TW202147568A - Three-dimensional memory arrays, and methods of forming the same - Google Patents

Three-dimensional memory arrays, and methods of forming the same Download PDF

Info

Publication number
TW202147568A
TW202147568A TW110114486A TW110114486A TW202147568A TW 202147568 A TW202147568 A TW 202147568A TW 110114486 A TW110114486 A TW 110114486A TW 110114486 A TW110114486 A TW 110114486A TW 202147568 A TW202147568 A TW 202147568A
Authority
TW
Taiwan
Prior art keywords
line
sense
openings
vertical
storage element
Prior art date
Application number
TW110114486A
Other languages
Chinese (zh)
Other versions
TWI778593B (en
Inventor
楊玲明
卡西 薩帕瓦里
法比歐 佩里茲
內維爾 N 迦耶拉
韋磊
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202147568A publication Critical patent/TW202147568A/en
Application granted granted Critical
Publication of TWI778593B publication Critical patent/TWI778593B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array

Abstract

An example apparatus includes a three-dimensional (3D) memory array including a sense line and a plurality of vertical stacks. Each respective on of the vertical stacks includes a different respective portion of the sense line, a first memory cell coupled to that portion of the sense line, a second memory cell coupled to that portion of the sense line, a first access line coupled to the first memory cell and a second access line coupled to the second memory cell. The first and second access lines are perpendicular to the sense line.

Description

三維記憶體陣列及其形成之方法Three-dimensional memory array and method of forming the same

本發明大體上係關於半導體裝置及方法,且更特定言之,係關於三維記憶體陣列及其形成之方法。The present invention relates generally to semiconductor devices and methods, and more particularly, to three-dimensional memory arrays and methods of forming the same.

記憶體裝置通常提供為電腦或其他電子裝置中之內部、半導體、積體電路及/或外部可移除式裝置。存在許多不同類型之記憶體,包括揮發性及非揮發性記憶體。揮發性記憶體可能需要電力以維持其資料,且可包括隨機存取記憶體(RAM)、動態隨機存取記憶體(DRAM)及同步動態隨機存取記憶體(SDRAM)等。非揮發性記憶體可藉由在不供電時保留所儲存資料而提供永久性資料,且可包括NAND快閃記憶體、NOR快閃記憶體、唯讀記憶體(ROM)及電阻可變記憶體,諸如相變隨機存取記憶體(PCRAM)、電阻性隨機存取記憶體(RRAM)、磁性隨機存取記憶體(MRAM)及可程式化導電記憶體等。Memory devices are typically provided as internal, semiconductor, integrated circuit and/or external removable devices in a computer or other electronic device. There are many different types of memory, including volatile and non-volatile memory. Volatile memory may require power to maintain its data, and may include random access memory (RAM), dynamic random access memory (DRAM), and synchronous dynamic random access memory (SDRAM), among others. Non-volatile memory provides persistent data by retaining stored data when no power is supplied, and can include NAND flash memory, NOR flash memory, read only memory (ROM), and resistive variable memory , such as phase change random access memory (PCRAM), resistive random access memory (RRAM), magnetic random access memory (MRAM) and programmable conductive memory.

記憶體裝置可用作揮發性及非揮發性記憶體,該揮發性及非揮發性記憶體用於需要高記憶體密度、高可靠度及低功耗之廣泛範圍的電子應用。非揮發性記憶體可用於例如以下各者中:個人電腦、攜帶型記憶棒、固態驅動機(SSD)、數位相機、蜂巢式電話、攜帶型音樂播放器(諸如MP3播放器)及電影播放器以及其他電子裝置。Memory devices can be used as volatile and non-volatile memory for a wide range of electronic applications requiring high memory density, high reliability, and low power consumption. Non-volatile memory can be used in, for example, personal computers, portable memory sticks, solid-state drives (SSDs), digital cameras, cellular phones, portable music players (such as MP3 players), and movie players and other electronic devices.

電阻可變記憶體裝置可包括可基於儲存元件(例如,具有可變電阻之記憶體元件)之電阻狀態來儲存資料的電阻可變記憶體單元。因而,電阻可變記憶體單元可經程式化以藉由使記憶體元件之電阻位準變化來儲存對應於目標資料狀態的資料。可藉由在特定持續時間內將電場源或能量源(諸如正電脈衝或負電脈衝(例如,正電壓脈衝或負電壓脈衝或正電流脈衝或負電流脈衝))施加至單元(例如,施加至單元之記憶體元件)而將電阻可變記憶體單元程式化為目標資料狀態(例如,對應於特定電阻狀態)。可藉由回應於施加的詢問電壓而感測通過單元之電流來判定電阻可變記憶體單元之狀態。基於單元之電阻位準而變化的所感測電流可指示單元之狀態。Resistive variable memory devices can include resistive variable memory cells that can store data based on the resistance state of a storage element (eg, a memory element having a variable resistance). Thus, resistance variable memory cells can be programmed to store data corresponding to target data states by varying the resistance levels of the memory elements. can be achieved by applying an electric field source or energy source, such as a positive or negative electrical pulse (eg, a positive voltage pulse or a negative voltage pulse or a positive current pulse or a negative current pulse) to the cell (eg, to The resistance variable memory cell is programmed to a target data state (eg, corresponding to a particular resistance state) by using the memory element of the cell. The state of a resistance variable memory cell can be determined by sensing the current through the cell in response to an applied interrogation voltage. The sensed current, which varies based on the resistance level of the cell, can indicate the state of the cell.

各種記憶體陣列可以交叉點架構進行組織,其中記憶體單元(例如,電阻可變單元)位於用以存取單元之第一信號線與第二信號線的相交點處(例如,存取線與感測線之相交點處)。一些電阻可變記憶體單元可包含與儲存元件(例如,可程式化為不同電阻位準之相變材料、金屬氧化物材料及/或某一其他材料)串聯之選擇元件(例如,二極體、電晶體或其他切換裝置)。一些電阻可變記憶體單元(其可稱為自選記憶體單元)可包含單種材料,該單種材料可用作記憶體單元之選擇元件及儲存元件兩者。Various memory arrays can be organized in a cross-point architecture, where memory cells (eg, variable resistance cells) are located at the intersections of first and second signal lines used to access the cells (eg, access lines and at the intersection of the sensing lines). Some resistance variable memory cells may include a selection element (eg, a diode) in series with a storage element (eg, a phase change material programmable to different resistance levels, a metal oxide material, and/or some other material) , transistors or other switching devices). Some resistive variable memory cells, which may be referred to as optional memory cells, may contain a single material that can serve as both the select element and the storage element of the memory cell.

本發明包括用於三維記憶體陣列之設備及其形成之方法。實施例包括感測線及複數個豎直堆疊,其中豎直堆疊中之每一各別者包括感測線之不同各別部分;耦接至感測線之彼部分的第一記憶體單元;耦接至感測線之彼部分的第二記憶體單元;耦接至第一記憶體單元的第一存取線,其中第一存取線正交於感測線;及耦接至第二記憶體單元的第二存取線,其中第二存取線正交於感測線之彼部分。The present invention includes apparatus for three-dimensional memory arrays and methods of forming the same. Embodiments include a sense line and a plurality of vertical stacks, wherein each respective one of the vertical stacks includes a different respective portion of the sense line; a first memory cell coupled to the other portion of the sense line; coupled to a second memory cell on the other part of the sense line; a first access line coupled to the first memory cell, wherein the first access line is orthogonal to the sense line; and a first access line coupled to the second memory cell Two access lines, wherein the second access line is orthogonal to the other part of the sensing lines.

揭示各種類型之記憶體裝置,包括揮發性及/或非揮發性記憶體單元陣列(例如,記憶體陣列),其中形成感測線以減小交叉塊差(cross tile difference)且改良半導體結構中之電流遞送。如本文中所使用,術語「交叉塊差」可指由將增大量之電流供應至較遠離電壓源的同一感測線上之不同記憶體單元而引起的記憶體單元中之電壓尖峰。在一個實例中,自電壓源流動至特定記憶體單元的電流可流過連接至感測線的其他記憶體單元及其他電組件。由於沿著感測線及用於將其連接至感測線之連接器的此等其他單元及組件的電阻,可減小至記憶體單元之電流的量值。當記憶體單元接收減小之電流時,電流的此減小可使得電流之量值對於記憶體單元而言過小而無法進行其預期功能(例如,按預期經程式化或感測),此可降低記憶體陣列之效能。Various types of memory devices are disclosed, including volatile and/or non-volatile memory cell arrays (eg, memory arrays), in which sense lines are formed to reduce cross tile differences and improve the Current delivery. As used herein, the term "cross block difference" may refer to voltage spikes in a memory cell caused by supplying an increased amount of current to different memory cells on the same sense line that are farther from a voltage source. In one example, current flowing from a voltage source to a particular memory cell may flow through other memory cells and other electrical components connected to the sense lines. Due to the resistance of these other cells and components along the sense lines and the connectors used to connect them to the sense lines, the magnitude of the current to the memory cells can be reduced. When a memory cell receives a reduced current, this reduction in current may make the magnitude of the current too small for the memory cell to perform its intended function (eg, program or sense as intended), which may Reduce the performance of the memory array.

因而,將允許電流流動至其預期記憶體單元,同時減小傳輸中由於沿著感測線之其他記憶體單元及組件的電阻而損耗的電流量之感測線係有益的。例如,在流過感測線時減小電流損耗可確保到達記憶體單元之電流的量值足以使單元進行其預期功能,且因此可增大記憶體陣列之效能。本文中之實例實施例揭示一種用於形成將減小電流在流動至記憶體單元時損耗之量的感測線的製程。Thus, a sense line that will allow current to flow to its intended memory cell while reducing the amount of current lost in transmission due to resistance of other memory cells and components along the sense line is beneficial. For example, reducing current consumption when flowing through the sense lines can ensure that the amount of current reaching a memory cell is sufficient for the cell to perform its intended function, and thus can increase the performance of the memory array. Example embodiments herein disclose a process for forming sense lines that will reduce the amount of current lost when flowing to a memory cell.

形成如本文中所描述之感測線可使得3D記憶體陣列之記憶體密度增大。如本文中所使用,術語「記憶體密度」可指可儲存於記憶體陣列之指定部分中的資訊量。可儲存於記憶體陣列之指定部分中的資訊愈多,記憶體陣列之密度愈高。將較多資訊儲存於記憶體陣列之指定部分中的能力可允許記憶體陣列在較少空間中儲存較多資料。此可允許較多記憶體待儲存於其中形成記憶體陣列之記憶體裝置中。此可允許使用較多空間來併入及/或改良記憶體裝置之其他態樣。Forming sense lines as described herein can enable increased memory density in 3D memory arrays. As used herein, the term "memory density" can refer to the amount of information that can be stored in a given portion of a memory array. The more information that can be stored in a given portion of the memory array, the higher the density of the memory array. The ability to store more information in a given portion of a memory array may allow the memory array to store more data in less space. This may allow more memory to be stored in the memory device in which the memory array is formed. This may allow for the use of more space to incorporate and/or improve other aspects of memory devices.

感測線之豎直部分可形成於儲存元件材料層及介電材料層中之複數個開口中。在一些實施例中,豎直感測線材料可使用原子層沈積(ALD)形成於複數個開口中。在一些實施例中,感測線材料可為與ALD相容之材料,諸如但不限於氮化鈦(TiN)材料。The vertical portions of the sensing lines may be formed in a plurality of openings in the storage element material layer and the dielectric material layer. In some embodiments, the vertical sense line material may be formed in the plurality of openings using atomic layer deposition (ALD). In some embodiments, the sense line material may be an ALD compatible material, such as, but not limited to, titanium nitride (TiN) material.

形成在電流流過感測線時將減小損耗量且增大記憶體陣列之密度的感測線可涉及將感測線材料沈積於形成於介電材料層及儲存元件材料層中之開口中。在一些實施例中,感測線之水平部分可在豎直堆疊之頂部及/或底部處連接感測線之豎直部分。Forming sense lines that will reduce the amount of loss and increase the density of the memory array when current flows through the sense lines may involve depositing sense line material in openings formed in the layers of dielectric material and storage element material. In some embodiments, the horizontal portions of the sense lines may connect the vertical portions of the sense lines at the top and/or bottom of the vertical stack.

在本發明之以下詳細描述中,參考附圖,該等附圖形成本文之部分,且其中藉助於說明展示可如何實踐本發明之一或多個實施例。以充分細節描述此等實施例,以允許一般熟習此項技術者實踐本發明之實施例,且應理解可利用其他實施例,且可作出製程、電及/或結構改變而不背離本發明之範疇。如本文中所使用,「數個」某物可指一或多個此類事物。例如,感測線之數個豎直部分可指感測線之至少一個豎直部分。In the following detailed description of the invention, reference is made to the accompanying drawings, which form a part hereof, and which show, by way of illustration, how one or more embodiments of the invention may be practiced. These embodiments are described in sufficient detail to allow those of ordinary skill in the art to practice the embodiments of the invention, and it is to be understood that other embodiments may be utilized and process, electrical and/or structural changes may be made without departing from the invention category. As used herein, "several" of something can refer to one or more of such things. For example, the vertical portions of the sensing line may refer to at least one vertical portion of the sensing line.

