TW202146948A - Near-infrared cutoff filter capable of significantly suppressing reflectance of a visible light region in a wide incident angle range - Google Patents

Near-infrared cutoff filter capable of significantly suppressing reflectance of a visible light region in a wide incident angle range Download PDF

Info

Publication number
TW202146948A
TW202146948A TW110117241A TW110117241A TW202146948A TW 202146948 A TW202146948 A TW 202146948A TW 110117241 A TW110117241 A TW 110117241A TW 110117241 A TW110117241 A TW 110117241A TW 202146948 A TW202146948 A TW 202146948A
Authority
TW
Taiwan
Prior art keywords
reflectance
film
matching film
sio
matching
Prior art date
Application number
TW110117241A
Other languages
Chinese (zh)
Inventor
長田崇
Original Assignee
日商Agc股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Agc股份有限公司 filed Critical 日商Agc股份有限公司
Publication of TW202146948A publication Critical patent/TW202146948A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides a near-infrared cutoff filter, which can significantly suppress a reflectance of a visible light region in a wide incident angle range. The near-infrared cutoff filter has a transparent substrate, an optical multilayer film, a first matching film, and a second matching film disposed on the outermost side. The first matching film is provided on the optical multilayer film or between the transparent substrate and the optical multilayer film. In the near-infrared cutoff filter, when a regular reflectance of light incident at an incident angle of 5 degrees from the side of the second matching film is defined as a first reflectance R1, a regular reflectance of light incident at an incident angle of 40 degree is defined as a second reflectance R2, an approximate straight line of R1 in a wavelength range from 480nm to 680nm is defined as y1, and an approximate straight line of R2 in a wavelength range from 450nm to 650nm is defined as y2, the maximum value [Delta]R1 of the absolute value of the difference between the values of R1 and y1 is less than 5%, and the maximum value [Delta]R2 of the absolute value of the difference between the values of R2 and y2 is less than 6%.

Description

近紅外線截止濾波器near infrared cut filter

本發明係關於一種近紅外線截止濾波器。The present invention relates to a near-infrared cut-off filter.

數位相機、數位視訊等攝像裝置具備用以感測人物、景色等之固體攝像元件(影像感測器)。但是,與人類之視感相比,固體攝像元件對紅外光顯示較強之感度。因此,為了使利用固體攝像元件所獲得之圖像接近於人類之視感度,進而於攝像裝置設置有近紅外線截止濾波器。Imaging devices such as digital cameras and digital video cameras include solid-state imaging elements (image sensors) for sensing people, scenery, and the like. However, the solid-state imaging element exhibits a higher sensitivity to infrared light than the human perception. Therefore, in order to make the image obtained by the solid-state imaging element close to the visual sensitivity of human beings, the imaging device is further provided with a near-infrared cut filter.

一般而言,此種近紅外線截止濾波器係藉由於透明基板上設置屏蔽近紅外線之光學多層膜而構成。光學多層膜係藉由將包含高折射率之介電體(例如TiO2 )之薄膜、與包含低折射率之介電體(例如SiO2 )之薄膜交替積層而構成。 [先前技術文獻] [專利文獻]In general, such a near-infrared cut filter is constituted by disposing a near-infrared-shielding optical multilayer film on a transparent substrate. The optical multilayer film is formed by alternately laminating a thin film containing a dielectric with a high refractive index (eg, TiO 2 ) and a thin film containing a dielectric with a low refractive index (eg, SiO 2 ). [Prior Art Literature] [Patent Literature]

[專利文獻1]國際公開第WO2014/104370號[Patent Document 1] International Publication No. WO2014/104370

[發明所欲解決之問題][Problems to be Solved by Invention]

已知具有光學多層膜之近紅外線截止濾波器常有光學特性相依於入射光角度而發生變化之情況。因此,會產生如下等問題:例如即便對具有接近法線方向之入射角之光可獲得所需之光學特性,但對具有較大偏離法線方向之入射角之光,無法獲得所需之光學特性等問題。It is known that near-infrared cut filters with optical multilayer films often have optical properties that vary depending on the angle of incident light. Therefore, problems such as the following arise: For example, even if the desired optical characteristics can be obtained for light with an incident angle close to the normal direction, the desired optical properties cannot be obtained for light with a large incident angle deviated from the normal direction. characteristics, etc.

又,將近紅外線截止濾波器應用於固體攝像元件時,此種近紅外線截止濾波器之光學特性之入射角度相依性於像之清晰性方面會成問題。例如,若入射至近紅外線截止濾波器之可見光之一部分不透過而是反射,則此種反射光會引起產生雜散光。Furthermore, when a near-infrared cut filter is applied to a solid-state imaging device, the dependence of the incident angle of the optical characteristics of such a near-infrared cut filter on the sharpness of the image becomes a problem. For example, if part of the visible light incident on the near-infrared cut filter is not transmitted but reflected, the reflected light will cause stray light to be generated.

本發明係鑒於上述背景而完成,本發明之目的在於提供一種能夠於寬廣之入射角度範圍顯著抑制可見光區域之反射率之近紅外線截止濾波器。 [解決問題之技術手段]The present invention has been made in view of the above-mentioned background, and an object of the present invention is to provide a near-infrared cut filter capable of significantly suppressing the reflectance in the visible light region in a wide range of incident angles. [Technical means to solve problems]

本發明提供一種近紅外線截止濾波器,具有: 透明基板,其具有第1表面; 光學多層膜,其設置於該透明基板之上述第1表面之側; 第1匹配膜,其設置於上述透明基板之上述第1表面之側;及 第2匹配膜,其設置於上述第1表面之最外側;且 上述光學多層膜具有高折射率層與低折射率層之交替積層構造,且具有使近紅外線反射之功能, 上述第1及第2匹配膜具有抑制可見光反射之功能, 上述第1匹配膜設置於上述光學多層膜之上、或上述透明基板與上述光學多層膜之間, 於該近紅外線截止濾波器中, 當將自上述第2匹配膜之側以5°之入射角度入射之光之正規反射率作為第1反射率R1 ,將自上述第2匹配膜之側以40°之入射角度入射之光之正規反射率作為第2反射率R2 ,且 將波長480 nm~680 nm範圍之上述第1反射率R1 之近似直線設為y1 ,將波長450 nm~650 nm範圍之上述第2反射率R2 之近似直線設為y2 時, 於波長480 nm~680 nm之範圍,同一波長下之上述第1反射率R1 與上述近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%, 於波長450 nm~650 nm之範圍,同一波長下之上述第2反射率R2 與上述近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。 [發明之效果]The present invention provides a near-infrared cut filter comprising: a transparent substrate having a first surface; an optical multilayer film disposed on the side of the first surface of the transparent substrate; a first matching film disposed on the transparent substrate the side of the above-mentioned first surface; and a second matching film, which is provided on the outermost side of the above-mentioned first surface; and the above-mentioned optical multilayer film has a high-refractive index layer and a low-refractive index layer. The function of reflection, the first and second matching films have the function of suppressing the reflection of visible light, the first matching film is disposed on the optical multilayer film, or between the transparent substrate and the optical multilayer film, and the near infrared rays are cut off. In the filter, when the normal reflectance of light incident from the side of the second matching film at an incident angle of 5° is taken as the first reflectivity R 1 , the incident angle from the side of the second matching film is 40°. The normal reflectance of incident light is taken as the second reflectance R 2 , and the approximate straight line of the first reflectivity R 1 in the wavelength range of 480 nm to 680 nm is taken as y 1 , and the above-mentioned first reflectivity in the wavelength range of 450 nm to 650 nm When the approximate straight line of the second reflectance R 2 is set as y 2 , in the wavelength range of 480 nm to 680 nm, the absolute difference between the value of the first reflectivity R 1 and the approximate straight line y 1 at the same wavelength The maximum value of the value ΔR 1 is less than 5%, in the wavelength range of 450 nm to 650 nm, the maximum value of the absolute value of the difference between the above-mentioned second reflectance R 2 and the value of the above-mentioned approximate straight line y 2 at the same wavelength ΔR 2 was less than 6%. [Effect of invention]

本發明可提供一種能夠於寬廣之入射角度範圍顯著抑制可見光區域之反射率之近紅外線截止濾波器。The present invention can provide a near-infrared cut filter capable of significantly suppressing the reflectivity of the visible light region in a wide range of incident angles.

以下,對本發明之一實施方式進行說明。Hereinafter, one embodiment of the present invention will be described.

本發明之一實施方式提供一種近紅外線截止濾波器,具有: 透明基板,其具有第1表面; 光學多層膜,其設置於該透明基板之上述第1表面之側; 第1匹配膜,其設置於上述透明基板之上述第1表面之側;及 第2匹配膜,其設置於上述第1表面之最外側;且 上述光學多層膜具有高折射率層與低折射率層之交替積層構造,且具有使近紅外線反射之功能, 上述第1及第2匹配膜具有抑制可見光反射之功能, 上述第1匹配膜設置於上述光學多層膜之上、或上述透明基板與上述光學多層膜之間, 於該近紅外線截止濾波器中, 當將自上述第2匹配膜之側以5°之入射角度入射之光之正規反射率作為第1反射率R1 ,將自上述第2匹配膜之側以40°之入射角度入射之光之正規反射率作為第2反射率R2 ,且 將波長480 nm~680 nm範圍之上述第1反射率R1 之近似直線設為y1 ,將波長450 nm~650 nm範圍之上述第2反射率R2 之近似直線設為y2 時, 於波長480 nm~680 nm之範圍,同一波長下之上述第1反射率R1 與上述近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%, 於波長450 nm~650 nm之範圍,同一波長下之上述第2反射率R2 與上述近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。One embodiment of the present invention provides a near-infrared cut filter, comprising: a transparent substrate having a first surface; an optical multilayer film disposed on the side of the first surface of the transparent substrate; a first matching film disposed on the side of the first surface of the transparent substrate; and a second matching film disposed on the outermost side of the first surface; and the optical multilayer film has an alternate lamination structure of high-refractive index layers and low-refractive index layers, and It has the function of reflecting near infrared rays, the first and second matching films have the function of suppressing the reflection of visible light, the first matching film is arranged on the optical multilayer film, or between the transparent substrate and the optical multilayer film, at In the near-infrared cut filter, when the normal reflectance of light incident at an incident angle of 5° from the side of the second matching film is taken as the first reflectance R 1 , the normal reflectance of light incident from the side of the second matching film is set to be 40 The normal reflectance of incident light at an incident angle of ° is taken as the second reflectance R 2 , and the approximate straight line of the first reflectivity R 1 in the wavelength range of 480 nm to 680 nm is taken as y 1 , and the wavelength of 450 nm to 650 is taken as y 1 . When the approximate straight line of the second reflectance R 2 in the nm range is set as y 2 , in the wavelength range of 480 nm to 680 nm, the value between the first reflectivity R 1 and the approximate straight line y 1 at the same wavelength The maximum value of the absolute value of the difference ΔR 1 is less than 5%, in the wavelength range of 450 nm to 650 nm, the absolute value of the difference between the above-mentioned second reflectance R 2 and the value of the above-mentioned approximate straight line y 2 at the same wavelength The maximum value ΔR 2 is less than 6%.

本發明之一實施方式之近紅外線截止濾波器具有光學多層膜。該光學多層膜具有阻止近紅外線之透過而使該近紅外線反射之功能。A near-infrared cut filter according to an embodiment of the present invention has an optical multilayer film. The optical multilayer film has the function of preventing the transmission of near-infrared rays and reflecting the near-infrared rays.

又,本發明之一實施方式之近紅外線截止濾波器具有第1及第2匹配膜。第1及第2匹配膜具有抑制可見光反射之功能。Moreover, the near-infrared cut filter which concerns on one Embodiment of this invention has a 1st and a 2nd matching film. The first and second matching films have a function of suppressing reflection of visible light.

