一整流器(或一閘流器)之整流器觸發電路。在各種實例中,整流器(或閘流器)可用藉由一觸發電流控制之任何類型之開關電路來實施。進一步,整流器可稱為具有可用作一開關結構之任何類型之電流觸發鉗位電路之一觸發整流器。
此外,在一些實施方案中,整流器電路102可稱為可用於靜電放電(ESD)保護之電容器耦合(CC)二極體觸發(DT)矽控整流器(SCR)電路。SCR可稱為具有一PNPN結構之一閘流器,該PNPN結構具有交錯的PNP及NPN器件。此外,ESD保護應在正常IC操作期間不可見,且CC-DT-SCR可操作以透過一實質上低阻抗汲取ESD電流,以便最小化一ESD事件期間之任何電壓建立。因此,CC-DT-SCR可在一ESD條件下操作以「整流」電壓建立,且CC-DT-SCR在正常操作條件下可不與外部電路相互作用。在任何情況下,藉由將耦合電容器(CC/C1)併入觸發電路路徑(二極體+電容器)中,CC-DT-SCR可容許改良之ESD保護效率連同最佳化之低觸發電壓,同時在電源係在作用中或接通時增加觸發電壓。因此,在正常操作條件下,且在於一些測試條件下發生之電壓過沖之情況下,CC-DT-SCR可提供對錯誤觸發之改良抗擾度。
如圖1A所展示,整流器電路102A包含開關電路110A,該開關電路110A在被觸發時提供一經整流電壓,連同在被觸發時提供一長歐姆路徑。此外,整流器電路102可包含二極體電路(DT) 112A,該二極體電路(DT) 112A與電荷儲存電路(CC) 114串聯耦合,該電荷儲存電路(CC) 114可操作以觸發開關電路110A。在各種實施方案中,整流器電路102可指代任何類型之開關電路,諸如,例如適於提供靜電放電(ESD)保護之一整流器或一閘流器。
在一些實例中,開關電路(SCR) 110A可耦合至一墊(PAD),且藉此曝露於一墊電壓,其中開關電路(SCR) 110A可經組態以限制當被二極體電路(DT) 112A觸發時施加於經整流電壓之電壓。如圖1A所展示,開關電路(SCR) 110A可實施為具有一或多個雙極性接面電晶體(BJT)之一矽控整流器(SCR)。在一些實施方案中,BJT可包含一第一BJT (PNP)及一第二BJT (NPN),其中第一BJT (PNP)可指代一基於PNP之BJT,且第二BJT (NPN)可指代一基於NPN之BJT。第一BJT (PNP)之基極端子可在節點(n1)處耦合至一第一電阻器(R1),且第一BJT (PNP)可在節點(n2)處耦合於墊(PAD)與一第二電阻器(R2)之間。第二BJT (NPN)之基極端子可耦合至節點(n2),且第二BJT (NPN)亦可在節點(n4)處耦合於節點(n1)與接地(DVSS)之間。電阻器R1及R2可能並非實際電阻器,且因而,R1及R2可指代井層之固有寄生電阻,該井層提供對SCR結構內之內部n1及n2網路之存取。如本文中以下參考圖1B所描述,整流器電路102可用各種類型之開關組態來實施,該等開關組態可在被二極體112A及電容器114之二極體-電容器結構觸發時提供一經整流電壓。
在一些實例中,二極體電路(DT) 112A可指代具有一或多個二極體(例如,D1、D2、D3)之二極體觸發(DT)電路,該一或多個二極體在開關電路(SCR) 110A與電荷儲存電路(CC) 114之間串聯耦合在一起。如圖1A所展示,二極體觸發電路(DT) 112A可包含任何數目個二極體,諸如,例如一第一二極體(D1)、一第二二極體(D2)及一第三二極管(D3),該等二極體在節點(n3)處串聯耦合於具有電阻器(R1)之網路n1與電荷儲存電路(CC) 114之間。二極體之數目可依據一預期觸發電壓調整(或調諧),該數目可小於或大於圖1A至圖1B所展示之二極體之數目。此外,電荷儲存電路(CC) 114可包含可稱為一耦合電容器(CC)之一或多個電容器(例如,C1),該耦合電容器(CC)在節點(n4)處耦合於二極體電路(DT) 112A與接地(DVSS)之間。如本文中以下參考圖2至圖4所描述,耦合電容器(CC/C1) 114可用可使用放電控制電路提供之一控制電壓(Vc)加偏壓。在此實例中,整流器電路102可包含放電控制電路,該放電控制電路耦合至安置於二極體電路(DT) 112A與電荷儲存電路(CC/C1) 114之間之節點(n3),且放電控制電路亦可經組態以在標準(或正常)操作條件下加偏壓於電荷儲存電路(CC/C1) 114,且在斷電模式中及在多次靜電放電(ESD)之間使電容器(C1)中之所儲存電壓放電。
如本文中所描述,整流器電路102A可經組態以操作為具有帶有SCR 110A之一第一級之一觸發整流器,該SCR 110A在被觸發時提供一經整流電壓。整流器電路102A包含具有多個二極體(D1、D2、D3)及電容器(C1)之一第二級,該多個二極體(D1、D2、D3)及該電容器(C1)藉由從SCR 110A拉取二極體及電容器電流來觸發SCR 110A。在一些實例中,如圖1A所展示,二極體(D1、D2、D3)連同電容器(C1)可經組態以形成一觸發分支(即,二極體+電容器),該觸發分支耦合至SCR 110A之第一BJT (PNP)之PNP基極端子。因此,此二極體-電容器觸發分支可耦合至SCR 110A之閘控端子,以藉此觸發SCR 102A。