本文之圖遵照第一數位對應於圖號且剩餘數位識別圖式中之元件或組件的編號規約。不同圖之間的類似元件或組件可藉由使用類似數位進行識別。例如,附圖標記102可指代圖1中之元件「02」且類似元件在圖2中可指代為202。一個圖內之多個類似元件可用之後加連字符及另一數字或字母的附圖標記指代。例如,104-1可指代圖1中之元件04-1,且104-2可指代元件04-2,此可類似於元件104-1。可大體上在無連字符及額外數字或字母的情況下指代此類類似元件。例如,元件104-1及104-2或其他類似元件可大體上被指代為104。Figures herein follow a numbering convention in which the first digit corresponds to the figure number and the remaining digits identify the element or component in the figure. Similar elements or components between different figures can be identified by the use of similar digits. For example, reference numeral 102 may refer to element "02" in FIG. 1 and similar elements may be referred to as 202 in FIG. 2 . Similar elements within a figure may be referred to by a reference numeral followed by a hyphen followed by another number or letter. For example, 104-1 may refer to element 04-1 in FIG. 1, and 104-2 may refer to element 04-2, which may be similar to element 104-1. Such similar elements may be referred to generally without hyphens and additional numbers or letters. For example, elements 104 - 1 and 104 - 2 or other similar elements may be generally referred to as 104 .

圖1說明根據本發明之數個實施例形成的具有感測線之實例3D記憶體陣列100的3D視圖。例如,如圖1中所示,陣列100包括:感測線101-1及101-2 (個別地或統稱為感測線101)、感測線101之豎直部分102-1、102-2、102-3、102-4、102-5、102-6、102-7及102-8 (個別地或統稱為豎直部分102)、感測線101之水平部分104-1、104-2、104-3及104-4 (個別地或統稱為水平部分104)、存取線106-1、106-2、106-3、106-4、106-5、106-6、106-7、106-8、106-9、106-10、106-11及106-12 (個別地或統稱為存取線106),以及耦接至感測線101之豎直部分及存取線106的記憶體單元108-1及108-2 (個別地或統稱為記憶體單元108)。然而,本發明之實施例並不限於特定數目個感測線、存取線或記憶體單元。1 illustrates a 3D view of an example 3D memory array 100 with sense lines formed in accordance with several embodiments of the present disclosure. For example, as shown in FIG. 1, array 100 includes: sense lines 101-1 and 101-2 (individually or collectively referred to as sense lines 101), vertical portions 102-1, 102-2, 102- of sense line 101 3, 102-4, 102-5, 102-6, 102-7 and 102-8 (individually or collectively referred to as vertical portion 102), horizontal portion 104-1, 104-2, 104-3 of sensing line 101 and 104-4 (individually or collectively the horizontal portion 104), access lines 106-1, 106-2, 106-3, 106-4, 106-5, 106-6, 106-7, 106-8, 106-9, 106-10, 106-11, and 106-12 (individually or collectively, access line 106), and memory cell 108-1 coupled to the vertical portion of sense line 101 and access line 106 and 108-2 (individually or collectively referred to as memory cells 108). However, embodiments of the present invention are not limited to a specific number of sense lines, access lines, or memory cells.

記憶體陣列100可包括感測線101。感測線101亦可被稱作導電線、資料線或位元線。施加至設備100之電流可流過感測線101及存取線106以選擇記憶體單元108。存取線106亦可被稱作導電線或字線。如本文中將進一步描述(例如,結合圖4),感測線101之複數個豎直部分102中之每一者可包括於複數個豎直堆疊中之每一者中。在一些實施例中,感測線101之豎直部分102可在豎直堆疊之頂部部分及底部部分處藉由感測線101之水平部分104連接。The memory array 100 may include sense lines 101 . The sense lines 101 may also be referred to as conductive lines, data lines, or bit lines. Current applied to device 100 can flow through sense line 101 and access line 106 to select memory cell 108 . Access lines 106 may also be referred to as conductive lines or word lines. As will be described further herein (eg, in conjunction with FIG. 4 ), each of the plurality of vertical portions 102 of the sense line 101 may be included in each of the plurality of vertical stacks. In some embodiments, the vertical portions 102 of the sense lines 101 may be connected by the horizontal portions 104 of the sense lines 101 at the top and bottom portions of the vertical stack.

在一些實施例中,在豎直堆疊之底部部分處的感測線101之水平部分104-2及104-4可形成於3D記憶體陣列之基板材料中。例如,感測線101之水平部分104-2及104-4可在諸如介電材料及儲存元件材料之其他半導體材料形成於基板材料上之前形成。感測線101之豎直部分102可接著形成於感測線101之水平部分104-2及104-4上方。豎直部分102可形成為使得其中包括豎直部分102之豎直堆疊可連接至水平部分104-2及104-4。在一些實施例中,水平部分104-1及104-3接著可形成於豎直部分102上方並連接至其中包括豎直部分102之豎直堆疊的頂部部分。在一些實施例中,在豎直堆疊之頂部部分處的感測線101-1之水平部分104-1及104-3可與在豎直堆疊之底部部分處的感測線101-1之水平部分104-2及104-4對準。In some embodiments, the horizontal portions 104-2 and 104-4 of the sense lines 101 at the bottom portion of the vertical stack may be formed in the substrate material of the 3D memory array. For example, the horizontal portions 104-2 and 104-4 of the sense line 101 may be formed before other semiconductor materials, such as dielectric materials and storage element materials, are formed on the substrate material. The vertical portion 102 of the sense line 101 can then be formed over the horizontal portions 104-2 and 104-4 of the sense line 101. The vertical portion 102 can be formed such that a vertical stack including the vertical portion 102 therein can be connected to the horizontal portions 104-2 and 104-4. In some embodiments, horizontal portions 104-1 and 104-3 may then be formed over vertical portion 102 and connected to the top portion of the vertical stack that includes vertical portion 102 therein. In some embodiments, the horizontal portions 104-1 and 104-3 of the sense line 101-1 at the top portion of the vertical stack may be the same as the horizontal portion 104 of the sense line 101-1 at the bottom portion of the vertical stack -2 and 104-4 alignment.

在一些實施例中,啟動(例如,將電流施加至)在豎直堆疊之底部部分或頂部部分處的感測線101之水平部分104可啟動每一豎直堆疊之感測線101的不同各別部分。例如,啟動豎直堆疊之頂部部分處的感測線101之水平部分104-1可啟動豎直堆疊中之感測線101的豎直部分102,及在豎直堆疊之底部部分處的感測線101之水平部分104-2。感測線101之豎直部分102及感測線101之水平部分104可形成為單個感測線。施加至感測線101之任何豎直部分102或水平部分104的電流可能夠流動至感測線101之其他豎直部分102及水平部分104。因此,施加至感測線101之任何部分以啟動感測線101之彼部分的電流亦可流動至感測線101之其他部分且亦啟動彼等部分。In some embodiments, activating (eg, applying current to) the horizontal portions 104 of the sense lines 101 at the bottom or top portion of the vertical stack can activate different respective portions of the sense lines 101 of each vertical stack . For example, activating the horizontal portion 104-1 of the sensing line 101 at the top portion of the vertical stack can activate the vertical portion 102 of the sensing line 101 in the vertical stack, and the sensing line 101 at the bottom portion of the vertical stack. Horizontal section 104-2. The vertical portion 102 of the sensing line 101 and the horizontal portion 104 of the sensing line 101 may be formed as a single sensing line. Current applied to any vertical portion 102 or horizontal portion 104 of the sense line 101 may be able to flow to other vertical portions 102 and horizontal portions 104 of the sense line 101 . Therefore, the current applied to any part of the sense line 101 to activate that part of the sense line 101 can also flow to other parts of the sense line 101 and also activate those parts.

將電流施加至感測線101及存取線106可選擇耦接至接收電流之感測線101及存取線106的記憶體單元108。耦接至感測線101之任何部分的任何記憶體單元108將接收施加至感測線101之任何部分的電流。為了選擇記憶體單元,必須啟動記憶體單元108所耦接至的感測線101及存取線106兩者。因此,可藉由將電流施加至感測線101之任何部分且將電流施加至耦接至記憶體單元108之字線106來選擇耦接至感測線101之記憶體單元108。Applying current to sense line 101 and access line 106 selects memory cells 108 coupled to sense line 101 and access line 106 that receive the current. Any memory cell 108 coupled to any portion of the sense line 101 will receive current applied to any portion of the sense line 101 . In order to select a memory cell, both the sense line 101 and the access line 106 to which the memory cell 108 is coupled must be enabled. Thus, the memory cells 108 coupled to the sense lines 101 can be selected by applying current to any portion of the sense lines 101 and applying current to the word lines 106 coupled to the memory cells 108 .

感測線101可提供益處至記憶體陣列,諸如減小交叉塊差及改良記憶體陣列內之電流遞送。如上文所陳述,交叉塊差為由將增大量之電流施加至較遠離電壓源的同一感測線上之記憶體單元而引起的記憶體單元中之電壓尖峰。增大電流的量以克服較遠離電壓源之記憶體單元的寄生電阻。如本文中所使用,術語「寄生電阻」可指電組件中並非包括於原始設計中且對於電組件之預期目的並不合乎需要的電阻。由於包含電組件之材料及電組件之製造,寄生電阻為電組件之固有且非預期電阻。施加至感測線101或存取線106之電流可在其流過感測線101或存取線106時減小。可將增大量之電流施加至感測線101以補償電流在流動至預期記憶體單元時的減小,使得電流仍足以在減小之後為記憶體單元供電。然而,此可使得過多電流經施加至相比預期記憶體單元108較接近之記憶體單元108,且使得較接近記憶體單元108經歷電壓尖峰。若較接近記憶體單元108為相變記憶體單元,則此電壓尖峰會不經意地使得相變記憶體單元改變狀態。The sense lines 101 can provide benefits to the memory array, such as reducing cross-block differences and improving current delivery within the memory array. As stated above, cross block difference is a voltage spike in a memory cell caused by applying an increased amount of current to the memory cell on the same sense line that is farther from the voltage source. The amount of current is increased to overcome the parasitic resistance of memory cells further away from the voltage source. As used herein, the term "parasitic resistance" may refer to resistance in an electrical component that was not included in the original design and that is not desirable for the electrical component's intended purpose. Parasitic resistance is an inherent and unintended resistance of an electrical component due to the materials comprising the electrical component and the fabrication of the electrical component. The current applied to the sense line 101 or the access line 106 may decrease as it flows through the sense line 101 or the access line 106 . An increased amount of current can be applied to sense line 101 to compensate for the decrease in current flow to the intended memory cell so that the current is still sufficient to power the memory cell after the decrease. However, this can cause too much current to be applied to memory cells 108 that are closer than expected, and cause the closer memory cells 108 to experience voltage spikes. If the closer memory cell 108 is a phase change memory cell, this voltage spike would inadvertently cause the phase change memory cell to change state.

如本文中所使用,術語「相變記憶體」可指藉由更改製造記憶體裝置之儲存元件材料之狀態而儲存資料的一種類型之RAM。在一些實施例中,儲存元件材料可為硫屬化物材料。可充當儲存元件材料之硫屬化物材料之實例可包括銦(In)-銻(Sb)-碲(Te) (IST)材料,諸如In2 Sb2 Te5 、In1 Sb2 Te4 、In1 Sb4 Te7 等,及鍺(Ge)-銻(Sb)-碲(Te) (GST)材料,諸如Ge8 Sb5 Te8 、Ge2 Sb2 Te5 、Ge1 Sb2 Te4 、Ge1 Sb4 Te7 、Ge4 Sb4 Te7 等,或其他硫屬化物材料,包括例如在操作期間並不改變相之合金(例如,基於硒之硫屬化物合金)。此外,硫屬化物材料可包括極少濃度的其他摻雜劑材料。如本文中所使用,加連字符化學組合物標記指示包括於特定混合物或化合物中的元素且意欲表示涉及所指示元素之所有化學計量。As used herein, the term "phase change memory" may refer to a type of RAM that stores data by changing the state of the material of the storage elements from which the memory device is made. In some embodiments, the storage element material may be a chalcogenide material. Examples of chalcogenide materials that can serve as storage element materials can include indium (In)-antimony (Sb)-tellurium (Te) (IST) materials such as In 2 Sb 2 Te 5 , In 1 Sb 2 Te 4 , In 1 Sb 4 Te 7 etc., and germanium (Ge)-antimony (Sb)-tellurium (Te) (GST) materials such as Ge 8 Sb 5 Te 8 , Ge 2 Sb 2 Te 5 , Ge 1 Sb 2 Te 4 , Ge 1 Sb 4 Te 7, Ge 4 Sb 4 Te 7 , etc., or other chalcogenide materials, including for example, the alloy phase does not change during operation (e.g., sulfur, selenium based chalcogenide alloy of). In addition, the chalcogenide material may include very small concentrations of other dopant materials. As used herein, a hyphenated chemical composition designation indicates an element included in a particular mixture or compound and is intended to represent all stoichiometry relative to the indicated element.

如本文中所使用,術語「改變狀態」指代儲存元件材料將其狀態自非晶形狀態改變成多晶狀態,或自多晶狀態改變成非晶形狀態。儲存元件材料可回應於由施加至儲存元件材料之電流產生的熱量而改變其狀態。不經意地改變儲存元件材料之狀態可能對其中形成儲存元件材料之記憶體陣列不利。例如,不經意地改變儲存元件材料之狀態可能引起不準確的讀取。儲存元件材料之兩個狀態可具有不同電阻。可圍繞儲存元件材料形成電路以讀取儲存元件材料之電阻。讀取儲存元件材料之電阻可允許電路偵測「1」或「0」是否儲存於由儲存元件材料形成之記憶體單元上。不經意地改變記憶體單元之狀態會使得記憶體單元在預期儲存相反值時錯誤地儲存「1」或「0」。此可降低記憶體陣列之效能,因為記憶體陣列將儲存與預期用於記憶體陣列以執行其預期功能的值相反的值。As used herein, the term "change state" refers to a storage element material changing its state from an amorphous state to a polycrystalline state, or from a polycrystalline state to an amorphous state. The storage element material can change its state in response to heat generated by an electrical current applied to the storage element material. Inadvertently changing the state of the storage element material can be detrimental to the memory array in which the storage element material is formed. For example, inadvertently changing the state of the storage element material can cause inaccurate readings. The two states of the storage element material can have different resistances. Circuits can be formed around the storage element material to read the resistance of the storage element material. Reading the resistance of the storage element material allows the circuit to detect whether a "1" or a "0" is stored on a memory cell formed from the storage element material. Inadvertently changing the state of a memory cell can cause the memory cell to erroneously store a "1" or a "0" when it was expected to store the opposite value. This can reduce the performance of the memory array because the memory array will store the opposite value to what is intended for the memory array to perform its intended function.