又,本發明之一實施方式之近紅外線截止濾波器具有以下特徵,即,於波長480 nm~680 nm之範圍,同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%。進而,本發明之一實施方式之近紅外線截止濾波器具有以下特徵,即,於波長450 nm~650 nm之範圍,同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。In addition, the near-infrared cut filter according to an embodiment of the present invention is characterized in that, in the wavelength range of 480 nm to 680 nm, the difference between the first reflectance R 1 at the same wavelength and the value of the approximate straight line y 1 The maximum value ΔR 1 of the absolute value of the difference is less than 5%. Furthermore, the near-infrared cut filter according to an embodiment of the present invention is characterized in that, in the wavelength range of 450 nm to 650 nm, the difference between the second reflectance R 2 at the same wavelength and the value of the approximate straight line y 2 The maximum value ΔR 2 of the absolute value of the difference is less than 6%.

具有此種構成之近紅外線截止濾波器如以下詳細所示,可於寬廣之入射角度範圍顯著抑制可見光區域之反射率。因此,將本發明之一實施方式之近紅外線截止濾波器應用於固體攝像元件之情形時,能夠獲得清晰之像。The near-infrared cut filter having such a configuration can significantly suppress the reflectance in the visible light region in a wide range of incident angles, as shown in detail below. Therefore, when the near-infrared cut filter according to one embodiment of the present invention is applied to a solid-state imaging element, a clear image can be obtained.

(本發明之一實施方式之近紅外線截止濾波器) 其次,參照圖式對本發明之一實施方式更詳細地進行說明。(Near-infrared cut filter according to an embodiment of the present invention) Next, an embodiment of the present invention will be described in more detail with reference to the drawings.

圖1中,模式性表示本發明之一實施方式之近紅外線截止濾波器(以下,稱為「第1光學濾波器」)之剖面。In FIG. 1, the cross section of the near-infrared cut filter (henceforth "1st optical filter") which concerns on one Embodiment of this invention is shown typically.

如圖1所示,第1光學濾波器100具備:具有第1表面112之透明基板110、光學多層膜120、第1匹配膜140、及第2匹配膜160。As shown in FIG. 1 , the first optical filter 100 includes a transparent substrate 110 having a first surface 112 , an optical multilayer film 120 , a first matching film 140 , and a second matching film 160 .

光學多層膜120設置於透明基板110之第1表面112上,第1匹配膜140設置於光學多層膜120上。又,第2匹配膜160設置於第1表面112之最外側。The optical multilayer film 120 is disposed on the first surface 112 of the transparent substrate 110 , and the first matching film 140 is disposed on the optical multilayer film 120 . In addition, the second matching film 160 is provided on the outermost side of the first surface 112 .

光學多層膜120具有阻止近紅外線之透過而使該近紅外線反射之功能。又,第1匹配膜140及第2匹配膜160具有抑制可見光反射之功能。The optical multilayer film 120 has the function of preventing the transmission of near infrared rays and reflecting the near infrared rays. In addition, the first matching film 140 and the second matching film 160 have a function of suppressing the reflection of visible light.

此處,將自第2匹配膜160之側相對於法線以5°之入射角度入射之光之正規反射率稱為第1反射率R1 ,將相對於法線以40°之入射角度入射之光之正規反射率稱為第2反射率R2 。又,將波長480 nm~680 nm範圍之第1反射率R1 之近似直線設為y1 ,將波長450 nm~650 nm範圍之第2反射率R2 之近似直線設為y2Here, the normal reflectance of light incident at an incident angle of 5° with respect to the normal from the side of the second matching film 160 is referred to as the first reflectance R 1 , and the incident light will be incident at an incident angle of 40° with respect to the normal. The normal reflectance of light is called the second reflectance R 2 . Also, let the approximate straight line of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm be y 1 , and the approximate straight line of the second reflectivity R 2 in the wavelength range of 450 nm to 650 nm will be y 2 .

該情形時,第1光學濾波器100具有以下特徵: 於波長480 nm~680 nm之範圍,同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%, 於波長450 nm~650 nm之範圍,同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。In this case, the first optical filter 100 has the following characteristics: In the wavelength range of 480 nm to 680 nm, the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength is the largest The value ΔR 1 is less than 5%, and in the wavelength range of 450 nm to 650 nm, the maximum value of the absolute value of the difference between the second reflectivity R 2 and the value of the approximate straight line y 2 at the same wavelength ΔR 2 is less than 6 %.

例如,ΔR1 亦可未達4%,較佳為未達3%。又,例如,ΔR2 亦可未達5.5%,較佳為未達5%。For example, ΔR 1 may be less than 4%, preferably less than 3%. Moreover, for example, ΔR 2 may be less than 5.5%, preferably less than 5%.

第1光學濾波器100可於寬廣之入射角度範圍顯著抑制可見光區域之反射率。因此,將第1光學濾波器100應用於固體攝像元件之情形時,能夠獲得清晰之像。The first optical filter 100 can significantly suppress the reflectance in the visible light region in a wide range of incident angles. Therefore, when the first optical filter 100 is applied to a solid-state imaging element, a clear image can be obtained.

(本發明之另一實施方式之近紅外線截止濾波器) 其次,參照圖2對本發明之另一實施方式進行說明。(Near infrared cut filter according to another embodiment of the present invention) Next, another embodiment of the present invention will be described with reference to FIG. 2 .

圖2中,模式性表示本發明之另一實施方式之近紅外線截止濾波器(以下,稱為「第2光學濾波器」)之剖面。In FIG. 2, the cross section of the near-infrared cut filter (hereinafter, referred to as a "second optical filter") of another embodiment of the present invention is schematically shown.

如圖2所示,第2光學濾波器200具備:具有第1表面212之透明基板210、第1匹配膜240、光學多層膜220、及第2匹配膜260。As shown in FIG. 2 , the second optical filter 200 includes a transparent substrate 210 having a first surface 212 , a first matching film 240 , an optical multilayer film 220 , and a second matching film 260 .

第1匹配膜240設置於透明基板210之第1表面212上,光學多層膜220設置於第1匹配膜240之上。又,第2匹配膜260設置於第1表面212之最外側。The first matching film 240 is disposed on the first surface 212 of the transparent substrate 210 , and the optical multilayer film 220 is disposed on the first matching film 240 . In addition, the second matching film 260 is provided on the outermost side of the first surface 212 .

此處,與第1光學濾波器100相同,第2光學濾波器200亦具有以下特徵,即, 於波長480 nm~680 nm之範圍,同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%, 於波長450 nm~650 nm之範圍,同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。Here, like the first optical filter 100, the second optical filter 200 also has the following characteristics, that is, in the wavelength range of 480 nm to 680 nm, the first reflectance R 1 and the approximate straight line y 1 at the same wavelength The maximum value ΔR 1 of the absolute value of the difference between the values is less than 5%, in the wavelength range of 450 nm to 650 nm, the difference between the second reflectance R 2 at the same wavelength and the value of the approximate straight line y 2 The absolute value of the maximum value ΔR 2 is less than 6%.

第2光學濾波器200可於寬廣之入射角度範圍顯著抑制可見光區域之反射率。因此,將第2光學濾波器200應用於固體攝像元件之情形時,能夠獲得清晰之像。The second optical filter 200 can significantly suppress the reflectivity in the visible light region in a wide range of incident angles. Therefore, when the second optical filter 200 is applied to a solid-state imaging element, a clear image can be obtained.

(本發明之又一實施方式之近紅外線截止濾波器) 其次,參照圖3對本發明之又一實施方式進行說明。(Near infrared cut filter according to another embodiment of the present invention) Next, another embodiment of the present invention will be described with reference to FIG. 3 .

圖3中,模式性表示本發明之又一實施方式之近紅外線截止濾波器(以下,稱為「第3光學濾波器」)之剖面。3 schematically shows a cross section of a near-infrared cut filter (hereinafter, referred to as a "third optical filter") according to yet another embodiment of the present invention.

如圖3所示,第3光學濾波器300具有:具有第1表面312之透明基板310、第1匹配膜340、光學多層膜320、第3匹配膜350、及第2匹配膜360。As shown in FIG. 3 , the third optical filter 300 includes a transparent substrate 310 having a first surface 312 , a first matching film 340 , an optical multilayer film 320 , a third matching film 350 , and a second matching film 360 .

第1匹配膜340設置於透明基板310之第1表面312上。又,光學多層膜320設置於第1匹配膜340之上,第3匹配膜350配置於光學多層膜320之上。進而,第2匹配膜360設置於第1表面312之最外側。The first matching film 340 is disposed on the first surface 312 of the transparent substrate 310 . In addition, the optical multilayer film 320 is disposed on the first matching film 340 , and the third matching film 350 is disposed on the optical multilayer film 320 . Furthermore, the second matching film 360 is provided on the outermost side of the first surface 312 .

此處,與第1光學濾波器100及第2光學濾波器200相同,第3光學濾波器300亦具有以下特徵,即, 於波長480 nm~680 nm之範圍,同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%, 於波長450 nm~650 nm之範圍,同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。Here, like the first optical filter 100 and the second optical filter 200, the third optical filter 300 also has the following characteristics, that is, in the wavelength range of 480 nm to 680 nm, the first reflectance at the same wavelength The maximum value ΔR 1 of the absolute value of the difference between R 1 and the value of the approximate straight line y 1 is less than 5%, and in the wavelength range of 450 nm to 650 nm, the second reflectance R 2 at the same wavelength and the approximate straight line y maximum absolute value of the difference between the value of [Delta] R 2 of less than 6% 2.

第3光學濾波器300可於寬廣之入射角度範圍顯著抑制可見光區域之反射率。因此,將第3光學濾波器300應用於固體攝像元件之情形時,能夠獲得清晰之像。The third optical filter 300 can significantly suppress the reflectivity in the visible light region over a wide range of incident angles. Therefore, when the third optical filter 300 is applied to a solid-state imaging element, a clear image can be obtained.

(構成構件) 其次,對構成本發明之一實施方式之近紅外線截止濾波器之各構件更詳細地進行說明。(components) Next, each member constituting the near-infrared cut filter according to one embodiment of the present invention will be described in more detail.

再者,此處,作為一例,以上述第3光學濾波器300為例對其構成構件進行說明。因此,參照各構件時,使用圖3所示之參照符號。Here, as an example, the constituent members of the third optical filter 300 described above will be described as an example. Therefore, when referring to each member, the reference symbols shown in FIG. 3 are used.

(透明基板310) 透明基板310只要對可見光為透明(透過率較高),則可由任意之材料構成。例如,透明基板310亦可由玻璃(白板玻璃、近紅外線吸收玻璃等)、或樹脂構成。(Transparent substrate 310) The transparent substrate 310 may be formed of any material as long as it is transparent to visible light (high transmittance). For example, the transparent substrate 310 may be formed of glass (white glass, near-infrared absorbing glass, etc.) or resin.

(光學多層膜320) 光學多層膜320具有「高折射率層」與「低折射率層」之重複構造,且具有使近紅外線(波長750 nm~900 nm)反射之功能。(optical multilayer film 320) The optical multilayer film 320 has a repeating structure of a "high refractive index layer" and a "low refractive index layer", and has a function of reflecting near-infrared rays (wavelengths of 750 nm to 900 nm).

本申請案中,「高折射率層」係指波長500 nm下之折射率為2.0以上之層,「低折射率層」係指波長500 nm下之折射率為1.6以下之層。In this application, "high refractive index layer" refers to a layer with a refractive index of 2.0 or more at a wavelength of 500 nm, and "low refractive index layer" refers to a layer with a refractive index of 1.6 or less at a wavelength of 500 nm.