在一些實例中,整流器電路102A可包含一或多個電阻器(包含例如,第一電阻器(R1)及第二電阻器(R2) ),其中第一電阻器(R1)在節點(n1)處耦合於二極體電路(DT) 112A與開關電路(SCR) 110A之間,且第二電阻器(R2)在節點(n2)處耦合於開關電路(SCR) 110A與接地(DVSS)之間。在一些實例中,電阻器(R1、R2)可係內建於SCR結構內之原生電阻器,例如,作為寄生井電阻器,其等用於存取BJT器件(PNP、NPN)之寄生端子以藉此形成一閘流器結構,此可稱為SCR。
圖1B展示整流器電路102B之圖100B,該整流器電路102B具有電流觸發鉗位(CTC)電路110B作為另一類型之觸發整流器。圖1B之整流器電路102B可具有擁有與圖1A中之整流器電路102A類似的範疇及特徵連同類似的操作行為及特性之類似組件。在此實例中,CTC 110B可操作為一ESD鉗位電路。
如圖1B所展示,開關電路(CTC) 110B可被實施為具有各種邏輯器件之整流器(或閘流器),該等邏輯器件經配置及經組態以提供一電流觸發鉗位電路。因而,開關電路(CTC) 110B可指代一電流觸發鉗位電路,該電流觸發鉗位電路接收來自墊(PAD)之一墊電壓,且在被來自具有若干(N)個二極體(D1、D2、…、DN)之二極體電路(DT) 112B之一觸發信號觸發時,提供經整流電壓。在一些實例中,二極體(D1、D2、…、DN)可係串聯耦合於開關電路(CTC) 110B與電容器電路(CC) 114之間,該電容器電路(CC) 114包含經耦合於二極體(D1、D2、…、DN)與接地(DVSS)之間之至少一個電容器(C1)。
在一些實施方案中,開關電路(CTC) 110B可經耦合至墊(PAD)且曝露於墊電壓,且開關電路(CTC) 110B可經組態以限制當被二極體(D1、D2、…、DN)觸發時經施加至經整流電壓的電壓。如圖1B所展示,CTC 110B可係耦合至二極體堆疊中之一第一二極體(D1),且耦合電容器(CC/C1)亦可在節點(n3)處經耦合至二極體堆疊中之一最後二極體(DN)。此外,如本文中所描述,整流器電路102、102B可用各種類型之開關組態來實施,該等開關組態在被二極體(D1、D2、…、DN)及耦合電容器(CC/C1)之二極體-電容器結構觸發時提供經整流電壓。
如本文中所描述,整流器電路102B可經組態以操作為具有帶有CTC 110B之一第一級之一觸發整流器,該CTC 110B在被觸發時提供一經整流電壓。整流器電路102B包含具有多個二極體(D1、D2、…、DN)及電容器(CC/C1)之一第二級,該多個二極體(D1、D2、…、DN)及該電容器(CC/C1)藉由從CTC 110B拉取二極體及電容器電流來觸發CTC 110B。在一些實例中,如圖1B所展示,二極體(D1、D2、…、DN)連同耦合電容器(CC/C1)經組態以形成經耦合至CTC 110B之一觸發分支(即,二極體+電容器)。因此,此二極體-電容器觸發分支可係耦合至CTC 110B之閘控端子,以藉此在一ESD事件期間觸發CTC 110B。
如本文中以下參考圖2至圖4所描述,耦合電容器(CC/C1) 114可用使用放電控制電路提供之控制電壓(Vc)加偏壓。在此實例中,整流器電路102B可包含放電控制電路,該放電控制電路經耦合至經安置於二極體電路(DT) 112B與電容器(CC/C1) 114之間的節點(n3),且放電控制電路亦可經組態以在標準操作條件下加偏壓於電容器(CC/C1) 114,且在斷電模式中及在多次靜電放電(ESD)之間使電容器(C1)中所儲存電壓放電。
圖2至圖4繪示根據本文中所描述之一些實施方案之具有放電控制之整流器電路之各種圖。特定言之,圖2展示具有放電控制電路220之整流器電路202之一圖200,圖3展示具有放電控制電路320之整流器電路302之一圖300,且圖4展示具有放電控制電路420之整流器電路402之一圖400。在一些實例中,圖2至圖4之整流器電路202、302、402可包含CC-DT-SCR電路102A連同具有先前如本文中以上在圖1A所描述之類似範疇、特徵、行為及特性之各種組件。在其他實例中,圖1B之CTC電路102B可用於圖2至圖4之整流器電路202、302、402中,以用於ESD事件期間之ESD保護。