感測線101之豎直部分102及水平部分104可改良通過記憶體陣列之電流的流動且減小上文所描述之電壓尖峰。在一些實施例中,施加至感測線101之電流可流過連接在豎直堆疊之底部部分處的感測線101之水平部分104。例如,若感測線101-1之豎直部分102-1相比感測線101-1之豎直部分102-4較接近電源,則電流可藉由流過水平部分104-2而流動至感測線101-1之豎直部分102-4。此可防止電流流過記憶體陣列之多個其他區域,且因此,減小在流動至感測線101-1之豎直部分102-4時損耗的電流量。在流動至感測線101-1之豎直部分102-4時損耗的電流量可經減小,此係因為藉由流過感測線101-1之水平部分104-2而非通過記憶體陣列之替代路線,電流可不流過多種電組件且因彼等電組件之寄生電阻而損耗電流。感測線101-1之水平部分104-2可具有寄生電阻,但彼寄生電阻可低於通過記憶體單元之替代路線上的電組件之寄生電阻。因此,使電流流過感測線101-1之水平部分104-2可減小電流在流過記憶體陣列時損耗的量。此可改良電流之流動且避免上文所論述之電壓尖峰。在一些實施例中,電流可流過感測線101-1之水平部分104-1,且經歷與藉由流過感測線101-1之水平部分104-2可經歷的情況類似的經改良電流流動。The vertical portion 102 and horizontal portion 104 of the sense line 101 can improve the flow of current through the memory array and reduce the voltage spikes described above. In some embodiments, the current applied to the sense line 101 may flow through the horizontal portion 104 of the sense line 101 connected at the bottom portion of the vertical stack. For example, if the vertical portion 102-1 of the sense line 101-1 is closer to the power source than the vertical portion 102-4 of the sense line 101-1, then current can flow to the sense line by flowing through the horizontal portion 104-2 Vertical portion 102-4 of 101-1. This can prevent current from flowing through various other regions of the memory array, and thus, reduces the amount of current that is lost when flowing to the vertical portion 102-4 of the sense line 101-1. The amount of current lost when flowing to the vertical portion 102-4 of the sense line 101-1 can be reduced because by flowing through the horizontal portion 104-2 of the sense line 101-1 rather than through the memory array Alternatively, current may not flow through various electrical components and lose current due to the parasitic resistance of those electrical components. The horizontal portion 104-2 of the sense line 101-1 may have parasitic resistance, but that parasitic resistance may be lower than the parasitic resistance of the electrical components on the alternate route through the memory cell. Therefore, flowing current through the horizontal portion 104-2 of the sense line 101-1 can reduce the amount of current lost as it flows through the memory array. This can improve the flow of current and avoid the voltage spikes discussed above. In some embodiments, current can flow through horizontal portion 104-1 of sense line 101-1 and experience improved current flow similar to that experienced by flowing through horizontal portion 104-2 of sense line 101-1 .

圖2說明根據本發明之數個實施例形成的具有感測線之實例3D記憶體陣列210的3D視圖。例如,如圖2中所示,陣列210包括:感測線201-1及201-2 (個別地或統稱為感測線201)、感測線201之豎直部分202-1、202-2、202-3、202-4、202-5、202-6、202-7及202-8 (個別地或統稱為豎直部分202)、感測線201之水平部分204-1及204-3 (個別地或統稱為水平部分204)、存取線206-1、206-2、206-3、206-4、206-5、206-6、206-7、206-8、206-9、206-10、206-11及206-12 (個別地或統稱為存取線206),以及耦接至感測線201之豎直部分及存取線206的記憶體單元208-1及208-2 (個別地或統稱為記憶體單元208)。然而,本發明之實施例並不限於特定數目個感測線、存取線或記憶體單元。2 illustrates a 3D view of an example 3D memory array 210 with sense lines formed in accordance with several embodiments of the present disclosure. For example, as shown in FIG. 2, array 210 includes: sense lines 201-1 and 201-2 (individually or collectively referred to as sense lines 201), vertical portions 202-1, 202-2, 202- of sense lines 201 3, 202-4, 202-5, 202-6, 202-7 and 202-8 (individually or collectively referred to as the vertical portion 202), the horizontal portions 204-1 and 204-3 of the sensing line 201 (individually or collectively referred to as horizontal portion 204), access lines 206-1, 206-2, 206-3, 206-4, 206-5, 206-6, 206-7, 206-8, 206-9, 206-10, 206-11 and 206-12 (individually or collectively, access line 206), and memory cells 208-1 and 208-2 (individually or collectively) coupled to the vertical portion of sense line 201 and access line 206 Collectively referred to as memory unit 208). However, embodiments of the present invention are not limited to a specific number of sense lines, access lines, or memory cells.

感測線201可包括豎直部分202及水平部分204。感測線201之豎直部分202中之每一者可位於不同豎直堆疊中,如本文中將進一步描述(例如,結合圖4)。感測線201之水平部分204可在豎直堆疊之頂部部分處連接感測線201之豎直部分202。在一些實施例中,在豎直堆疊之頂部部分處連接至感測線201之水平部分204的感測線201之豎直部分202可不連接至在豎直堆疊之底部部分處的感測線201之水平部分(例如,圖1之感測線102的水平部分104-2)。The sensing line 201 may include a vertical portion 202 and a horizontal portion 204 . Each of the vertical portions 202 of the sense lines 201 may be located in different vertical stacks, as will be described further herein (eg, in conjunction with FIG. 4 ). The horizontal portion 204 of the sense line 201 may connect the vertical portion 202 of the sense line 201 at the top portion of the vertical stack. In some embodiments, the vertical portions 202 of the sense lines 201 connected to the horizontal portions 204 of the sense lines 201 at the top portion of the vertical stack may not be connected to the horizontal portions of the sense lines 201 at the bottom portion of the vertical stack (eg, horizontal portion 104-2 of sense line 102 of FIG. 1).

連接感測線201之豎直部分202的水平部分204可藉由減小交叉塊差及改良記憶體陣列中之電流流動而有益於記憶體陣列。在一些實施例中,可實現此等益處,因為電流可流過感測線201之水平部分204。例如,若電源相比感測線202-1之豎直部分202-4較接近感測線201-1之豎直部分202-1,則電源可產生施加至感測線201-1的電流。在一些實施例中,電流可自感測線201-1之豎直部分202-1的底部部分流動至感測線201-1之豎直部分202-1的頂部部分。電流可藉由跨越感測線201-1之水平部分204-1流動而自感測線201-1之豎直部分202-1的頂部部分流動至感測線201-1之豎直部分202-4的頂部部分。彼電流可接著流動至耦接至感測線201-1之豎直部分202-4的記憶體單元208。The horizontal portion 204 connecting the vertical portion 202 of the sense line 201 can benefit the memory array by reducing the cross-block difference and improving current flow in the memory array. In some embodiments, these benefits can be achieved because current can flow through the horizontal portion 204 of the sense line 201 . For example, if the power source is closer to the vertical portion 202-1 of the sense line 201-1 than the vertical portion 202-4 of the sense line 202-1, the power source may generate a current to be applied to the sense line 201-1. In some embodiments, current may flow from the bottom portion of the vertical portion 202-1 of the sense line 201-1 to the top portion of the vertical portion 202-1 of the sense line 201-1. Current can flow from the top portion of the vertical portion 202-1 of the sense line 201-1 to the top of the vertical portion 202-4 of the sense line 201-1 by flowing across the horizontal portion 204-1 of the sense line 201-1 part. That current can then flow to memory cell 208 coupled to vertical portion 202-4 of sense line 201-1.

感測線201之水平部分204可有益於其中施加電流的記憶體裝置。例如,以類似於先前結合圖1針對感測線101所描述的方式,允許電流流過感測線201之水平部分204可減小(例如,防止)交叉塊差且改良電流流動。The horizontal portion 204 of the sense line 201 can be beneficial to the memory device in which the current is applied. For example, allowing current to flow through the horizontal portion 204 of the sense line 201 may reduce (eg, prevent) cross-block differentials and improve current flow, in a manner similar to that previously described in connection with FIG. 1 for the sense line 101 .

圖3說明根據本發明之數個實施例形成的具有感測線之實例3D記憶體陣列312的3D視圖。例如,如圖3中所示,陣列312包括:感測線301-1及301-2 (個別地或統稱為感測線301)、感測線301之豎直部分302-1、302-2、302-3、302-4、302-5、302-6及302-8 (個別地或統稱為豎直部分302)、感測線301之水平部分304-1、304-2、304-3及304-4 (個別地或統稱為水平部分304)、存取線306-1、306-2、306-3、306-4、306-5、306-6、306-7、306-8、306-9、306-10、306-11及306-12 (個別地或統稱為存取線306),以及耦接至感測線301之豎直部分及存取線306的記憶體單元308-1及308-2 (個別地或統稱為記憶體單元308)。然而,本發明之實施例並不限於特定數目個感測線、存取線或記憶體單元。3 illustrates a 3D view of an example 3D memory array 312 with sense lines formed in accordance with several embodiments of the present disclosure. For example, as shown in FIG. 3, array 312 includes: sense lines 301-1 and 301-2 (individually or collectively referred to as sense lines 301), vertical portions 302-1, 302-2, 302- of sense lines 301 3, 302-4, 302-5, 302-6 and 302-8 (individually or collectively referred to as vertical portion 302), horizontal portion 304-1, 304-2, 304-3 and 304-4 of sense line 301 (individually or collectively as horizontal portion 304), access lines 306-1, 306-2, 306-3, 306-4, 306-5, 306-6, 306-7, 306-8, 306-9, 306-10, 306-11, and 306-12 (individually or collectively, access line 306), and memory cells 308-1 and 308-2 coupled to the vertical portion of sense line 301 and access line 306 (individually or collectively referred to as memory cells 308). However, embodiments of the present invention are not limited to a specific number of sense lines, access lines, or memory cells.

感測線301可包括豎直部分302及水平部分304。感測線301之豎直部分302中之每一者可包括於豎直堆疊中。感測線301之水平部分304可在豎直堆疊之頂部部分處及豎直堆疊之底部部分處連接至豎直部分302。在一些實施例中,在豎直堆疊之底部部分處連接至感測線301之水平部分304的感測線301之豎直部分302可不連接至在豎直堆疊之頂部部分處的感測線301之水平部分304。例如,如圖3中所示,若感測線301-1之豎直部分302-2及302-3可連接於豎直堆疊之底部部分處,則豎直部分302-2及302-3不可亦連接於豎直堆疊之頂部部分處。在一些實施例中,在豎直堆疊之頂部部分處連接至感測線301之水平部分304的感測線301之豎直部分302可不連接至在豎直堆疊之底部部分處的感測線301之水平部分304。例如,如圖3中所示,若感測線301-1之豎直部分302-1及302-2在豎直堆疊之頂部部分處連接至感測線301-1之水平部分304-1,則感測線301-1之豎直部分302-1及302-2不可亦在豎直堆疊之底部部分處連接至感測線301-1之水平部分304-2。在一些實施例中,感測線301之豎直部分302可在一些豎直堆疊之頂部部分及底部部分處連接至感測線301之水平部分304。例如,如圖3中所示,感測線301-1之豎直部分302-2可在豎直堆疊之頂部部分處連接至豎直部分302-1,且感測線301-1之豎直部分302-2可在豎直堆疊之底部部分處連接至豎直部分302-3。The sensing line 301 may include a vertical portion 302 and a horizontal portion 304 . Each of the vertical portions 302 of the sense lines 301 may be included in a vertical stack. The horizontal portion 304 of the sense line 301 can be connected to the vertical portion 302 at the top portion of the vertical stack and at the bottom portion of the vertical stack. In some embodiments, the vertical portions 302 of the sense lines 301 connected to the horizontal portions 304 of the sense lines 301 at the bottom portion of the vertical stack may not be connected to the horizontal portions of the sense lines 301 at the top portion of the vertical stack 304. For example, as shown in FIG. 3, if the vertical portions 302-2 and 302-3 of the sensing line 301-1 can be connected at the bottom portion of the vertical stack, the vertical portions 302-2 and 302-3 cannot be Attached at the top portion of the vertical stack. In some embodiments, the vertical portions 302 of the sense lines 301 connected to the horizontal portions 304 of the sense lines 301 at the top portion of the vertical stack may not be connected to the horizontal portions of the sense lines 301 at the bottom portion of the vertical stack 304. For example, as shown in FIG. 3, if the vertical portions 302-1 and 302-2 of the sensing line 301-1 are connected to the horizontal portion 304-1 of the sensing line 301-1 at the top portion of the vertical stack, the sensing The vertical portions 302-1 and 302-2 of the sensing line 301-1 may not be connected to the horizontal portion 304-2 of the sensing line 301-1 nor at the bottom portion of the vertical stack. In some embodiments, the vertical portions 302 of the sense lines 301 may be connected to the horizontal portions 304 of the sense lines 301 at the top and bottom portions of some vertical stacks. For example, as shown in FIG. 3, the vertical portion 302-2 of the sense line 301-1 may be connected to the vertical portion 302-1 at the top portion of the vertical stack, and the vertical portion 302 of the sense line 301-1 -2 may be connected to vertical portion 302-3 at the bottom portion of the vertical stack.