作為高折射率層,可列舉例如氧化鈦、氧化鉭、及氧化鈮等。作為低折射率層,可列舉例如氧化矽及氟化鎂等。例如,波長500 nm下之氧化鈦之折射率雖亦取決於結晶狀態,但一般為2.3~2.8之範圍,氧化矽之折射率一般為1.4~1.5之範圍。Examples of the high refractive index layer include titanium oxide, tantalum oxide, and niobium oxide. As a low-refractive-index layer, silicon oxide, magnesium fluoride, etc. are mentioned, for example. For example, although the refractive index of titanium oxide at a wavelength of 500 nm also depends on the crystalline state, it is generally in the range of 2.3 to 2.8, and the refractive index of silicon oxide is generally in the range of 1.4 to 1.5.

光學多層膜320之層數並未特別限制,例如為4~100之範圍。層數較佳為6~24之範圍。The number of layers of the optical multilayer film 320 is not particularly limited, for example, it is in the range of 4-100. The number of layers is preferably in the range of 6 to 24.

再者,將多層膜之層數之一半(於尾數之情形時,將小數點以下捨去)亦稱為「重複數(n)」。Furthermore, half of the number of layers of the multilayer film (in the case of a mantissa, the decimal point is rounded off) is also referred to as "repetition number (n)".

光學多層膜320之重複數n為2~50之範圍,較佳為3~13之範圍。The repetition number n of the optical multilayer film 320 is in the range of 2-50, preferably in the range of 3-13.

又,光學多層膜320之總厚度(物理膜厚)例如為200 nm~10 μm之範圍,較佳為1 μm~6 μm之範圍。In addition, the total thickness (physical film thickness) of the optical multilayer film 320 is, for example, in the range of 200 nm to 10 μm, preferably in the range of 1 μm to 6 μm.

光學多層膜320亦可進而具有反射近紫外線及紅外線(波長900 nm~1200 nm)之功能。該情形時,第3光學濾波器300,能夠屏蔽近紫外線及紅外線。The optical multilayer film 320 may further have the function of reflecting near ultraviolet rays and infrared rays (wavelengths of 900 nm to 1200 nm). In this case, the third optical filter 300 can shield near ultraviolet rays and infrared rays.

(第1匹配膜340) 如上所述,第1匹配膜340具有抑制可見光反射之功能。(1st matching film 340) As described above, the first matching film 340 has the function of suppressing the reflection of visible light.

第1匹配膜340亦可具有「高折射率層」與「低折射率層」之交替積層構造。作為「高折射率層」及「低折射率層」,可參照上述記載。The first matching film 340 may have an alternate lamination structure of "high refractive index layers" and "low refractive index layers". As the "high refractive index layer" and the "low refractive index layer", the above description can be referred to.

於第1匹配膜340具有高折射率層與低折射率層之交替積層構造之情形時,將高折射率層之波長550 nm下之QWOT(Quarter-wave Optical Thickness,四分之一波長光學厚度)設為QH ,將低折射率層之波長550 nm下之QWOT設為QL 時,第1匹配膜340自透明基板310之側亦可依序具有 (H1 QH 、L1 QL 、H2 QH 、L2 QL 、......、Hn QH 、Ln QL )   (1)式 之構造(此處,n為1以上之自然數)。又,各係數亦可滿足 1.7≦W≦2.5            (2)式。 此處, W=(H1 +H2 +...+Hn )/(L1 +L2 +...+Ln )  (3)式。When the first matching film 340 has an alternate lamination structure of a high refractive index layer and a low refractive index layer, the QWOT (Quarter-wave Optical Thickness, quarter-wavelength optical thickness) at the wavelength of 550 nm of the high refractive index layer is time) is set to Q H, the wavelength of the low refractive index layer 550 QWOT nm under the set Q L, first matching film 340 from the side of the transparent substrate 310 may have a sequence (H 1 Q H, L 1 Q L , H 2 Q H, L 2 Q L, ......, H n Q H, L n Q L) (1) the structure of formula (here, n is a natural number of 1 or more of). In addition, each coefficient may satisfy the formula (2) of 1.7≦W≦2.5. Here, W=(H 1 +H 2 +...+H n )/(L 1 +L 2 +... +L n ) Formula (3).

(1)式中QH 及QL 之前之H1 ...Hn 及L1 ...Ln 等係數表示各層之物理膜厚為QWOT之幾倍。即,Hn QH 及Ln QL 等表示各層之光學膜厚。(1) wherein Q H before and the Q L H 1 ... H n and L 1 ... L n, etc. coefficients represents the physical thickness of each layer is QWOT of times. That is, H n Q H and L n Q L represents the optical thickness of each of the like.

第1匹配膜340之層數並未特別限制,但較佳為例如2~20層之範圍。若層數超過20,則成膜需要時間,導致第3光學濾波器300之製造成本上升。第1匹配膜340之層數更佳為6層~16層之範圍,進而佳為12層以下。The number of layers of the first matching film 340 is not particularly limited, but is preferably in the range of, for example, 2 to 20 layers. When the number of layers exceeds 20, it takes time to form a film, and the manufacturing cost of the third optical filter 300 increases. The number of layers of the first matching film 340 is more preferably in the range of 6 to 16 layers, and more preferably 12 layers or less.

(第2匹配膜360) 與第1匹配膜340相同,第2匹配膜360具有抑制可見光反射之功能。(2nd matching film 360) Like the first matching film 340, the second matching film 360 has the function of suppressing the reflection of visible light.

第2匹配膜360較佳為具有高折射率層及低折射率層之2層構造(即,重複數n=1)。再者,作為「高折射率層」及「低折射率層」,可參照上述記載。The second matching film 360 preferably has a two-layer structure having a high refractive index layer and a low refractive index layer (that is, the number of repetitions n=1). In addition, as "high-refractive-index layer" and "low-refractive-index layer", the said description can be referred.

進而,該情形時,將高折射率層之波長550 nm下之QWOT設為QA ,將低折射率層之波長550 nm下之QWOT設為QB 時,第2匹配膜360自透明基板之側具有 (XQA 、YQB )             (4)式 之構造,此處,較佳為X>Y。Furthermore, in this case, when the QWOT at the wavelength of 550 nm of the high refractive index layer is set as Q A , and the QWOT at the wavelength of 550 nm of the low refractive index layer is set as Q B , the second matching film 360 is formed from the transparent substrate. The side has the structure of the formula (XQ A , YQ B ) (4), where X>Y is preferable.

(第3匹配膜350) 與第1匹配膜340及第2匹配膜360相同,第3匹配膜350具有抑制可見光反射之功能。(3rd matching film 350) Like the first matching film 340 and the second matching film 360, the third matching film 350 has the function of suppressing the reflection of visible light.

第3匹配膜350亦可具有「高折射率層」與「低折射率層」之交替積層構造。作為「高折射率層」及「低折射率層」,可參照上述記載。The third matching film 350 may have an alternate lamination structure of "high refractive index layers" and "low refractive index layers". As the "high refractive index layer" and the "low refractive index layer", the above description can be referred to.

尤其第3匹配膜350亦可由與第1匹配膜340相同之層數構成。又,第3匹配膜350亦可以滿足上述(1)式~(3)式之方式構成。In particular, the third matching film 350 may be composed of the same number of layers as the first matching film 340 . In addition, the third matching film 350 may be configured to satisfy the above-mentioned equations (1) to (3).

例如,第3匹配膜350亦可由6層~16層構成。該情形時,重複數n成為3~8。For example, the third matching film 350 may be composed of 6 to 16 layers. In this case, the repetition number n is 3-8.

第3匹配膜350並非必須之構成,但藉由設置第3匹配膜350而可進一步抑制可見光之反射。The configuration of the third matching film 350 is not essential, but the reflection of visible light can be further suppressed by providing the third matching film 350 .

再者,於圖3所示之例中,第3匹配膜350配置於設置在第1匹配膜340之上之光學多層膜320之上。然而,亦可與此相反,將第3匹配膜350配置於透明基板310與光學多層膜320之間,且於光學多層膜320之上設置第1匹配膜340。Furthermore, in the example shown in FIG. 3 , the third matching film 350 is disposed on the optical multilayer film 320 provided on the first matching film 340 . However, on the contrary, the third matching film 350 may be disposed between the transparent substrate 310 and the optical multilayer film 320 , and the first matching film 340 may be provided on the optical multilayer film 320 .

以上,以第3光學濾波器300為例,對本發明之一實施方式之近紅外線截止濾波器中包含之各構件進行了說明。然而,業者明確瞭解,上述記載對於第1光學濾波器100及第2光學濾波器200亦可同樣適用。 [實施例]The components included in the near-infrared cut filter according to one embodiment of the present invention have been described above, taking the third optical filter 300 as an example. However, it is clearly understood by those skilled in the art that the above description is also applicable to the first optical filter 100 and the second optical filter 200 . [Example]

其次,對本發明之實施例進行說明。再者,以下記載中,例1~例4為實施例,例11~例14為比較例。Next, an embodiment of the present invention will be described. In addition, in the following description, Example 1 - Example 4 are an Example, and Example 11 - Example 14 are a comparative example.

對具有以下各例所示之構成之近紅外線截止濾波器之各者評估光學特性。光學特性係使用市售之光學模擬軟體(Software SPectra,Inc公司之TFCalc)進行評估。Optical characteristics were evaluated for each of the near-infrared cut filters having the constitutions shown in the following examples. Optical properties were evaluated using a commercially available optical simulation software (TFCalc from Software Spectra, Inc.).

再者,於以下評估中,近紅外線截止濾波器之反射率表示使光自透明基板之第1表面之側(即,設置有各種膜之側)相對於法線以特定之角度入射時獲得之正規反射率。Furthermore, in the following evaluation, the reflectance of the near-infrared cut filter represents the value obtained when light is incident from the side of the first surface of the transparent substrate (ie, the side on which various films are provided) at a specific angle with respect to the normal line. Normal reflectance.

光之入射角度相對於法線設為5°及40°。以下,將該等入射方向分別稱為「5°入射」及「40°入射」。The incident angles of the light were set at 5° and 40° with respect to the normal. Hereinafter, these incident directions are referred to as "5° incident" and "40° incident", respectively.

(例1) 例1之近紅外線截止濾波器具有圖1所示之構成。(example 1) The near-infrared cut filter of Example 1 has the configuration shown in FIG. 1 .

對於透明基板,使用玻璃(D263;Schott公司製造)。再者,於其他例中亦使用相同之玻璃。For the transparent substrate, glass (D263; manufactured by Schott Corporation) was used. In addition, the same glass was used also in another example.

光學多層膜設為低折射率層(SiO2 層)與高折射率層(TiO2 層)之重複構造。層數設為17層。又,第1匹配膜設為TiO2 層與SiO2 層之重複構造,層數設為6層。進而,第2匹配膜設為TiO2 層與SiO2 層之2層構造。The optical multilayer film is a repeating structure of a low refractive index layer (SiO 2 layer) and a high refractive index layer (TiO 2 layer). The number of layers is set to 17 layers. Moreover, the first matching layer and the TiO 2 film to the SiO 2 layer of the repeating structure, the number of layers to 6 layers. Furthermore, the second matching film has a two-layer structure of a TiO 2 layer and a SiO 2 layer.

於以下表1中,將例1中使用之光學多層膜、第1匹配膜、及第2匹配膜之層構成彙總表示。In Table 1 below, the layer constitutions of the optical multilayer film, the first matching film, and the second matching film used in Example 1 are collectively shown.