例如,如圖2所展示,整流器電路202可包含具有一第一級及一第二級之CC-DT-SCR電路102,其中第一級具有在被觸發時提供一經整流電壓之一整流器,且第二級具有二極體及一電容器,該等二極體及該電容器藉由從整流器中拉取二極體及電容器電流來觸發整流器。此外,如圖2所展示,整流器電路202可包含放電控制電路220作為在標準操作條件下加偏壓於電容器(在CC-DT-SCR 102中),且在斷電模式中及在多次靜電放電(ESD)之間使所儲存電荷放電之一第三級。如本文中所描述,整流器(在CC-DT-SCR 102中)從墊(PAD)接收墊電壓,且在被二極體(在CC-DT-SCR 102中)觸發時提供經整流電壓。整流器(在CC-DT-SCR 102中)可指代任何類型之電流觸發鉗位電路,且二極體亦串聯耦合於整流器及電容器之間,該電容器耦合於二極體與接地之間。
在一些實例中,第一級耦合至第二級,且第三級與電容器並聯耦合。第三級經組態以操作為放電控制電路220,該放電控制電路220在標準操作條件下加偏壓於電容器,且在斷電模式中及在多次靜電放電(ESD)之間使所儲存電荷放電。關於第三級,放電控制電路220可具有包含一第一反相器(Inv1)及一第二反相器(Inv2)之各種邏輯電路,該第一反相器(Inv1)及該第二反相器(Inv2)經組態以提供控制電壓(Vc),該控制電壓(Vc)可用於在標準操作期間依DVDD位準且在斷電模式中及在多次靜電放電(ESD)之間依零位準在靜電放電(ESD)期間加偏壓於電容器(在CC-DT-SCR 102中)。如圖2所展示,第一反相器(Inv1)包含在節點(n4)處串聯耦合於一電壓供應器(DVDD)與接地(DVSS)之間之電晶體(P1、N1),且第二反相器(Inv2)包含在節點(n4)處串聯耦合於一墊電壓(padr)與接地(DVSS)之間之電晶體(P2、N2)。此外,第一反相器(Inv1)之電晶體(P1、N1)之閘極耦合至第二反相器(Inv2)之一輸出(Out_1),且在安置於電晶體(P1、N1)之間之一節點處從第一反相器(Inv1)之一輸出取得控制電壓(Vc)。此外,第二反相器(Inv2)之電晶體(P2、N2)之閘極可耦合至第二反相器(Inv2)之一Tie-Hi輸入(例如,從電源供應器取得之邏輯1),且在安置於電晶體(P2、N2)之間之一節點處從第二反相器(Inv2)之輸出取得一輸出電壓(Out_1)。
在一些實施方案中,電晶體(P1、P2)可指代p型金屬氧化物半導體(PMOS)電晶體,且電晶體(N1、N2)可指代n型MOS (NMOS)電晶體。然而,在其他實施方案中,各種其他類型之電晶體組態可用於提供類似功能。
如本文中所描述,整流器電路102可經組態以操作為具有帶有一SCR之一第一級之一觸發整流器(CC-DT-SCR),該SCR在被觸發時提供一經整流電壓。整流器電路102包含一第二級,該第二級具有二極體(DT)及一耦合電容器(CC),該等二極體(DT)及該耦合電容器(CC)藉由從SCR拉取二極體及電容器電流來觸發SCR。在圖2中,整流器電路202包含放電控制電路220作為一第三級,該第三級在標準(即,正常)操作條件下加偏壓於耦合電容器(CC)且在ESD期間使所儲存電荷放電。
在一些實施方案中,第三級可具有用於放電控制之一不同組態。例如,如圖3所展示,整流器電路302可具有第三級,該第三級經組態以與放電控制電路320一起操作用於在標準操作條件期間依DVDD位準及/或在ESD及斷電模式期間依零位準在ESD期間加偏壓於102之耦合電容器(CC)。在一些實例中,零位準可指代接地(即,DVSS)。關於第三級,放電控制電路320可具有包含電晶體(P1)及電晶體(N1、P2、N2)之各種邏輯電路及邏輯結構,該電晶體(P1)及該等電晶體(N1、P2、N2)經配置及組態以提供控制電壓(Vc),該控制電壓(Vc)用於加偏壓於耦合電容器(在CC-DT-SCR 102中)且在ESD期間使任何所儲存電荷放電。如圖3所展示,電晶體(P1)可耦合於電壓供應器(DVDD)與Vc節點之間,且電晶體(N1、P2、N2)可串聯耦合於Tie-Hi電壓與接地(DVSS)之間。此外,電晶體(P1、N2)之閘極可耦合至墊電壓(padr),且電晶體(N1、P2)之閘極可耦合至Tie-Hi電壓。從安置於電晶體(N1、P2)之間之一輸出節點取得控制電壓(Vc),且可將一井控制電壓(well_ctrl)施加至電晶體(P2)之塊體端子。
在一些實施方案中,電晶體(P1、P2)可指代p型金屬氧化物半導體(PMOS)電晶體,且電晶體(N1、N2)可指代n型MOS (NMOS)電晶體。然而,在其他實施方案中,各種其他類型之電晶體組態可用於提供類似功能。