連接感測線301之豎直部分302的水平部分304可藉由減小交叉塊差及改良記憶體陣列中之電流流動而有益於記憶體陣列。在一些實施例中,可實現此等益處,因為電流可流過感測線301之水平部分304。例如,若電源相比感測線301-1之豎直部分302-4較接近感測線301-1之豎直部分302-1,則電源可產生施加至感測線301-1之電流。在一些實施例中,電流可自感測線301-1之豎直部分302-1之底部流動至感測線301-1之豎直部分302-1之頂部。電流可藉由跨越感測線301-1之水平部分304-1流動而自感測線301-1之豎直部分302-1的頂部流動至感測線301-1之豎直部分302-2的頂部。彼電流可自感測線301-1之豎直部分302-2的頂部流動至感測線301-1之豎直部分302-2的底部。電流接著可通過感測線301-1之水平部分304-2自感測線301-1之豎直部分302-2的底部流動至感測線301-1之豎直部分302-3的底部。電流可繼續以此圖案流動,直至其到達其預期記憶體單元為止。藉由如上文所描述地流過記憶體陣列,相比於電流並不流過記憶體陣列之情況,電流在流過記憶體單元時損耗的量可減小,如上文所描述。The horizontal portion 304 connecting the vertical portion 302 of the sense line 301 can benefit the memory array by reducing cross block differences and improving current flow in the memory array. In some embodiments, these benefits can be achieved because current can flow through the horizontal portion 304 of the sense line 301 . For example, if the power source is closer to the vertical portion 302-1 of the sense line 301-1 than the vertical portion 302-4 of the sense line 301-1, the power source can generate a current applied to the sense line 301-1. In some embodiments, current may flow from the bottom of the vertical portion 302-1 of the sense line 301-1 to the top of the vertical portion 302-1 of the sense line 301-1. Current can flow from the top of the vertical portion 302-1 of the sense line 301-1 to the top of the vertical portion 302-2 of the sense line 301-1 by flowing across the horizontal portion 304-1 of the sense line 301-1. That current can flow from the top of the vertical portion 302-2 of the sense line 301-1 to the bottom of the vertical portion 302-2 of the sense line 301-1. Current can then flow from the bottom of the vertical portion 302-2 of the sense line 301-1 to the bottom of the vertical portion 302-3 of the sense line 301-1 through the horizontal portion 304-2 of the sense line 301-1. Current can continue to flow in this pattern until it reaches its intended memory cell. By flowing through the memory array as described above, the amount of current lost when flowing through the memory cells may be reduced compared to if the current does not flow through the memory array, as described above.

圖4說明根據本發明之數個實施例的3D記憶體陣列之實例豎直堆疊414的截面側視圖。如圖4中所示,豎直堆疊414可包括:感測線(例如,圖1之感測線101)的豎直部分402;記憶體單元408-1、408-3、408-4、408-5、408-6及408-7 (個別地或統稱為記憶體單元408),其具有電極416-1、416-2、416-3、416-4、416-5、416-6、416-7、416-8、416-9、418-10、416-11及416-12 (個別地或統稱為電極416)及儲存元件材料418-1、418-2、418-3、418-4、418-5及418-6 (個別地或統稱為儲存元件材料418);及存取線406-1、406-2、406-7、406-8、406-13及406-14 (個別地或統稱為存取線406)。4 illustrates a cross-sectional side view of an example vertical stack 414 of 3D memory arrays in accordance with several embodiments of the present invention. As shown in FIG. 4, vertical stack 414 may include: vertical portion 402 of a sense line (eg, sense line 101 of FIG. 1); memory cells 408-1, 408-3, 408-4, 408-5 , 408-6 and 408-7 (individually or collectively referred to as memory cells 408) having electrodes 416-1, 416-2, 416-3, 416-4, 416-5, 416-6, 416-7 , 416-8, 416-9, 418-10, 416-11 and 416-12 (individually or collectively electrodes 416) and storage element materials 418-1, 418-2, 418-3, 418-4, 418 -5 and 418-6 (individually or collectively, storage element material 418); and access lines 406-1, 406-2, 406-7, 406-8, 406-13, and 406-14 (individually or collectively) for access line 406).

如圖4中所示,複數個記憶體單元408可耦接至感測線402之豎直部分。每一記憶體單元408可包括儲存元件材料418及在儲存元件材料之對置側上的兩個電極416。在一些實施例中,記憶體單元408可耦接至感測線402之對置側。例如,記憶體單元408-1及408-5可耦接至感測線402之對置側,記憶體單元408-3及408-6可耦接至感測線402之對置側,且記憶體單元408-4及408-7可耦接至感測線402之對置側。在一些實施例中,每一電極416可具有十奈米(nm)之寬度,且每一儲存元件材料418可具有25 nm或26 nm之寬度。As shown in FIG. 4 , a plurality of memory cells 408 may be coupled to the vertical portion of the sense line 402 . Each memory cell 408 may include a storage element material 418 and two electrodes 416 on opposite sides of the storage element material. In some embodiments, the memory cells 408 may be coupled to opposite sides of the sense lines 402 . For example, memory cells 408-1 and 408-5 may be coupled to opposite sides of sense line 402, memory cells 408-3 and 408-6 may be coupled to opposite sides of sense line 402, and memory cells 408-4 and 408-7 may be coupled to opposite sides of the sense line 402. In some embodiments, each electrode 416 may have a width of ten nanometers (nm), and each storage element material 418 may have a width of 25 nm or 26 nm.

如圖4中所示,記憶體單元408中之每一者可耦接至不同各別存取線406。例如,記憶體單元408-1可耦接至存取線406-1,記憶體單元408-5可耦接至存取線406-2等。耦接至記憶體單元408之每一存取線406可正交於感測線402。在一些實施例中,每一存取線406可具有50 nm之高度及20 nm之寬度。As shown in FIG. 4 , each of the memory cells 408 may be coupled to a different respective access line 406 . For example, memory cell 408-1 may be coupled to access line 406-1, memory cell 408-5 may be coupled to access line 406-2, and so on. Each access line 406 coupled to the memory cell 408 may be orthogonal to the sense line 402 . In some embodiments, each access line 406 may have a height of 50 nm and a width of 20 nm.

如上文所陳述,感測線(例如,圖1之感測線101)之水平部分(例如,圖1之水平部分104)可在豎直堆疊414之包括感測線之豎直部分402的頂部及/或底部部分處連接感測線之豎直部分402。例如,在一些實施例中,感測線之水平部分可在豎直堆疊414之頂部處而非底部處連接感測線之豎直部分402。在一些實施例中,水平感測線可在豎直堆疊414之底部處而非頂部處連接感測線之豎直部分402。在一些實施例中,水平感測線可在豎直堆疊414之頂部部分及底部部分兩者處連接感測線之豎直部分402。在一些實施例中,感測線之水平部分可將感測線之豎直部分402連接至豎直堆疊414之頂部處的感測線之另一豎直部分,且水平部分可將感測線之豎直部分402連接至豎直堆疊之底部部分處的感測線之又一豎直部分。亦即,感測線之水平部分可將感測線之單個豎直部分402耦接至感測線之兩個單獨豎直部分,其中感測線之豎直部分402可連接至豎直堆疊414之頂部處的感測線之其他豎直部分中的一者,且連接至豎直堆疊414之底部處的感測線之另一豎直部分。As stated above, a horizontal portion (eg, horizontal portion 104 of FIG. 1 ) of a sense line (eg, sense line 101 of FIG. 1 ) may be on top of vertical portion 402 of vertical stack 414 that includes the sense line and/or The vertical portion 402 of the sense line is connected at the bottom portion. For example, in some embodiments, the horizontal portion of the sense line may connect the vertical portion 402 of the sense line at the top of the vertical stack 414 rather than at the bottom. In some embodiments, the horizontal sense lines may connect the vertical portions 402 of the sense lines at the bottom of the vertical stack 414 rather than at the top. In some embodiments, horizontal sense lines may connect the vertical portions 402 of sense lines at both the top and bottom portions of the vertical stack 414 . In some embodiments, the horizontal portion of the sense line may connect the vertical portion 402 of the sense line to another vertical portion of the sense line at the top of the vertical stack 414, and the horizontal portion may connect the vertical portion of the sense line 402 is connected to yet another vertical portion of the sense lines at the bottom portion of the vertical stack. That is, the horizontal portion of the sense line can couple the single vertical portion 402 of the sense line to two separate vertical portions of the sense line, where the vertical portion 402 of the sense line can be connected to the vertical portion 402 at the top of the vertical stack 414 One of the other vertical portions of the sense lines, and connected to the other vertical portion of the sense lines at the bottom of the vertical stack 414 .

圖5說明根據本發明之數個實施例的3D記憶體陣列之實例豎直堆疊514的自上而下視圖。如圖5中所示,豎直堆疊514-1、514-2及514-3 (個別地或統稱為豎直堆疊514)可包括:感測線之豎直部分502-1、502-2及502-3 (個別地或統稱為豎直部分502);記憶體單元508-1、508-2、508-5、508-8、508-10及508-11 (個別地或統稱為記憶體單元508),其具有電極516-1、516-2、516-7、516-8、516-13、516-14、516-15、516-16、516-17、518-18、516-19及516-20 (個別地或統稱為電極516)及儲存元件材料518-1、518-4、518-7、518-8、518-9及518-10 (個別地或統稱為儲存元件材料518);及存取線506-1及506-2 (個別地或統稱為存取線506)。5 illustrates a top-down view of an example vertical stack 514 of a 3D memory array in accordance with several embodiments of the present invention. As shown in FIG. 5, vertical stacks 514-1, 514-2, and 514-3 (individually or collectively vertical stack 514) may include: vertical portions 502-1, 502-2, and 502 of sense lines -3 (individually or collectively vertical section 502); memory cells 508-1, 508-2, 508-5, 508-8, 508-10, and 508-11 (individually or collectively memory cells 508 ) with electrodes 516-1, 516-2, 516-7, 516-8, 516-13, 516-14, 516-15, 516-16, 516-17, 518-18, 516-19 and 516 -20 (individually or collectively, electrodes 516) and storage element materials 518-1, 518-4, 518-7, 518-8, 518-9, and 518-10 (individually or collectively, storage element materials 518); and access lines 506-1 and 506-2 (individually or collectively, access lines 506).

如圖5中所示,複數個豎直堆疊514中之每一者可包括感測線之豎直部分502、耦接至感測線之豎直部分502的複數個記憶體單元508,及耦接至記憶體單元508的複數個存取線506。在一些實施例中,感測線之豎直部分502可具有50 nm的寬度。每一記憶體單元508可包括耦接至複數個電極516之儲存元件材料518。如圖5中所示,複數個豎直堆疊514中的每一者可鄰接於彼此形成。As shown in FIG. 5, each of the plurality of vertical stacks 514 may include a vertical portion 502 of the sense line, a plurality of memory cells 508 coupled to the vertical portion 502 of the sense line, and coupled to A plurality of access lines 506 of the memory cell 508 . In some embodiments, the vertical portion 502 of the sense line may have a width of 50 nm. Each memory cell 508 may include storage element material 518 coupled to a plurality of electrodes 516 . As shown in FIG. 5, each of the plurality of vertical stacks 514 may be formed adjacent to each other.

圖5展示複數個豎直堆疊514之特定部分。如先前圖4中所示,複數個豎直堆疊514中之每一者可在感測線之豎直部分502的不同部分處耦接至記憶體單元508及存取線506。如圖5中所示,耦接至感測線之複數個豎直部分502中之每一者的同一部分的記憶體單元508可耦接至同一存取線506。FIG. 5 shows a particular portion of a plurality of vertical stacks 514 . As previously shown in FIG. 4, each of the plurality of vertical stacks 514 may be coupled to memory cells 508 and access lines 506 at different portions of the vertical portion 502 of the sense line. As shown in FIG. 5 , memory cells 508 coupled to the same portion of each of the plurality of vertical portions 502 of the sense line may be coupled to the same access line 506 .

圖6A至圖6J說明根據本發明之數個實施例的與形成3D記憶體陣列相關聯之處理步驟的截面圖。圖6A至圖6J中所說明之製程在對應於3D記憶體陣列形成製程之處理活動的特定時間點處展示。為了易於說明,可省略包括於特定3D記憶體陣列形成序列中的其他處理活動。6A-6J illustrate cross-sectional views of processing steps associated with forming a 3D memory array in accordance with several embodiments of the present invention. The processes illustrated in Figures 6A-6J are shown at specific points in time corresponding to the processing activities of the 3D memory array formation process. For ease of illustration, other processing activities included in a particular 3D memory array formation sequence may be omitted.

圖6A說明在時間點620處的介電材料622及儲存元件材料624之形成(例如,沈積)。在一些實施例中,儲存元件材料624可為硫屬化物材料,且介電材料可為氧化物材料,諸如但不限於氧化鋁(AlOx)。介電材料622及儲存元件材料624可形成於在基板材料上方形成之半導體材料上方,或可形成於感測線材料(圖6A中未展示)上方。如圖6A中所說明,介電材料622及儲存元件材料624可交替地形成。在一些實施例中,介電材料622及儲存元件材料624可重複地交替形成,以形成至多64層介電材料622與儲存元件材料624之堆疊。在一些實施例中,感測線之水平部分可形成於基板材料中,且介電材料622及儲存元件材料624可形成於感測線材料之水平部分上方。FIG. 6A illustrates the formation (eg, deposition) of dielectric material 622 and storage element material 624 at time point 620 . In some embodiments, the storage element material 624 may be a chalcogenide material, and the dielectric material may be an oxide material, such as, but not limited to, aluminum oxide (AlOx). Dielectric material 622 and storage element material 624 may be formed over semiconductor material formed over substrate material, or may be formed over sense line material (not shown in Figure 6A). As illustrated in Figure 6A, dielectric material 622 and storage element material 624 may be alternately formed. In some embodiments, the dielectric material 622 and the storage element material 624 may be alternately formed repeatedly to form a stack of up to 64 layers of the dielectric material 622 and the storage element material 624 . In some embodiments, the horizontal portion of the sense line can be formed in the substrate material, and the dielectric material 622 and the storage element material 624 can be formed over the horizontal portion of the sense line material.