[表1]    層NO. 膜材料 物理膜厚 (mm) QWOT 光學多層膜 1 SiO2 74.34 0.800 2 TiO2 90.84 1.600 3 SiO2 148.69 1.600 4 TiO2 90.84 1.600 5 SiO2 148.69 1.600 6 TiO2 90.84 1.600 7 SiO2 148.69 1.600 8 TiO2 90.84 1.600 9 SiO2 148.69 1.600 10 TiO2 90.84 1.600 11 SiO2 148.69 1.600 12 TiO2 90.84 1.600 13 SiO2 148.69 1.600 14 TiO2 90.84 1.600 15 SiO2 148.69 1.600 16 TiO2 90.84 1.600 17 SiO2 148.69 1.600 第1匹配膜 1 TiO2 15.00 0.264 2 SiO2 15.00 0.161 3 TiO2 54.17 0.954 4 SiO2 22.62 0.243 5 TiO2 29.04 0.511 6 SiO2 35.51 0.382 第2匹配膜 1 TiO2 107.75 1.898 2 SiO2 82.43 0.887 第1匹配膜中,由上述(3)式表示之W之值、即(H1 +H2 +H3 )/(L1 +L2 +L3 )之值為2.20。[Table 1] Layer NO. Membrane material Physical film thickness (mm) QWOT Optical multilayer film 1 SiO 2 74.34 0.800 2 TiO 2 90.84 1.600 3 SiO 2 148.69 1.600 4 TiO 2 90.84 1.600 5 SiO 2 148.69 1.600 6 TiO 2 90.84 1.600 7 SiO 2 148.69 1.600 8 TiO 2 90.84 1.600 9 SiO 2 148.69 1.600 10 TiO 2 90.84 1.600 11 SiO 2 148.69 1.600 12 TiO 2 90.84 1.600 13 SiO 2 148.69 1.600 14 TiO 2 90.84 1.600 15 SiO 2 148.69 1.600 16 TiO 2 90.84 1.600 17 SiO 2 148.69 1.600 1st matching film 1 TiO 2 15.00 0.264 2 SiO 2 15.00 0.161 3 TiO 2 54.17 0.954 4 SiO 2 22.62 0.243 5 TiO 2 29.04 0.511 6 SiO 2 35.51 0.382 2nd matching film 1 TiO 2 107.75 1.898 2 SiO 2 82.43 0.887 In the first matching film, the value of W represented by the above formula (3), that is, the value of (H 1 +H 2 +H 3 )/(L 1 +L 2 +L 3 ) was 2.20.

又,第2匹配膜中,TiO2 層之波長550 nm下之QWOT(QA )=1.898,SiO2 層之波長550 nm下之QWOT(QB )為0.887。又,將第2匹配膜以上述(4)式表示之情形時,X/Y=2.14。In the second matching film, QWOT(Q A ) at a wavelength of 550 nm of the TiO 2 layer was 1.898, and QWOT(Q B ) of the SiO 2 layer at a wavelength of 550 nm was 0.887. Furthermore, when the second matching film is represented by the above-mentioned formula (4), X/Y=2.14.

再者,表1中,各層以靠近透明基板之順序記載,因此,於透明基板上,自表1之上側朝下側配置有各層。該記載於以下表2~表8中亦相同。In addition, in Table 1, since each layer is described in the order of approaching a transparent substrate, each layer is arrange|positioned from the upper side to the lower side of Table 1 on the transparent substrate. This description is also the same in the following Tables 2 to 8.

(例2) 例2之近紅外線截止濾波器具有圖1所示之構成。(Example 2) The near-infrared cut filter of Example 2 has the configuration shown in FIG. 1 .

對於透明基板,使用玻璃。For transparent substrates, glass is used.

光學多層膜設為TiO2 層與SiO2 之重複構造。層數設為18層。又,第1匹配膜設為TiO2 層與SiO2 之重複構造,層數設為6層。進而,第2匹配膜設為TiO2 層與SiO2 層之2層構造。The optical multilayer film is a repeating structure of TiO 2 layer and SiO 2 . The number of layers is set to 18 layers. Moreover, the first matching layer and the TiO 2 film is set to repeat the SiO 2 structure, the number of layers to 6 layers. Furthermore, the second matching film has a two-layer structure of a TiO 2 layer and a SiO 2 layer.

於以下表2中,將例2中使用之光學多層膜、第1匹配膜、及第2匹配膜之層構成彙總表示。In Table 2 below, the layer constitutions of the optical multilayer film, the first matching film, and the second matching film used in Example 2 are collectively shown.

[表2]    層NO. 膜材料 物理膜厚 (mm) QWOT 光學多層膜 1 TiO2 96.52 1.700 2 SiO2 157.98 1.700 3 TiO2 85.17 1.500 4 SiO2 148.69 1.600 5 TiO2 85.17 1.500 6 SiO2 148.69 1.600 7 TiO2 85.17 1.500 8 SiO2 148.69 1.600 9 TiO2 85.17 1.500 10 SiO2 148.69 1.600 11 TiO2 85.17 1.500 12 SiO2 148.69 1.600 13 TiO2 85.17 1.500 14 SiO2 148.69 1.600 15 TiO2 85.17 1.500 16 SiO2 148.69 1.600 17 TiO2 90.84 1.600 18 SiO2 176.57 1.900 第1匹配膜 1 TiO2 22.71 0.400 2 SiO2 18.59 0.200 3 TiO2 17.03 0.300 4 SiO2 18.59 0.200 5 TiO2 28.39 0.500 6 SiO2 27.88 0.300 第2匹配膜 1 TiO2 113.55 2.000 2 SiO2 83.64 0.900 第1匹配膜中,由上述(3)式表示之W之值、即(H1 +H2 +H3 )/(L1 +L2 +L3 )之值為1.71。[Table 2] Layer NO. Membrane material Physical film thickness (mm) QWOT Optical multilayer film 1 TiO 2 96.52 1.700 2 SiO 2 157.98 1.700 3 TiO 2 85.17 1.500 4 SiO 2 148.69 1.600 5 TiO 2 85.17 1.500 6 SiO 2 148.69 1.600 7 TiO 2 85.17 1.500 8 SiO 2 148.69 1.600 9 TiO 2 85.17 1.500 10 SiO 2 148.69 1.600 11 TiO 2 85.17 1.500 12 SiO 2 148.69 1.600 13 TiO 2 85.17 1.500 14 SiO 2 148.69 1.600 15 TiO 2 85.17 1.500 16 SiO 2 148.69 1.600 17 TiO 2 90.84 1.600 18 SiO 2 176.57 1.900 1st matching film 1 TiO 2 22.71 0.400 2 SiO 2 18.59 0.200 3 TiO 2 17.03 0.300 4 SiO 2 18.59 0.200 5 TiO 2 28.39 0.500 6 SiO 2 27.88 0.300 2nd matching film 1 TiO 2 113.55 2.000 2 SiO 2 83.64 0.900 In the first matching film, the value of W represented by the above formula (3), that is, the value of (H 1 +H 2 +H 3 )/(L 1 +L 2 +L 3 ) was 1.71.

又,於第2匹配膜中,TiO2 層之波長550 nm下之QWOT(QA )=2.000,SiO2 層之波長550 nm下之QWOT(QB )為0.900。又,將第2匹配膜以上述(4)式表示之情形時,X/Y=2.22。In the second matching film, QWOT(Q A ) at a wavelength of 550 nm of the TiO 2 layer was 2.000, and QWOT(Q B ) of the SiO 2 layer at a wavelength of 550 nm was 0.900. In addition, when the second matching film is represented by the above-mentioned formula (4), X/Y=2.22.

(例3) 例3之近紅外線截止濾波器具有圖2所示之構成。(Example 3) The near-infrared cut filter of Example 3 has the configuration shown in FIG. 2 .

對於透明基板,使用玻璃。For transparent substrates, glass is used.

第1匹配膜設為TiO2 層與SiO2 之重複構造,層數設為6層。又,光學多層膜設為SiO2 層與TiO2 層之重複構造。層數設為17層。進而,第2匹配膜設為TiO2 層與SiO2 層之2層構造。The first matching film was a repeating structure of a TiO 2 layer and SiO 2 , and the number of layers was six. In addition, the optical multilayer film has a repeating structure of the SiO 2 layer and the TiO 2 layer. The number of layers is set to 17 layers. Furthermore, the second matching film has a two-layer structure of a TiO 2 layer and a SiO 2 layer.

於以下表3中,將例3中使用之第1匹配膜、光學多層膜、及第2匹配膜之層構成彙總表示。In Table 3 below, the layer constitutions of the first matching film, the optical multilayer film, and the second matching film used in Example 3 are collectively shown.

[表3]    層NO. 膜材料 物理膜厚 (mm) QWOT 第1匹配膜 1 TiO2 15.00 0.264 2 SiO2 24.98 0.269 3 TiO2 41.36 0.728 4 SiO2 15.00 0.161 5 TiO2 23.88 0.421 6 SiO2 22.91 0.247 光學多層膜 1 SiO2 148.69 1.600 2 TiO2 90.84 1.600 3 SiO2 148.69 1.600 4 TiO2 90.84 1.600 5 SiO2 148.69 1.600 6 TiO2 90.84 1.600 7 SiO2 148.69 1.600 8 TiO2 90.84 1.600 9 SiO2 148.69 1.600 10 TiO2 90.84 1.600 11 SiO2 148.69 1.600 12 TiO2 90.84 1.600 13 SiO2 148.69 1.600 14 TiO2 90.84 1.600 15 SiO2 148.69 1.600 16 TiO2 90.84 1.600 17 SiO2 148.69 1.600 第2匹配膜 1 TiO2 90.11 1.587 2 SiO2 82.17 0.884 第1匹配膜中,由上述(3)式表示之W之值、即(H1 +H2 +H3 )/(L1 +L2 +L3 )之值為2.09。[table 3] Layer NO. Membrane material Physical film thickness (mm) QWOT 1st matching film 1 TiO 2 15.00 0.264 2 SiO 2 24.98 0.269 3 TiO 2 41.36 0.728 4 SiO 2 15.00 0.161 5 TiO 2 23.88 0.421 6 SiO 2 22.91 0.247 Optical multilayer film 1 SiO 2 148.69 1.600 2 TiO 2 90.84 1.600 3 SiO 2 148.69 1.600 4 TiO 2 90.84 1.600 5 SiO 2 148.69 1.600 6 TiO 2 90.84 1.600 7 SiO 2 148.69 1.600 8 TiO 2 90.84 1.600 9 SiO 2 148.69 1.600 10 TiO 2 90.84 1.600 11 SiO 2 148.69 1.600 12 TiO 2 90.84 1.600 13 SiO 2 148.69 1.600 14 TiO 2 90.84 1.600 15 SiO 2 148.69 1.600 16 TiO 2 90.84 1.600 17 SiO 2 148.69 1.600 2nd matching film 1 TiO 2 90.11 1.587 2 SiO 2 82.17 0.884 In the first matching film, the value of W represented by the above formula (3), that is, the value of (H 1 +H 2 +H 3 )/(L 1 +L 2 +L 3 ) was 2.09.

又,於第2匹配膜中,TiO2 層之波長550 nm下之QWOT(QA )=1.587,SiO2 層之波長550 nm下之QWOT(QB )為0.884。又,將第2匹配膜以上述(4)式表示之情形時,X/Y=1.80。In addition, in the second matching film, QWOT(Q A ) at a wavelength of 550 nm of the TiO 2 layer was 1.587, and QWOT(Q B ) of the SiO 2 layer at a wavelength of 550 nm was 0.884. Furthermore, when the second matching film is represented by the above-mentioned formula (4), X/Y=1.80.

(例4) 例4之近紅外線截止濾波器具有圖3所示之構成。(Example 4) The near-infrared cut filter of Example 4 has the configuration shown in FIG. 3 .

對於透明基板,使用玻璃。For transparent substrates, glass is used.