如本文中所描述,整流器電路102可經組態以操作為具有帶有一SCR之一第一級之一觸發整流器(CC-DT-SCR),該SCR在被觸發時提供一經整流電壓。整流器電路102包含一第二級,該第二級具有二極體(DT)及一耦合電容器(CC),該等二極體(DT)及該耦合電容器(CC)藉由從SCR拉取二極體及電容器電流來觸發SCR。在圖3中,整流器電路302包含放電控制電路320作為一第三級,該第三級在標準(即,正常)操作條件下依DVDD位準加偏壓於耦合電容器(CC)且在ESD期間依零位準(例如,DVSS) 使所儲存電荷放電。在各種實施方案中,零位準可指代依接地位準(諸如,例如DVSS位準)之零伏(0 V)。
在一些實施方案中,如圖4所展示,整流器電路402可具有第三級,該第三級具有用於放電控制之一不同組態。例如,整流器電路402可具有第三級,該第三級經組態以與放電控制電路420一起操作用於在標準操作條件期間依DVDD位準及在ESD期間依零位準(DVSS位準)加偏壓於102之耦合電容器 (CC)。
關於圖4中之第三級,放電控制電路420可具有包含電晶體(P1、N1、P2、N2)之各種邏輯電路及邏輯結構,該等電晶體(P1、N1、P2、N2)經配置及組態以提供控制電壓(Vc),該控制電壓(Vc)用於加偏壓於耦合電容器(在CC-DT-SCR 102中)。如圖4所展示,電晶體(P1)耦合於電壓供應器(DVDD)與Vc節點之間,且電晶體(N1、P2、N2)串聯耦合於Tie-Hi電壓(DVDD位準)與接地(DVSS)之間。此外,電晶體(P1、N2)之閘極耦合至墊電壓位準(padr),電晶體(N1)之閘極耦合至Tie-Hi電壓,且電晶體(P2)之閘極耦合至作為DVDD或padr之間之最高電壓位準之井控制電壓(well_ctrl)。如圖4所展示,從安置於電晶體(N1、P2)之間之一輸出節點取得控制電壓(Vc),且亦將井控電壓(well_ctrl)施加至電晶體(P2)之塊體端子。
在一些實施方案中,電晶體(P1、P2)可指代p型金屬氧化物半導體(PMOS)電晶體,且電晶體(N1、N2)可指代n型MOS (NMOS)電晶體。然而,在其他實施方案中,各種其他類型之電晶體組態可用於提供類似功能。
如本文中所描述,整流器電路102可經組態以操作為具有帶有一SCR之一第一級之一觸發整流器(CC-DT-SCR),該SCR在被觸發時提供一經整流電壓。整流器電路102包含一第二級,該第二級具有二極體(DT)及一耦合電容器(CC),該等二極體(DT)及該耦合電容器(CC)藉由從SCR拉取二極體及電容器電流來觸發SCR。在圖4中,整流器電路402包含放電控制電路420作為一第三級,該第三級在標準(即,正常)操作條件下加偏壓於耦合電容器(CC)且在ESD期間使所儲存電荷放電。
圖5繪示根據本文中所描述之各種實施方案之用於提供整流器觸發電路之一方法500之一程序圖。
應暸解,儘管方法500指示操作執行之一特定順序,在一些情況下,該等操作之各種特定部分仍可按一不同順序且在不同系統上執行。在其他情況下,可向方法500添加及/或自方法500省略額外操作及/或步驟。此外,方法500可指代一種將各種整流器觸發電路設計、提供、構建及/或製造為一積體系統、器件及/或電路之方法,其可涉及使用本文中所描述之各種IC電路組件,以藉此實施與其等相關聯之整流器觸發方案及技術。
在一些實施方案中,方法500及相關整流器觸發電路可用於用一改良觸發電路來改良ESD保護,該改良觸發電路在ESD下提供較低觸發電壓,同時藉由在IC電源接通時具有一較高觸發電壓來保持對錯誤觸發之一高抗擾度。
在方塊510處,方法500可在一墊與接地(諸如,例如DVSS)之間耦合一整流器(或一閘流器)。整流器(或閘流器)被曝露於墊處所提供之一墊電壓。在各種實例中,整流器可用任何類型之鉗位電路或類似類型之開關電路來實施,該開關電路係透過一觸發電流控制以用作一自持閂鎖鉗位電路。例如,在一些情況下,開關電路指代一矽控整流器(SCR)之使用。
在方塊520處,方法500可將多個二極體與一電容器串聯耦合,以提供用於觸發整流器之一觸發電路。在方塊530處,方法500可將由該多個二極體及該電容器形成之一電路分支耦合至整流器之一第一觸發節點,且方法500可將整流器之一第二觸發節點耦合至接地(例如,DVSS)。在一些實例中,二極體及電容器係串聯耦合於整流器與接地(例如,DVSS)之間,且電容器亦可稱為經耦合於二極體與接地(例如,DVSS)之間之一耦合電容器。在各種實施方案中,整流器可包含藉由串聯耦合之二極體及電容器所觸發之一或多個BJT,且該一或多個BJT亦可包含一或多個基於PNP之BJT及/或一或多個基於NPN之BJT。
在方塊540處,方法500可調諧用於整流器之觸發電路(即,二極體及電容器),以提供一經整流電壓。此外,在方塊550處,方法500可將一放電控制電路耦合至觸發電路(例如,耦合至經安置於二極體與電容器之間之一節點),以便在標準操作條件下加偏壓於電容器,且亦在靜電放電(ESD)期間及在斷電條件下,使所儲存電壓放電。在一些實施方案中,放電控制電路可稱為一電容器電荷控制電路。