圖6B至圖6E說明在時間點621處的感測線之豎直部分的形成。在圖6B中,開口625可形成於介電材料622及儲存元件材料624中。在一些實施例中,可使用非選擇性蝕刻形成開口。在一些實施例中,可形成類似於開口625之複數個開口。6B-6E illustrate the formation of the vertical portion of the sense line at time point 621 . In FIG. 6B , openings 625 may be formed in dielectric material 622 and storage element material 624 . In some embodiments, the openings may be formed using non-selective etching. In some embodiments, a plurality of openings similar to opening 625 may be formed.

在圖6C中,可使用選擇性蝕刻移除鄰近開口625之儲存元件材料624。In FIG. 6C, the storage element material 624 adjacent to the opening 625 may be removed using selective etching.

在圖6D中,電極材料626-1、626-2、626-3及626-4 (個別地或統稱為電極材料626)可形成於自其移除鄰近開口625之儲存元件材料624之部分的區域中,且接著可移除電極材料626之一部分。In FIG. 6D, electrode materials 626-1, 626-2, 626-3, and 626-4 (individually or collectively referred to as electrode material 626) may be formed on the portion from which storage element material 624 adjacent opening 625 is removed region, and then a portion of electrode material 626 may be removed.

在圖6E中,感測線材料628可形成於開口625中。例如,感測線材料628可鄰近開口625中之電極材料626而形成。在一些實施例中,可使用原子層沈積(ALD)形成感測線材料628。在一些實施例中,存取線材料(例如,圖6H之存取線材料630)而非感測線材料628可沈積於開口625中。In FIG. 6E , sense line material 628 may be formed in opening 625 . For example, sense line material 628 may be formed adjacent to electrode material 626 in opening 625 . In some embodiments, the sense line material 628 may be formed using atomic layer deposition (ALD). In some embodiments, access line material (eg, access line material 630 of FIG. 6H ) rather than sense line material 628 may be deposited in openings 625 .

圖6F至圖6I說明在時間點630處之存取線的形成。在圖6F中,開口627可形成於介電材料622及儲存元件材料624中。在一些實施例中,可使用非選擇性蝕刻形成開口627。開口627可鄰近開口625形成。在一些實施例中,可形成類似於開口627之複數個開口。此外,如圖6F中所示,可使用選擇性蝕刻進一步移除鄰近開口627之儲存元件材料624的部分。在一些實施例中,相比鄰近開口625,移除鄰近開口627之較多儲存元件材料624。6F-6I illustrate the formation of an access line at time point 630. FIG. In FIG. 6F , openings 627 may be formed in dielectric material 622 and storage element material 624 . In some embodiments, openings 627 may be formed using non-selective etching. Opening 627 may be formed adjacent to opening 625 . In some embodiments, a plurality of openings similar to opening 627 may be formed. In addition, as shown in FIG. 6F, selective etching may be used to further remove portions of storage element material 624 adjacent openings 627. In some embodiments, more storage element material 624 is removed adjacent opening 627 than adjacent opening 625 .

在圖6G中,電極材料626-5、626-6、626-7及626-8 (個別地或統稱為電極材料626)可形成於自其移除儲存元件材料624之部分的區域中。可自鄰近開口627之區域移除電極材料626之一部分,如圖6G中所示。In FIG. 6G, electrode materials 626-5, 626-6, 626-7, and 626-8 (individually or collectively, electrode material 626) may be formed in regions from which portions of storage element material 624 are removed. A portion of electrode material 626 may be removed from the area adjacent to opening 627, as shown in Figure 6G.

在圖6H中,存取線材料630可形成(例如,沈積)於鄰近電極材料626之開口627中。例如,存取線材料630可填充自其移除電極材料626之空間,如圖6H中所示。In FIG. 6H , access line material 630 may be formed (eg, deposited) in openings 627 adjacent to electrode material 626 . For example, access line material 630 may fill the space from which electrode material 626 was removed, as shown in Figure 6H.

在圖6I中,可自開口627移除存取線材料630且保留在自其移除電極材料626之空間中。在自開口627移除存取線材料630之後,可在開口627中形成介電材料632,如圖6I中所示。在一些實施例中,介電材料622與介電材料632可為不同材料。在一些實施例中,介電材料622與介電材料632可為相同材料。In Figure 6I, access line material 630 can be removed from opening 627 and remain in the space from which electrode material 626 was removed. After the access line material 630 is removed from the openings 627, a dielectric material 632 may be formed in the openings 627, as shown in FIG. 6I. In some embodiments, the dielectric material 622 and the dielectric material 632 may be different materials. In some embodiments, dielectric material 622 and dielectric material 632 may be the same material.

圖6J說明在時間點634處的感測線之水平部分629的形成。在圖6J中,感測線之水平部分629可形成於感測線之豎直部分628及介電材料632上方。在一些實施例中,感測線之豎直部分628與感測線之水平部分629可為相同材料。在一些實施例中,感測線之豎直部分628與水平部分629可為不同材料。感測線之水平部分629可在豎直堆疊(例如,圖4之豎直堆疊414)的頂部處連接感測線之豎直部分628。在一些實施例中,存取線材料與感測線材料可為相同材料。在一些實施例中,存取線之水平部分可在豎直堆疊之頂部處連接形成於開口中之存取線的豎直部分而非感測線材料。FIG. 6J illustrates the formation of the horizontal portion 629 of the sense line at time point 634 . In FIG. 6J , the horizontal portion 629 of the sense line may be formed over the vertical portion 628 of the sense line and the dielectric material 632 . In some embodiments, the vertical portion 628 of the sensing line and the horizontal portion 629 of the sensing line may be the same material. In some embodiments, the vertical portion 628 and the horizontal portion 629 of the sensing line may be of different materials. The horizontal portion 629 of the sense line may connect the vertical portion 628 of the sense line at the top of a vertical stack (eg, the vertical stack 414 of FIG. 4). In some embodiments, the access line material and the sense line material may be the same material. In some embodiments, the horizontal portion of the access line may connect the vertical portion of the access line formed in the opening at the top of the vertical stack instead of the sense line material.

圖7為包括根據本發明之數個實施例形成的至少一個記憶體陣列770之計算系統756的功能方塊圖。結合圖7使用之編號規約並不遵照適用於圖1至圖6的早期介紹之編號規約及序列。7 is a functional block diagram of a computing system 756 including at least one memory array 770 formed in accordance with several embodiments of the present invention. The numbering convention used in connection with FIG. 7 does not follow the numbering convention and sequence applicable to the earlier presentations of FIGS. 1-6.

在圖7中所說明之實施例中,記憶體系統762包括記憶體介面764、數個記憶體裝置768-1……768-N,以及可選擇地耦接至記憶體介面764及記憶體裝置768-1……768-N之控制器766。記憶體介面764可用以在記憶體系統762與諸如主機758之另一裝置之間傳達資訊。主機758可包括處理器(未示出)。如本文中所使用,「處理器」可為數個處理器,諸如並行處理系統、數個共處理器等。實例主機可包括以下各者或實施於以下各者中:膝上型電腦、個人電腦、數位相機、數位記錄裝置及播放裝置、行動電話、PDA、記憶卡讀取器、介面集線器等。此主機758可與對半導體裝置及/或SSD執行之製造操作相關聯。In the embodiment illustrated in FIG. 7, memory system 762 includes memory interface 764, a number of memory devices 768-1 . . . 768-N, and optionally coupled to memory interface 764 and memory devices Controller 766 of 768-1...768-N. Memory interface 764 may be used to communicate information between memory system 762 and another device, such as host 758 . Host 758 may include a processor (not shown). As used herein, a "processor" may be a number of processors, such as a parallel processing system, a number of co-processors, and the like. Example hosts may include or be implemented in laptops, personal computers, digital cameras, digital recording and playback devices, mobile phones, PDAs, memory card readers, interface hubs, and the like. This host 758 may be associated with manufacturing operations performed on semiconductor devices and/or SSDs.

在數個實施例中,主機758可與主機介面760相關聯(例如,包括或耦接至該主機介面)。主機介面760可使得能夠輸入經縮放偏好(例如,以數值及/或結構上定義的梯度),以定義例如待由處理設備(未示出)實施的記憶體裝置(例如,如768處所示)及/或形成於其上的記憶體單元陣列(例如,如770處所示)之最終結構或中間結構的關鍵尺寸(CD)。陣列包括根據本文中所描述之實施例形成的具有半導體結構、存取線及介電材料的存取裝置。可經由輸入藉由主機758儲存之數個偏好、輸入來自另一儲存系統(未示出)之偏好及/或輸入由使用者(例如,操作人員)作出之偏好將經縮放偏好提供至主機介面760。In several embodiments, host 758 may be associated with (eg, include or be coupled to) host interface 760 . Host interface 760 may enable input of scaled preferences (eg, in numerically and/or structurally defined gradients) to define, eg, a memory device to be implemented by a processing device (not shown) (eg, as shown at 768 ) ) and/or the critical dimension (CD) of the final or intermediate structure of the memory cell array formed thereon (eg, as shown at 770). The array includes access devices having semiconductor structures, access lines, and dielectric materials formed in accordance with embodiments described herein. The scaled preferences may be provided to the host interface by entering several preferences stored by the host 758, entering preferences from another storage system (not shown), and/or entering preferences made by a user (eg, an operator) 760.

記憶體介面764可呈標準化實體介面的形式。例如,當記憶體系統762用於計算系統756中之資訊(例如,資料)儲存時,記憶體介面764可為串列進階附接技術(SATA)介面、周邊組件高速互連(PCIe)介面或通用串列匯流排(USB)介面,以及其他實體連接器及/或介面。然而,大體而言,記憶體介面764可提供用於在記憶體系統762之控制器766與主機758之間(例如,經由主機介面760)傳遞控制、位址、資訊、經縮放偏好及/或其他信號的介面。The memory interface 764 may be in the form of a standardized physical interface. For example, when memory system 762 is used for information (eg, data) storage in computing system 756, memory interface 764 may be a Serial Advanced Attachment Technology (SATA) interface, a Peripheral Component Interconnect Express (PCIe) interface or Universal Serial Bus (USB) interface, and other physical connectors and/or interfaces. In general, however, memory interface 764 may be provided for transferring control, addresses, information, scaled preferences, and/or between controller 766 of memory system 762 and host 758 (eg, via host interface 760 ) interface to other signals.

控制器766可包括例如韌體及/或控制電路(例如,硬體)。控制器766可操作地耦接至及/或包括於與記憶體裝置768-1……768-N中之一或多者相同的實體裝置(例如,晶粒)上。例如,控制器766可為或可包括作為可操作地耦接至包括記憶體介面764及記憶體裝置768-1……768-N之電路(例如,印刷電路板)的硬體的ASIC。替代地,控制器766可包括於通信地耦接至包括記憶體裝置768-1……768-N中之一或多者的實體裝置(例如,晶粒)之單獨實體裝置上。Controller 766 may include, for example, firmware and/or control circuitry (eg, hardware). Controller 766 is operably coupled to and/or included on the same physical device (eg, die) as one or more of memory devices 768-1 . . . 768-N. For example, controller 766 may be or may include an ASIC that is hardware operably coupled to circuitry (eg, a printed circuit board) including memory interface 764 and memory devices 768-1 . . . 768-N. Alternatively, controller 766 may be included on a separate physical device communicatively coupled to a physical device (eg, a die) including one or more of memory devices 768-1 . . . 768-N.

控制器766可與記憶體裝置768-1……768-N通信以指示用以感測(例如,讀取)、程式化(例如,寫入)及/或抹除資訊之操作,以及用於管理記憶體單元之其他功能及/或操作。控制器766可具有可包括數個積體電路及/或離散組件之電路。在數個實施例中,控制器766中之電路可包括用於控制跨越記憶體裝置768-1……768-N之存取的控制電路,及/或用於提供主機758與記憶體系統762之間的轉譯層之電路。Controller 766 may communicate with memory devices 768-1 . . . 768-N to instruct operations to sense (eg, read), program (eg, write) and/or erase information, and for Manage other functions and/or operations of memory cells. Controller 766 may have circuits that may include several integrated circuits and/or discrete components. In several embodiments, circuitry in controller 766 may include control circuitry for controlling access across memory devices 768-1 . . . 768-N, and/or for providing host 758 and memory system 762 circuit between the translation layer.

記憶體裝置768-1……768-N可包括例如數個記憶體陣列770(例如,揮發性及/或非揮發性記憶體單元陣列)。例如,記憶體裝置768-1……768-N可包括根據本文中所揭示之實施例形成的記憶體單元陣列。如將瞭解,記憶體裝置768-1……768-N之記憶體陣列770中的記憶體單元可呈RAM架構(例如,DRAM、SRAM、SDRAM、FeRAM、MRAM、ReRAM等)、快閃架構(例如,NAND、NOR等)、三維(3D)RAM及/或快閃記憶體單元架構,或包括柱及鄰近溝槽的某一其他記憶體陣列架構。The memory devices 768-1 . . . 768-N may include, for example, a number of memory arrays 770 (eg, arrays of volatile and/or non-volatile memory cells). For example, memory devices 768-1 . . . 768-N may include arrays of memory cells formed in accordance with embodiments disclosed herein. As will be appreciated, the memory cells in memory array 770 of memory devices 768-1 . . . 768-N may be in a RAM architecture (eg, DRAM, SRAM, SDRAM, FeRAM, MRAM, ReRAM, etc.), a flash architecture ( For example, NAND, NOR, etc.), three-dimensional (3D) RAM and/or flash memory cell architecture, or some other memory array architecture that includes pillars and adjacent trenches.