第1匹配膜設為SiO2 層與TiO2 層之重複構造,層數設為6層。又,光學多層膜設為SiO2 層與TiO2 層之重複構造。層數設為17層。又,第3匹配膜設為TiO2 層與SiO2 層之重複構造,層數設為6層。進而,第2匹配膜設為TiO2 層與SiO2 層之2層構造。The first matching film was a repeating structure of a SiO 2 layer and a TiO 2 layer, and the number of layers was six. In addition, the optical multilayer film has a repeating structure of the SiO 2 layer and the TiO 2 layer. The number of layers is set to 17 layers. In addition, the third matching film was a repeating structure of the TiO 2 layer and the SiO 2 layer, and the number of layers was six. Furthermore, the second matching film has a two-layer structure of a TiO 2 layer and a SiO 2 layer.

於以下表4中,將例4中使用之第1匹配膜、光學多層膜、第3匹配膜、及第2匹配膜之層構成彙總表示。In Table 4 below, the layer structures of the first matching film, the optical multilayer film, the third matching film, and the second matching film used in Example 4 are collectively shown.

[表4]    層NO. 膜材料 物理膜厚 (mm) QWOT 第1匹配膜 1 SiO2 15.00 0.161 2 TiO2 23.14 0.408 3 SiO2 30.41 0.327 4 TiO2 15.00 0.264 5 SiO2 24.15 0.260 6 TiO2 20.69 0.364 光學多層膜 1 SiO2 148.69 1.600 2 TiO2 90.84 1.600 3 SiO2 148.69 1.600 4 TiO2 90.84 1.600 5 SiO2 148.69 1.600 6 TiO2 90.84 1.600 7 SiO2 148.69 1.600 8 TiO2 90.84 1.600 9 SiO2 148.69 1.600 10 TiO2 90.84 1.600 11 SiO2 148.69 1.600 12 TiO2 90.84 1.600 13 SiO2 148.69 1.600 14 TiO2 90.84 1.600 15 SiO2 148.69 1.600 16 TiO2 90.84 1.600 17 SiO2 148.69 1.600 第3匹配膜 1 TiO2 15.00 0.264 2 SiO2 15.00 0.161 3 TiO2 55.86 0.984 4 SiO2 24.52 0.264 5 TiO2 28.84 0.508 6 SiO2 36.45 0.392 第2匹配膜 1 TiO2 112.59 1.983 2 SiO2 85.59 0.921 於第1匹配膜中,由上述(3)式表示之W之值、即(H1 +H2 +H3 )/(L1 +L2 +L3 )之值為2.15。[Table 4] Layer NO. Membrane material Physical film thickness (mm) QWOT 1st matching film 1 SiO 2 15.00 0.161 2 TiO 2 23.14 0.408 3 SiO 2 30.41 0.327 4 TiO 2 15.00 0.264 5 SiO 2 24.15 0.260 6 TiO 2 20.69 0.364 Optical multilayer film 1 SiO 2 148.69 1.600 2 TiO 2 90.84 1.600 3 SiO 2 148.69 1.600 4 TiO 2 90.84 1.600 5 SiO 2 148.69 1.600 6 TiO 2 90.84 1.600 7 SiO 2 148.69 1.600 8 TiO 2 90.84 1.600 9 SiO 2 148.69 1.600 10 TiO 2 90.84 1.600 11 SiO 2 148.69 1.600 12 TiO 2 90.84 1.600 13 SiO 2 148.69 1.600 14 TiO 2 90.84 1.600 15 SiO 2 148.69 1.600 16 TiO 2 90.84 1.600 17 SiO 2 148.69 1.600 3rd matching film 1 TiO 2 15.00 0.264 2 SiO 2 15.00 0.161 3 TiO 2 55.86 0.984 4 SiO 2 24.52 0.264 5 TiO 2 28.84 0.508 6 SiO 2 36.45 0.392 2nd matching film 1 TiO 2 112.59 1.983 2 SiO 2 85.59 0.921 In the first matching film, the value of W represented by the above formula (3), that is, the value of (H 1 +H 2 +H 3 )/(L 1 +L 2 +L 3 ) was 2.15.

又,於第2匹配膜中,TiO2 層之波長550 nm下之QWOT(QA )=1.983,SiO2 層之波長550 nm下之QWOT(QB )為0.921。又,將第2匹配膜以上述(4)式表示之情形時,X/Y=2.15。In addition, in the second matching film, QWOT(Q A ) at a wavelength of 550 nm of the TiO 2 layer was 1.983, and QWOT(Q B ) of the SiO 2 layer at a wavelength of 550 nm was 0.921. In addition, when the second matching film is represented by the above-mentioned formula (4), X/Y=2.15.

(例11) 例11之近紅外線截止濾波器具有於透明基板之上僅具有光學多層膜之構成。光學多層膜設為TiO2 層與SiO2 層之重複構造,層數設為20層。(Example 11) The near-infrared cut filter of Example 11 has a configuration in which only the optical multilayer film is provided on the transparent substrate. The optical multilayer film was a repeating structure of a TiO 2 layer and a SiO 2 layer, and the number of layers was 20 layers.

於以下表5中,表示例11中使用之光學多層膜之層構成。In Table 5 below, the layer constitution of the optical multilayer film used in Example 11 is shown.

[表5]    層NO. 膜材料 物理膜厚 (mm) 光學多層膜 1 TiO2 90.84 2 SiO2 148.69 3 TiO2 90.84 4 SiO2 148.69 5 TiO2 90.84 6 SiO2 148.69 7 TiO2 90.84 8 SiO2 148.69 9 TiO2 90.84 10 SiO2 148.69 11 TiO2 90.84 12 SiO2 148.69 13 TiO2 90.84 14 SiO2 148.69 15 TiO2 90.84 16 SiO2 148.69 17 TiO2 90.84 18 SiO2 148.69 19 TiO2 90.84 20 SiO2 148.69 (例12) 例12之近紅外線截止濾波器具有於透明基板之上僅具有光學多層膜之構成。光學多層膜設為SiO2 層與TiO2 層之重複構造,層數設為21層。[table 5] Layer NO. Membrane material Physical film thickness (mm) Optical multilayer film 1 TiO 2 90.84 2 SiO 2 148.69 3 TiO 2 90.84 4 SiO 2 148.69 5 TiO 2 90.84 6 SiO 2 148.69 7 TiO 2 90.84 8 SiO 2 148.69 9 TiO 2 90.84 10 SiO 2 148.69 11 TiO 2 90.84 12 SiO 2 148.69 13 TiO 2 90.84 14 SiO 2 148.69 15 TiO 2 90.84 16 SiO 2 148.69 17 TiO 2 90.84 18 SiO 2 148.69 19 TiO 2 90.84 20 SiO 2 148.69 (Example 12) The near-infrared cut filter of Example 12 has a configuration in which only the optical multilayer film is provided on the transparent substrate. The optical multilayer film was a repeating structure of a SiO 2 layer and a TiO 2 layer, and the number of layers was 21 layers.

於以下表6中,表示例12中使用之光學多層膜之層構成。In Table 6 below, the layer constitution of the optical multilayer film used in Example 12 is shown.

[表6]    層NO. 膜材料 物理膜厚 (mm) 光學多層膜 1 SiO2 74.34 2 TiO2 90.84 3 SiO2 148.69 4 TiO2 90.84 5 SiO2 148.69 6 TiO2 90.84 7 SiO2 148.69 8 TiO2 90.84 9 SiO2 148.69 10 TiO2 90.84 11 SiO2 148.69 12 TiO2 90.84 13 SiO2 148.69 14 TiO2 90.84 15 SiO2 148.69 16 TiO2 90.84 17 SiO2 148.69 18 TiO2 90.84 19 SiO2 148.69 20 TiO2 90.84 21 SiO2 74.34 (例13) 例13之近紅外線截止濾波器具有於透明基板之上依序配置有光學多層膜、及第1匹配膜之構成。[Table 6] Layer NO. Membrane material Physical film thickness (mm) Optical multilayer film 1 SiO 2 74.34 2 TiO 2 90.84 3 SiO 2 148.69 4 TiO 2 90.84 5 SiO 2 148.69 6 TiO 2 90.84 7 SiO 2 148.69 8 TiO 2 90.84 9 SiO 2 148.69 10 TiO 2 90.84 11 SiO 2 148.69 12 TiO 2 90.84 13 SiO 2 148.69 14 TiO 2 90.84 15 SiO 2 148.69 16 TiO 2 90.84 17 SiO 2 148.69 18 TiO 2 90.84 19 SiO 2 148.69 20 TiO 2 90.84 twenty one SiO 2 74.34 (Example 13) The near-infrared cut filter of Example 13 has a configuration in which the optical multilayer film and the first matching film are sequentially arranged on the transparent substrate.

光學多層膜設為SiO2 層與TiO2 層之重複構造,層數設為17層。又,第1匹配膜設為TiO2 層與SiO2 層之重複構造,層數設為6層。The optical multilayer film was a repeating structure of a SiO 2 layer and a TiO 2 layer, and the number of layers was 17 layers. Moreover, the first matching layer and the TiO 2 film to the SiO 2 layer of the repeating structure, the number of layers to 6 layers.

於以下表7中,將例13中使用之光學多層膜、及第1匹配膜之層構成彙總表示。In Table 7 below, the layer constitutions of the optical multilayer film and the first matching film used in Example 13 are collectively shown.

[表7]    層NO. 膜材料 物理膜厚 (mm) QWOT 光學多層膜 1 SiO2 74.34 0.800 2 TiO2 90.84 1.600 3 SiO2 148.69 1.600 4 TiO2 90.84 1.600 5 SiO2 148.69 1.600 6 TiO2 90.84 1.600 7 SiO2 148.69 1.600 8 TiO2 90.84 1.600 9 SiO2 148.69 1.600 10 TiO2 90.84 1.600 11 SiO2 148.69 1.600 12 TiO2 90.84 1.600 13 SiO2 148.69 1.600 14 TiO2 90.84 1.600 15 SiO2 148.69 1.600 16 TiO2 90.84 1.600 17 SiO2 148.69 1.600 第1匹配膜 1 TiO2 15.00 0.260 2 SiO2 15.00 0.160 3 TiO2 37.73 0.660 4 SiO2 20.00 0.220 5 TiO2 15.99 0.280 6 SiO2 20.00 0.220 (例14) 例14之近紅外線截止濾波器具有圖1所示之構成。[Table 7] Layer NO. Membrane material Physical film thickness (mm) QWOT Optical multilayer film 1 SiO 2 74.34 0.800 2 TiO 2 90.84 1.600 3 SiO 2 148.69 1.600 4 TiO 2 90.84 1.600 5 SiO 2 148.69 1.600 6 TiO 2 90.84 1.600 7 SiO 2 148.69 1.600 8 TiO 2 90.84 1.600 9 SiO 2 148.69 1.600 10 TiO 2 90.84 1.600 11 SiO 2 148.69 1.600 12 TiO 2 90.84 1.600 13 SiO 2 148.69 1.600 14 TiO 2 90.84 1.600 15 SiO 2 148.69 1.600 16 TiO 2 90.84 1.600 17 SiO 2 148.69 1.600 1st matching film 1 TiO 2 15.00 0.260 2 SiO 2 15.00 0.160 3 TiO 2 37.73 0.660 4 SiO 2 20.00 0.220 5 TiO 2 15.99 0.280 6 SiO 2 20.00 0.220 (Example 14) The near-infrared cut filter of Example 14 has the configuration shown in FIG. 1 .

對於透明基板,使用玻璃。For transparent substrates, glass is used.

光學多層膜設為SiO2 層與TiO2 層之重複構造。層數設為17層。又,第1匹配膜設為TiO2 層與SiO2 層之重複構造,層數設為6層。進而,第2匹配膜設為TiO2 層與SiO2 層之2層構造。The optical multilayer film has a repeating structure of the SiO 2 layer and the TiO 2 layer. The number of layers is set to 17 layers. Moreover, the first matching layer and the TiO 2 film to the SiO 2 layer of the repeating structure, the number of layers to 6 layers. Furthermore, the second matching film has a two-layer structure of a TiO 2 layer and a SiO 2 layer.