在一些實例中,整流器可包含具有一PNP結構之一第一BJT,且整流器亦可包含具有一NPN結構之一第二BJT。在此實例中,觸發節點可指代一第一節點(例如,n1)處之PNP結構之一基極端子(B),且內部網路可指代一第二節點(例如,n2)處之NPN結構之一基極端子(B)。在一些實例中,方法500可在二極體與整流器之間耦合一第一電阻器(或第一電阻器網路),且方法500可在整流器與接地(例如,DVSS)之間耦合一第二電阻器(或第二電阻器網路)。在一些實例中,一或多個電阻器(或電阻器網路)可指代經內建於整流器結構內之原生或固有電阻器,諸如,例如作為用於存取寄生BJT器件端子以形成一閘流器結構(其稱為一SCR)之寄生井電阻器。此外,在一些實例中,可基於整流器之尺寸及所要觸發特性及/或行為來調諧及/或修改電容器之電容值。
在如本文中所描述之各種實施方案中,使用CC-DT-SCR電路連同放電控制具有一些優點。例如,圖2至圖3提供在ESD下旁通耦合電容器(CC/C1),此使得即使針對多次連續ESD衝擊(zap),CC-DT-SCR在Vc上仍然無電荷以保持相同ESD效能。此外,圖1A及圖4提供在改變(或修改)電容器尺寸及二極體串數目方面之使用者靈活性以滿足一所要ESD觸發臨限值。Vc加偏壓電路(即,電荷控制電路)可藉由在重複及累積衝擊 (即,ESD合格性試驗)之情況下使耦合電容器(CC/C1)放電來協助降低ESD觸發電壓。Vc加偏壓電路(即,電荷控制電路)亦可用於在正常操作條件(電源接通)下將耦合電容器(CC/C1) 加偏壓至DVDD以減少雜訊或閂鎖(LU)注入下之錯誤觸發。可藉由Vc加偏壓至DVDD來改良系統級ESD下之觸發預防,且CC-DT-SCR亦可用於信號及電壓參考接腳兩者中之ESD保護。
發明申請專利範圍之標的物應旨在不限於本文中所提供之實施方案及繪示,而包含該等實施方案之經修改形式,包含根據發明申請專利範圍之實施方案之部分及根據發明申請專利範圍之不同實施方案之元素之組合。應暸解,如在任何工程或設計專案中,在任何此實施方案之開發中,應做出許多實施方案特定決策以達成開發者之特定目標,諸如遵守系統相關及業務相關之約束,該等約束可隨實施方案而變動。此外,應暸解,此一開發工作可係複雜及耗時的,然而對於受益於本發明之一般技術者而言,此將係一常規設計、製作及製造任務。
本文中描述一種器件之各種實施方案。該器件可包含在被觸發時提供一經整流電壓之開關電路。該器件可包含與電荷儲存電路串聯耦合之二極體電路,且該二極體電路及該電荷儲存電路操作以觸發該開關電路。
本文中描述一種觸發整流器之各種實施方案。該觸發整流器可包含一第一級,該第一級具有在被觸發時提供一經整流電壓之一整流器。該觸發整流器可包含一第二級,該第二級具有二極體及一電容器,該等二極體及該電容器藉由從該整流器中拉取二極體及電容器電流來觸發該整流器。該觸發整流器可包含一第三級,該第三級在標準操作條件下加偏壓於該電容器且在靜電放電(ESD)及未通電條件(例如,在斷電模式期間)期間使所儲存電荷放電。
本文中描述一種方法之各種實施方案。該方法可包含在一墊與接地之間耦合一整流器。該方法可包含將多個二極體與一電容器串聯耦合。該方法可包含將該等二極體及該電容器耦合至該整流器。該方法亦可包含觸發該整流器以提供一經整流電壓。
已詳細參考各種實施方案,其等之實例在隨附圖式及圖中繪示。在以下詳細描述中,闡述許多特定細節以提供對本文中所提供之揭示內容之一透徹暸解。然而,本文所提供之揭示內容可在沒有此等特定細節之情況下實踐。在一些其他實例中,未詳細描述眾所周知的方法、程序、組件、電路及網路,以免不必要地使實施例之細節模糊。
亦應暸解,儘管本文中可使用術語第一、第二等來描述各種元件,但此等元件不應受此等術語限制。此等術語僅用於區分一元件與另一元件。舉例而言,一第一元件可稱為一第二元件,且類似地,一第二元件可稱為一第一元件。第一元件及該二元件係分別地兩個元件,但其等不應被視為相同元件。
在本文中所提供之揭示內容之描述中所使用之術語係用於描述特定實施方案之目的,且非旨在限制本文中所提供之揭示內容。如在本文中所提供之揭示內容及隨附發明申請專利範圍之描述中使用,單數形式「一」、「一個」及「該」旨在亦包含複數形式,除非上下文另有清晰指示。如本文中所使用之術語「及/或」指代且涵蓋相關聯所列示品項之一或多個之任何及所有可能組合。術語「包含(include、including)」及/或「包括(comprises、comprising)」當在本說明書中使用時,指定所陳述特徵、整數、步驟、操作、元件及/或組件之一存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件及/或其等之群組的存在或添加。