記憶體裝置768可形成於同一晶粒上。記憶體裝置(例如,記憶體裝置768-1)可包括形成於晶粒上的一或多個記憶體單元陣列770。記憶體裝置可包括與形成於晶粒上之一或多個陣列770或其部分相關聯的感測電路772及控制電路774。感測電路772可用以判定(感測)儲存於陣列770之列中的特定記憶體單元處的特定資料值(例如,0或1)。除了回應於來自主機758及/或主機介面760之命令而指示儲存、抹除等資料值以外,控制電路774亦可用以指示感測電路772感測特定資料值。命令可經由記憶體介面764直接發送至控制電路774或經由控制器766發送至控制電路774。Memory device 768 may be formed on the same die. A memory device (eg, memory device 768-1) may include one or more arrays of memory cells 770 formed on a die. The memory device may include sensing circuits 772 and control circuits 774 associated with one or more arrays 770 or portions thereof formed on the die. Sensing circuit 772 may be used to determine (sensing) a particular data value (eg, 0 or 1) stored at a particular memory cell in a row of array 770 . In addition to instructing data values such as saving, erasing, etc., in response to commands from the host 758 and/or the host interface 760, the control circuit 774 can also be used to instruct the sensing circuit 772 to sense specific data values. Commands may be sent directly to control circuit 774 via memory interface 764 or to control circuit 774 via controller 766 .

圖7中所說明之實施例可包括未說明以免混淆本發明之實施例的額外電路。例如,記憶體裝置768可包括位址電路以鎖存通過I/O電路提供於I/O連接器上方之位址信號。位址信號可由列解碼器及行解碼器接收及解碼以存取記憶體陣列770。應瞭解,位址輸入連接器的數目可取決於記憶體裝置768及/或記憶體陣列770的密度及/或架構。The embodiment illustrated in FIG. 7 may include additional circuitry not illustrated so as not to obscure embodiments of the invention. For example, memory device 768 may include address circuitry to latch address signals provided over I/O connectors through the I/O circuitry. Address signals may be received and decoded by column and row decoders to access memory array 770 . It should be appreciated that the number of address input connectors may depend on the density and/or architecture of memory device 768 and/or memory array 770 .

在本發明之上文詳細描述中,參考附圖,該等附圖形成本文之部分,且其中藉助於說明展示可如何實踐本發明之一或多個實施例。以充分細節描述此等實施例,以允許一般熟習此項技術者實踐本發明之實施例,且應理解可利用其他實施例,且可作出製程、電及/或結構改變而不背離本發明之範疇。In the foregoing detailed description of the present invention, reference is made to the accompanying drawings, which form a part hereof, and which show, by way of illustration, how one or more embodiments of the present invention may be practiced. These embodiments are described in sufficient detail to allow those of ordinary skill in the art to practice the embodiments of the invention, and it is to be understood that other embodiments may be utilized and process, electrical and/or structural changes may be made without departing from the invention category.

應理解,本文中所使用之術語僅出於描述特定實施例之目的,且不意欲為限制性的。如本文中所使用,除非上下文另外清晰指示,否則單數形式「一(a)」、「一(an)」及「該」包括單數及複數個指示物,「數個」、「至少一個」及「一或多個」同樣如此(例如,數個記憶體陣列可指一或多個記憶體陣列),然而「複數個」意圖指此類事物中之多於一者。此外,在整個本申請案中在許可意義上(亦即,可能、能夠)而非強制意義上(亦即,必須)使用詞「可(can/may)」。術語「包括」及其衍生物意謂「包括(但不限於)」。術語「耦接(coupled/coupling)」意謂實體地直接或間接連接,且除非另外說明,否則如適於上下文,可包括用於存取指令(例如,控制信號、位址信號等)及資料及/或用於移動(傳輸)指令及資料的無線連接。It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, unless the context clearly dictates otherwise, the singular forms "a", "an" and "the" include both singular and plural referents, "a plurality", "at least one" and The same is true for "one or more" (eg, a number of memory arrays may refer to one or more memory arrays), although "plurality" is intended to refer to more than one of such things. Furthermore, the word "can/may" is used throughout this application in a permissive sense (ie, may, can) rather than a mandatory sense (ie, must). The term "including" and its derivatives means "including (but not limited to)". The term "coupled/coupling" means physically connected, directly or indirectly, and unless otherwise stated, may include, as appropriate to the context, the use of access instructions (eg, control signals, address signals, etc.) and data and/or a wireless connection for moving (transmitting) commands and data.

雖然本文中已說明且描述包括半導體材料、底層材料、結構材料、介電材料、電容器材料、基板材料、矽酸鹽材料、氧化物材料、氮化物材料、緩衝材料、蝕刻化學物質、蝕刻製程、溶劑、記憶體裝置、記憶體單元、開口以及與半導體結構形成相關之其他材料及/或組件的各種組合及組態的實例實施例,但本發明之實施例不限於本文中明確列舉之彼等組合。半導體材料、底層材料、結構材料、介電材料、電容器材料、基板材料、矽酸鹽材料、氧化物材料、氮化物材料、緩衝材料、蝕刻化學物質、蝕刻製程、溶劑、記憶體裝置、記憶體單元、與半導體結構形成相關之開口及/或溝槽的側壁之不同於本文中所揭示之組合及組態的其他組合及組態明確地包括於本發明之範疇內。Although illustrated and described herein include semiconductor materials, underlying materials, structural materials, dielectric materials, capacitor materials, substrate materials, silicate materials, oxide materials, nitride materials, buffer materials, etch chemistries, etch processes, Example embodiments of various combinations and configurations of solvents, memory devices, memory cells, openings, and other materials and/or components related to semiconductor structure formation, although embodiments of the invention are not limited to those expressly recited herein combination. Semiconductor Materials, Substrate Materials, Structural Materials, Dielectric Materials, Capacitor Materials, Substrate Materials, Silicate Materials, Oxide Materials, Nitride Materials, Buffer Materials, Etching Chemicals, Etching Processes, Solvents, Memory Devices, Memory Other combinations and configurations of sidewalls of cells, openings and/or trenches associated with semiconductor structure formation than those disclosed herein are expressly included within the scope of the present invention.

儘管本文中已說明並描述特定實施例,但一般熟習此項技術者將瞭解,經計算以達成相同結果的配置可取代所示的特定實施例。本發明意欲涵蓋本發明之一或多個實施例之調適或變化。應理解,上文描述係以說明性方式而非限制性方式作出。在審閱上文描述後,上文實施例的組合及本文中未具體描述之其他實施例將對熟習此項技術者顯而易見。本發明之一或多個實施例之範疇包括使用上文結構及製程之其他應用。因此,應參考隨附申請專利範圍連同此申請專利範圍授權的等效物之完全範圍來判定本發明之一或多個實施例的範疇。Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that configurations calculated to achieve the same results may be substituted for the specific embodiments shown. The present invention is intended to cover adaptations or variations of one or more embodiments of the present invention. It is to be understood that the foregoing description has been made in an illustrative fashion, and not a restrictive one. Combinations of the above embodiments and other embodiments not specifically described herein will be apparent to those skilled in the art upon reviewing the above description. The scope of one or more embodiments of the present invention includes other applications using the above structures and processes. Therefore, the scope of one or more embodiments of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

在前述實施方式中,出於精簡本發明之目的,在單個實施例中將一些特徵分組在一起。不應將本發明之此方法解譯為反映本發明之所揭示實施例必須使用比在每一請求項中明確陳述之特徵更多的特徵的意圖。確切而言,如以下申請專利範圍所反映,本發明標的物在於單個所揭示實施例之少於全部的特徵。因此,以下申請專利範圍特此併入實施方式中,其中每一請求項就其自身而言作為單獨實施例。In the foregoing embodiments, for the purpose of streamlining the disclosure, some features were grouped together in a single embodiment. This method of the invention should not be interpreted as reflecting an intention that the disclosed embodiments of the invention must employ more features than are expressly recited in each claim. Rather, as reflected in the following claims, inventive subject matter resides in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Embodiments, with each claim standing on its own as a separate example.

100:三維(3D)記憶體陣列, 設備 101-1:感測線 101-2:感測線 102-1:豎直部分 102-2:豎直部分 102-3:豎直部分 102-4:豎直部分 102-5:豎直部分 102-6:豎直部分 102-7:豎直部分 102-8:豎直部分 104-1:水平部分 104-2:水平部分 104-3:水平部分 104-4:水平部分 106-1:存取線 106-2:存取線 106-3:存取線 106-4:存取線 106-5:存取線 106-6:存取線 106-7:存取線 106-8:存取線 106-9:存取線 106-10:存取線 106-11:存取線 106-12:存取線 108-1:記憶體單元 108-2:記憶體單元 201-1:感測線 201-2:感測線 202-1:豎直部分 202-2:豎直部分 202-3:豎直部分 202-4:豎直部分 202-5:豎直部分 202-6:豎直部分 202-7:豎直部分 202-8:豎直部分 204-1:水平部分 204-3:水平部分 206-1:存取線 206-2:存取線 206-3:存取線 206-4:存取線 206-5:存取線 206-6:存取線 206-7:存取線 206-8:存取線 206-9:存取線 206-10:存取線 206-11:存取線 206-12:存取線 208-1:記憶體單元 208-2:記憶體單元 210:3D記憶體陣列 301-1:感測線 301-2:感測線 302-1:豎直部分 302-2:豎直部分 302-3:豎直部分 302-4:豎直部分 302-5:豎直部分 302-6:豎直部分 302-8:豎直部分 304-1:水平部分 304-2:水平部分 304-3:水平部分 304-4:水平部分 306-1:存取線 306-2:存取線 306-3:存取線 306-4:存取線 306-5:存取線 306-6:存取線 306-7:存取線 306-8:存取線 306-9:存取線 306-10:存取線 306-11:存取線 306-12:存取線 308-1:記憶體單元 308-2:記憶體單元 312:3D記憶體陣列 402:豎直部分, 感測線 406-1:存取線 406-2:存取線 406-7:存取線 406-8:存取線 406-13:存取線 406-14:存取線 408-1:記憶體單元 408-3:記憶體單元 408-4:記憶體單元 408-5:記憶體單元 408-6:記憶體單元 408-7:記憶體單元 414:豎直堆疊 416-1:電極 416-2:電極 416-3:電極 416-4:電極 416-5:電極 416-6:電極 416-7:電極 416-8:電極 416-9:電極 418-10:電極 416-11:電極 416-12:電極 418-1:儲存元件材料 418-2:儲存元件材料 418-3:儲存元件材料 418-4:儲存元件材料 418-5:儲存元件材料 418-6:儲存元件材料 502-1:豎直部分 502-2:豎直部分 502-3:豎直部分 506-1:存取線 506-2:存取線 508-1:記憶體單元 508-2:記憶體單元 508-5:記憶體單元 508-8:記憶體單元 508-10:記憶體單元 508-11:記憶體單元 514:豎直堆疊 514-1:豎直堆疊 514-2:豎直堆疊 514-3:豎直堆疊 516-1:電極 516-2:電極 516-7:電極 516-8:電極 516-13:電極 516-14:電極 516-15:電極 516-16:電極 516-17:電極 518-18:電極 516-19:電極 516-20:電極 518-1:儲存元件材料 518-4:儲存元件材料 518-7:儲存元件材料 518-8:儲存元件材料 518-9:儲存元件材料 518-10:儲存元件材料 620:時間點 621:時間點 622:介電材料 624:儲存元件材料 625:開口 626-1:電極材料 626-2:電極材料 626-3:電極材料 626-4:電極材料 626-5:電極材料 626-6:電極材料 626-7:電極材料 626-8:電極材料 627:開口 628:感測線材料 629:水平部分 630:存取線材料, 時間點 632:介電材料 634:時間點 756:計算系統 758:主機 760:主機介面 762:記憶體系統 764:記憶體介面 766:控制器 768-1-768-N:記憶體裝置 770:記憶體陣列 772:感測電路 774:控制電路100: Three-dimensional (3D) memory arrays, devices 101-1: Sensing line 101-2: Sensing line 102-1: Vertical Section 102-2: Vertical Section 102-3: Vertical Section 102-4: Vertical Section 102-5: Vertical Section 102-6: Vertical Section 102-7: Vertical Section 102-8: Vertical Section 104-1: Horizontal Section 104-2: Horizontal Section 104-3: Horizontal Section 104-4: Horizontal Section 106-1: Access Line 106-2: Access Line 106-3: Access Line 106-4: Access Line 106-5: Access Line 106-6: Access Line 106-7: Access Line 106-8: Access Line 106-9: Access Line 106-10: Access Line 106-11: Access Line 106-12: Access Line 108-1: Memory Cell 108-2: Memory Cell 201-1: Sensing line 201-2: Sensing line 202-1: Vertical Section 202-2: Vertical Section 202-3: Vertical Section 202-4: Vertical Section 202-5: Vertical Section 202-6: Vertical Section 202-7: Vertical Section 202-8: Vertical Section 204-1: Horizontal Section 204-3: Horizontal Section 206-1: Access Line 206-2: Access Line 206-3: Access Line 206-4: Access Line 206-5: Access Line 206-6: Access Line 206-7: Access Line 206-8: Access Line 206-9: Access Line 206-10: Access Line 206-11: Access Line 206-12: Access Line 208-1: Memory Cell 208-2: Memory Cell 210: 3D Memory Array 301-1: Sensing line 301-2: Sensing line 302-1: Vertical Section 302-2: Vertical Section 302-3: Vertical Section 302-4: Vertical Section 302-5: Vertical Section 302-6: Vertical Section 302-8: Vertical Section 304-1: Horizontal Section 304-2: Horizontal Section 304-3: Horizontal Section 304-4: Horizontal Section 306-1: Access Line 306-2: Access Line 306-3: Access Line 306-4: Access Line 306-5: Access Line 306-6: Access Line 306-7: Access Line 306-8: Access Line 306-9: Access Line 306-10: Access Line 306-11: Access Line 306-12: Access Line 308-1: Memory Cell 308-2: Memory Cell 312: 3D Memory Array 402: Vertical Section, Sensing Line 406-1: Access Line 406-2: Access Line 406-7: Access Line 406-8: Access Line 406-13: Access Line 406-14: Access Line 408-1: Memory Cell 408-3: Memory Cell 408-4: Memory Cell 408-5: Memory Cell 408-6: Memory Cell 408-7: Memory Cell 414: vertical stack 416-1: Electrodes 416-2: Electrodes 416-3: Electrodes 416-4: Electrodes 416-5: Electrodes 416-6: Electrodes 416-7: Electrodes 416-8: Electrodes 416-9: Electrodes 418-10: Electrodes 416-11: Electrodes 416-12: Electrodes 418-1: Storage Element Materials 418-2: Storage Element Materials 418-3: Storage Element Materials 418-4: Storage Element Materials 418-5: Storage Element Materials 418-6: Storage Element Materials 502-1: Vertical Section 502-2: Vertical Section 502-3: Vertical Section 506-1: Access Line 506-2: Access Line 508-1: Memory Cell 508-2: Memory Cell 508-5: Memory Cell 508-8: Memory Cell 508-10: Memory Cell 508-11: Memory Cell 514: vertical stack 514-1: Vertical stacking 514-2: Vertical Stack 514-3: Vertical stacking 516-1: Electrodes 516-2: Electrodes 516-7: Electrodes 516-8: Electrodes 516-13: Electrodes 516-14: Electrodes 516-15: Electrodes 516-16: Electrodes 516-17: Electrodes 518-18: Electrodes 516-19: Electrodes 516-20: Electrodes 518-1: Storage Element Materials 518-4: Storage Element Materials 518-7: Storage Element Materials 518-8: Storage Element Materials 518-9: Storage Element Materials 518-10: Storage Element Materials 620: time point 621: time point 622: Dielectric Materials 624: Storage element material 625: Opening 626-1: Electrode Materials 626-2: Electrode Materials 626-3: Electrode Materials 626-4: Electrode Materials 626-5: Electrode Materials 626-6: Electrode Materials 626-7: Electrode Materials 626-8: Electrode Materials 627: Opening 628: Sensing wire material 629: Horizontal Section 630: Access Line Materials, Time Points 632: Dielectric Materials 634: time point 756: Computing Systems 758: Host 760:Host Interface 762: Memory System 764: Memory interface 766: Controller 768-1-768-N: Memory Devices 770: Memory Array 772: Sensing circuit 774: Control circuit