於以下表8中,將例14中使用之光學多層膜、第1匹配膜、及第2匹配膜之層構成彙總表示。In Table 8 below, the layer constitutions of the optical multilayer film, the first matching film, and the second matching film used in Example 14 are collectively shown.

[表8]    層NO. 膜材料 物理膜厚 (mm) QWOT 光學多層膜 1 SiO2 74.34 0.800 2 TiO2 90.84 1.600 3 SiO2 148.69 1.600 4 TiO2 90.84 1.600 5 SiO2 148.69 1.600 6 TiO2 90.84 1.600 7 SiO2 148.69 1.600 8 TiO2 90.84 1.600 9 SiO2 148.69 1.600 10 TiO2 90.84 1.600 11 SiO2 148.69 1.600 12 TiO2 90.84 1.600 13 SiO2 148.69 1.600 14 TiO2 90.84 1.600 15 SiO2 148.69 1.600 16 TiO2 90.84 1.600 17 SiO2 148.69 1.600 第1匹配膜 1 TiO2 15 0.260 2 SiO2 15 0.160 3 TiO2 39.74 0.700 4 SiO2 22.68 0.240 5 TiO2 28.98 0.510 6 SiO2 35.59 0.380 第2匹配膜 1 TiO2 107.72 1.900 2 SiO2 82.41 0.890 (光學特性之評估結果) (例1之近紅外線截止濾波器) 圖4~圖6中表示於例1之近紅外線截止濾波器所獲得之光學特性之評估結果。[Table 8] Layer NO. Membrane material Physical film thickness (mm) QWOT Optical multilayer film 1 SiO 2 74.34 0.800 2 TiO 2 90.84 1.600 3 SiO 2 148.69 1.600 4 TiO 2 90.84 1.600 5 SiO 2 148.69 1.600 6 TiO 2 90.84 1.600 7 SiO 2 148.69 1.600 8 TiO 2 90.84 1.600 9 SiO 2 148.69 1.600 10 TiO 2 90.84 1.600 11 SiO 2 148.69 1.600 12 TiO 2 90.84 1.600 13 SiO 2 148.69 1.600 14 TiO 2 90.84 1.600 15 SiO 2 148.69 1.600 16 TiO 2 90.84 1.600 17 SiO 2 148.69 1.600 1st matching film 1 TiO 2 15 0.260 2 SiO 2 15 0.160 3 TiO 2 39.74 0.700 4 SiO 2 22.68 0.240 5 TiO 2 28.98 0.510 6 SiO 2 35.59 0.380 2nd matching film 1 TiO 2 107.72 1.900 2 SiO 2 82.41 0.890 (Evaluation Results of Optical Characteristics) (Near-Infrared Cut Filter of Example 1) The evaluation results of optical characteristics obtained by the near-infrared cut filter of Example 1 are shown in FIGS. 4 to 6 .

圖4中,橫軸為波長,縱軸為反射率。圖4中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 4 , the horizontal axis is the wavelength, and the vertical axis is the reflectance. In FIG. 4 , the results of the normal reflectance obtained at 5° incidence, that is, the first reflectivity R 1 , and the normal reflectivity obtained at 40° incidence, ie, the second reflectivity R 2 , are shown together.

根據圖4之結果可知,例1之近紅外線截止濾波器於可見光之區域(波長約450 nm~約650 nm)具有透過段,於近紅外線之區域具有反射段。According to the results in FIG. 4 , the near-infrared cut-off filter of Example 1 has a transmission section in the visible light region (wavelength of about 450 nm to about 650 nm), and a reflection section in the near-infrared region.

再者,5°入射下之反射段之波長範圍為約750 nm~約1000 nm之範圍,相對於此,40°入射下之反射段之波長範圍為約700 nm~約900 nm之範圍。即,40°入射下之反射段之波長範圍相較5°入射下之反射段之波長範圍朝低波長側偏移。Furthermore, the wavelength range of the reflection section under 5° incidence is in the range of about 750 nm to about 1000 nm, whereas the wavelength range of the reflection section under 40° incidence is in the range of about 700 nm to about 900 nm. That is, the wavelength range of the reflection section under 40° incidence is shifted toward the lower wavelength side than the wavelength range of the reflection section under 5° incidence.

然而,可知於第1反射率R1 及第2反射率R2 之任一情形,於透過段均可充分抑制反射。However, it was found on the first reflectance and the second reflectance R 1 R 2 according to any of a case, and can sufficiently suppress the reflection in the transmission segment.

圖5中,將圖4所示之行為中之波長480 nm~680 nm範圍之第1反射率R1 之變化放大而表示。 In FIG. 5 , the change of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm in the behavior shown in FIG. 4 is enlarged and shown.

再者,圖5之直線y1 為波長480 nm~680 nm範圍之第1反射率R1 之近似直線,由 y1 =0.0353λ-16.087   (5)式 表示。此處,λ為波長(以下同)。Furthermore, the straight line y 1 in FIG. 5 is an approximate straight line of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm, and is represented by the formula y 1 =0.0353λ−16.087 (5). Here, λ is a wavelength (the same applies hereinafter).

又,圖6中,將圖4所示之行為中之波長450 nm~650 nm範圍之第2反射率R2 之變化放大而表示。Further, in FIG. 6, the second reflectance at a wavelength of behavior shown in FIG. 4 in the range of 450 nm ~ 650 nm of the enlarged R 2 represents a variation.

圖6之直線y2 為波長450 nm~650 nm範圍之第2反射率R2 之近似直線,由如下式表示,即 y2 =0.0532λ-24.315   (6)式。The straight line y 2 in FIG. 6 is an approximate straight line of the second reflectance R 2 in the wavelength range of 450 nm to 650 nm, and is represented by the following formula: y 2 =0.0532λ−24.315 (6).

根據該等結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =2.35%。 From these results, the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =2.35%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =5.38%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =5.38%.

(例2之近紅外線截止濾波器) 圖7~圖9中,表示於例2之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 2 near infrared cut filter) In FIGS. 7 to 9 , the evaluation results of the optical properties obtained by the near-infrared cut filter of Example 2 are shown.

圖7中,橫軸為波長,縱軸為反射率。圖7中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 7 , the horizontal axis represents the wavelength, and the vertical axis represents the reflectance. In FIG. 7 , the results of the normal reflectance obtained at 5° incidence, that is, the first reflectivity R 1 , and the normal reflectivity obtained at 40° incidence, ie, the second reflectivity R 2 , are shown together.

根據圖7之結果可知,例2之近紅外線截止濾波器於可見光之區域(波長約450 nm~約650 nm)具有透過段,於近紅外線之區域具有反射段。According to the results in FIG. 7 , the near-infrared cut filter of Example 2 has a transmission section in the visible light region (wavelength of about 450 nm to about 650 nm), and a reflection section in the near-infrared region.

又,可知於透過段,對於第1反射率R1 及第2反射率R2 之任一情形,均可充分抑制反射。And, seen in section through, for the first reflectance and the second reflectance R 1 of any of R 2 a case, the reflection can be sufficiently suppressed.

圖8中,將圖7所示之行為中之波長480 nm~680 nm範圍之第1反射率R1 之變化放大而表示。 In FIG. 8 , the change in the first reflectance R 1 in the wavelength range of 480 nm to 680 nm in the behavior shown in FIG. 7 is enlarged and shown.

圖8之直線y1 為波長480 nm~680 nm範圍之第1反射率R1 之近似直線,由如下式表示,即 y1 =-0.0046λ+4.6073  (7)式。The straight line y 1 in FIG. 8 is an approximate straight line of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm, and is represented by the following formula: y 1 =−0.0046λ+4.6073 (7).

又,圖9中,將圖7所示之行為中之波長450 nm~650 nm範圍之第2反射率R2 之變化放大而表示。And, FIG. 9, the second reflectance at a wavelength of behavior illustrated in Figure 7 the range of 450 nm ~ 650 nm of the enlarged R 2 represents a variation.

圖9之直線y2 為波長450 nm~650 nm範圍之第2反射率R2 之近似直線,由如下式表示,即 y2 =0.008λ-2.0209           (8)式。The straight line y 2 in FIG. 9 is an approximate straight line of the second reflectance R 2 in the wavelength range of 450 nm to 650 nm, and is represented by the following formula: y 2 =0.008λ−2.0209 (8).

根據該等結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =3.25%。 From these results, the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =3.25%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =3.98%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =3.98%.

(例3之近紅外線截止濾波器) 圖10中表示於例3之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 3 near-infrared cut-off filter) FIG. 10 shows the evaluation results of the optical characteristics obtained in the near-infrared cut filter of Example 3. FIG.

圖10中,橫軸為波長,縱軸為反射率。圖10中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 10 , the horizontal axis represents the wavelength, and the vertical axis represents the reflectance. In FIG. 10 , the normal reflectance obtained at 5° incidence, that is, the first reflectance R 1 , and the normal reflectivity obtained at 40° incidence, ie, the second reflectivity R 2 , are shown together.

根據圖10之結果可知,例3之近紅外線截止濾波器於可見光之區域(波長約450 nm~約650 nm)具有透過段,於近紅外線之區域具有反射段。According to the results in FIG. 10 , the near-infrared cut-off filter of Example 3 has a transmission section in the visible light region (wavelength of about 450 nm to about 650 nm), and a reflection section in the near-infrared region.

又,可知於透過段,對於第1反射率R1 及第2反射率R2 之任一情形,均可充分抑制反射。And, seen in section through, for the first reflectance and the second reflectance R 1 of any of R 2 a case, the reflection can be sufficiently suppressed.

根據所得之結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =1.27%。From the obtained results , the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =1.27%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =4.41%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =4.41%.

(例4之近紅外線截止濾波器) 圖11~圖13中表示於例4之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 4 near-infrared cut-off filter) The evaluation results of the optical characteristics obtained by the near-infrared cut filter of Example 4 are shown in FIGS. 11 to 13 .

圖11中,橫軸為波長,縱軸為反射率。圖11中將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 11 , the horizontal axis represents the wavelength, and the vertical axis represents the reflectance. FIG. 11 shows the results of the normal reflectance obtained at 5° incidence, namely the first reflectivity R 1 , and the normal reflectivity obtained at 40° incidence, namely the second reflectivity R 2 .

根據圖11之結果可知,例4之近紅外線截止濾波器於可見光之區域(波長約450 nm~約650 nm)具有透過段,於近紅外線之區域具有反射段。According to the results in FIG. 11 , the near-infrared cut-off filter of Example 4 has a transmission section in the visible light region (wavelength of about 450 nm to about 650 nm), and a reflection section in the near-infrared region.

又,可知於透過段中,對於第1反射率R1 及第2反射率R2 之任一情形,均可充分抑制反射。 圖12中,將圖11所示之行為中之波長480 nm~680 nm範圍之第1反射率R1 之變化放大而表示。In addition, it can be seen that in the transmission section, reflection can be sufficiently suppressed in either case of the first reflectance R 1 and the second reflectivity R 2 . In FIG. 12 , the change of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm in the behavior shown in FIG. 11 is enlarged and shown.

圖12之直線y1 為波長480 nm~680 nm範圍之第1反射率R1 之近似直線,由如下式表示,即 y1 =0.0026λ-0.8325   (9)式。The straight line y 1 in FIG. 12 is an approximate straight line of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm, and is represented by the following formula: y 1 =0.0026λ−0.8325 (9).

又,圖13中,將圖11所示之行為中之波長450 nm~650 nm範圍之第2反射率R2 之變化放大而表示。Further, in FIG. 13, the second reflectance at a wavelength of behavior shown in FIG. 11 of 450 nm ~ 650 nm range of the enlarged R 2 represents a variation.

圖13之直線y2 為波長450 nm~650 nm範圍之第2反射率R2 之近似直線,由如下式表示,即 y2 =0.015λ-6.6515     (10)式。The straight line y 2 in FIG. 13 is an approximate straight line of the second reflectance R 2 in the wavelength range of 450 nm to 650 nm, and is represented by the following formula: y 2 =0.015λ−6.6515 (10).

根據該等結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =1.03%。 From these results, the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =1.03%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =4.98%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =4.98%.

(例11之近紅外線截止濾波器) 圖14~圖16中表示於例11之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 11 of near-infrared cut-off filter) 14 to 16 show the evaluation results of the optical characteristics obtained by the near-infrared cut filter of Example 11.

圖14中,橫軸為波長,縱軸為反射率。圖14中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 14 , the horizontal axis represents the wavelength, and the vertical axis represents the reflectance. In FIG. 14 , the results of the normal reflectance obtained at 5° incidence, namely, the first reflectance R 1 , and the normal reflectivity obtained at 40° incidence, namely, the second reflectivity R 2 are shown together.

根據圖14之結果得出,於例11之近紅外線截止濾波器之情形時,對於5°入射及40°入射之任一者,均於可見光之區域反射率降低。然而,可知於該區域,第1反射率R1 及第2反射率R2 之值並未太受到抑制。According to the results in FIG. 14 , in the case of the near-infrared cut filter of Example 11, the reflectance in the visible light region is reduced for any one of 5° incidence and 40° incidence. However, it was found in the region, the first reflectance and the second reflectance R & lt an R 2 value of not too suppressed.

圖15中,將圖14所示之行為中之波長480 nm~680 nm範圍之第1反射率R1 之變化放大而表示。 In FIG. 15 , the change in the first reflectance R 1 in the wavelength range of 480 nm to 680 nm in the behavior shown in FIG. 14 is enlarged and shown.

圖15之直線y1 為波長480 nm~680 nm範圍之第1反射率R1 之近似直線,由如下式表示,即 y1 =0.0735λ-27.775   (11)式。The straight line y 1 in FIG. 15 is an approximate straight line of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm, and is represented by the following formula: y 1 =0.0735λ−27.775 (11).

又,圖16中,將圖14所示之行為中之波長450 nm~650 nm範圍之第2反射率R2 之變化放大而表示。And, FIG. 16, the second reflectance at a wavelength of behavior shown in FIG. 14 in the range of 450 nm ~ 650 nm of the enlarged R 2 represents a variation.

圖16之直線y2 為波長450 nm~650 nm範圍之第2反射率R2 之近似直線,由如下式表示,即 y2 =0.0747λ-27.467   (12)式。The straight line y 2 in FIG. 16 is an approximate straight line of the second reflectance R 2 in the wavelength range of 450 nm to 650 nm, and is represented by the following formula: y 2 =0.0747λ−27.467 (12).

根據該等結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =17.56%。 From these results, the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =17.56%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =12.93%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =12.93%.

(例12之近紅外線截止濾波器) 圖17~圖19中表示於例12之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 12 of near-infrared cut-off filter) The evaluation results of the optical characteristics obtained by the near-infrared cut filter of Example 12 are shown in FIGS. 17 to 19 .

圖17中,橫軸為波長,縱軸為反射率。圖17中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 17 , the horizontal axis represents the wavelength, and the vertical axis represents the reflectance. In FIG. 17 , the results of the normal reflectance obtained at 5° incidence, namely, the first reflectivity R 1 , and the normal reflectivity obtained at 40° incidence, namely, the second reflectivity R 2 are shown together.

根據圖17之結果得出,於例12之近紅外線截止濾波器之情形時,對於第1反射率R1 及第2反射率R2 之任一者,均於可見光之區域反射率降低。然而,可知於該區域,第1反射率R1 及第2反射率R2 之值並未太受到抑制。The obtained results of FIG. 17, when in the near-infrared cutoff case of Example 12 the filter for the first reflectance and the second reflectance R 1 R 2 according to any one of, both in the area of reduced reflectivity of visible light. However, it was found in the region, the first reflectance and the second reflectance R & lt an R 2 value of not too suppressed.

圖18中,將圖17所示之行為中之波長480 nm~680 nm範圍之第1反射率R1 之變化放大而表示。 In FIG. 18 , the change in the first reflectance R 1 in the wavelength range of 480 nm to 680 nm in the behavior shown in FIG. 17 is enlarged and shown.

圖18之直線y1 為波長480 nm~680 nm範圍之第1反射率R1 之近似直線,由 y1 =0.0435λ-20.496   (13)式 表示。The straight line y 1 in FIG. 18 is an approximate straight line of the first reflectance R 1 in the wavelength range of 480 nm to 680 nm, and is represented by the formula y 1 =0.0435λ−20.496 (13).

又,圖19中,將圖17所示之行為中之波長450 nm~650 nm範圍之第2反射率R2 之變化放大而表示。And, FIG. 19, the second reflectance at a wavelength of behavior shown in FIG. 17 of 450 nm ~ 650 nm range of the enlarged R 2 represents a variation.

圖19之直線y2 為波長450 nm~650 nm範圍之第2反射率R2 之近似直線,由如下式表示,即 y2 =0.044λ-19.138   (14)式。The straight line y 2 in FIG. 19 is an approximate straight line of the second reflectance R 2 in the wavelength range of 450 nm to 650 nm, and is represented by the following formula: y 2 =0.044λ−19.138 (14).

根據該等結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =6.75%。 From these results, the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =6.75%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =5.35%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =5.35%.

(例13之近紅外線截止濾波器) 圖20中表示於例13之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 13 of near-infrared cut-off filter) FIG. 20 shows the evaluation results of the optical characteristics obtained in the near-infrared cut filter of Example 13.

圖20中,橫軸為波長,縱軸為反射率。圖20中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 20 , the horizontal axis represents the wavelength, and the vertical axis represents the reflectance. In FIG. 20, the normal reflectance obtained at 5° incidence, that is, the first reflectance R 1 , and the normal reflectivity obtained at 40° incidence, that is, the second reflectivity R 2 are shown together.

根據圖20之結果得出,於例13之近紅外線截止濾波器之情形時,對於第1反射率R1 及第2反射率R2 之任一者,均於可見光之區域反射率降低。然而,可知於該區域,第1反射率R1 及第2反射率R2 之值並未太受到抑制。The obtained results of FIG. 20, when in the near-infrared cutoff case of Example 13 the filter for the first reflectance and the second reflectance R 1 R 2 according to any one of, both in the area of reduced reflectivity of visible light. However, it was found in the region, the first reflectance and the second reflectance R & lt an R 2 value of not too suppressed.

根據所得之結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =10.10%。From the obtained results , the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =10.10%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =10.30%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =10.30%.

(例14之近紅外線截止濾波器) 圖21中表示於例14之近紅外線截止濾波器所獲得之光學特性之評估結果。(Example 14 of near-infrared cut-off filter) FIG. 21 shows the evaluation results of the optical characteristics obtained in the near-infrared cut filter of Example 14.

圖21中,橫軸為波長,縱軸為反射率。圖21中,將5°入射時獲得之正規反射率即第1反射率R1 、與40°入射時獲得之正規反射率即第2反射率R2 之結果一併表示。In FIG. 21, the horizontal axis is the wavelength, and the vertical axis is the reflectance. In FIG. 21 , the results of the first reflectance R 1 , which is the normal reflectance obtained at 5° incidence, and the second reflectivity R 2 , which is the normal reflectivity obtained at 40° incidence, are shown together.

根據圖21之結果得出,於例14之近紅外線截止濾波器之情形時,對於第1反射率R1 及第2反射率R2 之任一者,均於可見光之區域反射率降低。然而,可知於該區域,第1反射率R1 及第2反射率R2 之值並未太受到抑制。The obtained results of FIG. 21, when in the near-infrared cutoff case of Example 14 the filter for the first reflectance and the second reflectance R 1 R 2 according to any one of, both in the area of reduced reflectivity of visible light. However, it was found in the region, the first reflectance and the second reflectance R & lt an R 2 value of not too suppressed.

根據所得之結果求出同一波長下之第1反射率R1 與近似直線y1 之值之間之差之絕對值的最大值ΔR1 ,ΔR1 =10.30%。From the obtained results , the maximum value ΔR 1 of the absolute value of the difference between the first reflectance R 1 and the value of the approximate straight line y 1 at the same wavelength was obtained, and ΔR 1 =10.30%.

又,求出同一波長下之第2反射率R2 與近似直線y2 之值之間之差之絕對值的最大值ΔR2 ,ΔR2 =14.77%。 Furthermore, the maximum value ΔR 2 of the absolute value of the difference between the second reflectance R 2 and the value of the approximate straight line y 2 at the same wavelength was obtained, and ΔR 2 =14.77%.

於以下表9中,將於各例之近紅外線截止濾波器所獲得之ΔR1 及ΔR2 之值彙總表示。 In Table 9 below, the values of ΔR 1 and ΔR 2 obtained by the near-infrared cut filter of each example are collectively shown.

[表9] ∆R1 (%) ∆R2 (%) 1 2.35 5.38 2 3.25 3.98 3 1.27 4.41 4 1.03 4.98 11 17.56 12.93 12 6.75 5.35 13 10.10 10.30 14 10.30 14.77 如此確認出,對於滿足ΔR1 <5%及ΔR2 <6%之例1~例4之近紅外線截止濾波器,不管光之入射角度如何,均可顯著抑制透過段之光之反射。[Table 9] example ΔR 1 (%) ∆R 2 (%) 1 2.35 5.38 2 3.25 3.98 3 1.27 4.41 4 1.03 4.98 11 17.56 12.93 12 6.75 5.35 13 10.10 10.30 14 10.30 14.77 In this way, it was confirmed that the near-infrared cut filters of Examples 1 to 4 satisfying ΔR 1 <5% and ΔR 2 <6% can significantly suppress reflection of light in the transmitted section regardless of the incident angle of the light.

100:第1光學濾波器 110:透明基板 112:第1表面 120:光學多層膜 140:第1匹配膜 160:第2匹配膜 200:第2光學濾波器 210:透明基板 212:第1表面 220:光學多層膜 240:第1匹配膜 260:第2匹配膜 300:第3光學濾波器 310:透明基板 312:第1表面 320:光學多層膜 340:第1匹配膜 350:第3匹配膜 360:第2匹配膜100: 1st optical filter 110: Transparent substrate 112: Surface 1 120: Optical multilayer film 140: 1st matching film 160: 2nd matching film 200: 2nd Optical Filter 210: Transparent substrate 212: Surface 1 220: Optical Multilayer Film 240: 1st matching film 260: 2nd matching film 300: 3rd Optical Filter 310: Transparent substrate 312: Surface 1 320: Optical Multilayer Film 340: 1st matching film 350: 3rd Matching Film 360: 2nd Matching Film

圖1係模式性表示本發明之一實施方式之近紅外線截止濾波器之剖面之圖。 圖2係模式性表示本發明之另一實施方式之近紅外線截止濾波器之剖面之圖。 圖3係模式性表示本發明之又一實施方式之近紅外線截止濾波器之剖面之圖。 圖4係表示於例1之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖5係將圖4之5°入射下之光學特性之一部分放大而表示之曲線圖。 圖6係將圖4之40°入射下之光學特性之一部分放大而表示之曲線圖。 圖7係表示於例2之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖8係將圖7之5°入射下之光學特性之一部分放大而表示之曲線圖。 圖9係將圖7之40°入射下之光學特性之一部分放大而表示之曲線圖。 圖10係表示於例3之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖11係表示於例4之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖12係將圖11之5°入射下之光學特性之一部分放大而表示之曲線圖。 圖13係將圖11之40°入射下之光學特性之一部分放大而表示之曲線圖。 圖14係表示於例11之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖15係將圖14之5°入射下之光學特性之一部分放大而表示之曲線圖。 圖16係將圖14之40°入射下之光學特性之一部分放大而表示之曲線圖。 圖17係表示於例11之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖18係將圖17之5°入射下之光學特性之一部分放大而表示之曲線圖。 圖19係將圖17之40°入射下之光學特性之一部分放大而表示之曲線圖。 圖20係表示於例13之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。 圖21係表示於例14之近紅外線截止濾波器所獲得之5°入射及40°入射之各者下之光學特性之曲線圖。FIG. 1 is a diagram schematically showing a cross section of a near-infrared cut filter according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing a cross section of a near-infrared cut filter according to another embodiment of the present invention. 3 is a diagram schematically showing a cross section of a near-infrared cut filter according to another embodiment of the present invention. 4 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 1. FIG. FIG. 5 is a graph showing a part of the optical characteristics under 5° incidence of FIG. 4 in an enlarged manner. FIG. 6 is a graph showing a part of the optical characteristics under 40° incidence of FIG. 4 in an enlarged manner. 7 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 2. FIG. FIG. 8 is a graph showing a part of the optical characteristics under 5° incidence of FIG. 7 in an enlarged manner. FIG. 9 is a graph showing a part of the optical characteristics under 40° incidence of FIG. 7 in an enlarged manner. 10 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 3. FIG. 11 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 4. FIG. FIG. 12 is a graph showing a part of the optical characteristics under 5° incidence of FIG. 11 in an enlarged manner. FIG. 13 is a graph showing a part of the optical characteristics under 40° incidence of FIG. 11 in an enlarged manner. 14 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 11. FIG. 15 is a graph showing a part of the optical characteristics under 5° incidence of FIG. 14 in an enlarged manner. FIG. 16 is a graph showing a part of the optical characteristics under 40° incidence of FIG. 14 in an enlarged manner. 17 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 11. FIG. FIG. 18 is a graph showing a part of the optical characteristics under 5° incidence of FIG. 17 in an enlarged manner. Fig. 19 is a graph showing a part of the optical characteristics under 40° incidence of Fig. 17 in an enlarged manner. 20 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 13. FIG. 21 is a graph showing optical characteristics at each of 5° incidence and 40° incidence obtained by the near-infrared cut filter of Example 14. FIG.

100:第1光學濾波器100: 1st optical filter

110:透明基板110: Transparent substrate

112:第1表面112: Surface 1

120:光學多層膜120: Optical multilayer film

140:第1匹配膜140: 1st matching film

160:第2匹配膜160: 2nd matching film

Claims (8)

一種近紅外線截止濾波器,具有: 透明基板,其具有第1表面; 光學多層膜,其設置於該透明基板之上述第1表面之側; 第1匹配膜,其設置於上述透明基板之上述第1表面之側;及 第2匹配膜,其設置於上述第1表面之最外側;且 上述光學多層膜具有高折射率層與低折射率層之交替積層構造,且具有使近紅外線反射之功能, 上述第1及第2匹配膜具有抑制可見光反射之功能, 上述第1匹配膜設置於上述光學多層膜之上、或上述透明基板與上述光學多層膜之間, 於該近紅外線截止濾波器中, 當將自上述第2匹配膜之側以5°之入射角度入射之光之正規反射率作為第1反射率R1 ,將自上述第2匹配膜之側以40°之入射角度入射之光之正規反射率作為第2反射率R2 ,且 將波長480 nm~680 nm範圍之上述第1反射率R1 之近似直線設為y1 ,將波長450 nm~650 nm範圍之上述第2反射率R2 之近似直線設為y2 時, 於波長480 nm~680 nm之範圍,同一波長下之上述第1反射率R1 與上述近似直線y1 之值之間之差之絕對值的最大值ΔR1 未達5%, 於波長450 nm~650 nm之範圍,同一波長下之上述第2反射率R2 與上述近似直線y2 之值之間之差之絕對值的最大值ΔR2 未達6%。A near-infrared cut filter comprising: a transparent substrate having a first surface; an optical multilayer film disposed on the side of the first surface of the transparent substrate; a first matching film disposed on the first surface of the transparent substrate 1 side of the surface; and a second matching film disposed on the outermost side of the first surface; and the above-mentioned optical multilayer film has an alternate lamination structure of high refractive index layers and low refractive index layers, and has a function of reflecting near infrared rays , the first and second matching films have the function of suppressing the reflection of visible light, the first matching film is arranged on the optical multilayer film, or between the transparent substrate and the optical multilayer film, in the near-infrared cut filter , when the normal reflectivity of the light incident from the side of the second matching film at an incident angle of 5° is taken as the first reflectivity R 1 , and the light incident from the side of the second matching film at an incident angle of 40° The normal reflectance is taken as the second reflectance R 2 , and the approximate straight line of the first reflectivity R 1 in the wavelength range of 480 nm to 680 nm is denoted as y 1 , and the second reflectance in the wavelength range of 450 nm to 650 nm is set as y 1 . When the approximate straight line of the rate R 2 is set as y 2 , in the wavelength range of 480 nm to 680 nm, the maximum absolute value of the difference between the value of the above-mentioned first reflectance R 1 and the value of the above-mentioned approximate straight line y 1 at the same wavelength The value ΔR 1 is less than 5%, and in the wavelength range of 450 nm to 650 nm, the maximum value ΔR 2 of the absolute value of the difference between the above-mentioned second reflectance R 2 and the value of the above-mentioned approximate straight line y 2 at the same wavelength is not up to 6%. 如請求項1之近紅外線截止濾波器,其中上述第1匹配膜具有高折射率層與低折射率層之交替積層構造, 將上述高折射率層之波長550 nm下之QWOT設為QH ,將上述低折射率層之波長550 nm下之QWOT設為QL 時, 上述第1匹配膜自上述透明基板之側具有 (H1 QH 、L1 QL 、H2 QH 、L2 QL 、......Hn QH 、Ln QL ) 之構造(此處,n為1以上之自然數), 各係數滿足 1.7≦(H1 +H2 +...+Hn )/(L1 +L2 +...+Ln )≦2.5。The requested item of a near-infrared cut filter, wherein the first matching film having a laminated structure of alternating high refractive index layer and the low refractive index layer, the wavelength of the high refractive index layers 550 QWOT nm under the set Q H, when the wavelength of the low refractive index layers 550 QWOT nm under the set Q L, the first matching film from the side of the transparent substrate having (H 1 Q H, L 1 Q L, H 2 Q H, L 2 Q L, ...... H n Q H, L n Q L) of the structure (here, n is a natural number of 1 or more of), each coefficient satisfies 1.7 ≦ (H 1 + H 2 + ... + H n) /(L 1 +L 2 +...+L n )≦2.5. 如請求項1或2之近紅外線截止濾波器,其中上述第1匹配膜係由6層以上構成。The near-infrared cut filter according to claim 1 or 2, wherein the first matching film is composed of six or more layers. 如請求項1至3中任一項之近紅外線截止濾波器,其中上述第2匹配膜具有高折射率層及低折射率層之2層構造, 將上述高折射率層之波長550 nm下之QWOT設為QA ,將上述低折射率層之波長550 nm下之QWOT設為QB 時, 上述第2匹配膜自上述透明基板之側具有 (XQA 、YQB ) 之構造,此處,X>Y。The near-infrared cut filter according to any one of claims 1 to 3, wherein the second matching film has a two-layer structure of a high refractive index layer and a low refractive index layer, and the high refractive index layer has a wavelength of 550 nm. when QWOT set Q A, the wavelength of the low refractive index layer is 550 nm QWOT under the set Q B, the first matching film 2 from the side of the transparent substrate having a (XQ A, YQ B) of the structure, where, X>Y. 如請求項1至4中任一項之近紅外線截止濾波器,其中於上述第1表面之側具有第3匹配膜,該第3匹配膜具有高折射率層與低折射率層之交替積層構造, 上述光學多層膜配置於上述第1匹配膜與上述第3匹配膜之間。The near-infrared cut filter according to any one of claims 1 to 4, wherein a third matching film is provided on the side of the first surface, and the third matching film has an alternate lamination structure of high-refractive-index layers and low-refractive-index layers , The said optical multilayer film is arrange|positioned between the said 1st matching film and the said 3rd matching film. 如請求項5之近紅外線截止濾波器,其中上述第3匹配膜以與上述第1匹配膜相同之層數構成。The near-infrared cut filter according to claim 5, wherein the third matching film has the same number of layers as the first matching film. 如請求項1至6中任一項之近紅外線截止濾波器,其中上述光學多層膜於可見光區域具有透過段。The near-infrared cut filter according to any one of claims 1 to 6, wherein the optical multilayer film has a transmission section in the visible light region. 如請求項7之近紅外線截止濾波器,其中上述光學多層膜於近紫外線區域具有反射段。The near-infrared cut-off filter of claim 7, wherein the optical multilayer film has a reflection section in the near-ultraviolet region.
TW110117241A 2020-05-21 2021-05-13 Near-infrared cutoff filter capable of significantly suppressing reflectance of a visible light region in a wide incident angle range TW202146948A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089018A JP7491052B2 (en) 2020-05-21 2020-05-21 Near infrared cut filter
JP2020-089018 2020-05-21

Publications (1)

Publication Number Publication Date
TW202146948A true TW202146948A (en) 2021-12-16

Family

ID=78672661

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117241A TW202146948A (en) 2020-05-21 2021-05-13 Near-infrared cutoff filter capable of significantly suppressing reflectance of a visible light region in a wide incident angle range

Country Status (3)

Country Link
JP (1) JP7491052B2 (en)
CN (1) CN113721317A (en)
TW (1) TW202146948A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718070B (en) 2011-07-28 2016-09-07 旭硝子株式会社 Optics
JP5973747B2 (en) 2012-02-28 2016-08-23 旭硝子株式会社 Near-infrared cut filter
JP6206410B2 (en) 2012-08-29 2017-10-04 旭硝子株式会社 Near-infrared cut filter
JP5617063B1 (en) 2012-12-28 2014-10-29 旭硝子株式会社 Near-infrared cut filter
CN111399100A (en) 2019-01-03 2020-07-10 株式会社Lms Near-infrared absorbing substrate, optical filter, and methods for manufacturing near-infrared absorbing substrate and optical filter

Also Published As

Publication number Publication date
JP2021184022A (en) 2021-12-02
CN113721317A (en) 2021-11-30
JP7491052B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
JP6241419B2 (en) Near-infrared cut filter
JP4404568B2 (en) Infrared cut filter and manufacturing method thereof
US20100188737A1 (en) Dielectric multilayer filter
JP6021523B2 (en) Variable transmittance element, optical system and optical device using electrochromic material
WO2014034386A1 (en) Near-infrared cutoff filter
KR20150100618A (en) Near-infrared cut-off filter
JP2017068096A (en) Antireflection film, optical element, and ophthalmic device
JP5973747B2 (en) Near-infrared cut filter
JP2019023722A5 (en)
JP7215476B2 (en) optical filter
CN109975905B (en) Near infrared cut-off filter
JP2004354735A (en) Light ray cut filter
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
JP2007206172A (en) Imaging system optical element
JP2003029027A (en) Near ir ray cut filter
JP6760304B2 (en) Golden multi-layer coat and reflector with it
JP2000329933A (en) Multilayered film filter
JP2010032867A (en) Infrared ray cutoff filter
JP2015227963A (en) Optical filter and manufacturing method therefor
JP3917261B2 (en) Optical absorber and optical apparatus using the same
JP2006259124A (en) Cold mirror
US20140327966A1 (en) Antireflection film
JP2007333806A (en) Antireflection film and optical member
TW202146948A (en) Near-infrared cutoff filter capable of significantly suppressing reflectance of a visible light region in a wide incident angle range
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same