如本文中所使用,術語「若」可取決於上下文被解釋為意謂「當」或「一旦」或「回應於判定」或「回應於偵測」。類似地,片語「若判定」或「若偵測到[一所陳述條件或事件]」可取決於上下文被解釋為意謂「一旦判定」或「回應於判定」或「一旦偵測到[該所陳述條件或事件]」或「回應於偵測到[該所陳述條件或事件]」。術語「向上」及「向下」;「上」及「下」;「向上地」及「向下地」;「下方」及「上方」;及指示一給定點或元件上方或下方之相對位置之其他類似術語可結合本文中所描述之各種科技之一些實施方案使用。
儘管上述內容係關於本文中所描述之各種技術之實施方案,但可根據可藉由以下發明申請專利範圍判定之本文中之揭示內容設計其他及進一步實施方案。
儘管已依特定於結構特徵及/或方法動作之語言描述標的物,但應暸解,隨附發明申請專利範圍中所界定之標的物不一定限於以上所描述之特定特徵或動作。實情係,以上所描述之特定特徵及之動作被揭示為實施發明申請專利範圍之實例形式。
100A:圖 102:整流器電路 102A:整流器電路 102B:整流器電路 110A:矽控整流器(SCR)電路 110B:電流觸發鉗位(CTC)電路/開關電路 112A:二極體電路(DT) 112B:二極體電路(DT) 114:電荷儲存電路(CC) 200:圖 202:整流器電路 220:放電控制電路 300:圖 302:整流器電路 320:放電控制電路 400:圖 402:整流器電路 420:放電控制電路 500:方法 510:方塊 520:方塊 530:方塊 540:方塊 550:方塊 C1:電容器 D1:二極體 D2:二極體 D3:二極體 DN:二極體 DVDD:電壓供應器 DVSS:接地 Inv1:第一反相器 Inv2:第二反相器 n1:節點 n2:節點 n3:節點 n4:節點 N1:電晶體 N2:電晶體 NPN:第二雙極性接面電晶體 Out_1:輸出 P1:電晶體 P2:電晶體 padr:墊電壓 PNP:第一雙極性接面電晶體 R1:第一電阻器 R2:第二電阻器 Tie_Hi:電壓 Vc:控制電壓 well_ctrl:井控制電壓
本文中參考隨附圖式描述各種技術之實施方案。然而,應暸解,隨附圖式僅繪示本文中所描述之各種實施方案,且並不意謂限制本文中所描述之各種技術之實施例。
圖1A至圖1B繪示根據本文中所描述之各種實施方案之整流器電路之各種圖。
圖2至圖4繪示根據本文中所描述之各種實施方案之具有放電控制之整流器電路之各種圖。
圖5繪示根據本文中所描述之各種實施方案之用於提供整流器觸發電路之一方法之一程序流程圖。
100A:圖
102:整流器電路
102A:整流器電路
110A:矽控整流器(SCR)電路
112A:二極體電路(DT)
114:電荷儲存電路(CC)
C1:電容器
D1:二極體
D2:二極體
D3:二極體
DVSS:接地
n1:節點
n2:節點
n3:節點
n4:節點
NPN:第二雙極性接面電晶體
PNP:第一雙極性接面電晶體
R1:第一電阻器
R2:第二電阻器
Vc:控制電壓

Claims (20)

  1. 一種器件,其包括: 開關電路,其在被觸發時提供一經整流電壓;及 二極體電路,其係與電荷儲存電路串聯耦合,其中該二極體電路及該電荷儲存電路操作以觸發該開關電路。
  2. 如請求項1之器件,其中該器件指代一整流器或一閘流器,該整流器或該閘流器經組態以提供靜電放電(ESD)保護。
  3. 如請求項1之器件,其中該開關電路係曝露於一墊電壓,且限制當被該二極體電路觸發時,被施加至該經整流電壓之電壓。
  4. 如請求項1之器件,其中該開關電路係具有雙極性接面電晶體(BJT)之一矽控整流器(SCR)。
  5. 如請求項4之器件,其中該雙極性接面電晶體(BJT)包含一第一BJT及一第二BJT,其中該第一BJT指代一基於PNP之BJT,且其中該第二BJT指代一基於NPN之BJT。
  6. 如請求項5之器件,其中該基於NPN之BJT係耦合於該基於PNP之BJT之一基極端子與接地之間。
  7. 如請求項1之器件,其中該開關電路經組態以操作為一電流觸發鉗位電路,該電流觸發鉗位電路提供靜電放電(ESD)保護。
  8. 如請求項1之器件,其中該二極體電路具有多個二極體,該多個二極體經串聯耦合於該開關電路之一觸發信號網路與該電荷儲存電路之間。
  9. 如請求項1之器件,其中該電荷儲存電路具有一耦合電容器,該耦合電容器係耦合於該二極體電路與接地之間。
  10. 如請求項1之器件,進一步包括: 放電控制電路,其係耦合至經安置於該二極體電路與該電荷儲存電路之間之一節點,其中該放電控制電路經組態以在標準操作條件下加偏壓於該電荷儲存電路,且在靜電放電期間及斷電模式期間使所儲存電壓放電。
  11. 一種觸發整流器,其包括: 一第一級,其具有在被觸發時提供一經整流電壓之一整流器; 一第二級,其具有二極體及一電容器,該等二極體及該電容器藉由從該整流器中拉取二極體及電容器電流來觸發該整流器;及 一第三級,其在標準操作條件下加偏壓於該電容器,且在靜電放電(ESD)期間及斷電模式期間使所儲存電荷放電。