圖1說明根據本發明之數個實施例形成的具有感測線之實例三維(3D)記憶體陣列的3D視圖。1 illustrates a 3D view of an example three-dimensional (3D) memory array with sense lines formed in accordance with several embodiments of the present disclosure.

圖2說明根據本發明之數個實施例形成的具有感測線之另一實例三維(3D)記憶體陣列的3D視圖。2 illustrates a 3D view of another example three-dimensional (3D) memory array with sense lines formed in accordance with several embodiments of the present disclosure.

圖3說明根據本發明之數個實施例形成的具有感測線之另一實例三維(3D)記憶體陣列的3D視圖。3 illustrates a 3D view of another example three-dimensional (3D) memory array with sense lines formed in accordance with several embodiments of the present disclosure.

圖4說明根據本發明之數個實施例的3D記憶體陣列之實例豎直堆疊的截面側視圖。4 illustrates a cross-sectional side view of an example vertical stack of 3D memory arrays in accordance with several embodiments of the present disclosure.

圖5說明根據本發明之數個實施例的3D記憶體陣列之實例豎直堆疊的自上而下視圖。5 illustrates a top-down view of an example vertical stacking of a 3D memory array in accordance with several embodiments of the present disclosure.

圖6A至圖6J說明根據本發明之數個實施例的與形成3D記憶體陣列相關聯之處理步驟的截面圖。6A-6J illustrate cross-sectional views of processing steps associated with forming a 3D memory array in accordance with several embodiments of the present invention.

圖7為包括根據本發明之數個實施例形成的至少一個記憶體陣列之計算系統的功能方塊圖。7 is a functional block diagram of a computing system including at least one memory array formed in accordance with several embodiments of the present invention.

100:三維(3D)記憶體陣列,設備100: Three-dimensional (3D) memory arrays, devices

101-1:感測線101-1: Sensing line

101-2:感測線101-2: Sensing line

102-1:豎直部分102-1: Vertical Section

102-2:豎直部分102-2: Vertical Section

102-3:豎直部分102-3: Vertical Section

102-4:豎直部分102-4: Vertical Section

102-5:豎直部分102-5: Vertical Section

102-6:豎直部分102-6: Vertical Section

102-7:豎直部分102-7: Vertical Section

102-8:豎直部分102-8: Vertical Section

104-1:水平部分104-1: Horizontal Section

104-2:水平部分104-2: Horizontal Section

104-3:水平部分104-3: Horizontal Section

104-4:水平部分104-4: Horizontal Section

106-1:存取線106-1: Access Line

106-2:存取線106-2: Access Line

106-3:存取線106-3: Access Line

106-4:存取線106-4: Access Line

106-5:存取線106-5: Access Line

106-6:存取線106-6: Access Line

106-7:存取線106-7: Access Line

106-8:存取線106-8: Access Line

106-9:存取線106-9: Access Line

106-10:存取線106-10: Access Line

106-11:存取線106-11: Access Line

106-12:存取線106-12: Access Line

108-1:記憶體單元108-1: Memory Cell

108-2:記憶體單元108-2: Memory Cell

Claims (20)

一種設備,其包含: 一三維(3D)記憶體陣列,其包括: 一感測線;及 複數個豎直堆疊,其中該等豎直堆疊中之每一各別者包括: 該感測線之一不同各別部分; 一第一記憶體單元,其耦接至該感測線之彼部分; 一第二記憶體單元,其耦接至該感測線之彼部分; 一第一存取線,其耦接至該第一記憶體單元,其中該第一存取線正交於該感測線;及 一第二存取線,其耦接至該第二記憶體單元,其中該第二存取線正交於該感測線之彼部分。A device comprising: A three-dimensional (3D) memory array comprising: a sensing line; and a plurality of vertical stacks, wherein each respective one of the vertical stacks includes: a different portion of the sense line; a first memory unit coupled to the other part of the sensing line; a second memory unit coupled to the other part of the sensing line; a first access line coupled to the first memory cell, wherein the first access line is orthogonal to the sense line; and A second access line coupled to the second memory cell, wherein the second access line is orthogonal to that portion of the sensing line. 如請求項1之設備,其中: 該第一記憶體單元及該第二記憶體單元各自包括一儲存元件材料及複數個電極;且 該儲存元件材料為一硫屬化物材料。The equipment of claim 1, wherein: The first memory cell and the second memory cell each include a storage element material and a plurality of electrodes; and The storage element material is a chalcogenide material. 如請求項1至2中任一項之設備,其中該等豎直堆疊中之每一各別者包括: 一第三記憶體單元,其耦接至該感測線之彼部分; 一第四記憶體單元,其耦接至該感測線之彼部分; 一第三存取線,其耦接至該第三記憶體單元,其中該第三存取線正交於該感測線之彼部分;及 一第四存取線,其耦接至該第四記憶體單元,其中該第四存取線正交於該感測線之彼部分。The apparatus of any one of claims 1 to 2, wherein each of the vertical stacks comprises: a third memory unit coupled to the other part of the sensing line; a fourth memory unit coupled to the other part of the sensing line; a third access line coupled to the third memory cell, wherein the third access line is orthogonal to that portion of the sensing line; and A fourth access line is coupled to the fourth memory cell, wherein the fourth access line is orthogonal to that portion of the sensing line. 如請求項1至2中任一項之設備,其中該感測線之該等不同各別部分在該等豎直堆疊之一頂部部分處藉由該感測線之一水平部分連接。The apparatus of any one of claims 1 to 2, wherein the different respective portions of the sensing line are connected by a horizontal portion of the sensing line at a top portion of the vertical stacks. 如請求項1至2中任一項之設備,其中該感測線之該等不同各別部分在該等豎直堆疊之一底部部分處藉由該感測線之一水平部分連接。The apparatus of any one of claims 1 to 2, wherein the different respective portions of the sensing line are connected by a horizontal portion of the sensing line at a bottom portion of the vertical stacks. 一種設備,其包含: 一三維(3D)記憶體陣列,其包括: 一感測線;及 複數個豎直堆疊,其中該等豎直堆疊中之每一各別者包括: 該感測線之一不同各別部分,其中該感測線之該等不同各別部分在該等豎直堆疊之一頂部部分及該等豎直堆疊之一底部部分處藉由該感測線之水平部分連接; 一第一記憶體單元及一第二記憶體單元,其耦接至該感測線之該各別部分的對置側;及 一第一存取線及一第二存取線,其分別耦接至該第一記憶體單元及第二記憶體單元,其中該第一存取線及該第二存取線正交於該感測線之彼部分。A device comprising: A three-dimensional (3D) memory array comprising: a sensing line; and a plurality of vertical stacks, wherein each respective one of the vertical stacks includes: A different respective portion of the sensing line, wherein the different respective portions of the sensing line are at a top portion of the vertical stacks and a bottom portion of the vertical stacks by a horizontal portion of the sensing line connect; a first memory cell and a second memory cell coupled to opposite sides of the respective portion of the sense line; and A first access line and a second access line are coupled to the first memory cell and the second memory cell, respectively, wherein the first access line and the second access line are orthogonal to the The other part of the sensing line. 如請求項6之設備,其中在該等豎直堆疊之該底部部分處的該感測線之該水平部分形成於該3D記憶體陣列之一基板材料中。6. The apparatus of claim 6, wherein the horizontal portion of the sense lines at the bottom portion of the vertical stacks is formed in a substrate material of the 3D memory array. 如請求項6至7中任一項之設備,其中在該等豎直堆疊之該頂部部分處的該感測線之該水平部分與在該等豎直堆疊之該底部部分處的該感測線之該水平部分對準。The apparatus of any one of claims 6 to 7, wherein the horizontal portion of the sensing line at the top portion of the vertical stacks and the sensing line at the bottom portion of the vertical stacks The horizontal portion is aligned. 如請求項6至7中任一項之設備,其中啟動在該等豎直堆疊之該底部部分或該頂部部分處的該感測線之該水平部分啟動每一豎直堆疊之該感測線的該等不同各別部分。The apparatus of any one of claims 6 to 7, wherein activating the horizontal portion of the sensing line at the bottom portion or the top portion of the vertical stacks activates the sensing line of each vertical stack and so on for different parts. 一種設備,其包含: 一三維(3D)交叉點記憶體陣列,其包括: 一感測線;及 複數個豎直堆疊,其中該等豎直堆疊中之每一各別者包括: 該感測線之一不同各別部分,其中一些豎直堆疊之該感測線的該等不同各別部分在彼等豎直堆疊之一頂部部分處連接至該感測線之一水平部分,且其他豎直堆疊之該感測線的該等不同各別部分在彼等豎直堆疊之一底部部分處連接至該感測線之一水平部分; 一第一記憶體單元及一第二記憶體單元,其耦接至位元線之彼各別部分的對置側;及 一第一存取線及一第二存取線,其分別耦接至該第一記憶體單元及第二記憶體單元,其中該第一存取線及該第二存取線正交於該感測線之彼部分。A device comprising: A three-dimensional (3D) crosspoint memory array comprising: a sensing line; and a plurality of vertical stacks, wherein each respective one of the vertical stacks includes: A different respective portion of the sense line, wherein the different respective portions of the sense line of some vertical stacks are connected to a horizontal portion of the sense line at a top portion of the vertical stack, and other vertical stacks are connected to a horizontal portion of the sense line the different respective portions of the sense lines of the vertical stack are connected to a horizontal portion of the sense lines at a bottom portion of the vertical stacks; a first memory cell and a second memory cell coupled to opposite sides of their respective portions of the bit line; and A first access line and a second access line are coupled to the first memory cell and the second memory cell, respectively, wherein the first access line and the second access line are orthogonal to the The other part of the sensing line. 如請求項10之設備,其中: 在該等豎直堆疊之該頂部部分處連接至該感測線之該水平部分的該感測線之該等部分並不連接至在該等豎直堆疊之該底部部分處的該感測線之該水平部分;及 在該等豎直堆疊之該底部部分處連接至該感測線之該水平部分的該感測線之該等部分並不連接至在該等豎直堆疊之該頂部部分處的該感測線之該水平部分。The apparatus of claim 10, wherein: The portions of the sense line connected to the horizontal portion of the sense line at the top portion of the vertical stacks are not connected to the horizontal portion of the sense line at the bottom portion of the vertical stacks part; and The portions of the sense line connected to the horizontal portion of the sense line at the bottom portion of the vertical stacks are not connected to the horizontal portion of the sense line at the top portion of the vertical stacks part. 如請求項10之設備,其中一些豎直堆疊之該感測線的該等不同各別部分在彼等豎直堆疊之該頂部部分處及該底部部分處連接至該感測線之該水平部分。The apparatus of claim 10, wherein the different respective portions of the sense lines of some vertical stacks are connected to the horizontal portion of the sense lines at the top portion and the bottom portion of their vertical stacks. 一種方法,其包含: 在一半導體材料上方形成一第一介電材料及一儲存元件材料; 在該第一介電材料及該儲存元件材料中形成第一複數個開口; 移除鄰近該第一複數個開口之該儲存元件材料之部分; 在自其移除該儲存元件材料之該等部分的一區域中形成一第一電極材料; 在鄰近該第一電極材料之該第一複數個開口中形成一感測線材料; 在該第一介電材料及該儲存元件材料中形成第二複數個開口; 移除鄰近該第二複數個開口之該儲存元件材料之部分; 在自其移除鄰近該第二複數個開口之該儲存元件材料的該等部分之一區域中形成一第二電極材料; 在鄰近該第二電極材料之該第二複數個開口中形成一存取線材料; 自該第二複數個開口移除該存取線材料的一部分; 在自其移除該存取線材料之該部分的一區域中形成一第二介電材料;及 在該感測線材料上方形成一水平感測線材料以連接形成於該第一複數個開口中的該感測線材料。A method that includes: forming a first dielectric material and a storage element material over a semiconductor material; forming a first plurality of openings in the first dielectric material and the storage element material; removing portions of the storage element material adjacent the first plurality of openings; forming a first electrode material in an area from which the portions of the storage element material are removed; forming a sensing line material in the first plurality of openings adjacent to the first electrode material; forming a second plurality of openings in the first dielectric material and the storage element material; removing portions of the storage element material adjacent the second plurality of openings; forming a second electrode material in an area from which the portions of the storage element material adjacent the second plurality of openings are removed; forming an access line material in the second plurality of openings adjacent to the second electrode material; removing a portion of the access line material from the second plurality of openings; forming a second dielectric material in an area from which the portion of the access line material was removed; and A horizontal sensing line material is formed over the sensing line material to connect the sensing line material formed in the first plurality of openings. 如請求項13之方法,其進一步包含交替地形成該第一介電材料及該儲存元件材料。The method of claim 13, further comprising alternately forming the first dielectric material and the storage element material. 如請求項13至14中任一項之方法,其進一步包含相比鄰近該第一複數個開口之儲存元件材料,移除鄰近該第二複數個開口之較多儲存元件材料。The method of any of claims 13-14, further comprising removing more storage element material adjacent the second plurality of openings than storage element material adjacent the first plurality of openings. 如請求項15之方法,其進一步包含移除該第一電極材料及該第二電極材料之一部分。The method of claim 15, further comprising removing a portion of the first electrode material and the second electrode material. 如請求項13至14中任一項之方法,其進一步包含形成鄰近該第一複數個開口之該第二複數個開口。The method of any one of claims 13-14, further comprising forming the second plurality of openings adjacent to the first plurality of openings. 一種方法,其包含: 在一基板材料中形成一第一水平感測線材料; 在該水平感測線材料上方形成一第一介電材料及一儲存元件材料; 在該第一介電材料及該儲存元件材料中形成第一複數個開口; 移除鄰近該第一複數個開口之該儲存元件材料之部分; 在自其移除該儲存元件材料之一區域中形成一第一電極材料; 在該第一複數個開口中形成一感測線材料; 在該第一介電材料及該儲存元件材料中形成第二複數個開口; 移除鄰近該第二複數個開口之該儲存元件材料之部分; 在自其移除鄰近該第二複數個開口之該儲存元件材料的該等部分之一區域中形成一第二電極材料; 在鄰近該第二電極材料之該第二複數個開口中形成一存取線材料; 自該第二複數個開口移除該存取線材料的一部分; 在自其移除該存取線材料之一區域中形成一第二介電材料;及 在該感測線材料上方形成一第二水平感測線材料以連接形成於該第一複數個開口中之該感測線材料。A method that includes: forming a first horizontal sensing line material in a substrate material; forming a first dielectric material and a storage element material over the horizontal sensing line material; forming a first plurality of openings in the first dielectric material and the storage element material; removing portions of the storage element material adjacent the first plurality of openings; forming a first electrode material in an area from which the storage element material was removed; forming a sensing line material in the first plurality of openings; forming a second plurality of openings in the first dielectric material and the storage element material; removing portions of the storage element material adjacent the second plurality of openings; forming a second electrode material in an area from which the portions of the storage element material adjacent the second plurality of openings are removed; forming an access line material in the second plurality of openings adjacent to the second electrode material; removing a portion of the access line material from the second plurality of openings; forming a second dielectric material in an area from which the access line material was removed; and A second horizontal sensing line material is formed over the sensing line material to connect the sensing line material formed in the first plurality of openings. 如請求項18之方法,其進一步包含在該第二複數個開口中形成該第二介電材料。The method of claim 18, further comprising forming the second dielectric material in the second plurality of openings. 如請求項18之方法,其進一步包含: 在該第一複數個開口中形成該存取線材料及在該第二複數個開口中形成該感測線材料;及 在該存取線材料上方形成一水平存取線材料以連接形成於該第一複數個開口中之該存取線材料。The method of claim 18, further comprising: forming the access line material in the first plurality of openings and forming the sense line material in the second plurality of openings; and A horizontal access line material is formed over the access line material to connect the access line material formed in the first plurality of openings.
TW110114486A 2020-05-08 2021-04-22 Three-dimensional memory arrays, and methods of forming the same TWI778593B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/870,239 2020-05-08
US16/870,239 US11355554B2 (en) 2020-05-08 2020-05-08 Sense lines in three-dimensional memory arrays, and methods of forming the same

