TW202147651A - Resistive random acessory memory and method of manufacturing the same - Google Patents

Resistive random acessory memory and method of manufacturing the same Download PDF

Info

Publication number
TW202147651A
TW202147651A TW109119045A TW109119045A TW202147651A TW 202147651 A TW202147651 A TW 202147651A TW 109119045 A TW109119045 A TW 109119045A TW 109119045 A TW109119045 A TW 109119045A TW 202147651 A TW202147651 A TW 202147651A
Authority
TW
Taiwan
Prior art keywords
layer
oxygen atom
resistive random
random access
access memory
Prior art date
Application number
TW109119045A
Other languages
Chinese (zh)
Inventor
許博硯
吳伯倫
郭澤綿
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109119045A priority Critical patent/TW202147651A/en
Publication of TW202147651A publication Critical patent/TW202147651A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A resistive random accessory memory is provided. The resistive random accessory memory includes a substrate, a first dielectric layer, a bottom electrode, a resistance switching layer, an oxygen exchange layer, a barrier and a top electrode. The first dielectric is disposed on the substrate. The bottom electrode is disposed on the first dielectric layer. The resistance switching layer is disposed on the bottom electrode. The oxygen exchange layer is disposed on the resistance switching layer, wherein a contact area between the oxygen atom exchange layer and the resistance switching layer is smaller than a top surface area of the resistance switching layer. The barrier layer is disposed on the oxygen exchange layer. The top electrode is disposed on the barrier layer.

Description

電阻式隨機存取記憶體及其製造方法Resistive random access memory and method of making the same

本發明實施例係有關於一種記憶體,且特別係有關於一種電阻式隨機存取記憶體及其製造方法。Embodiments of the present invention relate to a memory, and more particularly, to a resistive random access memory and a manufacturing method thereof.

電阻式隨機存取記憶體(resistive random access memory,RRAM)具有低功率消耗、低操作電壓、寫入及擦除時間短、持久性長、數據保留時間長、非破壞性讀取操作、多重狀態(multi-state)、製造簡單及可擴充性質的優點,因而成為非揮發性記憶體的新興主流。電阻式隨機存取記憶體的基本結構包含底電極、電阻轉換層及頂電極堆疊而成的金屬-絕緣體-金屬(MIM)結構。Resistive random access memory (RRAM) has low power consumption, low operating voltage, short write and erase time, long durability, long data retention time, non-destructive read operation, multiple states (multi-state), the advantages of simple manufacturing and scalable nature, and thus become the emerging mainstream of non-volatile memory. The basic structure of a resistive random access memory includes a metal-insulator-metal (MIM) structure formed by stacking a bottom electrode, a resistance switching layer and a top electrode.

電阻式隨機存取記憶體的轉態機制為利用電阻轉換層或氧原子交換層中的氧空缺(oxygen vacancies)或氧原子的移動來形成導電路徑(conductive filament)。The state transition mechanism of the resistive random access memory is to utilize oxygen vacancies or the movement of oxygen atoms in the resistance switching layer or the oxygen atom exchange layer to form conductive filaments.

當對電阻式隨機存取記憶體施加正向的設置電壓,電阻轉換層中的氧原子移動至氧原子交換層,而形成導電路徑且從高阻態轉變為低阻態,此過程稱為設置(SET)操作。當對電阻式隨機存取記憶體施加反向的重置電壓,氧原子交換層中的氧原子移動至電阻轉換層,使電阻轉換層中的導電路徑斷開,以從低阻態轉變為高阻態,此過程稱為重置(RESET)操作。透過外加電壓極性不同來控制電阻的高低,從而達到儲存數據的目的。When a positive setting voltage is applied to the resistive random access memory, the oxygen atoms in the resistance switching layer move to the oxygen atom exchange layer, forming a conductive path and changing from a high resistance state to a low resistance state, this process is called setting (SET) operation. When a reverse reset voltage is applied to the resistive random access memory, the oxygen atoms in the oxygen atom exchange layer move to the resistance switching layer, so that the conductive path in the resistance switching layer is disconnected to change from a low resistance state to a high resistance state resistance state, this process is called reset (RESET) operation. The level of the resistance is controlled by the polarity of the applied voltage, so as to achieve the purpose of storing data.

雖然現有的電阻式隨機存取記憶體可大致滿足它們原先預定的用途,但其仍未在各個方面皆徹底地符合需求。例如,每次將記憶體轉換到高阻態時,氧原子交換層中的氧原子不一定會填回電阻轉態層中的氧空缺,導致記憶體的操作電壓的變異性很大,且裝置穩定性差。因此,仍需一種新穎的電阻式隨機存取記憶體來改善上述問題。Although existing resistive random access memories can roughly meet their original intended use, they have not yet fully met the requirements in every respect. For example, each time the memory is switched to a high resistance state, the oxygen atoms in the oxygen atom exchange layer do not necessarily fill the oxygen vacancies in the resistance transition layer, resulting in a large variability in the operating voltage of the memory, and the device Poor stability. Therefore, there is still a need for a novel resistive random access memory to improve the above problems.

本發明提供一種電阻式隨機存取記憶體及其製造方法,可有效增加氧原子的交換效率,增加裝置的穩定度。The present invention provides a resistive random access memory and a manufacturing method thereof, which can effectively increase the exchange efficiency of oxygen atoms and increase the stability of the device.

根據本發明的一些實施例,提供一種電阻式隨機存取記憶體。此電阻式隨機存取記憶體包含基底、介電層、底電極、電阻轉換層、氧原子交換層、阻障層以及頂電極。前述介電層設置於基底上。前述底電極設置於介電層上。前述電阻轉換層設置於底電極上。前述氧原子交換層設置於電阻轉換層上,其中氧原子交換層與電阻轉換層的接觸面積小於電阻轉換層的頂面面積。前述阻障層設置於氧原子交換層上。前述頂電極設置於阻障層上。According to some embodiments of the present invention, a resistive random access memory is provided. The resistive random access memory includes a substrate, a dielectric layer, a bottom electrode, a resistance switching layer, an oxygen atom exchange layer, a barrier layer and a top electrode. The aforementioned dielectric layer is disposed on the substrate. The aforementioned bottom electrode is disposed on the dielectric layer. The aforementioned resistance conversion layer is disposed on the bottom electrode. The aforementioned oxygen atom exchange layer is disposed on the resistance conversion layer, wherein the contact area between the oxygen atom exchange layer and the resistance conversion layer is smaller than the top surface area of the resistance conversion layer. The aforementioned barrier layer is disposed on the oxygen atom exchange layer. The aforementioned top electrode is disposed on the barrier layer.

根據本發明的一些實施例,提供一種電阻式隨機存取記憶體的製造方法。此方法包含:提供基底;形成介電層於基底上;形成底電極於介電層上;形成電阻轉換層於底電極上;形成氧原子交換層於電阻轉換層上,其中氧原子交換層與電阻轉換層的接觸面積小於電阻轉換層的頂面面積;形成阻障層於氧原子交換層上;以及形成頂電極於阻障層上。According to some embodiments of the present invention, a method for manufacturing a resistive random access memory is provided. The method comprises: providing a substrate; forming a dielectric layer on the substrate; forming a bottom electrode on the dielectric layer; forming a resistance conversion layer on the bottom electrode; forming an oxygen atom exchange layer on the resistance conversion layer, wherein the oxygen atom exchange layer and the The contact area of the resistance switching layer is smaller than the top surface area of the resistance switching layer; a barrier layer is formed on the oxygen atom exchange layer; and a top electrode is formed on the barrier layer.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention is more fully described with reference to the drawings of this embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and will not be repeated in the following paragraphs.

第1至6圖根據本發明的一些實施例繪示電阻式隨機存取記憶體100之不同製造階段的剖面圖。請參閱第1圖,首先提供基底102。基底102可為半導體基底。前述半導體基底可為元素半導體,包含矽或鍺;化合物半導體,包含氮化鎵、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦;合金半導體,包含矽鍺合金、磷砷鎵合金、砷鋁銦合金、砷鋁鎵合金、砷銦鎵合金、磷銦鎵合金及/或磷砷銦鎵合金、或上述材料之組合。在一實施例中,基底102可為單晶基底、多層基底(multi-layer substrate)、梯度基底(gradient substrate)、其他適當之基底、或上述之組合。此外,基底102也可以是絕緣層上覆矽基底,上述第二介電層覆半導體基底可包含底板、設置於底板上之埋藏氧化物層、或設置於埋藏氧化物層上之半導體層。此外,基底102中可經形成以具有主動元件及/或被動元件以及內連線結構(例如,導電層、接觸件等等)。主動元件可包含電晶體、二極體等,而被動元件可包含電阻、電容、電感等。FIGS. 1-6 are cross-sectional views illustrating different manufacturing stages of the resistive random access memory 100 according to some embodiments of the present invention. Referring to FIG. 1, a substrate 102 is provided first. The substrate 102 may be a semiconductor substrate. The aforementioned semiconductor substrate can be elemental semiconductor, including silicon or germanium; compound semiconductor, including gallium nitride, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide and/or indium antimonide; alloy semiconductor, including Silicon-germanium alloy, phosphorus-arsenide-gallium alloy, arsenic-aluminum-indium alloy, arsenic-aluminum-gallium alloy, arsenic-indium-gallium alloy, phosphorus-indium-gallium alloy and/or phosphorus-indium-arsenide-gallium alloy, or a combination of the above materials. In one embodiment, the substrate 102 may be a single crystal substrate, a multi-layer substrate, a gradient substrate, other suitable substrates, or a combination thereof. In addition, the substrate 102 can also be a silicon-on-insulator substrate, and the second semiconductor-on-dielectric layer can include a substrate, a buried oxide layer disposed on the substrate, or a semiconductor layer disposed on the buried oxide layer. Additionally, the substrate 102 may be formed to have active and/or passive elements and interconnect structures (eg, conductive layers, contacts, etc.) therein. Active elements may include transistors, diodes, etc., while passive elements may include resistors, capacitors, inductors, and the like.

接著,如第1圖所示,藉由化學氣相沉積(chemical vapor deposition,CVD)製程、原子層沉積(atomic layer deposition,ALD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、分子束沉積(molecular beam deposition,MBD)製程、電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)或其他合適的沉積製程或前述之組合,在基底102上形成介電層104。在一實施例中,介電層104可為氧化物(例如氧化矽、二氧化矽)、氮化物、低介電常數介電材料(例如,介電常數低於二氧化矽的材料)、氮氧化矽、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽酸鹽玻璃、未摻雜的矽酸鹽玻璃、摻雜氟的矽酸鹽玻璃、有機矽酸鹽玻璃、SiOx Cy 、碳矽材料或上述之組合。在一實施例中,介電層104的厚度介於300nm至400nm之間。此外,在介電層104形成導電結構105,用於將電阻式隨機存取記憶體連接至基底102中之主動元件及/或內連線結構。Next, as shown in FIG. 1, by chemical vapor deposition (CVD) process, atomic layer deposition (ALD) process, physical vapor deposition (PVD) process, molecular The dielectric layer 104 is formed on the substrate 102 by a molecular beam deposition (MBD) process, plasma enhanced chemical vapor deposition (PECVD), or other suitable deposition process, or a combination thereof. In one embodiment, the dielectric layer 104 may be an oxide (eg, silicon oxide, silicon dioxide), a nitride, a low-k dielectric material (eg, a material with a lower dielectric constant than silicon dioxide), nitrogen Silicon oxide, phosphosilicate glass, borosilicate glass, borophosphosilicate glass, undoped silicate glass, fluorine doped silicate glass, organosilicate glass, SiO x C y , carbon silicon material or a combination of the above. In one embodiment, the thickness of the dielectric layer 104 is between 300 nm and 400 nm. In addition, conductive structures 105 are formed on the dielectric layer 104 for connecting the resistive random access memory to active devices and/or interconnect structures in the substrate 102 .

在一實施例中,導電結構105包含襯層106和導電材料108。襯層106的材料可包含導電材料,例如氮化鎢、氮化鈦、氮化鉭或前述之組合。導電材料108的材料可包含非晶矽、多晶矽、金屬、金屬氮化物、導電金屬氧化物或前述之組合。舉例而言,導電材料108的材料可包含鎢、銅、氮化鵭、釕、銀、金、銠、鉬、鎳、鈷、鎘、鋅、前述之合金或組合。In one embodiment, the conductive structure 105 includes a liner 106 and a conductive material 108 . The material of the liner 106 may include conductive materials such as tungsten nitride, titanium nitride, tantalum nitride, or a combination thereof. The material of the conductive material 108 may include amorphous silicon, polysilicon, metal, metal nitride, conductive metal oxide, or a combination thereof. For example, the material of the conductive material 108 may include tungsten, copper, ochre nitride, ruthenium, silver, gold, rhodium, molybdenum, nickel, cobalt, cadmium, zinc, alloys or combinations thereof.

接著,在介電層104上形成底電極110。形成底電極110的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,底電極110的材料包含導電材料,例如非晶矽、多晶矽、金屬、金屬氮化物、導電金屬氧化物或前述之組合。舉例而言,底電極110的材料可包含鎢、銅、氮化鵭、釕、銀、金、銠、鉬、鎳、鈷、鎘、鋅、前述之合金或組合。在一實施例中,底電極110的厚度介於25 nm至35 nm之間。Next, a bottom electrode 110 is formed on the dielectric layer 104 . Methods of forming the bottom electrode 110 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the bottom electrode 110 includes a conductive material, such as amorphous silicon, polysilicon, metal, metal nitride, conductive metal oxide, or a combination thereof. For example, the material of the bottom electrode 110 may include tungsten, copper, ochre nitride, ruthenium, silver, gold, rhodium, molybdenum, nickel, cobalt, cadmium, zinc, alloys or combinations thereof. In one embodiment, the thickness of the bottom electrode 110 is between 25 nm and 35 nm.

接著,在底電極110上形成電阻轉換層112。形成電阻轉換層112的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,電阻轉換層112的材料包含過渡金屬氧化物,例如氧化鉿、氧化鈦、氧化鎢、氧化鉭、氧化鋯或前述之組合。在一實施例中,電阻轉換層112的厚度介於3 nm至10 nm之間。Next, the resistance switching layer 112 is formed on the bottom electrode 110 . Methods of forming the resistance switching layer 112 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the resistance conversion layer 112 includes transition metal oxides, such as hafnium oxide, titanium oxide, tungsten oxide, tantalum oxide, zirconium oxide, or a combination thereof. In one embodiment, the thickness of the resistance conversion layer 112 is between 3 nm and 10 nm.

接著,在電阻轉換層112上形成氧原子交換層114。形成氧原子交換層114的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,氧原子交換層114的材料包含鋁、鈦、鉿、鉭、銥、或前述之組合。Next, an oxygen atom exchange layer 114 is formed on the resistance conversion layer 112 . Methods of forming the oxygen atom exchange layer 114 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the oxygen atom exchange layer 114 includes aluminum, titanium, hafnium, tantalum, iridium, or a combination thereof.

然後,在氧原子交換層114上形成硬遮罩116。形成硬遮罩116的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,硬遮罩層116的材料可為氮化物或四乙氧基矽烷(tetraethoxysilane,TEOS)。Then, a hard mask 116 is formed on the oxygen atom exchange layer 114 . Methods of forming hard mask 116 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the hard mask layer 116 may be nitride or tetraethoxysilane (TEOS).

接著,藉由合適的製程例如旋轉塗佈、CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合,將光阻材料形成於硬遮罩116的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料,而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻或前述之組合,來蝕刻氧原子交換層114和硬遮罩116,以形成對應至導電結構105的圖案化的氧原子交換層114和硬遮罩116。接著,可藉由蝕刻或其他合適的方法,來移除圖案化的光阻層。Next, a photoresist material is formed on the top surface of the hard mask 116 by a suitable process such as spin coating, CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing, and then optical Exposure, post-exposure bake and development to remove part of the photoresist material and form a patterned photoresist layer that will serve as an etch mask for etching. Double or triple photoresist can be performed. The oxygen atom exchange layer 114 and hard mask 116 are then etched using any acceptable etching process, such as reactive ion etching, neutral beam etching, or a combination of the foregoing, to form patterned oxygen atoms corresponding to the conductive structures 105 Exchange layer 114 and hard mask 116 . Next, the patterned photoresist layer can be removed by etching or other suitable methods.

圖案化的氧原子交換層114不完全覆蓋電阻轉換層112。換句話說,圖案化的氧原子交換層114與電阻轉換層112之間的接觸面積小於電阻轉換層112的頂面面積。由於氧原子交換層不完全覆蓋電阻轉換層的頂面,所以當記憶體從高阻態轉換到低阻態時,只有電阻轉換層中的某一區域的氧原子會移動至氧原子交換層,且導電路徑僅會形成於一特定區域。因此,當記憶體從低阻態轉換到高阻態時,氧原子更容易回填至電阻轉換層在低阻態時所產生的氧空缺,藉此增加裝置的穩定性。The patterned oxygen atom exchange layer 114 does not completely cover the resistance switching layer 112 . In other words, the contact area between the patterned oxygen atom exchange layer 114 and the resistance switching layer 112 is smaller than the top surface area of the resistance switching layer 112 . Since the oxygen atom exchange layer does not completely cover the top surface of the resistance conversion layer, when the memory switches from a high resistance state to a low resistance state, only the oxygen atoms in a certain area of the resistance conversion layer will move to the oxygen atom exchange layer, And the conductive path is only formed in a specific area. Therefore, when the memory is switched from a low-resistance state to a high-resistance state, oxygen atoms are more likely to backfill into the oxygen vacancies generated when the resistance switching layer is in the low-resistance state, thereby increasing the stability of the device.

電阻轉換層112具有左側壁及與左側壁相對的右側壁。在一實施例中,氧原子交換層114介於左側壁和右側壁之間。具體而言,氧原子交換層114不與電阻轉換層112的左側壁和右側壁齊平。由於現有的電阻式隨機存取記憶體的氧原子交換層並非介於電阻轉換層的側壁之間,且電阻轉換層的側壁容易被後續製程所影響,所以在低阻態轉換至高阻態的期間,一部分的氧原子會從氧原子交換層移動至電阻轉換層的側壁而產生懸浮鍵(dangling bond),降低氧原子交換的效率。因此,當氧原子交換層介於左側壁和右側壁之間時,氧原子交換層中的氧原子不會移動至電阻轉換層的側壁,也就不會產生懸浮鍵,藉此可增加氧原子交換的效率。The resistance conversion layer 112 has a left side wall and a right side wall opposite to the left side wall. In one embodiment, the oxygen atom exchange layer 114 is interposed between the left side wall and the right side wall. Specifically, the oxygen atom exchange layer 114 is not flush with the left and right side walls of the resistance conversion layer 112 . Since the oxygen atom exchange layer of the existing resistive random access memory is not between the sidewalls of the resistance switching layer, and the sidewalls of the resistance switching layer are easily affected by subsequent processes, during the transition from the low-resistance state to the high-resistance state , a part of the oxygen atoms will move from the oxygen atom exchange layer to the sidewall of the resistance conversion layer to generate dangling bonds, reducing the efficiency of the oxygen atom exchange. Therefore, when the oxygen atom exchange layer is between the left side wall and the right side wall, the oxygen atoms in the oxygen atom exchange layer will not move to the side wall of the resistance conversion layer, and no dangling bonds will be generated, thereby increasing the number of oxygen atoms exchange efficiency.

請繼續參閱第1圖,在電阻轉換層112上形成介電層118。形成介電層118的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,介電層118的材料類似於介電層104的材料。Please continue to refer to FIG. 1 , a dielectric layer 118 is formed on the resistance conversion layer 112 . Methods of forming the dielectric layer 118 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the dielectric layer 118 is similar to the material of the dielectric layer 104 .

接著,請參閱第2圖,執行平坦化製程例如化學機械研磨法,來移除部分的介電層118和硬遮罩116。然後,在介電層118和硬遮罩116上形成氮化物層120。形成氮化物層120的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,氮化物層120的材料包含氮化矽、氮化碳矽、碳化矽或前述之組合。Next, referring to FIG. 2 , a planarization process such as chemical mechanical polishing is performed to remove part of the dielectric layer 118 and the hard mask 116 . Then, a nitride layer 120 is formed over the dielectric layer 118 and the hard mask 116 . Methods of forming the nitride layer 120 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the nitride layer 120 includes silicon nitride, silicon carbon nitride, silicon carbide, or a combination thereof.

接著,請參閱第3圖,藉由合適的製程例如旋轉塗佈、CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合,將光阻材料形成於氮化物層120的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料,而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻或前述之組合,來蝕刻氮化物層120、介電層118、電阻轉換層112和底電極110以形成溝槽121,以定義出個別的記憶體單元10。接著,可藉由蝕刻或其他合適的方法,來移除圖案化的光阻層。Next, referring to FIG. 3, a photoresist material is formed on top of the nitride layer 120 by a suitable process such as spin coating, CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. Then, optical exposure, post-exposure bake and development are performed to remove part of the photoresist material and form a patterned photoresist layer, which will serve as an etch mask for etching. Double or triple photoresist can be performed. Then, the nitride layer 120, the dielectric layer 118, the resistance switching layer 112, and the bottom electrode 110 are etched to form the trenches 121 using any acceptable etching process, such as reactive ion etching, neutral beam etching, or a combination of the foregoing, to define individual memory cells 10 . Next, the patterned photoresist layer can be removed by etching or other suitable methods.

由於電阻轉換層和氧原子交換層是在分別在不同的製程中被蝕刻,所以可防止氧原子交換層的側壁受損。Since the resistance conversion layer and the oxygen atom exchange layer are etched in different processes, the sidewalls of the oxygen atom exchange layer can be prevented from being damaged.

接著,請參閱第4圖,藉由CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合,在溝槽121中及氮化物層120上形成介電層122。在一實施例中,介電層122的材料類似於介電層104的材料。Next, referring to FIG. 4 , a dielectric layer 122 is formed in the trench 121 and on the nitride layer 120 by CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination thereof. In one embodiment, the material of the dielectric layer 122 is similar to the material of the dielectric layer 104 .

接著,參閱第5圖,藉由前述的類似製程來蝕刻介電層122、氮化物層120和介電層118,以形成露出氧原子交換層114的開口O。在一實施例中,介電層122、氮化物層120和介電層118可在同一製程中被蝕刻。在另一實施例中,介電層122、氮化物層120和介電層118可在不同的製程中被蝕刻。Next, referring to FIG. 5 , the dielectric layer 122 , the nitride layer 120 and the dielectric layer 118 are etched by a similar process described above to form the opening O exposing the oxygen atom exchange layer 114 . In one embodiment, the dielectric layer 122, the nitride layer 120, and the dielectric layer 118 may be etched in the same process. In another embodiment, the dielectric layer 122, the nitride layer 120, and the dielectric layer 118 may be etched in different processes.

接著,參閱第6圖,在開口O中順應性地形成阻障層124。形成阻障層124的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。阻障層124可防止氧原子擴散至其他不必要的層體。在一實施例中,阻障層124的材料包含氧化鋁、氧化鉿、氧化鋯或前述之組合。Next, referring to FIG. 6 , the barrier layer 124 is conformally formed in the opening O. Methods of forming barrier layer 124 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. The barrier layer 124 prevents oxygen atoms from diffusing to other unnecessary layers. In one embodiment, the material of the barrier layer 124 includes aluminum oxide, hafnium oxide, zirconium oxide, or a combination thereof.

然後,在阻障層124上形成頂電極126。形成頂電極126的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,頂電極126的材料類似於底電極110的材料。具體而言,頂電極126覆蓋氧原子交換層114的頂面和側壁。由於頂電極同時覆蓋氧原子交換層的頂面及側壁,所以當對電阻式隨機存取記憶體施加反向的重置電壓,會促使氧原子交換層中的氧原子往一特定方向移動,從而增加氧原子交換的效率。透過開口O的形成,頂電極126具有自我對準的功能。Then, a top electrode 126 is formed on the barrier layer 124 . Methods of forming the top electrode 126 may include CVD, ALD, PVD, MBD, PECVD, other suitable deposition processes, or a combination of the foregoing. In one embodiment, the material of the top electrode 126 is similar to the material of the bottom electrode 110 . Specifically, the top electrode 126 covers the top surface and sidewalls of the oxygen atom exchange layer 114 . Since the top electrode covers both the top surface and the sidewall of the oxygen atom exchange layer, when a reverse reset voltage is applied to the resistive random access memory, the oxygen atoms in the oxygen atom exchange layer will move in a specific direction, thereby Increase the efficiency of oxygen atom exchange. Through the formation of the opening O, the top electrode 126 has the function of self-alignment.

頂電極126的一部分延伸至氮化物層120上。由於氮化物層120在介電層118和部分的頂電極126之間,所以比較好控制開口O的形狀,從而增加製程的寬裕度。A portion of the top electrode 126 extends onto the nitride layer 120 . Since the nitride layer 120 is between the dielectric layer 118 and a portion of the top electrode 126, it is better to control the shape of the opening O, thereby increasing the process margin.

頂電極126具有上部部分及下部部分,其中頂電極126的上部部分在氮化物層120上;而頂電極126的下部部分在氮化物層120下。頂電極126的上部部分作為與其他元件電性連接的導線。接著,執行平坦化製程使介電層122、阻障層124和頂電極126的頂面共平面。The top electrode 126 has an upper portion and a lower portion, wherein the upper portion of the top electrode 126 is on the nitride layer 120 ; and the lower portion of the top electrode 126 is under the nitride layer 120 . The upper portion of the top electrode 126 serves as a wire for electrical connection with other components. Next, a planarization process is performed to make the top surfaces of the dielectric layer 122 , the barrier layer 124 and the top electrode 126 coplanar.

本發明所提供之電阻式隨機存取記憶體及其製造方法具有以下優點:(1) 由於頂電極同時覆蓋氧原子交換層的頂部及側壁,所以當對電阻式隨機存取記憶體施加反向的重置電壓,會促使氧原子交換層中的氧原子往一特定方向移動,從而增加氧原子交換的效率。(2) 藉由使氧原子交換層不完全覆蓋電阻轉換層的頂面,所以當記憶體從高阻態轉換到低阻態時,電阻轉換層中只有某一區域的氧原子會移動至氧原子交換層,且導電路徑僅會形成於一特定區域。因此,當記憶體從低阻態轉換到高阻態時,氧原子更容易回填至電阻轉換層在低阻態時所產生的氧空缺,藉此增加裝置的穩定性。(3) 由於氧原子交換層介於左側壁和右側壁之間,所以氧原子交換層中的氧原子不會移動至電阻轉換層的側壁,也就不會產生懸浮鍵,藉此可增加氧原子交換的效率。(4) 由於電阻轉換層和氧原子交換層是在分別在不同的製程中被蝕刻,所以可防止氧原子交換層的側壁受損。(5) 由於氮化物層在第二介電層和部分的頂電極之間,所以比較好控制開口的形狀,從而增加製程的寬裕度。The resistive random access memory and its manufacturing method provided by the present invention have the following advantages: (1) Since the top electrode covers the top and sidewalls of the oxygen atom exchange layer at the same time, when the resistive random access memory is subjected to reverse The reset voltage of , will promote the oxygen atoms in the oxygen atom exchange layer to move in a specific direction, thereby increasing the efficiency of oxygen atom exchange. (2) By making the oxygen atom exchange layer incompletely covering the top surface of the resistance switching layer, when the memory switches from a high resistance state to a low resistance state, only a certain area of oxygen atoms in the resistance switching layer will move to oxygen atoms Atomic exchange layer, and the conductive path will only be formed in a specific area. Therefore, when the memory is switched from a low-resistance state to a high-resistance state, oxygen atoms are more likely to backfill into the oxygen vacancies generated when the resistance switching layer is in the low-resistance state, thereby increasing the stability of the device. (3) Since the oxygen atom exchange layer is between the left side wall and the right side wall, the oxygen atoms in the oxygen atom exchange layer will not move to the side wall of the resistance conversion layer, and no dangling bonds will be generated, thereby increasing the oxygen Efficiency of atomic swaps. (4) Since the resistance conversion layer and the oxygen atom exchange layer are etched in different processes, the sidewalls of the oxygen atom exchange layer can be prevented from being damaged. (5) Since the nitride layer is between the second dielectric layer and part of the top electrode, it is better to control the shape of the opening, thereby increasing the process margin.

雖然本發明的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the embodiments of the present invention and their advantages have been disclosed above, it should be understood that those skilled in the art can make changes, substitutions and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present invention should be determined by the scope of the appended patent application.

10:記憶體單元 100:電阻式隨機存取記憶體 102:基底 104、118、122:介電層 105:導電結構 106:襯層 108:導電材料 110:底電極 112:電阻轉換層 114:氧原子交換層 116:硬遮罩 120:氮化物層 121:溝槽 124:阻障層 126:頂電極 O:開口10: Memory unit 100: Resistive random access memory 102: Substrate 104, 118, 122: Dielectric layer 105: Conductive Structure 106: Liner 108: Conductive Materials 110: Bottom electrode 112: Resistance conversion layer 114: Oxygen atom exchange layer 116:Hard Mask 120: Nitride layer 121: Groove 124: Barrier Layer 126: Top electrode O: open

為了讓本發明實施例之特徵和優點能更明顯易懂、下文特舉出一些實施例,並配合所附圖式作詳細說明如下: 第1至6圖根據本發明的一些實施例繪示電阻式隨機存取記憶體之不同製造階段的剖面圖。In order to make the features and advantages of the embodiments of the present invention more obvious and easy to understand, some embodiments are listed below and described in detail with the accompanying drawings as follows: FIGS. 1-6 are cross-sectional views illustrating different manufacturing stages of a resistive random access memory according to some embodiments of the present invention.

10:記憶體單元10: Memory unit

100:電阻式隨機存取記憶體100: Resistive random access memory

102:基底102: Substrate

104,118,122:介電層104, 118, 122: Dielectric Layers

105:導電結構105: Conductive Structure

106:襯層106: Liner

108:導電材料108: Conductive Materials

110:底電極110: Bottom electrode

112:電阻轉換層112: Resistance conversion layer

114:氧原子交換層114: Oxygen atom exchange layer

120:氮化物層120: Nitride layer

124:阻障層124: Barrier Layer

126:頂電極126: Top electrode

Claims (16)

一種電阻式隨機存取記憶體,包括: 一基底; 一第一介電層,設置於該基底上; 一底電極,設置於該第一介電層上; 一電阻轉換層,設置於該底電極上; 一氧原子交換層,設置於該電阻轉換層上,其中該氧原子交換層與該電阻轉換層的一接觸面積小於該電阻轉換層的一頂面面積; 一阻障層,設置於該氧原子交換層上;以及 一頂電極,設置於該阻障層上。A resistive random access memory, comprising: a base; a first dielectric layer disposed on the substrate; a bottom electrode disposed on the first dielectric layer; a resistance conversion layer disposed on the bottom electrode; an oxygen atom exchange layer, disposed on the resistance conversion layer, wherein a contact area between the oxygen atom exchange layer and the resistance conversion layer is smaller than a top surface area of the resistance conversion layer; a barrier layer disposed on the oxygen atom exchange layer; and A top electrode is disposed on the barrier layer. 如請求項1之電阻式隨機存取記憶體,其中該電阻轉換層具有一左側壁及與該左側壁相對的一右側壁,且該氧原子交換層介於該左側壁及該右側壁之間。The resistive random access memory of claim 1, wherein the resistance conversion layer has a left sidewall and a right sidewall opposite to the left sidewall, and the oxygen atom exchange layer is interposed between the left sidewall and the right sidewall . 如請求項2之電阻式隨機存取記憶體,其中該氧原子交換層不與該左側壁及該右側壁齊平。The resistive random access memory of claim 2, wherein the oxygen atom exchange layer is not flush with the left side wall and the right side wall. 如請求項1之電阻式隨機存取記憶體,其中該阻障層更覆蓋該氧原子交換層的一側壁。The resistive random access memory of claim 1, wherein the barrier layer further covers a sidewall of the oxygen atom exchange layer. 如請求項1之電阻式隨機存取記憶體,其中該頂電極更覆蓋該氧原子交換層的一側壁。The resistive random access memory of claim 1, wherein the top electrode further covers a sidewall of the oxygen atom exchange layer. 如請求項1之電阻式隨機存取記憶體,更包括: 一第二介電層,設置於該電阻轉換層上;以及 一氮化物層,設置於該第二介電層上。Such as the resistive random access memory of claim 1, further including: a second dielectric layer disposed on the resistance conversion layer; and A nitride layer is disposed on the second dielectric layer. 如請求項6之電阻式隨機存取記憶體,其中該第二介電層和該氮化物層具有露出該氧原子交換層的一開口。The resistive random access memory of claim 6, wherein the second dielectric layer and the nitride layer have an opening exposing the oxygen atom exchange layer. 如請求項6之電阻式隨機存取記憶體,其中該頂電極延伸至該氮化物層上。The resistive random access memory of claim 6, wherein the top electrode extends over the nitride layer. 一種電阻式隨機存取記憶體的製造方法,包括: 提供一基底; 形成一第一介電層於該基底上; 形成一底電極於該第一介電層上; 形成一電阻轉換層於該底電極上; 形成一氧原子交換層於該電阻轉換層上,其中該氧原子交換層與該電阻轉換層的一接觸面積小於該電阻轉換層的一頂面面積; 形成一阻障層於該氧原子交換層上;以及 形成一頂電極於該阻障層上。A manufacturing method of a resistive random access memory, comprising: provide a base; forming a first dielectric layer on the substrate; forming a bottom electrode on the first dielectric layer; forming a resistance switching layer on the bottom electrode; forming an oxygen atom exchange layer on the resistance conversion layer, wherein a contact area between the oxygen atom exchange layer and the resistance conversion layer is smaller than a top surface area of the resistance conversion layer; forming a barrier layer on the oxygen atom exchange layer; and A top electrode is formed on the barrier layer. 如請求項9之電阻式隨機存取記憶體的製造方法,其中該電阻轉換層具有一左側壁及與該左側壁相對的一右側壁,且該氧原子交換層介於該左側壁及該右側壁之間。The method for manufacturing a resistive random access memory as claimed in claim 9, wherein the resistance conversion layer has a left side wall and a right side wall opposite to the left side wall, and the oxygen atom exchange layer is located between the left side wall and the right side between the walls. 如請求項10之電阻式隨機存取記憶體的製造方法,其中該氧原子交換層不與該左側壁及該右側壁齊平。The manufacturing method of a resistive random access memory as claimed in claim 10, wherein the oxygen atom exchange layer is not flush with the left side wall and the right side wall. 如請求項9之電阻式隨機存取記憶體的製造方法,其中該阻障層更覆蓋該氧原子交換層的一側壁。The manufacturing method of a resistive random access memory as claimed in claim 9, wherein the barrier layer further covers a sidewall of the oxygen atom exchange layer. 如請求項9之電阻式隨機存取記憶體的製造方法,其中該頂電極更覆蓋該氧原子交換層的一側壁。The method for manufacturing a resistive random access memory as claimed in claim 9, wherein the top electrode further covers a sidewall of the oxygen atom exchange layer. 如請求項9之電阻式隨機存取記憶體的製造方法,更包括: 形成一第二介電層於該電阻轉換層上;以及 形成一氮化物層於該第二介電層上。The manufacturing method of the resistive random access memory as claimed in claim 9, further comprising: forming a second dielectric layer on the resistance switching layer; and A nitride layer is formed on the second dielectric layer. 如請求項14之電阻式隨機存取記憶體的製造方法,其中該第二介電層和該氮化物層具有露出該氧原子交換層的一開口。The manufacturing method of a resistive random access memory as claimed in claim 14, wherein the second dielectric layer and the nitride layer have an opening exposing the oxygen atom exchange layer. 如請求項14之電阻式隨機存取記憶體的製造方法,其中該頂電極延伸至該氮化物層上。The method for manufacturing a resistive random access memory as claimed in claim 14, wherein the top electrode extends on the nitride layer.
TW109119045A 2020-06-05 2020-06-05 Resistive random acessory memory and method of manufacturing the same TW202147651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109119045A TW202147651A (en) 2020-06-05 2020-06-05 Resistive random acessory memory and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109119045A TW202147651A (en) 2020-06-05 2020-06-05 Resistive random acessory memory and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TW202147651A true TW202147651A (en) 2021-12-16

Family

ID=80784033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109119045A TW202147651A (en) 2020-06-05 2020-06-05 Resistive random acessory memory and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TW202147651A (en)

Similar Documents

Publication Publication Date Title
TW202013780A (en) Method for manufacturing a memory device and integrated circuit
TWI734351B (en) Integrated chip and method for manufacturing the same
US10636842B1 (en) Resistive random access memory and method for forming the same
US9818938B2 (en) Method of forming a semiconductor structure
TW202010158A (en) Memory device and method for forming thereof
JP5324724B2 (en) Method for manufacturing nonvolatile memory device
TW202143522A (en) Memory cell and manufacturing method thereof
US11925127B2 (en) Phase-change memory device and method
TW202109767A (en) Memory cell, memory device and method for forming memory device
TW202042418A (en) Memory device, programmable metallization cell and manufacturing method thereof
KR20220000374A (en) Memory device and method for fabricating the same
TW202125713A (en) Phase-change memory
TWI769574B (en) Memory device, integrated chip and method for forming the same
US11424407B2 (en) Resistive random access memory and method of manufacturing the same
CN113517393A (en) Phase change memory device and method of forming the same
TW202147651A (en) Resistive random acessory memory and method of manufacturing the same
TWI681509B (en) Resistive random access memory and method for forming the same
TWI717138B (en) Resistive random access memory and manufacturing method thereof
TWI604446B (en) Resistive random-access memory structure and method for fabricating the same
TW202125854A (en) Phase-change memory
CN113889569A (en) Resistive random access memory and manufacturing method thereof
TWI785921B (en) Resistive random access memory and method for forming the same
TWI824655B (en) Resistive random access memory and manufacturing method thereof
TWI682533B (en) Memory devices and methods for forming the same
US20230225228A1 (en) Resistive random access memory and method for manufacturing the same