  12. 如請求項11之觸發整流器,其中該整流器接收一墊電壓,且在被觸發級觸發時提供該經整流電壓。
  13. 如請求項11之觸發整流器,其中該整流器指代一電流觸發鉗位電路。
  14. 如請求項11之觸發整流器,其中該等二極體經串聯耦合於該整流器與該電容器之間,且其中該電容器經耦合於該等二極體與接地之間。
  15. 如請求項11之觸發整流器,其中該第一級經耦合至該第二級,且其中該第三級係與該電容器並聯耦合,且其中該第三級操作為一放電控制電路,該放電控制電路在標準操作條件下加偏壓於該電容器,且在靜電放電(ESD)期間及斷電模式期間使所儲存電荷放電。
  16. 如請求項11之觸發整流器,其中該第三級包括邏輯電路,該邏輯電路包含一第一反相器及一第二反相器,該第一反相器及該第二反相器經組態以提供一控制電壓,該控制電壓在標準操作條件下加偏壓於該電容器,且在靜電放電(ESD)期間及斷電模式期間使所儲存電荷放電。
  17. 如請求項11之觸發整流器,其中該第三級包括多個邏輯結構,該等邏輯結構經配置及組態以提供一控制電壓,該控制電壓在標準操作條件下加偏壓於該電容器,且在靜電放電(ESD)期間及斷電模式期間使所儲存電荷放電。
  18. 一種方法,其包括: 在一墊與接地之間耦合一整流器; 將多個二極體與一電容器串聯耦合; 將該等二極體及該電容器耦合至該整流器;及 觸發該整流器以提供一經整流電壓。
  19. 如請求項18之方法,進一步包括: 將該多個二極體及該電容器耦合至該整流器之一觸發節點,及 將該整流器之一內部網路耦合至接地。
  20. 如請求項19之方法,其中: 該整流器具有帶有一PNP結構之一第一雙極性接面電晶體(BJT), 該整流器具有帶有一NPN結構之一第二BJT, 該觸發節點指代一第一節點處之該PNP結構之一基極端子,及 該內部網路指代一第二節點處之該NPN結構之一基極端子。
TW110102478A 2020-02-07 2021-01-22 整流器觸發技術 TW202147764A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/785,513 2020-02-07
US16/785,513 US11495955B2 (en) 2020-02-07 2020-02-07 Rectifier triggering techniques

Publications (1)

Publication Number Publication Date
TW202147764A true TW202147764A (zh) 2021-12-16

Family

ID=77176917

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102478A TW202147764A (zh) 2020-02-07 2021-01-22 整流器觸發技術

Country Status (3)

Country Link
US (1) US11495955B2 (zh)
CN (1) CN113258798A (zh)
TW (1) TW202147764A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540070B (zh) * 2020-04-20 2023-12-12 长鑫存储技术有限公司 静电保护电路
US11721974B2 (en) * 2021-01-04 2023-08-08 Changxin Memory Technologies, Inc. Electrostatic discharge (ESD) protection circuit and chip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589944B2 (en) * 2001-03-16 2009-09-15 Sofics Bvba Electrostatic discharge protection structures for high speed technologies with mixed and ultra-low voltage supplies
US7291887B2 (en) * 2002-06-19 2007-11-06 Windbond Electronics Corp. Protection circuit for electrostatic discharge
US8891212B2 (en) * 2011-04-05 2014-11-18 International Business Machines Corporation RC-triggered semiconductor controlled rectifier for ESD protection of signal pads
EP3107121B1 (en) * 2015-06-16 2018-02-21 Nxp B.V. An electrostatic discharge power rail clamp circuit

Also Published As

Publication number Publication date
US11495955B2 (en) 2022-11-08
CN113258798A (zh) 2021-08-13
US20210249849A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US7440248B2 (en) Semiconductor integrated circuit device
US7224560B2 (en) Destructive electrical transient protection
JP4829880B2 (ja) 静電放電保護回路
US6671153B1 (en) Low-leakage diode string for use in the power-rail ESD clamp circuits
JP4651044B2 (ja) 集積半導体回路を保護するための回路装置および方法
US5528188A (en) Electrostatic discharge suppression circuit employing low-voltage triggering silicon-controlled rectifier
US7457087B2 (en) Electrostatic discharge protective circuit and semiconductor integrated circuit using the same
US6690557B2 (en) CMOS whole chip low capacitance ESD protection circuit
US20060091464A1 (en) Electrostatic protection circuit
US20080278872A1 (en) Electrostatic Discharge Protection Circuit
US6442008B1 (en) Low leakage clamp for E.S.D. protection
US20070047162A1 (en) Electrostatic protection circuit
US20050045952A1 (en) Pfet-based esd protection strategy for improved external latch-up robustness
US11476243B2 (en) Floating base silicon controlled rectifier
JP2006128696A (ja) 半導体装置の静電気放電保護
TW202147764A (zh) 整流器觸發技術
US6411485B1 (en) Electrostatic discharge protection circuit for multi-voltage power supply circuit
US7154724B2 (en) Output buffer ESD protection using parasitic SCR protection circuit for CMOS VLSI integrated circuits
US7068482B2 (en) BiCMOS electrostatic discharge power clamp
US6275367B1 (en) Semiconductor circuit device with high electrostatic breakdown endurance
US10381826B2 (en) Integrated circuit electrostatic discharge protection
US7012305B2 (en) Electro-static discharge protection circuit for dual-polarity input/output pad
CN113921516A (zh) 一种静电放电保护模块及应用其的装置
US20080121925A1 (en) Low voltage triggered silicon controlled rectifier
JP2005123533A (ja) 静電放電保護回路