Publications (2)

Publication Number Publication Date
TW202147568A true TW202147568A (en) 2021-12-16
TWI778593B TWI778593B (en) 2022-09-21

Family

ID=78413184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110114486A TWI778593B (en) 2020-05-08 2021-04-22 Three-dimensional memory arrays, and methods of forming the same

Country Status (7)

Country Link
US (2) US11355554B2 (en)
EP (1) EP4147237A1 (en)
JP (1) JP2023524564A (en)
KR (1) KR20220164793A (en)
CN (1) CN115552528A (en)
TW (1) TWI778593B (en)
WO (1) WO2021225783A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355554B2 (en) * 2020-05-08 2022-06-07 Micron Technology, Inc. Sense lines in three-dimensional memory arrays, and methods of forming the same

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042749B2 (en) 2002-05-16 2006-05-09 Micron Technology, Inc. Stacked 1T-nmemory cell structure
EP1852874B1 (en) * 2006-05-04 2010-04-28 Hitachi Ltd. Magnetic memory device
EP1863034B1 (en) * 2006-05-04 2011-01-05 Hitachi, Ltd. Magnetic memory device
US8461566B2 (en) * 2009-11-02 2013-06-11 Micron Technology, Inc. Methods, structures and devices for increasing memory density
US8765581B2 (en) 2009-11-30 2014-07-01 Micron Technology, Inc. Self-aligned cross-point phase change memory-switch array
US8513722B2 (en) * 2010-03-02 2013-08-20 Micron Technology, Inc. Floating body cell structures, devices including same, and methods for forming same
US8507966B2 (en) * 2010-03-02 2013-08-13 Micron Technology, Inc. Semiconductor cells, arrays, devices and systems having a buried conductive line and methods for forming the same
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8803214B2 (en) * 2010-06-28 2014-08-12 Micron Technology, Inc. Three dimensional memory and methods of forming the same
KR101760658B1 (en) 2010-11-16 2017-07-24 삼성전자 주식회사 Non-volatile memory device
US8435859B2 (en) * 2011-02-16 2013-05-07 Micron Technology, Inc. Methods of forming electrical contacts
US9349445B2 (en) * 2011-09-16 2016-05-24 Micron Technology, Inc. Select devices for memory cell applications
US8780607B2 (en) * 2011-09-16 2014-07-15 Micron Technology, Inc. Select devices for memory cell applications
US9245926B2 (en) 2012-05-07 2016-01-26 Micron Technology, Inc. Apparatuses and methods including memory access in cross point memory
US8729523B2 (en) 2012-08-31 2014-05-20 Micron Technology, Inc. Three dimensional memory array architecture
US8841649B2 (en) 2012-08-31 2014-09-23 Micron Technology, Inc. Three dimensional memory array architecture
US9025398B2 (en) * 2012-10-12 2015-05-05 Micron Technology, Inc. Metallization scheme for integrated circuit
US9190144B2 (en) * 2012-10-12 2015-11-17 Micron Technology, Inc. Memory device architecture
US8891280B2 (en) * 2012-10-12 2014-11-18 Micron Technology, Inc. Interconnection for memory electrodes
US20150028280A1 (en) * 2013-07-26 2015-01-29 Micron Technology, Inc. Memory cell with independently-sized elements
US9673054B2 (en) * 2014-08-18 2017-06-06 Micron Technology, Inc. Array of gated devices and methods of forming an array of gated devices
US9356074B1 (en) 2014-11-17 2016-05-31 Sandisk Technologies Inc. Memory array having divided apart bit lines and partially divided bit line selector switches
US9741923B2 (en) * 2015-09-25 2017-08-22 Integrated Magnetoelectronics Corporation SpinRAM
US10134470B2 (en) 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
WO2018140102A1 (en) * 2017-01-30 2018-08-02 Micron Technology, Inc. Integrated memory assemblies comprising multiple memory array decks
KR102275052B1 (en) * 2017-05-08 2021-07-09 마이크론 테크놀로지, 인크 memory array
US10825815B2 (en) * 2017-05-08 2020-11-03 Micron Technology, Inc. Memory arrays
KR102366798B1 (en) 2017-06-13 2022-02-25 삼성전자주식회사 Semiconductor devices
KR102289598B1 (en) 2017-06-26 2021-08-18 삼성전자주식회사 Non-volatile memory device and memory system including the same and program method thereof
WO2019005651A1 (en) * 2017-06-29 2019-01-03 Micron Technology, Inc. Memory arrays comprising vertically-alternating tiers of insulative material and memory cells and methods of forming a memory array comprising memory cells individually comprising a transistor and a capacitor
US10424728B2 (en) 2017-08-25 2019-09-24 Micron Technology, Inc. Self-selecting memory cell with dielectric barrier
US10461125B2 (en) 2017-08-29 2019-10-29 Micron Technology, Inc. Three dimensional memory arrays
US11177271B2 (en) * 2017-09-14 2021-11-16 Micron Technology, Inc. Device, a method used in forming a circuit structure, a method used in forming an array of elevationally-extending transistors and a circuit structure adjacent thereto
US10490602B2 (en) 2017-09-21 2019-11-26 Micron Technology, Inc. Three dimensional memory arrays
US10593399B2 (en) 2018-03-19 2020-03-17 Micron Technology, Inc. Self-selecting memory array with horizontal bit lines
US10950663B2 (en) 2018-04-24 2021-03-16 Micron Technology, Inc. Cross-point memory array and related fabrication techniques
US10729012B2 (en) 2018-04-24 2020-07-28 Micron Technology, Inc. Buried lines and related fabrication techniques
US10825867B2 (en) 2018-04-24 2020-11-03 Micron Technology, Inc. Cross-point memory array and related fabrication techniques
US10381409B1 (en) 2018-06-07 2019-08-13 Sandisk Technologies Llc Three-dimensional phase change memory array including discrete middle electrodes and methods of making the same
US10497437B1 (en) 2018-07-24 2019-12-03 Macronix International Co., Ltd. Decoding scheme for 3D cross-point memory array
US10600468B2 (en) 2018-08-13 2020-03-24 Wuxi Petabyte Technologies Co, Ltd. Methods for operating ferroelectric memory cells each having multiple capacitors
US11538513B2 (en) * 2019-08-16 2022-12-27 Micron Technology, Inc. Memory element for weight update in a neural network
US11355554B2 (en) * 2020-05-08 2022-06-07 Micron Technology, Inc. Sense lines in three-dimensional memory arrays, and methods of forming the same

Also Published As

Publication number Publication date
US11616098B2 (en) 2023-03-28
JP2023524564A (en) 2023-06-12
US20220302212A1 (en) 2022-09-22
WO2021225783A1 (en) 2021-11-11
US11355554B2 (en) 2022-06-07
TWI778593B (en) 2022-09-21
CN115552528A (en) 2022-12-30
EP4147237A1 (en) 2023-03-15
KR20220164793A (en) 2022-12-13
US20210351234A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US11101326B2 (en) Methods of forming a phase change memory with vertical cross-point structure
JP6982089B2 (en) Activated boundary quilt architecture memory
US9735202B1 (en) Implementation of VMCO area switching cell to VBL architecture
JP6978595B2 (en) 3D memory array
TW201603342A (en) Three dimensional memory device having stacked conductive channels
KR20190119180A (en) 3-D memory array
TWI778593B (en) Three-dimensional memory arrays, and methods of forming the same
KR20200022664A (en) Electronic device and method for fabricating the same
TW202249013A (en) Decoding architecture for memory tiles
US20190157349A1 (en) Electronic device and method of fabricating the same
US9748479B2 (en) Memory cells including vertically oriented adjustable resistance structures
TWI798683B (en) Memory devices, methods of operating memory devices, and memory apparatuses associated with a vertical decoder
TWI755113B (en) Socket design for a memory device
KR20200127746A (en) Electronic device
TW202249011A (en) Decoding architecture for memory devices
EP3761365B1 (en) Dielectric barrier at non-volatile memory tile edge
TW202324703A (en) Cross point array architecture for multiple decks
KR20230113056A (en) Semiconductor memory device and manufacturing method thereof
TW202249009A (en) Decoding architecture for word line tiles

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent