TW202146053A - 藉由可解釋機器學習設計反義寡核苷酸遞送肽 - Google Patents

藉由可解釋機器學習設計反義寡核苷酸遞送肽 Download PDF

Info

Publication number
TW202146053A
TW202146053A TW110102559A TW110102559A TW202146053A TW 202146053 A TW202146053 A TW 202146053A TW 110102559 A TW110102559 A TW 110102559A TW 110102559 A TW110102559 A TW 110102559A TW 202146053 A TW202146053 A TW 202146053A
Authority
TW
Taiwan
Prior art keywords
peptide
conjugate
mach
peptides
alkyl
Prior art date
Application number
TW110102559A
Other languages
English (en)
Inventor
卡禮 奇索
蘇莫許 牧哈帕卓
賈斯汀 沃夫
科林 菲德森
吳家霖
愛妮卡 梅爾伯格
甘納 韓森
布萊德利 潘特盧特
朋拜瑞利 拉菲爾 葛梅姿
維黛爾 伊娃 瑪麗亞 羅培姿
Original Assignee
美商薩羅塔治療公司
美國麻省理工學院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商薩羅塔治療公司, 美國麻省理工學院 filed Critical 美商薩羅塔治療公司
Publication of TW202146053A publication Critical patent/TW202146053A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本文提供寡核苷酸、三聚肽及肽-寡核苷酸偶聯物。本文亦提供治療有需要之個體之肌肉疾病之方法,其包含向該個體投與本文所述之寡核苷酸、三聚肽及肽-寡核苷酸偶聯物。提供用於生成偶聯至反義寡核苷酸之細胞穿透肽之文庫之合成方法,及用於生成能夠增強來自偶聯物文庫之寡核苷酸貨物之遞送的新穎肽序列的基於機器學習之發生器-預測器-最佳化器廻圈。

Description

藉由可解釋機器學習設計反義寡核苷酸遞送肽
反義技術提供調節一或多種特定基因產物(包括交替剪接產物)之表現之手段,且在多種治療、診斷及研究應用中具有獨特用途。反義技術背後之原理係與靶標核酸雜交之反義化合物(例如,寡核苷酸)經由多種反義機制中之任一者調節基因表現活性(例如,轉錄、剪接或轉譯)。反義化合物之序列特異性使得其作為用於靶標驗證及基因功能化之工具以及選擇性調節疾病中所涉及基因之表現的治療劑具有吸引力。
儘管在反義技術領域中已獲得顯著進展,但業內仍需要具有經改良反義或反基因性能之寡核苷酸及肽-寡核苷酸偶聯物。
本文提供肽-寡核苷酸偶聯物,其包含共價結合至肽之寡核苷酸。本文亦提供治療有需要之個體之疾病的方法,其包含向該個體投與本文所述之肽-寡核苷酸偶聯物。本文亦提供使用機器學習識別一或多種具有最佳活性之細胞穿透肽之方法。
因此,在一態樣中,本文提供式I之肽-寡核苷酸偶聯物:
Figure 02_image003
(I) 或其醫藥上可接受之鹽, 其中: A′選自-N(H)CH2 C(O)NH2 、-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image005
Figure 02_image007
,其中 R5 係-C(O)(O-烷基)x -OH,其中x係3-10且每一烷基在每次出現時獨立地係C2-6 -烷基, 或R5 選自-C(O)C1-6 -烷基、三苯甲基、單甲氧基三苯甲基、-(C1-6 -烷基)-R6 、-(C1-6 -雜烷基)-R6 、芳基-R6 、雜芳基-R6 、-C(O)O-(C1-6 -烷基)-R6 、-C(O)O-芳基-R6 、-C(O)O-雜芳基-R6
Figure 02_image009
; 其中R6 選自OH、SH及NH2 ,或R6 係O、S或NH,其每一者共價鏈接至固體載體; 每一R1 獨立地選自OH及-N(R3 )(R4 ),其中每一R3 及R4 在每次出現時獨立地係-C1-6 -烷基; 每一R2 在每次出現時獨立地選自H、核鹼基及經化學保護基團官能化之核鹼基,其中核鹼基在每次出現時獨立地包含選自吡啶、嘧啶、三嗪烷、嘌呤及去氮-嘌呤之C3-6 -雜環; z係8-40;且 E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基,
Figure 02_image011
Figure 02_image013
; 其中 Q係-C(O)(CH2 )6 C(O)-或-C(O)(CH2 )2 S2 (CH2 )2 C(O)-; R7 係-(CH2 )2 OC(O)N(R8 )2 ,其中R8 係-(CH2 )6 NHC(=NH)NH2 ; L係-C(O)(CH2 )1-6 -C7-15 -雜芳香族-(CH2 )1-6 C(O)-,其中L藉由醯胺鍵共價鏈接至J; J係載劑肽; G選自H、-C(O)C1-6 -烷基、苯甲醯基及硬脂醯基,其中G共價鏈接至J; 其中以下條件中之至少一者為真: 1) A′係
Figure 02_image015
;或2) E′係
Figure 02_image017
;且 其中載劑肽J選自以下序列:
MACH 1 ALKBRSAAKAVRWPKKKIKQASKKVAKYALXXXRKKKAASKXWLQLHWPRW
MACH 2 PPLRNAKKKNLKNNLKMDPKFTKKVKQGALKLNRRKKNRGPKGPXKHWTT
MACH 3 QKKRKSKANKKNWPKGKLSIHAKDYKQGPKAKXRKQRXR
MACH 4 KKGKKQNKKKHRWPKKKVPQPKKMFKQGABXRX
MACH 5 AKKKIAKAKKHRGPNBGIHAPVSKIKDPLKXXX
MACH 6 ALKBRSAAKAVRWPKKAIKQASKKVAKYALKXXRKKKAASKXWLQLHWPRW
MACH 7 XKHPXAVQBAARAWKVPAAALWKKKRLKKSSKQKKKWLWKARSAXKYXRLI
MACH 8 BKGKNLLAKIRRGPNGGNBQGSQGYLLYLLXRXRRQRXXYPWWRXKHXRWXXRXRGHXRRRRQXLKPDRXRGGKGSVS
MACH 9 KKKKNLNBKSRRGPNGGALQPSQGYLQPLNXRXRRQRXXYPWWRXKHXRWRXRYHXRRRRQXLKPG
MACH 11 TSNLKLHLAPPVKKKALKKPLYKAKKKKKVVSPTWXTDQEW
MACH 12 KGGKNLAKKIRRGPNGGALQPSQGYLLYLBXRXRRQRXXGPXWRXKHXRWXXXXXRPTHXRRRRQXL C PGRXRP C RGSVS
MACH 13 AKKKKLGBKALRWPNGK C PQPKEK C PKYLLGRXRRKRXRYPWWRXKHRRW
P1 (MACH 14) KXKKQQGKKKHR
P2 (MACH 15) KKKKKQBKKKHRWPMG
P3 (MACH 16) KKKKNQBKKKHRWPMKXCPQ
P4 (MACH 17) HKKKKQBKKKHRWP
P5 (MACH 18) KXKHQQQXK
P6 (MACH 19) KXKXT
P7 (MACH 20) KKKKKQBKKKHRWPKXXC
P8 KKKKKCBKKKHRWPKXXQ
P9 KKKXKQBKKKHRWPKKXC
P10 KCHKXKWKKPKRXKQKBK
P11 KKKKKQCKKKHRWPKXXC
P12 KKKKKQBKKKHRWPKXXG
P13 KKKKKQBKKKHRWPMGKXXC
P14 HKKKKQBKKKHRWPKXXC
P15 KXKHQQQXKKXXC
P16 KXKXTKXXC
P17 ALWKTLLKKVLKAPKKKRKV
P18 ALWKTLLKKVLKAPKKKRKVKXXC
P19 RQIKIWFQNRRMKWKK
P20 RQIKIWFQNRRMKWKKKXXC
P21 KKKKKQBKKKHRWP
P22 KKKKKQBKKKHRWPKXXCCC
P23 KKKKKQBKKKHRWAKXXC
其中X係6-胺基己酸,B係β-丙胺酸,且 C 藉由L1 共價結合至另一 C ; 其中L1
Figure 02_image019
; M係
Figure 02_image020
Figure 02_image022
;且 R10 在每次出現時獨立地係H或鹵素。
在另一態樣中,本文亦提供具有上所提供定義之式II化合物且其中載劑肽J選自以下序列:
P24 KXKHQQGP
P25 KXKHQQGKKT
P26 HKKKQQGKKKHRW
P27 KKKKKQBKKKHRWPM
P28 KKKKKQGKKHRWPMGG
P29 KKKKNQBKKKHRWPMKXCP
P30 KKKKKQBKKKHRWPKXXA
P31 KKKKKQBKKKHRWPKXAC
P32 KKKKKQBKKKHRWPKAXC
P33 KKKKKQBKKKHRWPAXXC
P34 KAKKKQBKKKHRWPKXXC
P35 KKKKKQBKAKHRWPKXXC
P36 KKKAKQBKKKHRWPKXXC
P37 KKKAKQBKAKHRWPKXXC
P38 KAKAKQBKKKHRWPKXXC
P39 KAKAKQBKAKHRWPKXXC
P40 KKKKKQBKKKHRWP
在一個實施例中,式I之肽-寡核苷酸偶聯物係式Ia之肽-寡核苷酸偶聯物:
Figure 02_image024
(Ia) 或其醫藥上可接受之鹽。
在另一實施例中式I之肽-寡核苷酸偶聯物係式Ib之肽-寡核苷酸偶聯物:
Figure 02_image026
(Ib) 或其醫藥上可接受之鹽。
在仍另一態樣中,本文提供治療神經肌肉疾病之方法,其包含向個體投與本揭示內容之肽-寡核苷酸偶聯物。
在另一態樣中,本文提供使用機器學習識別一或多種具有最佳活性之細胞穿透肽之方法,該方法包含: a.)     合成訓練寡核苷酸-細胞穿透肽偶聯物之文庫; b.)     藉由使用該合成文庫訓練巢套式長短期記憶(LSTM)遞迴神經網路模型來生成種子肽序列; c.)     預測來自該等所生成種子肽序列中之哪些肽序列具有胺基酸殘基之預定結構-活性關係;及 使用活性預測器-基因演算法最佳化器廻圈識別所預測肽序列中之一或多個最佳者。
相關申請案 此申請案主張對2020年1月24日提出申請之美國臨時專利申請案第62/965,555號及2021年1月6日提出申請之美國臨時專利申請案63/134,405號之優先權,其內容以整體引用的方式併入本文中。
磷醯二胺嗎啉基寡核苷酸(PMO)係用於基因疾病之有吸引力治療分子。PMO經設計以藉由Watson-Crick鹼基配對辨識靶標並對其互補核苷酸序列展現高特異性位準。端視所靶向序列之類型而定,PMO可介導各種效應,包括阻斷蛋白質轉譯或修改基因剪接。依替利森(Eteplirsen,一種由FDA批准用於治療杜興氏肌肉營養不良症(Duchenne muscular dystrophy)之PMO)使得在編碼肌肉萎縮蛋白之前mRNA中含突變之外顯子被排除在最終蛋白質轉錄本之外,由此恢復蛋白質功能性。
就結構而言,PMO係中性寡核苷酸類似物,其中核糖基環已由嗎啉基環替代且帶負電荷之磷酸二酯主鏈已由不帶電之磷醯二胺替代。主鏈結構之改變阻止了在血清中及藉由細胞內核酸酶之降解。然而,PMO之相對較大大小及中性電荷可導致至胞質液及細胞核之遞送效率低。
細胞穿透肽(CPP)係改良PMO至細胞核之遞送的有前景策略。CPP係5-40個胺基酸之相對較短序列,其理想地進入胞質液且可促進貨物之細胞內遞送。CPP可基於其物理化學性質分成不同群組。一種常見CPP類別係由重複的基於精胺酸之肽組成,例如R12 及Bpep (RXRRβRRXRRβR,其中X係胺基己酸且β係β-丙胺酸)。該等寡精胺酸肽通常係無規則線團。當偶聯至PMO時,寡精胺酸肽係促進PMO遞送之最有效肽之一。其他CPP (例如穿膜肽、pVEC及蜂毒肽)在性質上更多係兩親性的。儘管該等序列確實含有陽離子殘基,但帶電及疏水殘基之經定義分離可促進兩親性螺旋形成。然而,兩親性CPP並未展示顯著改良PMO效能。
不存在針對CPP或CPP-PMO偶聯物之普遍細胞進入機制。該機制通常高度依賴於處理濃度及所附接貨物之類型。高於某一臨限值濃度(通常為低微莫耳濃度)時,可觀察到能量依賴性胞質攝取快於胞吞作用及細胞表面再循環之時間標度。快速攝取速率提供類似於針對小分子觀察到之直接易位機制之證據。然而,在低、生理相關濃度下,攝取主要為胞吞。即使在胞吞作用之範疇內,CPP及CPP-PMO偶聯物亦可使用一或多種胞吞機制進入細胞。該等胞吞機制包括微胞飲作用、格形蛋白介導之胞吞作用、胞膜窖介導之胞吞作用及格形蛋白/胞膜窖獨立性胞吞作用。CPP-PMO偶聯物在低濃度下主要為胞吞,且用於PMO遞送差之CPP可能陷獲於胞內體中或被排除在核隔室外。
本文提供用於改良PMO遞送之肽-PMO偶聯物。本文闡述寡核苷酸之細胞攝取增加,尤其當與未偶聯PMO及單一CPP-PMO偶聯物相比時。本文亦提供使用機器學習識別一或多種具有最佳活性之細胞穿透肽之方法。
定義 下文列示用於闡述本揭示內容之各個術語之定義。除非在特定情況下另有限制,否則在整個本說明書及申請專利範圍中個別地或作為較大基團之一部分使用該等術語時,該等定義適用於該等術語。
術語「約」將為熟習此項技術者所理解,且其將在使用其之上下文中在一定程度上有所變化。如本文所用,當提及可量測值(例如,量、持續時間及諸如此類)時,術語「約」意欲涵蓋自規定值之±20%或±10% (包括±5%、±1%及±0.1%)之變化,此乃因該等變化適用於執行本揭示方法。
術語「烷基」係指飽和、直鏈或具支鏈烴部分,其在某些實施例中分別含有在1與6個或1與8個之間之碳原子。C1-6 -烷基部分之實例包括(但不限於)甲基、乙基、丙基、異丙基、正丁基、第三丁基、新戊基、正己基部分;且C1-8 -烷基部分之實例包括(但不限於)甲基、乙基、丙基、異丙基、正丁基、第三丁基、新戊基、正己基、庚基及辛基部分。
烷基取代基中之碳原子數可由前綴「Cx-y 」指示,其中x係取代基中之最小碳原子數且y係最大碳原子數。同樣,Cx 鏈意指含有x個碳原子之烷基鏈。
除非另有說明,否則術語「雜烷基」自身或與另一術語組合意指由規定數目之碳原子及一或兩個選自由O、N及S組成之群之雜原子組成的穩定直鏈或具支鏈烷基,且其中氮及硫原子可視情況經氧化且氮雜原子可視情況經四級銨化。雜原子可置於雜烷基之任一位置,包括在雜烷基之其餘部分與其所附接之片段之間,以及附接至雜烷基中之最遠端碳原子。實例包括:-O-CH2 -CH2 -CH3 、-CH2 -CH2 -CH2 -OH、-CH2 -CH2 -NH-CH3 、-CH2 -S-CH2 -CH3 及-CH2 -CH2 -S(=O)-CH3 。最多兩個雜原子可相連,例如-CH2 -NH-OCH3 或-CH2 -CH2 -S-S-CH3
除非另外陳述,否則術語「芳基」單獨或與其他術語組合使用時意指含有一或多個環(通常一個、兩個或三個環)之碳環芳香族系統,其中該等環可以懸垂方式附接在一起(例如聯苯),或可稠合(例如萘)。芳基之實例包括苯基、蒽基及萘基。在各個實施例中,芳基之實例可包括苯基(例如C6 -芳基)及聯苯(例如C12 -芳基)。在一些實施例中,芳基具有6至16個碳原子。在一些實施例中,芳基具有6至12個碳原子(例如C6- 12 -芳基)。在一些實施例中,芳基具有6個碳原子(例如C6 -芳基)。
如本文所用,術語「雜芳基」或「雜芳香族」係指具有芳香族特徵之雜環。雜芳基取代基可藉由碳原子數定義,例如C1-15 -雜芳基指示雜芳基中所含碳原子數,而不包括雜原子數。舉例而言,C1-9 -雜芳基將包括額外的1至4個雜原子。多環雜芳基可包括一或多個部分飽和之環。雜芳基之非限制性實例包括吡啶基, 吡嗪基, 嘧啶基(包括例如2-及4-嘧啶基)、嗒嗪基、噻吩基、呋喃基、吡咯基(包括例如2-吡咯基)、咪唑基、噻唑基、噁唑基、吡唑基(包括例如3-及5-吡唑基)、異噻唑基、1,2,3-三唑基、1,2,4-三唑基、1,3,4-三唑基、四唑基、1,2,3-噻二唑基、1,2,3-噁二唑基、1,3,4-噻二唑基 及1,3,4-噁二唑基。
多環雜環及雜芳基之非限制性實例包括吲哚基(包括例如3-、4-、5-、6-及7-吲哚基)、吲哚啉基、喹啉基、四氫喹啉基、異喹啉基(包括例如1-及5-異喹啉基)、1,2,3,4-四氫異喹啉基、㖕啉基、喹喏啉基(包括例如2-及5-喹喏啉基)、喹唑啉基、酞嗪基、1,8-萘啶基、1,4-苯并二噁烷基、香豆素、二氫香豆素、1,5-萘啶基、苯并呋喃基(包括例如3-、4-、5-、6-及7-苯并呋喃基)、2,3-二氫苯并呋喃基、1,2-苯并異噁唑基、苯并噻吩基(包括例如3-、4-、5-、6-及7-苯并噻吩基)、苯并噁唑基、苯并噻唑基(包括例如,2-苯并噻唑基及5-苯并噻唑基)、嘌呤基、苯并咪唑基(包括例如 2-苯并咪唑基)、苯并三唑基、噻噸基、咔唑基、哢啉基、吖啶基、吡咯聯啶基及喹嗪基。
如本文所用,縮寫字DBCO係指8,9-二氫-3H-二苯并[b,f][1,2,3]三唑并[4,5-d]氮環辛四烯。
術語「保護基團」或「化學保護基團」係指阻斷化合物之一些或所有反應性部分並防止該等部分參與化學反應直至去除保護基團之化學部分,例如彼等列示及闡述於T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis,第3版,John Wiley & Sons (1999)中之部分。在採用不同保護基團之情形下,每一(不同)保護基團可藉由不同方式去除可係有利的。在完全不同反應條件下裂解之保護基團允許該等保護基團之差別去除。舉例而言,可藉由酸、鹼及氫解去除保護基團。諸如三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、乙縮醛及第三丁基二甲基矽烷基之基團係酸不穩定的且可用於在經Cbz基團(其可藉由氫解去除)及Fmoc基團(其係鹼不穩定的)保護之胺基存在下保護羧基及羥基反應性部分。可使用鹼不穩定基團(例如但不限於甲基或乙基)阻斷羧酸部分,且可使用鹼不穩定基團(例如乙醯基)在經酸不穩定基團(例如胺基甲酸第三丁基酯)或胺基甲酸酯(其係酸及鹼穩定但可以水解方式去除)阻斷之胺存在下阻斷羥基反應性部分。
羧酸及羥基反應性部分亦可經水解可去除保護基團(例如苄基)阻斷,而胺基團可經鹼不穩定基團(例如Fmoc)阻斷。用於合成式(I)化合物之尤其有用之胺保護基團係三氟乙醯胺。羧酸反應性部分可經氧化可去除保護基團(例如2,4-二甲氧基苄基)阻斷,而共存之胺基可經氟化物不穩定之胺基甲酸矽烷基酯阻斷。
烯丙基阻斷基團可在酸及鹼保護基團存在下使用,此乃因前者係穩定的且可隨後藉由金屬或π酸觸媒去除。舉例而言,可使用鈀(0)催化反應在酸不穩定胺基甲酸第三丁基酯或鹼不穩定乙酸酯胺保護基團存在下對烯丙基阻斷之羧酸實施去保護。保護基團之又一形式係樹脂,化合物或中間體可附接至其。只要殘基附接至樹脂,官能基即受阻斷且不能反應。一旦自樹脂釋放,官能基便可用於反應。
術語「核鹼基」、「鹼基配對部分」、「核鹼基-配對部分」或「鹼基」係指核苷、核苷酸及/或嗎啉基亞單元之雜環部分。核鹼基可係天然的,或可經改質或該等天然核鹼基之類似物,例如核鹼基之一或多個氮原子可在每次出現時獨立地由碳替代。實例性類似物包括次黃嘌呤(核苷肌苷之鹼基組分);2,6-二胺基嘌呤;5-甲基胞嘧啶;C5-丙炔基改質之嘧啶;10-(9-(胺基乙氧基)吩噁嗪)(G形夾)及諸如此類。
鹼基配對部分之其他實例包括(但不限於)尿嘧啶、胸腺嘧啶、腺嘌呤、胞嘧啶、鳥嘌呤及次黃嘌呤(其各別胺基由醯基保護基團保護)、2-氟尿嘧啶、2-氟胞嘧啶、5-溴尿嘧啶、5-碘尿嘧啶、2,6-二胺基嘌呤、氮雜胞嘧啶、嘧啶類似物(例如假異胞嘧啶及假尿嘧啶)及其他經改質核鹼基(例如8-取代嘌呤、黃嘌呤或次黃嘌呤(後兩者係天然降解產物))。亦涵蓋Chiu及Rana, RNA, 2003, 9, 1034-1048, Limbach等人 Nucleic Acids Research, 1994, 22, 2183-2196及Revankar與Rao, Comprehensive Natural Products Chemistry, 第7卷, 313中所揭示之改質核鹼基,其內容以引用的方式併入本文中。
鹼基配對部分之其他實例包括(但不限於)增加一或多個苯環之展開大小之核鹼基。闡述於Glen Research catalog (www.glenresearch.com);Krueger AT等人, Acc. Chem. Res., 2007, 40, 141-150;Kool, ET, Acc. Chem. Res., 2002, 35, 936-943;Benner S.A. 等人, Nat. Rev. Genet., 2005, 6, 553-543;Romesberg, F.E.等人, Curr. Opin. Chem. Biol., 2003, 7, 723-733;Hirao, I., Curr. Opin. Chem. Biol., 2006, 10, 622-627 (其內容以引用的方式併入本文中)中之核鹼基替代預期可用於本文所述寡聚物之合成。展開大小之核鹼基之實例展示於下文中:
Figure 02_image028
術語「寡核苷酸」或「寡聚物」係指包含複數個鏈接之核苷、核苷酸或核苷與核苷酸二者之組合之化合物。在本文所提供之具體實施例中,寡核苷酸係嗎啉基寡核苷酸。
片語「嗎啉基寡核苷酸」或「PMO」係指藉由磷醯胺或磷醯二胺鍵聯將嗎啉基亞單元鏈接在一起、從而將一個亞單元之嗎啉基氮接合至毗鄰亞單元之5'-環外碳之經改質寡核苷酸。每一嗎啉基亞單元包含藉由核鹼基特異性氫鍵結有效結合至靶標中之核鹼基之核鹼基配對部分。
術語「反義寡聚物」、「反義化合物」及「反義寡核苷酸」可互換使用且係指各自具有鹼基配對部分之亞單元之序列,其藉由亞單元間鍵聯鏈接以允許鹼基配對部分藉由Watson-Crick鹼基配對雜交至核酸(通常RNA)中之靶標序列,由此在靶標序列內形成核酸:寡聚物異源雙鏈體。寡聚物可與靶標序列具有精確(完全)或接近的(充分)序列互補;寡聚物末端附近之序列變化通常較內部變化更佳。
此一反義寡聚物可經設計以阻斷或抑制mRNA轉譯或抑制/改變自然或異常前mRNA剪接處理,且可稱為「針對」或「靶向」與其雜交之靶標序列。靶標序列通常係包括以下之區域:mRNA之AUG起始密碼子、轉譯抑制寡聚物、或預處理mRNA之剪接位點、剪接抑制寡聚物(SSO)。剪接位點之靶標序列可包括在其5'端具有在預處理mRNA中之正常剪接受體接點下游1至約25個鹼基對之mRNA序列。在各個實施例中,靶標序列可為包括剪接位點或完全含於外顯子編碼序列內或跨越剪接受體或供體位點之任一區域之預處理mRNA之任一區域。當寡聚物以上述方式靶向生物相關靶標(例如蛋白質、病毒或細菌)之核酸時,其更通常地稱為「靶向」該靶標。
當每一分子中足夠數量之相應位置由可彼此氫鍵結之核苷酸佔據,使得寡核苷酸與靶標之間出現穩定且特異性結合時,反義寡核苷酸與靶標RNA彼此互補。因此,「可特定雜交」及「互補」係用於指示足夠程度之互補性或精確配對,使得寡核苷酸與靶標之間出現穩定且特異性結合之術語。應理解,在此項技術中,寡核苷酸之序列不需要與其特異性雜交之靶標序列之序列100%互補。當寡核苷酸與靶標分子之結合干擾靶標RNA之正常功能,且存在足夠程度之互補性以避免在期望特異性結合之條件下(即,在活體內分析或治療性治療之情形中之生理條件下,及在活體外分析之情形中實施分析之條件下)反義寡核苷酸與非靶標序列之非特異性結合時,該寡核苷酸可特異性雜交。
寡核苷酸亦可包括核鹼基(在此項技術中通常簡稱為「鹼基」)改質或取代。含有經改質或取代鹼基之寡核苷酸包括其中一或多個核酸中最常見之嘌呤或嘧啶鹼基經較不常見或非天然鹼基替代之寡核苷酸。在一些實施例中,核鹼基在嘌呤鹼基之N9原子或嘧啶鹼基之N1原子處共價鏈接至核苷酸或核苷之嗎啉環。
嘌呤鹼基包含稠合至咪唑環之嘧啶環,如由以下通式所述:
Figure 02_image030
嘌呤。
腺嘌呤及鳥嘌呤係核酸中最常見之兩種嘌呤核鹼基。該等可經其他天然嘌呤取代,包括(但不限於) N6-甲基腺嘌呤、N2-甲基鳥嘌呤、次黃嘌呤及7-甲基鳥嘌呤。
嘧啶鹼基包含六員嘧啶環,如由以下通式所述:
Figure 02_image031
嘧啶。
胞嘧啶、尿嘧啶及胸腺嘧啶係核酸中最常見之嘧啶鹼基。該等可經其他天然嘧啶取代,包括(但不限於) 5-甲基胞嘧啶、5-羥基甲基胞嘧啶、假尿嘧啶及4-硫尿嘧啶。在一個實施例中,本文所述之寡核苷酸含有胸腺嘧啶鹼基替代嘧啶。
其他經改質或取代鹼基包括(但不限於) 2,6-二胺基嘌呤、乳清酸、阿馬替啶(agmatidine)、立西啶(lysidine)、2-硫嘧啶(例如2-硫尿嘧啶、2-硫胸腺嘧啶)、G形夾及其衍生物、5-經取代嘧啶(例如5-鹵基尿嘧啶、5-丙炔基尿嘧啶、5-丙炔基胞嘧啶、5-胺基甲基尿嘧啶、5-羥基甲基尿嘧啶、5-胺基甲基胞嘧啶、5-羥基甲基胞嘧啶、Super T)、7-去氮鳥嘌呤、7-去氮腺嘌呤、7-氮雜-2,6-二胺基嘌呤、8-氮雜-7-去氮鳥嘌呤、8-氮雜-7-去氮腺嘌呤、8-氮雜-7-去氮-2,6-二胺基嘌呤、Super G、Super A及N4-乙基胞嘧啶或其衍生物;N2-環戊基鳥嘌呤(cPent-G)、N2-環戊基-2-胺基嘌呤(cPent-AP)及N2-丙基-2-胺基嘌呤(Pr-AP)、假尿嘧啶或其衍生物;及簡併或通用鹼基,如2,6-二氟甲苯或不存在鹼基,如無鹼基位點(例如1-去氧核糖、1,2-二去氧核糖、l-去氧-2-O-甲基核糖;或環氧已經氮替代之吡咯啶衍生物(氮雜核糖))。假尿嘧啶係尿嘧啶之天然異構化形式,其具有C-醣苷而非如尿苷中之常規N-醣苷。
某些經改質或取代之核鹼基尤其用於增加本揭示內容之反義寡核苷酸的結合親和力。該等包括5-經取代嘧啶、6-氮雜嘧啶及N-2、N-6及O-6經取代嘌呤,包括2-胺基丙基腺嘌呤、5-丙炔基尿嘧啶及5-丙炔基胞嘧啶。在各個實施例中,核鹼基可包括5-甲基胞嘧啶取代,其已顯示使核酸雙鏈體穩定性增加0.6-1.2℃。
在一些實施例中,經改質或取代之核鹼基可用於促進反義寡核苷酸之純化。舉例而言,在某些實施例中,反義寡核苷酸可含有三個或以上(例如3、4、5、6個或以上)連續鳥嘌呤鹼基。在某些反義寡核苷酸中,一連串三個或以上連續鳥嘌呤鹼基可導致寡核苷酸聚集,此使其純化複雜化。在該等反義寡核苷酸中,連續鳥嘌呤中之一或多者可經次黃嘌呤取代。次黃嘌呤對一連串三個或以上連續鳥嘌呤鹼基中之一或多個鳥嘌呤的取代可減少反義寡核苷酸之聚集,由此促進純化。
本文所提供之寡核苷酸可經合成且不包括生物起源之反義組合物。本揭示內容之分子亦可與其他分子、分子結構或化合物混合物(例如脂質體、受體靶向分子、經口、直腸、局部或其他調配物)混合、囊封、偶聯或以其他方式締合以幫助攝取、分佈或吸收或其組合。
術語「互補」及「互補性」係指藉由鹼基配對規則相關之寡核苷酸(即,核苷酸序列)。舉例而言,序列「T-G-A (5'-3')」與序列「T-C-A (5'-3')」互補。互補可為「局部的」,其中根據鹼基配對規則僅一些核酸之鹼基匹配。或者,核酸之間可為「完全」、「全部」或「完美」(100%)互補。核酸鏈之間之互補程度對核酸鏈間之雜交效率及強度具有顯著效應。儘管通常期望完美互補,但一些實施例可包括相對於靶標RNA之一或多處、但較佳6、5、4、3、2或1處失配。該雜交可在反義寡聚物與靶標序列「接近」或「實質上」互補以及精確互補之情形下進行。在一些實施例中,寡聚物可在約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%或100%互補下與靶標序列雜交。包括寡聚物內在任何位置處之變化。在某些實施例中,寡聚物末端附近之序列變化通常較內部變化更佳,且若存在通常在5'-末端、3'-末端或兩個末端之約6、5、4、3、2或1個核苷酸內。
術語「肽」係指包含複數個鏈接胺基酸之化合物。本文提供之肽可視為細胞穿透肽。
術語「細胞穿透肽」及「CPP」可互換使用且係指陽離子細胞穿透肽,亦稱為轉運肽、載劑肽或肽轉導結構域。本文提供之肽具有在既定細胞培養群體之100%細胞內誘導細胞滲透之能力且當全身投與時允許活體內多個組織內之巨分子易位。在各個實施例中,本揭示內容之CPP實施例可包括富精胺酸肽,如下文進一步闡述。
如本文所用,術語「嵌合肽」係指包含第一部分及第二部分之多肽,該第一部分為第一肽或其片段並融合至為不同肽或其片段之該第二部分。嵌合肽可包含2個或以上共價鏈接之肽。肽可經由胺基酸側鏈、N-末端、C-末端或其任一組合共價鏈接。在某些實施例中,肽係經由一個肽之N-末端共價鏈接至另一肽之C-末端。在某些實施例中,共價鏈接體係醯胺鍵。
如本文所用,術語「三聚肽」係指包含第一部分、第二部分及第三部分之多肽,該第一部分係第一肽或其片段且融合至為不同肽或其片段之該第二部分,該第二部分融合至為不同肽或其片段之該第三部分。三聚肽可包含3個或以上共價鏈接之肽。肽可經由胺基酸側鏈、N-末端、C-末端或其任一組合共價鏈接。在某些實施例中,肽係經由一個肽之N-末端共價鏈接至另一肽之C-末端。在某些實施例中,共價鏈接體係醯胺鍵。
如本文所用,術語「MACH肽」係指包含陽離子細胞穿透肽(亦稱為轉運肽、載劑肽或肽轉導結構域)之多肽。本文提供之肽具有在既定細胞培養群體之100%細胞內誘導細胞滲透之能力且當全身投與時允許活體內多個組織內之巨分子易位。MACH肽可包含3個或以上共價鏈接之肽。肽可經由胺基酸側鏈、N-末端、C-末端或其任一組合共價鏈接。在某些實施例中,肽係經由一個肽之N-末端共價鏈接至另一肽之C-末端。在某些實施例中,共價鏈接體係醯胺鍵。在具體實施例中,MACH肽包含已使用機器學習方法針對細胞遞送最佳化之肽。MACH肽之實例可見於本文提供之表4中。
如本文所用,術語「兩親性肽」係指具有基本上帶電胺基酸及基本上不帶電胺基酸之分離區域之肽。該等區域分別稱為親水肽基段及疏水肽基段。
如本文所用,術語「寡精胺酸肽」係指其中肽包含所有精胺酸或大部分精胺酸胺基酸殘基之肽。在某些實施例中,肽完全包含精胺酸胺基酸殘基。在某些實施例中,肽包含經胺基酸鏈接體(例如但不限於胺基己酸或β-丙胺酸)間隔開之50-99%精胺酸胺基酸殘基。在某些實施例中,肽包含經胺基酸鏈接體(例如但不限於胺基己酸或β-丙胺酸)間隔開之75%精胺酸胺基酸殘基。
如本文所用,術語「核靶向肽」係指其中肽含有核定位序列以允許蛋白質藉由核運輸輸入至細胞核之肽。在某一實施例中,此序列係由暴露於蛋白質表面上之一或多個帶正電胺基酸組成。
如本文所用,術語「胞內體破壞性肽」係指其中肽可幫助藥劑釋放於細胞之細胞質中之肽。在某一實施例中,此序列係由一或多個帶正電胺基酸組成。
術語「治療」係指應用一或多種特定程序用於改善疾病。在某些實施例中,特定程序係投與一或多種醫藥劑。對個體(例如哺乳動物,例如人類)或細胞之「治療」係用於試圖改變個體或細胞之自然進程之任何類型之干預。治療包括(但不限於)投與醫藥組合物,且可以預防性方式實施,或在病理事件開始後或與病原體接觸後實施。治療包括對疾病或病況之症狀或病理之任何期望效應,且可包括例如所治療疾病或病況之一或多種可量測標記之最小變化或改良。亦包括「預防性」治療,其可涉及降低所治療疾病或病況之進展速率,延遲該疾病或病況之發作,或減小其發作之嚴重程度。
「有效量」或「治療有效量」係指作為單一劑量或作為一系列劑量之一部分投與給哺乳動物個體之治療性化合物(例如,反義寡聚物)以有效產生期望治療效應之量。
術語「改善」意指減輕病況或疾病之至少一個指標之嚴重程度。在某些實施例中,改善包括病況或疾病之一或多個指標之進展延遲或減慢。指標之嚴重程度可由熟習此項技術者已知之主觀或客觀量度來確定。
如本文所用,「醫藥上可接受之鹽」係指所揭示寡核苷酸之衍生物,其中母體寡核苷酸係藉由將現有酸或鹼部分轉化成其鹽形式來改質。適宜鹽之列表見於Remington's Pharmaceutical Sciences,第17版,Mack Publishing公司,Easton, Pa., 1985,第1418頁及Journal of Pharmaceutical Science, 66, 2 (1977),其每一者均以整體引用的方式併入本文中。
- 寡核苷酸偶聯物 本文提供化學鏈接至細胞穿透肽之寡核苷酸。細胞穿透肽增強寡核苷酸之活性、細胞分佈或細胞。
在實施例中,細胞穿透肽包含MACH肽。
在實施例中,細胞穿透肽係已使用機器學習方法最佳化之MACH肽。
寡核苷酸可另外化學鏈接至一或多個雜烷基部分(例如聚乙二醇)以進一步增強寡核苷酸之活性、細胞分佈或細胞攝取。在一個實例性實施例中,細胞穿透肽係在其N-末端或C-末端殘基處共價偶聯至寡核苷酸之任一端或兩端。
因此,在一態樣中,本文提供式I之肽-寡核苷酸偶聯物:
Figure 02_image032
(I) 或其醫藥上可接受之鹽, 其中: A′選自-N(H)CH2 C(O)NH2 、-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image034
Figure 02_image035
,其中 R5 係-C(O)(O-烷基)x -OH,其中x係3-10且每一烷基在每次出現時獨立地係C2-6 -烷基, 或R5 選自-C(O)C1-6 -烷基、三苯甲基、單甲氧基三苯甲基、-(C1-6 -烷基)-R6 、-(C1-6 -雜烷基)-R6 、芳基-R6 、雜芳基-R6 、-C(O)O-(C1-6 -烷基)-R6 、-C(O)O-芳基-R6 、-C(O)O-雜芳基-R6
Figure 02_image036
; 其中R6 選自OH、SH及NH2 ,或R6 係O、S或NH,其每一者共價鏈接至固體載體; 每一R1 獨立地選自OH及-N(R3 )(R4 ),其中每一R3 及R4 在每次出現時獨立地係-C1-6 -烷基; 每一R2 在每次出現時獨立地選自H、核鹼基及經化學保護基團官能化之核鹼基,其中核鹼基在每次出現時獨立地包含選自吡啶、嘧啶、三嗪烷、嘌呤及去氮-嘌呤之C3-6 -雜環; z係8-40;且 E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基、
Figure 02_image038
Figure 02_image040
; 其中 Q係-C(O)(CH2 )6 C(O)-或-C(O)(CH2 )2 S2 (CH2 )2 C(O)-; R7 係-(CH2 )2 OC(O)N(R8 )2 ,其中R8 係-(CH2 )6 NHC(=NH)NH2 ; L係-C(O)(CH2 )1-6 -C7-15 -雜芳香族-(CH2 )1-6 C(O)-,其中L藉由醯胺鍵共價鏈接至J; J係載劑肽; G選自H、-C(O)C1-6 -烷基、苯甲醯基及硬脂醯基,其中G共價鏈接至J; 其中以下條件中之至少一者為真: 1) A′係
Figure 02_image041
;或2) E′係
Figure 02_image042
;且 其中載劑肽J選自以下序列:
MACH 1 ALKBRSAAKAVRWPKKKIKQASKKVAKYALXXXRKKKAASKXWLQLHWPRW
MACH 2 PPLRNAKKKNLKNNLKMDPKFTKKVKQGALKLNRRKKNRGPKGPXKHWTT
MACH 3 QKKRKSKANKKNWPKGKLSIHAKDYKQGPKAKXRKQRXR
MACH 4 KKGKKQNKKKHRWPKKKVPQPKKMFKQGABXRX
MACH 5 AKKKIAKAKKHRGPNBGIHAPVSKIKDPLKXXX
MACH 6 ALKBRSAAKAVRWPKKAIKQASKKVAKYALKXXRKKKAASKXWLQLHWPRW
MACH 7 XKHPXAVQBAARAWKVPAAALWKKKRLKKSSKQKKKWLWKARSAXKYXRLI
MACH 8 BKGKNLLAKIRRGPNGGNBQGSQGYLLYLLXRXRRQRXXYPWWRXKHXRWXXRXRGHXRRRRQXLKPDRXRGGKGSVS
MACH 9 KKKKNLNBKSRRGPNGGALQPSQGYLQPLNXRXRRQRXXYPWWRXKHXRWRXRYHXRRRRQXLKPG
MACH 11 TSNLKLHLAPPVKKKALKKPLYKAKKKKKVVSPTWXTDQEW
MACH 12 KGGKNLAKKIRRGPNGGALQPSQGYLLYLBXRXRRQRXXGPXWRXKHXRWXXXXXRPTHXRRRRQXL C PGRXRP C RGSVS
MACH 13 AKKKKLGBKALRWPNGK C PQPKEK C PKYLLGRXRRKRXRYPWWRXKHRRW
P1 (MACH 14) KXKKQQGKKKHR
P2 (MACH 15) KKKKKQBKKKHRWPMG
P3 (MACH 16) KKKKNQBKKKHRWPMKXCPQ
P4 (MACH 17) HKKKKQBKKKHRWP
P5 (MACH 18) KXKHQQQXK
P6 (MACH 19) KXKXT
P7 (MACH 20) KKKKKQBKKKHRWPKXXC
P8 KKKKKCBKKKHRWPKXXQ
P9 KKKXKQBKKKHRWPKKXC
P10 KCHKXKWKKPKRXKQKBK
P11 KKKKKQCKKKHRWPKXXC
P12 KKKKKQBKKKHRWPKXXG
P13 KKKKKQBKKKHRWPMGKXXC
P14 HKKKKQBKKKHRWPKXXC
P15 KXKHQQQXKKXXC
P16 KXKXTKXXC
P17 ALWKTLLKKVLKAPKKKRKV
P18 ALWKTLLKKVLKAPKKKRKVKXXC
P19 RQIKIWFQNRRMKWKK
P20 RQIKIWFQNRRMKWKKKXXC
P21 KKKKKQBKKKHRWP
P22 KKKKKQBKKKHRWPKXXCCC
P23 KKKKKQBKKKHRWAKXXC
其中X係6-胺基己酸,B係β-丙胺酸,且 C 藉由L1 共價結合至另一 C ; 其中L1
Figure 02_image043
; M係
Figure 02_image044
Figure 02_image046
;且 R10 在每次出現時獨立地係H或鹵素。
在一個實施例中,z係8-30。在另一實施例中,z係10-30。在另一實施例中,z係15-25。在另一實施例中,z係20-25。在實施例中,z係8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30。
在再另一實施例中,E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基及
Figure 02_image048
在另一實施例中,A′選自-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image049
Figure 02_image051
在另一實施例中,E′選自H、-C(O)CH3 、苯甲醯基、硬脂醯基、三苯甲基、4-甲氧基三苯甲基及
Figure 02_image053
在再另一實施例中,A′選自-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image054
Figure 02_image056
;且 E′係
Figure 02_image058
在另一實施例中,A′係
Figure 02_image059
,且 E′選自H、-C(O)CH3 、三苯甲基、4-甲氧基三苯甲基、苯甲醯基及硬脂醯基。
在實施例中,式I之肽-寡核苷酸偶聯物係式Ia之肽-寡核苷酸偶聯物:
Figure 02_image061
(Ia)。
在實施例中,式I之肽-寡核苷酸偶聯物係式Ib之肽-寡核苷酸偶聯物:
Figure 02_image063
(Ib) 其中E′選自H、C1-6 -烷基、-C(O)CH3 、苯甲醯基及硬脂醯基。
在式I、Ia及Ib之實施例中,每一R1 係N(CH3 )2
在式I、Ia及Ib之再另一實施例中,每一R2 係核鹼基,其中核鹼基在每次出現時獨立地包含選自吡啶、嘧啶、三嗪烷、嘌呤及去氮-嘌呤之C4-6 -雜環。
在式I、Ia及Ib之另一實施例中,每一R2 係核鹼基,其中核鹼基在每次出現時獨立地包含選自嘧啶、嘌呤及去氮-嘌呤之C4-6 -雜環。
在式I、Ia及Ib之仍另一實施例中,每一R2 係核鹼基在每次出現時獨立地選自腺嘌呤、2,6-二胺基嘌呤、7-去氮-腺嘌呤、鳥嘌呤、7-去氮-鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤。
在式I、Ia及Ib之再另一實施例中,每一R2 係核鹼基在每次出現時獨立地選自腺嘌呤、鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤。
在式I、Ia及Ib之另一實施例中,L係-C(O)(CH2 )1-6 -DBCO-(CH2 )1-6 C(O)-。
在式I、Ia及Ib之另一實施例中,L係
Figure 02_image065
在式I、Ia及Ib之另一實施例中,M係
Figure 02_image067
在式I、Ia及Ib之再另一實施例中,M係
Figure 02_image068
在式I、Ia及Ib之另一實施例中,L1 共價鏈接至P1 及P2 上之末端半胱胺酸之側鏈以形成結構:
Figure 02_image069
在式I、Ia及Ib之另一實施例中,G選自H、C(O)CH3 、苯甲醯基及硬脂醯基。
在式I、Ia及Ib之仍另一實施例中,G係H或-C(O)CH3
在式I、Ia及Ib之再另一實施例中,G係H。
在式I、Ia及Ib之再另一實施例中,G係-C(O)CH3
在式I、Ia及Ib之再另一實施例中,寡核苷酸-肽偶聯物與未偶聯寡核苷酸相比展示至少40倍攝取改良。
在式I、Ia及Ib之另一實施例中,寡核苷酸-肽偶聯物與未偶聯寡核苷酸相比展示至少5倍攝取改良。
在實施例中,寡核苷酸-肽偶聯物係無毒的。
在另一實施例中,寡核苷酸-肽偶聯物係無免疫原性的。
在另一態樣中,本文提供式II之肽-寡核苷酸偶聯物:
Figure 02_image071
(II) 或其醫藥上可接受之鹽, 其中: A′選自-N(H)CH2 C(O)NH2 、-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image073
Figure 02_image074
,其中 R5 係-C(O)(O-烷基)x -OH,其中x係3-10且每一烷基在每次出現時獨立地係C2-6 -烷基, 或R5 選自-C(O)C1-6 -烷基、三苯甲基、單甲氧基三苯甲基、-(C1-6 -烷基)-R6 、-(C1-6 -雜烷基)-R6 、芳基-R6 、雜芳基-R6 、-C(O)O-(C1-6 -烷基)-R6 、-C(O)O-芳基-R6 、-C(O)O-雜芳基-R6
Figure 02_image075
; 其中R6 選自OH、SH及NH2 ,或R6 係O、S或NH,其每一者共價鏈接至固體載體; 每一R1 獨立地選自OH及-N(R3 )(R4 ),其中每一R3 及R4 在每次出現時獨立地係-C1-6 -烷基; 每一R2 在每次出現時獨立地選自H、核鹼基及經化學保護基團官能化之核鹼基,其中核鹼基在每次出現時獨立地包含選自吡啶、嘧啶、三嗪烷、嘌呤及去氮-嘌呤之C3-6 -雜環; z係8-40;且 E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基、
Figure 02_image076
Figure 02_image078
; 其中 Q係-C(O)(CH2 )6 C(O)-或-C(O)(CH2 )2 S2 (CH2 )2 C(O)-; R7 係-(CH2 )2 OC(O)N(R8 )2 ,其中R8 係-(CH2 )6 NHC(=NH)NH2 ; L係-C(O)(CH2 )1-6 -C7-15 -雜芳香族-(CH2 )1-6 C(O)-,其中L藉由醯胺鍵共價鏈接至J; J係載劑肽; G選自H、-C(O)C1-6 -烷基、苯甲醯基及硬脂醯基,其中G共價鏈接至J; 其中以下條件中之至少一者為真: 1) A′係
Figure 02_image079
;或2) E′係
Figure 02_image081
;且 其中載劑肽J選自以下序列:
MACH 1 ALKBRSAAKAVRWPKKKIKQASKKVAKYALXXXRKKKAASKXWLQLHWPRW
MACH 2 PPLRNAKKKNLKNNLKMDPKFTKKVKQGALKLNRRKKNRGPKGPXKHWTT
MACH 3 QKKRKSKANKKNWPKGKLSIHAKDYKQGPKAKXRKQRXR
MACH 4 KKGKKQNKKKHRWPKKKVPQPKKMFKQGABXRX
MACH 5 AKKKIAKAKKHRGPNBGIHAPVSKIKDPLKXXX
MACH 6 ALKBRSAAKAVRWPKKAIKQASKKVAKYALKXXRKKKAASKXWLQLHWPRW
MACH 7 XKHPXAVQBAARAWKVPAAALWKKKRLKKSSKQKKKWLWKARSAXKYXRLI
MACH 8 BKGKNLLAKIRRGPNGGNBQGSQGYLLYLLXRXRRQRXXYPWWRXKHXRWXXRXRGHXRRRRQXLKPDRXRGGKGSVS
MACH 9 KKKKNLNBKSRRGPNGGALQPSQGYLQPLNXRXRRQRXXYPWWRXKHXRWRXRYHXRRRRQXLKPG
MACH 11 TSNLKLHLAPPVKKKALKKPLYKAKKKKKVVSPTWXTDQEW
MACH 12 KGGKNLAKKIRRGPNGGALQPSQGYLLYLBXRXRRQRXXGPXWRXKHXRWXXXXXRPTHXRRRRQXL C PGRXRP C RGSVS
MACH 13 AKKKKLGBKALRWPNGK C PQPKEK C PKYLLGRXRRKRXRYPWWRXKHRRW
P1 (MACH 14) KXKKQQGKKKHR
P2 (MACH 15) KKKKKQBKKKHRWPMG
P3 (MACH 16) KKKKNQBKKKHRWPMKXCPQ
P4 (MACH 17) HKKKKQBKKKHRWP
P5 (MACH 18) KXKHQQQXK
P6 (MACH 19) KXKXT
P7 (MACH 20) KKKKKQBKKKHRWPKXXC
P8 KKKKKCBKKKHRWPKXXQ
P9 KKKXKQBKKKHRWPKKXC
P10 KCHKXKWKKPKRXKQKBK
P11 KKKKKQCKKKHRWPKXXC
P12 KKKKKQBKKKHRWPKXXG
P13 KKKKKQBKKKHRWPMGKXXC
P14 HKKKKQBKKKHRWPKXXC
P15 KXKHQQQXKKXXC
P16 KXKXTKXXC
P17 ALWKTLLKKVLKAPKKKRKV
P18 ALWKTLLKKVLKAPKKKRKVKXXC
P19 RQIKIWFQNRRMKWKK
P20 RQIKIWFQNRRMKWKKKXXC
P21 KKKKKQBKKKHRWP
P22 KKKKKQBKKKHRWPKXXCCC
P23 KKKKKQBKKKHRWAKXXC
P24 KXKHQQGP
P25 KXKHQQGKKT
P26 HKKKQQGKKKHRW
P27 KKKKKQBKKKHRWPM
P28 KKKKKQGKKHRWPMGG
P29 KKKKNQBKKKHRWPMKXCP
P30 KKKKKQBKKKHRWPKXXA
P31 KKKKKQBKKKHRWPKXAC
P32 KKKKKQBKKKHRWPKAXC
P33 KKKKKQBKKKHRWPAXXC
P34 KAKKKQBKKKHRWPKXXC
P35 KKKKKQBKAKHRWPKXXC
P36 KKKAKQBKKKHRWPKXXC
P37 KKKAKQBKAKHRWPKXXC
P38 KAKAKQBKKKHRWPKXXC
P39 KAKAKQBKAKHRWPKXXC
P40 KKKKKQBKKKHRWP
其中X係6-胺基己酸,B係β-丙胺酸,且 C 藉由L1 共價結合至另一 C ; 其中L1
Figure 02_image082
; M係
Figure 02_image083
Figure 02_image085
;且 R10 在每次出現時獨立地係H或鹵素。
在一個實施例中,z係8-30。在另一實施例中,z係10-30。在另一實施例中,z係15-25。在另一實施例中,z係20-25。在實施例中,z係8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30。
在另一實施例中,E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基及
Figure 02_image087
在另一實施例中,A′選自-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image089
Figure 02_image091
在另一實施例中,E′選自H、-C(O)CH3 、苯甲醯基、硬脂醯基、三苯甲基、4-甲氧基三苯甲基及
Figure 02_image093
在另一實施例中,A′選自-N(C1-6 -烷基)CH2 C(O)NH2
Figure 02_image095
Figure 02_image097
;且 E′係
Figure 02_image099
在另一實施例中,A′係
Figure 02_image100
,且 E′選自H、-C(O)CH3 、三苯甲基、4-甲氧基三苯甲基、苯甲醯基及硬脂醯基。
在實施例中,式IA之肽-寡核苷酸偶聯物係式Ia之肽-寡核苷酸偶聯物:
Figure 02_image102
(Ia)。
在實施例中,式IA之肽-寡核苷酸偶聯物係式Ib之肽-寡核苷酸偶聯物:
Figure 02_image104
(Ib) 其中E′選自H、C1-6 -烷基、-C(O)CH3 、苯甲醯基及硬脂醯基。
在式II、I、Ia及Ib之實施例中,每一R1 係N(CH3 )2
在式II、I、Ia及Ib之再另一實施例中,每一R2 係核鹼基,其中核鹼基在每次出現時獨立地包含選自吡啶、嘧啶、三嗪烷、嘌呤及去氮-嘌呤之C4-6 -雜環。
在式II、I、Ia及Ib之另一實施例中,每一R2 係核鹼基,其中核鹼基在每次出現時獨立地包含選自嘧啶、嘌呤及去氮-嘌呤之C4-6 -雜環。
在式II、I、Ia及Ib之仍另一實施例中,每一R2 係核鹼基在每次出現時獨立地選自腺嘌呤、2,6-二胺基嘌呤、7-去氮-腺嘌呤、鳥嘌呤、7-去氮-鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤。
在式II、I、Ia及Ib之再另一實施例中,每一R2 係核鹼基在每次出現時獨立地選自腺嘌呤、鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤。
在式II、I、Ia及Ib之另一實施例中,L係-C(O)(CH2 )1-6 -DBCO-(CH2 )1-6 C(O)-。
在式II、I、Ia及Ib之另一實施例中,L係
Figure 02_image106
在式II、I、Ia及Ib之另一實施例中,M係
Figure 02_image108
在式II、I、Ia及Ib之再另一實施例中,M係
Figure 02_image109
在式II、I、Ia及Ib之另一實施例中,L1 共價鏈接至P1 及P2 上之末端半胱胺酸之側鏈以形成結構:
Figure 02_image110
在式II、I、Ia及Ib之另一實施例中,G選自H、C(O)CH3 、苯甲醯基及硬脂醯基。
在式II、I、Ia及Ib之仍另一實施例中,G係H或-C(O)CH3
在式II、I、Ia及Ib之再另一實施例中,G係H。
在式II、I、Ia及Ib之再另一實施例中,G係-C(O)CH3
在式II、I、Ia及Ib之再另一實施例中,寡核苷酸-肽偶聯物與未偶聯寡核苷酸相比展示至少40倍攝取改良。
在式II、I、Ia及Ib之另一實施例中,寡核苷酸-肽偶聯物與未偶聯寡核苷酸相比展示至少5倍攝取改良。
在實施例中,寡核苷酸-肽偶聯物係無毒的。
在另一實施例中,寡核苷酸-肽偶聯物係無免疫原性的。
三聚肽 在特定實施例中,三聚肽可用於創建訓練寡核苷酸-細胞穿透肽偶聯物之文庫。
此一三聚肽之非限制性表示顯示於以下:
Figure 02_image112
其中C-末端共價附接至寡核苷酸。
在實施例中,每一三聚肽係三種共價鏈接之細胞穿透肽,其中細胞穿透肽獨立地係兩親性肽、核靶向肽、胞內體破壞性肽、嵌合肽、環狀肽、二環肽或寡精胺酸肽。
在另一實施例中,每一三聚肽係三種共價鏈接之細胞穿透肽,其中細胞穿透肽中之一者係兩親性肽,細胞穿透肽中之一者係核靶向肽,且肽中之一者係額外細胞穿透肽。
在另一實施例中,每一三聚肽係三種共價鏈接之細胞穿透肽,其中該三種細胞穿透肽包含一種兩親性肽、一種核靶向肽及一種額外細胞穿透肽,且其中兩親性肽係三聚肽之N-末端,核靶向肽係中間肽,且額外細胞穿透肽係三聚肽之C-末端。
在另一實施例中,兩親性肽包含疏水肽基段及親水肽基段,其中該疏水肽基段包含獨立地選自甘胺酸、異白胺酸、丙胺酸、纈胺酸、白胺酸、苯丙胺酸、酪胺酸或色胺酸之2至10個胺基酸之序列,且其中該親水肽基段包含獨立地選自帶電胺基酸、不帶電但具極性之胺基酸或疏水胺基酸之2至20個胺基酸之序列,其中該親水肽基段包含至少一個非疏水胺基酸。
在實施例中,該親水肽基段包含獨立地選自精胺酸、離胺酸、麩醯胺酸、天冬醯胺、組胺酸、絲胺酸、蘇胺酸、色胺酸、丙胺酸、異白胺酸、白胺酸、甲硫胺酸、苯丙胺酸、纈胺酸、脯胺酸或甘胺酸之2至20個胺基酸之序列,其中該親水肽基段包含至少一個非疏水胺基酸。
表2中提供三聚肽之肽的各種非限制性實施例: 2 CPP之各種實施例.
肽名稱 序列 SEQ ID NO.
DPV6 GRPRESGKKRKRKRLKP 1
PPC3 KKYRGRKRHPR 2
PPC5 GRKAARAPGRRKQ 3
R12 RRRRRRRRRRRR 4
R12完全環 C RRRRRRRRRRRR C 5
R12 N-環 C RRRRRR C RRRRRR 6
R12 C-環 RRRRRR C RRRRRR C 7
R12苄基二環 C RRRRRR C RRRRRR C 8
R12雙環 C RRRRRR CC RRRRRR C 9
Bpep RXRRBRRXRRBR 10
Bpep完全環 C RXRRBRRXRRBR C 11
Bpep C-環 RXRRBR C RXRRBR C 12
穿膜肽(nle) RQIKIWFQNRRM KWKK 13
Engrailed N-環 C QIKIWF C NKRAKIKK 14
Engrailed C-環 SQIKIWFQ C KRAKIK C 15
Engrailed完全環 C SQIKIWFQNKRAKIKK C 16
pVEC LLIILRRRIRKQAHAHSK 17
pVEC-Bpep LLIILRRRIRKQAHAHSKRXRRBRRXRRBR 18
AIP6完全環 Z C RLRWR C 19
蜂毒肽-Bpep GIGAVLKVLTTGLPALISWIKRKRQQRXRRBRRXRRBR 20
Bh3螺旋 IWIAQELRRIGDEFNAYYARR 21
Bac7 RRIRPRPPRLPRPRPRPLPFPRPG 22
Buforin 2 TRSSRAGLQWPVGRVHRLLRK 23
蜂毒肽 GIGAVLKVLTTGLPALISWIKRKRQQ 24
SynB1 RGGRLSYSRRRFSTSTGR 25
S413-PVrev ALWKTLLKKVLKAPKKKRKV 26
Ribotoxin2 L3 KLIKGRTPIKFGKADCDRPPKHSQNGMGK 27
PreS2-TLM PLSSIFSRIGDP 28
MAP KLALKALKALKAALKLA 29
W/R RRWWRRWRR 30
MAP12 LKTLTETLKELTKTLTEL 31
SAP VRLPPPVRLPPPVRLPPP 32
SVM1 FKIYDKKVRTRVVKH 33
SVM3 KGTYKKKLMRIPLKGT 34
SVM4 LYKKGPAKKGRPPLRGWFH 35
YTA4 IAWVKAFIRKLRKGPLG 36
439a GSPWGLQHHPPRT 37
HoxA13絲胺酸2 RQVTIWSQNRRVKSKK 38
Bip VSALK 39
PPR3 PPRPPRPPR 40
PPR4 PPRPPRPPRPPR 41
AIP6 RLRWR 42
DPV15b GAYDLRRRERQSRLRRRERQSR 43
TAT RKKRRQRRR 44
穿膜肽 RQIKIWFQNRRMKWKK 45
R9 RRRRRRRRR 46
HoxA13絲胺酸1 RSVTIWFQSRRVKEKK 47
KRVK TP10 KRVKAGYLLGKINLKALAALAKKIL 48
TP10 KRVK AGYLLGKINLKALAALAKKILKRVK 49
KRVK KRVK 50
SV40 TP10 PKKKRKVAGYLLGKINLKALAALAKKIL 51
TP10 AGYLLGKINLKALAALAKKIL 52
SV40 PKKKRKV 53
AAV-PHP.eB SDGTLAVPFKA 54
PPC3 KKYRGRKRHPR 55
粗體半胱胺酸係與十氟聯苯鏈接。斜體半胱胺酸係與1,3,5-三溴甲苯鏈接。
本揭示內容之代表性肽-寡核苷酸偶聯物尤其包括以下結構之三聚肽-寡核苷酸偶聯物:
Figure 02_image114
(IV) 或其醫藥上可接受之鹽,其中 G係H或-C(O)CH3 ; R2 係核鹼基在每次出現時獨立地選自腺嘌呤、鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤; K係-C(O)(CH2 )1-6 -C7-15 -雜芳香族-(CH2 )1-6 C(O)-; M係
Figure 02_image116
Figure 02_image118
且R10 在每次出現時獨立地係H或鹵素,其中L1 共價鏈接至P1 及P2 上之末端或內部半胱胺酸之側鏈; z係8-40;且 P1 、P2 及P3 各自獨立地係細胞穿透肽,其中P1 及P2 各自包含至少一個半胱胺酸胺基酸殘基,且其中該等細胞穿透肽中之每一者獨立地係兩親性肽、核靶向肽、胞內體破壞性肽、嵌合肽、環狀肽、二環肽或寡精胺酸肽。
在實施例中,式(IV)之結構係式(IVa):
Figure 02_image120
(IVa)
在本揭示內容之三聚肽-寡核苷酸偶聯物之一個實施例中,G係H。
在本揭示內容之三聚肽-寡核苷酸偶聯物之另一實施例中,G係-C(O)CH3
在一些實施例中,本文所述之三聚肽-寡核苷酸偶聯物係非溶劑化的。在其他實施例中,該等三聚肽-寡核苷酸偶聯物中之一或多者係呈溶劑化形式。如此項技術中已知,溶劑合物可為醫藥上可接受之溶劑(例如,水、乙醇及諸如此類)中之任一者。
儘管式I、II、Ia、Ib、IV及Iva之肽-寡核苷酸偶聯物係以其中性形式繪示,但在一些實施例中,該等肽-寡核苷酸偶聯物係以醫藥上可接受之鹽形式使用。
寡核苷酸 基於嗎啉基之亞單元之重要性質包括:1) 以寡聚形式藉由穩定不帶電或帶正電主鏈鍵聯連接之能力;2) 支持核苷酸鹼基(例如腺嘌呤、胞嘧啶、鳥嘌呤、胸苷、尿嘧啶、5-甲基-胞嘧啶及次黃嘌呤),從而使得所形成聚合物可與互補鹼基靶標核酸(包括靶標RNA)雜交之能力,在相對較短寡核苷酸(例如,10-15個鹼基)中之TM 值高於約45℃;3) 寡聚物主動或被動轉運至哺乳動物細胞中之能力;及4) 寡核苷酸及寡核苷酸: RNA異源雙鏈體分別抵抗RNAse及RNase H降解之能力。
寡聚物與靶標序列之間形成之雙鏈體之穩定性隨結合TM 及雙鏈體對細胞酶促裂解之敏感性而變化。寡聚物相對於互補序列RNA之TM 可藉由習用方法量測,例如Hames等人,Nucleic Acid Hybridization, IRL Press, 1985,第107-108頁中所闡述之彼等方法或如Miyada C.G.及Wallace R.B., 1987, Oligomer Hybridization Techniques, Methods Enzymol.,第154卷第94-107頁中所闡述。在某些實施例中,反義寡聚物相對於互補序列RNA之結合TM 可高於體溫且在一些實施例中高於約45℃或50℃。亦包括在60-80℃範圍內或更高之TM 。根據眾所周知的原則,寡聚物相對於基於互補之RNA雜合體之TM 可藉由增加雙鏈體中C:G成對鹼基之比率或藉由增加異源雙鏈體之長度(以鹼基對計)或二者來提高。同時,出於最佳化細胞攝取之目的,可有利地限制寡聚物之大小。出於此目的,本揭示內容之化合物包括在25個鹼基或更少之長度下顯示高TM (45-50℃或更高)之化合物。
寡核苷酸之長度可有所變化,只要其能選擇性結合至前mRNA分子之期望位置即可。該等序列之長度可根據本文所述之選擇程序確定。通常,寡核苷酸將自約8個核苷酸長度至最高約50個核苷酸長度。舉例而言,寡核苷酸之長度(z)可為8-38、8-25、15-25、17-21或約18。然而,應理解,在此範圍內之核苷酸的任何長度均可用於本文所述方法中。
在一些實施例中,反義寡聚物含有鹼基改質或取代。舉例而言,某些核鹼基可經選擇以增加本文所述反義寡聚物之結合親和力。該等包括5-經取代嘧啶、6-氮雜嘧啶及N-2、N-6及O-6經取代嘌呤,包括2-胺基丙基腺嘌呤、5-丙炔基尿嘧啶、5-丙炔基胞嘧啶及2,6-二胺基嘌呤。5-甲基胞嘧啶取代已顯示使核酸雙鏈體穩定性增加0.6-1.2℃,且可併入本文所述反義寡核苷酸中。在一個實施例中,寡核苷酸之至少一個嘧啶鹼基包含5-經取代嘧啶鹼基,其中嘧啶鹼基係選自由胞嘧啶、胸腺嘧啶及尿嘧啶組成之群。在一個實施例中,5-經取代嘧啶鹼基係5-甲基胞嘧啶。在另一實施例中,寡核苷酸之至少一個嘌呤鹼基包含N-2、N-6經取代嘌呤鹼基。在一個實施例中,N-2、N-6經取代嘌呤鹼基係2,6-二胺基嘌呤。
嗎啉基寡聚物(包括反義寡聚物)詳細闡述於(例如)美國專利第5,698,685號;第5,217,866號;第5,142,047號;第5,034,506號;第5,166,315號;第5,185,444號;第5,521,063號;第5,506,337號及待決之美國專利申請案第12/271,036號;第12/271,040號及PCT公開案第WO/2009/064471號及第WO/2012/043730號及Summerton等人1997, Antisense and Nucleic Acid Drug Development, 7, 187-195中,該等均以全文引用的方式併入本文中。
在式I、II、Ia、Ib、IV及IVa之實施例中,R2 在每次出現時獨立地係腺嘌呤、2,6-二胺基嘌呤、鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤;且 每一R1 係-N(CH3 )2
表1中提供本文所述核苷酸部分之各個實施例。 1 核苷酸部分之各個實施例.
Figure 02_image122
Figure 02_image124
Figure 02_image126
Figure 02_image128
Figure 02_image130
Figure 02_image132
Figure 02_image134
  
在具體實施例中,寡核苷酸之序列清單係GCTATTACCTTAACCCAG (SEQ ID. 56)。
在實施例中,本文提供具有以下結構之化合物:
Figure 02_image136
其中z係18且R2 係具有序列GCTATTACCTTAACCCAG (SEQ ID. 56)之核鹼基的序列。此化合物在本文中亦稱為「PMO IVS2-654」。
在一些實施例中,本文所述之寡核苷酸係未溶劑化的。在其他實施例中,寡核苷酸中之一或多者係呈溶劑化形式。如此項技術中已知,溶劑合物可為醫藥上可接受之溶劑(例如水、乙醇及諸如此類)中之任一者。
本發明之另一態樣係關於經螢光染料、自旋標記、重金屬或放射性標記之本發明化合物,其將不僅可用於成像,亦可用於活體外及活體內分析二者,用於定位及量化組織樣品(包括人類)中之靶標及藉由抑制經標記化合物之結合用於識別靶標區域。
本發明進一步包括本發明偶聯物之同位素標記肽「同位素地」或「放射性標記」偶聯物係其中一或多個原子經原子質量或質量數不同於通常在自然界中所發現(即,天然)之原子質量或質量數之原子替代或取代之本發明偶聯物。可併入本發明化合物中之適宜放射性核種包括(但不限於) 2H (對於氘,亦寫成D)、3H (對於氚,亦寫成T)、11C、13C、14C、13N、15N、15O、17O、18O、18F、35S、36Cl、82Br、75Br、76Br、77Br、123I、124I、125I及131I。併入本放射性標記化合物之放射性核種將取決於彼放射性標記化合物之具體應用。舉例而言,對於活體外IDO酶標記及競爭分析,併入3H、14C、82Br、125I、131I或35S之化合物通常將係最有用的。對於放射性成像應用,11C、18F、125I、123I、124I、131I、75Br、76Br或77Br通常將係最有用的。
應理解,「經放射性標記」或「經標記化合物」係已併入至少一種放射性核種之化合物。在一些實施例中,放射性核種係選自由以下組成之群:3H、14C、125I、35S及82Br。
用於將放射性同位素併入有機化合物之合成方法適用於本發明化合物且為業內所熟知。
本發明放射性標記之化合物可用於篩選分析以識別/評估化合物。因此,測試化合物與放射性標記化合物競爭結合之能力與其結合親和力直接相關。
儘管式I、II、Ia、Ib、IV及IVa之寡核苷酸係以其中性形式繪示,但在一些實施例中,該等寡核苷酸係以醫藥上可接受之鹽形式使用。
機器學習方法 在態樣中,本文提供使用機器學習識別一或多種具有最佳活性之細胞穿透肽之系統及方法,該方法包含: a.)     合成訓練寡核苷酸-細胞穿透肽偶聯物之文庫; b.)     藉由使用該合成文庫訓練巢套式長短期記憶(LSTM)遞迴神經網路模型生成種子肽序列; c.)     預測來自該等所生成種子肽序列中之哪些肽序列具有胺基酸殘基之預定結構-活性關係;及 d.)     使用活性預測器-基因演算法最佳化器廻圈識別該等所預測肽序列中之一或多個最佳者。
體現此方法之功能系統顯示於圖26且包含文庫合成器模組2602、發生器網路模組2604、預測器網路模組2606及最佳化工具模組2608,其各自執行本文所述之各別功能。
LSTM之輸出閘編碼在當前時間步長下不相關之記憶仍可值得記住之直覺。巢套式LSTM使用此直覺以創建記憶之時間層次。對內部記憶之存取係以完全相同方式進行閘控,以便可選擇性存取僅情景相關之長期資訊。在替代態樣中,生成步驟可藉由具有用於基於時間序列資料作出預測之其他回饋連接之交替遞迴神經網路(RNN)結構(例如,堆疊LSTM及閘控遞迴單元(GRU)架構)來執行。
在實施例中,預測包含將種子序列與胺基酸殘基之化學指紋相比較。
在另一實施例中,預測包含將拓撲指紋之活性表示為Conv1D、Conv2D、Conv2D Macrocycle及DeConv2D卷積。
在另一實施例中,活性係平均螢光強度。
在實施例中,Conv1D卷積係針對具有胺基酸指紋之列矩陣之肽序列之一維表示進行訓練。
在另一實施例中,Conv2D卷積係利用OR運算在肽序列之二維表示中之個別指紋之間進行訓練。
在另一實施例中,Conv2D Macrocycle卷積係針對非對角線指數中具有顯式鏈接體指紋之肽序列之二維表示進行訓練。
在另一實施例中,DeConv2D卷積係針對具有非對角線相互作用權重之二維變分表示進行訓練,該等非對角線相互作用權重係由每一非對角線指數之功能性決定。
在另一實施例中,預測包含使用卷積神經網路模型針對平均螢光強度訓練種子肽序列。
在另一實施例中,識別包含活性預測器-基因演算法最佳化器廻圈之目標函數,以最大化如由卷積神經網路模型所預測之平均螢光強度。
在實施例中,識別包含活性預測器-基因演算法最佳化器廻圈之目標函數,以最小化序列長度及精胺酸含量。
在具體實施例中,最小化精胺酸含量係單一精胺酸殘基。
在另一特定實施例中,肽之最小化序列長度係20個或以下之殘基。
在另一實施例中,基因演算法包含具有插入或刪除及調換之單一殘基突變或具有插入及/或刪除及調換之多殘基突變。
在實施例中,基因演算法實施目標函數:
Figure 02_image138
其中 強度 = 平均螢光強度 R計數 = 精胺酸殘基數 長度 = 序列長度 淨電荷 =目標序列之淨電荷。
在實施例中,合成訓練寡核苷酸-細胞穿透肽偶聯物之文庫包含: (a) 使式(III)化合物
Figure 02_image140
(III) 與式(IV)化合物接觸
Figure 02_image142
(IV) 以形成式(V)化合物
Figure 02_image144
(V) (b) 使式(VI)化合物
Figure 02_image146
(VI) 與式(VII)化合物在銅觸媒之存在下接觸
Figure 02_image148
(VII) 以形成式(VIII)化合物
Figure 02_image150
(VIII) (c) 使式(V)化合物
Figure 02_image152
(V) 與式(VIII)化合物在偶合劑之存在下接觸
Figure 02_image154
(VIII) 以形成式(II)化合物
Figure 02_image156
(II)。
在實施例中,肽1 (P1 )、肽2 (P2 )及肽3 (P3 )各自獨立地係細胞穿透肽。
在另一實施例中,P1 、P2 及P3 係細胞穿透肽,且該等細胞穿透肽獨立地係兩親性肽、核靶向肽、胞內體破壞性肽、嵌合肽、環狀肽、二環肽、半胱胺酸鏈接之大環肽、含有至少一個非天然胺基酸殘基之肽或寡精胺酸肽。
在實施例中,步驟(a)之酸係三氟乙酸。
在另一實施例中,步驟(b)之銅觸媒係溴化銅(I)。
在另一實施例中,步驟(c)之偶合劑係參(2-羧基乙基)膦鹽酸鹽(TCEP)。
在另一實施例中,步驟(a)之溶劑係水,步驟(b)之溶劑係水/DMSO,且步驟(c)之溶劑係水/DMSO。
在另一實施例中,步驟(a)及(b)之產物對於步驟(c)之反應條件係惰性的。
在另一實施例中,步驟(a)及(b)之產物可不經任何純化用於步驟(c)中。
在另一實施例中,最終產物可用於立即活體外測試。
圖25所示係通用計算裝置2500,其可用於實施本文所述之機器學習方法。通用計算裝置2500意欲表示各種形式之數位電腦,例如膝上型電腦、桌上型電腦、工作站、伺服器、主機及其他適當電腦。此處所示之組件、其連接及關係以及其功能僅意欲指實例,且並不意欲限制。
計算裝置2500內包括處理器2502、記憶體2504、儲存裝置2506、連接至記憶體2504及多個高速擴充埠2510之高速介面2508及連接至低速擴充埠2514及儲存裝置2506之低速介面2512,該等使用各種匯流排互連。處理器2502可處理供在計算裝置2500內執行之指令,包括儲存於記憶體2504中或儲存裝置2506上以為外部輸入/輸出裝置(例如,耦合至高速介面2508之顯示器(未顯示))上之圖形使用者介面(GUI)展示圖形資訊之指令。在其他實施方案中,多個處理器及/或多個匯流排可適當地連同多個記憶體及記憶體類型一起使用。此外,可將多個計算裝置連接,其中每一裝置提供必要操作之若干部分(例如,作為伺服器組或多處理器系統)。
記憶體2504可為一或多個揮發性記憶體單元,且可包含一或多個非揮發性記憶體單元。儲存裝置2506能夠提供用於計算裝置2500之大量儲存。舉例而言,儲存裝置2506可為或包含電腦可讀媒體,例如硬碟裝置、光碟裝置、快閃記憶體或其他類似固態記憶體裝置,或裝置陣列,包括儲存區域網路或其他組態中之裝置的。儲存裝置2506內儲存之指令當由一或多個處理裝置(例如處理器2502)執行時,實施一或多個方法,例如本文所述之彼等。指令亦可由記憶體2504、儲存裝置2506或與處理器2502相關聯之記憶體儲存。
高速介面2508管理計算裝置2500之頻寬密集型操作,而低速介面2512管理較低頻寬密集型操作。高速介面2508可耦合至記憶體2504、顯示器(未顯示)及高速擴充埠2510,其可接受各種擴充卡(未顯示)。低速介面2512可耦合至儲存裝置2506及低速擴充埠2514。後者可包括各種通訊埠(例如,USB、藍芽及/或乙太網路),其可耦合至一或多個輸入/輸出裝置。
計算裝置2500可以許多不同形式實施,例如標準伺服器或該等伺服器群組。另外,其可在個人電腦(例如,膝上型電腦)中或作為機架式伺服器系統之一部分實施。或者,計算裝置2500之組件可與行動裝置(未顯示)(例如,行動計算裝置)之其他組件組合。
方法 本文提供治療有需要之個體之神經肌肉疾病、肌肉疾病、病毒感染或細菌感染之方法,其包含向該個體投與式I、II、Ia、Ib、IV或IVa之肽-寡核苷酸偶聯物。
因此,在一態樣中,本文提供治療有需要之個體之肌肉疾病、病毒感染、神經肌肉疾病或細菌感染之方法,其包含向該個體投與本揭示內容之嵌合肽-寡核苷酸偶聯物。
在一個實施例中,神經肌肉疾病係杜興氏肌肉營養不良症(Duchenne Muscular Dystrophy)。
在另一實施例中,病毒感染係由選自由以下組成之群之病毒引起:馬堡病毒(marburg virus)、伊波拉病毒(ebola virus)、流行性感冒病毒及登革熱病毒(dengue virus)。
在另一實施例中,細菌感染係由結核分枝桿菌(Mycobacterium tuberculosis)引起。
本文所考慮之個體通常係人類。然而,個體可為期望治療之任何哺乳動物。因此,本文所述之方法可適用於人類及牲畜應用。
投與 / 劑量 治療性組合物之調配及其隨後投與(投藥)在熟習此項技術者之技能內。投藥取決於所治療疾病狀態之嚴重程度及反應性,其中治療過程持續數天至數月,或直至達成疾病狀態之充分減小為止。最佳投藥時間表可自量測患者體內之藥物累積來計算。
熟習此項技術者可容易地確定最佳劑量、投藥方法及重複率。最佳劑量可端視個別寡聚物之相對效力而有所變化,且通常可基於在活體外及活體內動物模型中發現有效之EC50 進行估計。一般而言,劑量為0.01 μg至100 g/kg體重,且可每日、每週、每月或每年給予一或多次,或甚至每2至20年給予一次。熟習此項技術者可容易地基於經量測滯留時間及藥物在體液或組織中之濃度來估計投藥的重複率。在成功治療後,可期望患者進行維持療法以防止疾病狀態之復發,其中以在0.01 μg至100 g/kg體重範圍內之維持劑量投與寡聚物,其中每日一或多次至每20年一次。
在一些實施例中,式I、II、Ia、Ib、IV或IVa之偶聯物係單獨投與。
在一些實施例中,式I、II、Ia、Ib、IV或IVa之偶聯係以治療有效量或劑量投與。「治療有效量」係式I、II、Ia、Ib、IV或IVa之偶聯物在單獨投與給患者時有效治療肌肉疾病、病毒感染或細菌感染之量。針對特定個體在既定情形中證明為「治療有效量」之量對正考慮對疾病或病況進行類似治療之個體可能並非100%有效,即使該劑量被熟練從業者認為係「治療有效量」。對應於治療有效量之寡核苷酸之量強烈取決於疾病之類型、疾病之階段、所治療患者之年齡以及其他事實。
在不同實施例中,端視式I、II、Ia、Ib、IV或IVa之偶聯物及所用有效量而定,寡核苷酸可調節肌肉疾病、病毒感染或細菌感染中所涉及基因之表現。
儘管式I、II、Ia、Ib、IV或IVa之偶聯物之量應產生肌肉疾病、病毒感染或細菌感染之有效治療,但該等量較佳對患者沒有過度毒性(即,該等量較佳在醫學指南確定之毒性極限內)。在一些實施例中,為防止過度毒性或提供肌肉疾病、病毒感染或細菌感染之更有效治療或二者,提供總投與劑量之限制。通常,本文所考慮之量係每天;然而,本文亦考慮半天、兩天或三天週期。
可使用不同劑量方案來治療肌肉疾病、病毒感染或細菌感染。在一些實施例中,每日劑量(例如上述任何實例性劑量)係每天投與一次、兩次、三次或四次達三、四、五、六、七、八、九或十天。端視所治療疾病之階段及嚴重程度,可採用較短治療時間(例如,最多五天)及高劑量,或可採用較長治療時間(例如,十天或以上或數周、或一個月或更長時間)及低劑量。在一些實施例中,每天一次或兩次劑量係每隔一天投與。
呈純淨形式或適當醫藥組合物之式I、II、Ia、Ib、IV或IVa之偶聯物或其醫藥上可接受之鹽或溶劑合物形式可經由此項技術已知之任何可接受之投與模式或試劑投與。寡核苷酸可例如經口、經鼻、非經腸(靜脈內、肌內或皮下)、經局部、經皮、經陰道內、經膀胱內、經腦池內或經直腸投與。劑型可為例如固體、半固體、凍乾粉末或液體劑型,例如錠劑、丸劑、軟彈性或硬明膠膠囊、粉末、粉末、懸浮液、栓劑、氣溶膠或諸如此類,例如適於簡單投與準確劑量之單位劑型。在一個實施例中,寡聚物係含於醫藥上可接受之載劑中之磷醯二胺嗎啉基寡聚物,且係經口遞送。在另一實施例中,寡聚物係含於醫藥上可接受之載劑中之肽偶聯磷醯二胺嗎啉基寡聚物,且係經口遞送。
在另一實施例中,寡聚物係含於醫藥上可接受之載劑中之磷醯二胺嗎啉基寡聚物,且係靜脈內(i.v.)遞送。在另一實施例中,寡聚物係含於醫藥上可接受之載劑中之肽偶聯磷醯二胺嗎啉基寡聚物,且係經靜脈內遞送。
額外投與途徑(例如,皮下、腹膜內及肺)亦由本揭示內容涵蓋。
輔助劑及佐劑可包括例如防腐劑、潤濕劑、懸浮劑、甜味劑、矯味劑、香味劑、乳化劑及分配劑。防止微生物之作用通常由各種抗細菌及抗真菌劑提供,例如,對羥基苯甲酸酯、氯丁醇、苯酚、山梨酸及諸如此類。亦可包括等滲劑,例如糖、氯化鈉及諸如此類。可藉由使用延遲吸收之試劑(例如,單硬脂酸鋁及明膠)實現可注射醫藥形式之延長吸收。輔助劑亦可包括潤濕劑、乳化劑、pH緩衝劑及抗氧化劑,例如檸檬酸、去水山梨醇單月桂酸酯、三乙醇胺油酸酯、二丁基羥基甲苯及諸如此類。
固體劑型可製備有包衣及外殼,例如腸包衣及此項技術中熟知之其他包衣。其可含有安撫劑且可具有使其以延遲方式在腸道之某一部分中釋放一或多種活性寡核苷酸之組成。可使用之包埋組合物之實例係聚合物質及蠟。若適宜,活性寡核苷酸亦可呈具有一或多種上文所提及賦形劑之微囊封形式。
經口投與之液體劑型包括醫藥上可接受之乳液、溶液、懸浮液、糖漿及酏劑。該等劑型係藉由例如將本文所述之偶聯物或其醫藥上可接受之鹽及可選醫藥佐劑溶解、分散等於以下各項中來製備:載劑,例如水、鹽水、右旋糖水溶液、甘油、乙醇 及諸如此類;增溶劑及乳化劑,例如乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苄醇、苯甲酸苄基酯、丙二醇、1,3-丁二醇、二甲基甲醯胺;油,尤其棉籽油、花生油、玉米胚芽油、橄欖油、蓖麻油及芝麻油、甘油、四氫糠醇、聚乙二醇及去水山梨醇之脂肪酸酯;或該等物質之混合物及諸如此類,以由此形成溶液或懸浮液。
通常,端視期望之投與模式而定,醫藥上可接受之組合物將含有約1重量%至約99重量%之本文所述寡核苷酸或其醫藥上可接受之鹽及99重量%至1重量%之醫藥上可接受之賦形劑。在一個實例中,組合物將為約5重量%與約75重量%之間之本文所述寡核苷酸或其醫藥上可接受之鹽,其餘為適宜醫藥賦形劑。
製備該等劑型之實際方法係已知的或對於熟習此項技術者將顯而易見。參考例如Remington's Pharmaceutical Sciences, 第18版(Mack Publishing Company, Easton, Pa., 1990)。
套組 在其他實施例中,提供套組。本發明之套組包括包含本揭示內容之寡核苷酸、肽、肽-寡核苷酸偶聯物或組合物之包裝。在一些實施例中,套組包含式I、II、Ia、Ib、IV或IVa之肽-寡核苷酸偶聯物或其醫藥上可接受之鹽。
片語「包裝」意指含有本文所提供寡核苷酸或組合物之任何容器。在一些實施例中,包裝可為盒或包覆材料。用於包裝醫藥產品之包裝材料已為熟習此項技術者熟知。醫藥包裝材料之實例包括(但不限於)管、吸入器、幫浦、袋、小瓶、容器、注射器、瓶及適於所選調配物及預期投與及治療模式之任何包裝材料。
套組亦可含有不包含在包裝內、但附於包裝外部之物品,例如吸量管。
套組可進一步含有關於將本揭示內容之寡核苷酸或組合物投與給患者之說明書。套組亦可包含由監管機構(例如,美國食品藥品管理局)批准之本文寡核苷酸之用途的說明書。套組亦可含有關於寡核苷酸之標記或產品插頁。包裝或任何產品插頁或二者自身可由監管機構批准。套組可包括於包裝中於固相或液相(例如,所提供之緩衝劑)中之寡核苷酸。套組亦可包括用於製備用於實施該等方法之溶液的緩衝劑以及用於將液體自一個容器轉移至另一容器之吸量管。
實例 出於說明並闡述本揭示內容之某些特定實施例之目的,下文闡述各實例。然而,申請專利範圍之範圍決不以任何方式受本文所述實例之限制。熟習此項技術者將明瞭所揭示實施例之各種改變及修改,且可在不背離本揭示內容之精神及隨附申請專利範圍之範圍的情況下作出此等改變及修改,其包括(但不限於)與本揭示內容之化學結構、取代基、衍生物、調配物或方法相關之彼等。本文方案中結構變量之定義與本文所呈現各式中之相應位置之彼等變量相稱。
文庫合成 關於圖26、元件2602及圖27A,重點放在含有四個模組之構築體上:一個用於寡核苷酸且三個用於不同肽序列。已設想,模組有必要含有各種功能肽,例如核靶向肽或胞內體破壞性肽。為合成構築體,選擇收斂方法,其中模組1鏈接至模組2且模組3單獨地鏈接至模組4。然後,可將兩個二聚體偶聯以提供四模組構築體(圖1b及圖27A,步驟2700)。
生物偶聯反應之選擇至關重要,此乃因需要最佳化每一反應以耐受某些官能基、與常用溶劑及條件相容並適於肽受質。在肽偶聯之情況下探索若干反應,且遇到某些反應之各種限制。 3. 用於常見生物偶聯反應之官能基列表及其使用之潛在約束.
官能基 偶聯約束
硫醇 -可需要還原劑以防止二硫鍵形成 -可與DBCO反應
馬來醯亞胺 -與疊氮化物反應 -鍵聯係可逆的
鹵代烷 -與硫醇之反應速率慢
全氟芳烴 -高於pH 10下之鍵聯不穩定 -疏水
四嗪 -在硫醇或TIPS之存在下迅速還原 -與DBCO反應
降莰烯 -在肽裂解期間與硫醇反應 -與疊氮化物反應
DBCO -與四嗪反應,可與硫醇反應 -鏈接體在三氟乙酸之存在下水解
-固有地可逆
炔烴 -與鈀反應(例如在烯丙氧羰基(alloc)去除期間)
疊氮化物 -藉由TCEP還原
舉例而言,發現四嗪可併入樹脂上之肽中,但在肽裂解及側鏈去保護期間被還原。類似地,市售DBCO試劑上存在之第三醯胺在三氟乙酸中裂解,此需要將DBCO併入樹脂外之受質。另外,馬來醯亞胺及疊氮化物當存在於同一肽上時將發生反應。
在研究若干潛在反應後,最終合成方案將兩個疊氮化物-炔烴環加成與一個SN Ar反應組合(圖1b)。在反應1中,PMO-DBCO將利用疊氮基肽耦合至鏈接模組1及2。疊氮基肽亦將含有自由硫醇,其在中性條件下將不會與DBCO反應。單獨地,對於反應2,銅催化之疊氮化物-炔烴環加成將鏈接模組3及4。模組3將含有鏈接至十氟聯苯之N-末端半胱胺酸殘基及C-末端疊氮基-離胺酸。全氟芳烴使反應3進行且亦用於防止自由硫醇干擾疊氮化物/炔烴環加成。模組4僅含有炔烴,其對大多數反應係穩定的,例如肽大環化。最後,在反應3中,模組1-2及3-4可藉助硫醇-全氟芳烴SN Ar反應偶聯。由於疊氮化物已與炔烴反應,因此TCEP可用於防止二硫鍵形成而無需擔心無意的疊氮化物還原。
所選合成方案對於組合文庫之合成具有許多益處。第一,所有反應均在生成穩定、不可逆鍵聯之前用於生物分析。第二,反應不生成副產物且理論上係定量的,此減少對純化之需求。第三,所有試劑均係相對良性的且將不影響細胞培養實驗。儘管將存在銅,但發現對於此篩選目的,低微莫耳濃度之銅不會影響細胞存活率。最後,反應均可以極小規模(例如,小於5 µL之體積)實施。值得注意地,高產率及小體積之組合表明反應可以高濃度進行並立即稀釋於用於細胞培養處理之培養基中,而無需個別地純化每一反應。
最佳化個別反應條件之後,合成一組36個概念驗證構築體用於模組化文庫。對於寡核苷酸模組1,使用PMO IVS2-654 (SEQ. ID. 56),其在成功遞送至經改質HeLa細胞系之細胞核後誘導eGFP螢光。模組2包括一組四種不同CPP:穿膜肽、pVEC、TP10及DPV6。模組3包括KRVK及SV40核定位序列(NLS)及肽PHP.eB (一種最近報告改良病毒至大腦之遞送的序列)。模組4包括三種CPP:Bpep、DPV6及PPC3 (圖5)。
合成係以使用疊氮化物應變之炔烴環加成反應偶聯模組1及2開始。在水中,將5 mM PMO-DBCO與5 mM疊氮化物-模組2肽-cys一起培育。1小時後,將反應在液氮中急凍並藉由凍乾去除溶劑。對於每一反應,LC-MS分析顯示幾乎完全轉化為產物且指示反應清潔地進行,無需純化。
模組3及4係使用銅催化之疊氮化物-炔烴環加成偶聯。將十氟聯苯-模組3肽-疊氮化物及炔烴-模組4肽溶於水中以製得每一模組之10 mM原液。單獨地,將溴化銅(I)在惰性氣氛下溶於DMSO中。將該等肽組合(每一者最終濃度為3.3 mM)且反應係以添加溴化銅溶液(最終濃度6.7 mM)起始。2小時後,利用添加100 mM水中之磷酸氫二鈉將反應淬滅。在反應3之準備中,在真空下去除溶劑。
最後,將模組1-2及3-4組合。將模組1-2 (最終濃度0.63 mM)與模組3-4 (最終濃度1.25 mM,2當量)在含有5 mM TCEP之DMSO中混合。由於模組1係細胞分析之活性組分,因此其用作限制試劑。2小時後,將反應急凍並儲存於-80℃下,直至進行稀釋及細胞處理。個別地測試反應組分表明,銅之存在干擾反應,且儘管進行了大量最佳化嘗試,但反應轉化率從未超過約70%。
利用所合成之36個構築體,使用經改良HeLa細胞分析測試調節PMO活性之能力。HeLa-654細胞經穩定轉染以表現非螢光eGFP蛋白。eGFP基因被來自人類β-球蛋白基因(IVS2-654)之突變體內含子中斷。此插入改變前mRNA剪接而使片段保留於成熟mRNA中,從而產生非螢光蛋白。PMO IVS2-654鹼基對與β-球蛋白插入改質mRNA剪接,且由此導致螢光eGFP之表現。
對於處理,將粗製反應混合物於培養基中稀釋至5 µM。模組化構築體之濃度係基於反應中所混合模組1-2偶聯物之原始濃度計算。使用含有10%胎牛血清(FBS)之培養基,將細胞與每一構築體一起培養22小時,之後藉由流式細胞術量測細胞螢光。
不同模組導致細胞螢光位準之若干明顯趨勢(圖6)。當模組2係DPV6時,不論將哪些肽置於模組3及4中,整個構築體始終導致高螢光。然而,當將pVEC或TP10置於模組2中時,觀察到較少細胞螢光。在流式細胞術期間使用閘控細胞計數作為間接讀出以控制化合物之毒性。高毒性化合物導致總體細胞計數減少,且基於碘化丙啶染色將無活力細胞閘控輸出。在此實驗中,觀察到當模組3肽為核定位序列KRVK時,始終觀察到較低細胞計數。由於較佳化合物既具有高活性且無毒性,因此將細胞螢光及細胞計數讀數相乘以獲得總體化合物效能(FxC)之量度。
鑒於概念驗證實驗之成功,合成600個偶聯物文庫用於在HeLa-654細胞中進行測試。選擇將模組4中之肽數量自3增加至50。為增加文庫中肽類型之多樣性並強調併入經改質肽及獨特官能基之可行性,包括嵌合肽、環狀肽及二環肽之混合物。環狀肽包括R12、Bpep及Engrailed變體,其中兩個半胱胺酸殘基經鏈接以形成與模組化反應相容之穩定肽大環。二環變體包括雙大環R12及另一R12序列,其中三個側鏈與1,3,5-三溴甲苯鏈接。其他肽包括若干先前報道之CPP、經計算預測為有效PMO載體之肽(PPC)以及具有附加NLS序列之肽(參見表2)。
利用額外化合物,如先前所述進行反應1及2,惟反應2現在涉及150種不同產物。對於反應3,為處置大量化合物,合成係經2天在384孔板中使用先前所述之條件實施。合成後,將化合物於PBS中稀釋至100 µM,且然後於含有10% FBS之培養基中稀釋至5 µM。再次,將HeLa-654細胞用構築體處理22小時並藉由流式細胞術分析細胞螢光(圖7)。
機器學習模型 使用來自關於圖27A之步驟2700所界定之模組文庫之序列及活性資訊,訓練一系列可解釋機器學習模型以預測新穎、更有效之序列。模型可基於諸如圖25所示之通用電腦系統或在定製組態之計算平臺中實施。機器學習之關鍵考慮因素係輸入特徵及輸出參數之適當表示。鑒於缺乏將胺基酸化學結構及序列位置與細胞滲透相關聯之任何經定義之定量序列-活性關係,因此該領域中之先前啟發式研究達成有限成果。另外,計算方法之侷限性通常係源自使用肽之非標準化資料集及物理化學描述符作為用於機器學習不相關功能參數之特徵。為克服該等侷限性,開發使用肽序列之拓撲表示以自統一資料集(例如上文所建議者)抽取資訊之逆設計模型。
此逆設計模型亦可稱為發生器-預測器-最佳化器機器學習模型。發生器網路產生實際肽,預測器網路使用分子之拓撲表示解決序列-活性關係,且最佳化工具在使長度及精胺酸含量最小化的同時使活性最大化。此一機器學習模型以功能方塊形式匯總於圖26中。解決生物活性以及其他設計約束之此組合產生最佳化合成肽,該等合成肽無毒且無免疫原性並且顯著改良PMO之遞送。
為自每一肽中抽取化學資訊,對每一胺基酸序列之原子連接性進行表徵,而非將肽置於各種物理化學性質之組格中。首先,參照圖2a,胺基酸及其模組化鏈接體表示為編碼相鄰原子及鍵之拓撲探索之指紋。其次,開發將序列視為線性(1D)及完全圖(2D)之一系列1D及2D肽序列表示。1D表示擷取沿肽主鏈之共價、線性相互作用,而2D表示所引入非對角線元素以表示大環序列中之摺疊、貫穿空間之相互作用及共價鍵聯。如上文文庫合成部分中所述開發之訓練資料集由含有600個肽以及先前在eGFP分析中測試之其他序列的模組化文庫組成。刪除由於毒性導致低細胞計數之序列。來自此分析之輸出係平均螢光強度(MFI),其與其各別圖表表示相關聯。
關於逆設計,如上文所介紹,開發基於機器學習之發生器-預測器-最佳化器廻圈。發生器係基於遞迴神經網路,使用巢套式長短期記憶(RNN-巢套式LSTM)架構,擷取撰寫細胞穿透肽序列之文法直覺(圖27A,步驟2702)。此使能夠生成新穎的外觀相似細胞穿透肽序列。關於預測器,序列表示係針對MFI使用卷積神經網路(CNN)模型進行訓練(圖27B,步驟2704)。最後,使用基因演算法(GA)實施最佳化,其中目標函數涉及最大化由CNN模型預測之MFI及最小化長度及精胺酸含量,同時維持水溶解性(圖27C,步驟2706)。該等演算法設計係藉助若干次迭代演化,最後併入變分像素圖及加權之貫穿空間之相互作用,包括半胱胺酸鍵聯(DeConv2D)。提供經最佳化之預測肽序列(圖27C,步驟2708)。
若預測值在訓練值之範圍內(0.32-19.5),則基於Conv1D架構之初始機器學習模型能夠以89%之準確度預測MFI。在超參數最佳化及模型開發之後,準確度增加至92%。
為預測新序列,使用經訓練巢套式LSTM模型生成種子序列,並在活性預測器-基因演算法最佳化器廻圈中針對目標函數將其最佳化,以最大化MFI及最小化序列長度及精胺酸含量。另外,為觀察模型預測具有某一活性之肽的能力,有意預測用於陰性對照驗證之具有差活性之序列,此產生稱為「Mach11」之一類合成肽。
已確定所預測序列與任何先前報道之CPP或任何天然存在之肽及蛋白質沒有顯著序列相似性,如藉由蛋白質-蛋白質基本局部比對搜索工具(BLASTp)同源性搜尋所確定。最後,使用在線工具(IEDB)預測所預測序列為免疫原性T細胞表位之機率且根據設定機率得分發現預測之免疫原性較低。
為解釋藉由該演算法發現之設計原理,檢查激活Conv1D預測器之學習的化學特徵。為實施此,針對第一卷積層之輸入特徵(序列)相對於輸出(MFI)來檢查正梯度激活。層中較高激活之區域指示導致神經網路做出特定預測之特定特徵。觀察到,預測器主要係由靠近肽C-末端之胺基酸觸發,且亦注意到對陽離子殘基之偏好。對高活性之預測序列Mach3之詳細分析揭示對精胺酸內胍基子結構之偏好。該等特色與先前關於細胞滲透之經驗發現一致。
為更好地瞭解模型如何生成預測,選擇五個不同長度之隨機序列,將其播種於最佳化器中,並可視化最佳預測。將正激活在殘基位置(圖3c)及化學指紋(圖3d)上平均。此外,胺基酸之類型係基於序列中之殘基位置(圖3e)及跨殘基之指紋中突出顯示之子結構(圖3f)進行分析。對於更高效之訓練序列,觀察到與Mach3類似之趨勢。
MACH 肽增強 PMO 遞送 自數百個所預測肽序列之列表中選擇20個在長度、電荷及預測活性方面有所不同之候選者進行合成及測試。正如PMO-肽文庫一樣,首先將PMO-Mach構築體在HeLa 654分析中以5 µM在完全培養基中達22小時以針對PMO遞送進行測試,並藉由流式細胞術分析(圖14)。實驗係使用三個技術上一式三份及兩個或三個生物上重複來實施。將所得活性與訓練資料集相比較且發現幾乎所有序列均超過最高效之文庫肽(圖2d)。
有意選擇在長度、電荷及結構方面不同之預測肽。Mach1至Mach11係線性PMO-肽構築體。Mach12及Mach13含有兩個半胱胺酸,其藉由十氟聯苯鏈接以形成內部大環。序列具有在33至80個胺基酸範圍內之長度及+11至+22個淨電荷。另外,為證實演算法掌握了設計原理,將其用於預測性能較差之序列。為此,高效肽Mach1使該演算法重新排列序列,使得預測活性降低,從而產生Mach7。然而,兩種構築體之實驗活性幾乎相同。然後,演算法設計經預測具有差活性之獨特肽,從而產生Mach11。實際上,Mach11並未顯著改良PMO遞送。值得注意地,儘管預測Mach5具有與Mach 2至4類似之活性,但其並未顯著增加PMO活性。
對若干高活性MACH肽實施劑量-反應實驗(圖4a)。以與上述相同之格式,將HeLa 654細胞用不同濃度之Mach 2、3、4及7處理22小時並藉由流式細胞術進行分析。每一構築體具有接近1 µM之EC50 值且在所測試濃度下未展示細胞毒性,如由細胞計數及PI染色所測定。
實例 1 :用於肽製備及純化之一般方法 快速流式肽合成 肽係以0.1-mmol規模使用自動化流式肽合成器合成。將一份200 mg ChemMatrix Rink Amide HYR樹脂裝載於維持在90℃之反應器中。所有試劑在引入反應器之前均利用HPLC幫浦以80 mL/min流動穿過維持在90℃下之不銹鋼迴路。對於每一偶合,將10 mL含有於DMF中之0.2 M胺基酸及0.17 M HATU之溶液與200 μL二異丙基乙胺混合並遞送至反應器。Fmoc去除係使用10.4 mL 20% (v/v)六氫吡啶完成。在各步驟之間,使用DMF (15 mL)沖洗反應器。精胺酸使用特定偶合條件,其中流速降至40 mL/min並將10 mL含有0.2 M Fmoc-L-Arg(Pbf)-OH及0.17 M PyAOP之DMF溶液與200 μL二異丙基乙胺混合並遞送至反應器。為偶合非天然胺基酸或使肽封端(例如利用4-戊炔酸),將樹脂於室溫下與溶於2.5 mL 0.4 M於DMF中之HATU之4-戊炔酸(1 mmol)以及500 μL二異丙基乙胺一起培育30 min。合成完成後,將樹脂用DCM洗滌3次並在真空下乾燥。
肽裂解及去保護 藉由在60℃用5 mL 94%三氟乙酸(TFA)、2.5% 1,2-乙二硫醇(EDT)、2.5%水及1%三異丙基矽烷(TIPS)(v/v)處理7 min,使每一肽同時經受整體側鏈去保護及自樹脂裂解。對於富含精胺酸之序列,將樹脂在室溫下用由82.5% TFA、5%苯酚、5%茴香硫醚、5%水及2.5% EDT (v/v)組成之裂解混合物處理14小時。藉由使N2鼓泡通過混合物來蒸發TFA。然後將約40 mL冷乙醚(在-80℃下冷凍)添加至沈澱物並洗滌肽。藉助以4,000 rpm離心3分鐘使粗製產物沈澱並傾析出乙醚。將乙醚沈澱及離心再重複兩次。第三次洗滌後,將丸粒重新溶解於50%水及50%含有0.1% TFA之乙腈中,藉助燒結注射器過濾以除去樹脂並凍乾。
肽純化 將肽重新溶解於水及含0.1% TFA之乙腈中,藉助0.22 μm耐綸(nylon)過濾器過濾並藉由質譜引導之半製備型反相HPLC純化。溶劑A係具有0.1% TFA添加劑之水且溶劑B係具有0.1% TFA添加劑之乙腈。使用以0.5%/min之速率變化之線性梯度。大部分肽係在Agilent Zorbax SB C3管柱:9.4 x 250 mm, 5 μm上純化。極度親水之肽(例如,富含精胺酸之序列)係在Agilent Zorbax SB C18管柱:9.4 x 250 mm, 5 μm上純化。使用來自儀器之關於每一餾分之質量數據,僅彙集純餾分並凍乾。藉由LC-MS證實餾分彙集物之純度。
使用實例1之方案合成表2之肽。
實例 2 PMO-DBCO 合成 將PMO IVS-654 (50 mg, 8 µmol)溶於150 µL DMSO中。向該溶液中添加於40 µL DMF中含有經HBTU (37.5µL 0.4 M HBTU於DMF中, 15 µmol)及DIEA (2.8 µL, 16 µmol)活化之2當量二苯并環辛炔酸(5.3 mg, 16 µmol)之溶液(最終反應體積= 0.23 mL)。反應進行25 min,然後用1 mL水及2 mL氫氧化銨淬滅。氫氧化銨將水解在反應過程期間形成之任何酯。1小時後,將溶液稀釋至40 mL並使用反相HPLC (Agilent Zorbax SB C3管柱:21.2 × 100 mm, 5 µm)及經58 min (1% B / min)自2至60% B之線性梯度(溶劑A:水;溶劑B:乙腈)純化。使用來自儀器之關於每一餾分之質量數據,僅彙集純餾分並凍乾。藉由LC-MS證實餾分彙集物之純度。
實例 3 :文庫合成條件 反應 1 將PMO-DBCO以10 mM濃度(以重量分析法測定)溶於水中。將模組2肽以10 mM濃度(以重量分析法測定;分子量經計算以每離胺酸、精胺酸及組胺酸殘基包括0.5個三氟乙酸根相對離子)溶於含有0.1%三氟乙酸之水中。在微量離心管中,將50 µL PMO-DBCO溶液與50 µL模組2肽混合。將溶液混合並使反應進行1小時。然後,藉由LC-MS分析產物並藉由凍乾去除溶劑。最後,將產物懸浮於100 µL DMSO中以提供5 mM溶液並儲存於-20℃下。
反應 2 原液係藉由將模組3肽及模組4肽以10 mM濃度(以重量分析法測定)溶於水中製備。對於每一反應,將4 µL模組3肽與4 µL模組4肽在PCR管中混合。另外,溴化銅溶液係藉由在N2 下將1 mL脫氣DMSO與2.8 mg溴化銅(I)混合以獲得20 mM溶液來製備。在周圍條件下,將4 µL CuBr溶液添加於模組肽3及4之混合物中。將反應蓋上並使反應進行2小時;在反應設置期間存在之少量O2 實質上不會阻礙反應進程。2小時後,添加2 µL 100 mM Na2 HPO4 溶液。然後將PCR管音波處理,渦旋並離心。為去除溶劑,將PCR管在真空下使用設定為35℃之Savant SPD121P Speed-Vac離心2小時。最後,將產物重新懸浮於16 µL DMSO中以提供5 mM溶液並儲存於-80℃下。藉由LC-MS分析產物。
反應 3 最終模組化構築體係藉助模組1-2及模組3-4之組合來合成。首先,將1.6 µL反應液2添加至384孔板。單獨地,將30 µL反應液1與15 µL TCEP溶液(100 mM TCEP HCl於含有400 mM NaOH中之50/50水/DMSO)及75 µL DMSO混合。然後,將1.6 µL反應1溶液添加於384孔板中之反應液2。每一個別反應最終含有0.4 µL反應液1 (5 mM於DMSO中)、1.6 µL反應液2 (5 mM於DMSO中)、0.2 µL TCEP溶液(100 mM於水/DMSO)及1 µL DMSO。添加過量反應液2以迫使反應完成;銅之存在阻礙此偶聯之效率。反應液1用作限制試劑以避免過量PMO,PMO係細胞培養分析之活性組分。使反應進行2小時,且然後將板儲存於-80℃下。藉由LC-MS分析反應。
實例 4 HeLa-654 eGFP 分析 在37℃及5% CO2 下將HeLa 654細胞維持於補充有10% (v/v)胎牛血清(FBS)及1% (v/v)青黴素-鏈黴素之MEM中。在處理前18小時,將細胞以每孔5,000個細胞之密度平鋪於96孔板中補充有10% FBS及1%青黴素-鏈黴素之MEM中。實驗當天,含有於DMSO中之粗製反應混合物的384孔板藉由將16.8 µL PBS添加至3.2 µL反應混合物將稀釋至100 µM。然後,將每一構築體於補充有10% FBS及1%青黴素-鏈黴素之MEM中稀釋至5 µM。在37℃及5% CO2 下將細胞與每一偶聯物以5 µM之濃度培育22小時。然後,抽吸處理培養基,將細胞與胰蛋白酶-EDTA 0.25 %在37℃及5% CO2 下培育15min,用PBS洗滌1次,並重新懸浮於具有2% FBS及2 µg/mL 碘化丙啶之PBS中。在BD LSRII流式細胞儀上實施流式細胞術分析。將閘應用於資料,以確保排除對碘化丙啶呈高陽性或正向/側向散射讀數與主要細胞群體完全不同之細胞。每一樣品限制在5,000個閘控事件以內。
分析係使用Graphpad Prism 7實施。對於每一樣品,量測平均螢光強度及閘控細胞之數量(圖8及9)並計算強度乘以細胞數(圖7)。
另外,在利用三個不同生物學重複中實施之eGFP分析中量測之PMO-P1至PMO-P7之外顯子跳躍活性的分析(圖18)指示,PMO-P7係顯示最高活性之偶聯物,其相對於未偶聯PMO具有14倍增加,與PMO-Bpep之活性相當。在PMO與該7種預測肽之偶聯物中第二及第三表現最佳者係PMO-P2及PMO-P4,其活性與未偶聯PMO相比分別具有9倍及7倍增加。剩餘偶聯物PMO-P1、PMO-P3、PMO-P5及PMO-P6顯示4倍增加或甚至更低之活性。PMO-P7顯示優於類似物PMO-P8至PMO-P12之活性(圖19)。肽C-末端之KXXC基序不會導致PMO遞送之增加(圖20)。亦測試PMO-P21至PMO-P23 (圖21)以及P30至P40 (圖23)。
實例 5 MTT 分析 使用MTT測定處理後之細胞存活率(參見圖15b)。在37℃及5% CO2 下將HeLa 654細胞用不同濃度之PMO-肽構築體處理22小時。僅含有培養基之兩個孔用作空白,含有未處理細胞之兩個孔用作陰性對照,且含有經SDS處理之細胞的兩個孔用作陽性對照。將上清液轉移至新的96孔板中,並用缺少酚紅之完全培養基代替。將10 uL MTT原液添加至每一孔並培育4小時。將100 uL SDS-HCl添加至每一孔,充分混合並培育4小時。將每一樣品再次混合並在570 nm下讀取其吸光度。自每一量測值減去空白量測值,且細胞存活率計算為:存活率% = 100 × 實驗(OD570) / 未處理(OD570)。
實例 6 LDH 釋放分析 細胞毒性分析係在HeLa 654細胞及人類RPTEC (人腎近端腎小管上皮細胞, ECH001, Kerafast,參見圖4a及圖15a)中實施。在37℃及5% CO2 下將RPTEC維持於補充有10% (v/v)胎牛血清(FBS)及1% (v/v)青黴素-鏈黴素之高葡萄糖DMEM中。RPTEC之處理係如HeLa 654細胞一樣實施。處理後,將上清液轉移至新的96孔板。
向上述含有上清液之96孔板之每一孔中添加CytoTox 96試劑(Promega)。將板遮光並在室溫下培育30分鐘。將相等體積之終止溶液添加至每一孔,混合,並在490 nm下量測每一孔之吸光度。自每一量測值減去空白量測值,並將LDH釋放%計算為細胞毒性% = 100 × 實驗LDH釋放(OD490) / 最高LDH釋放(OD490)。
實例 7 發炎測試組分析 由PMO-肽偶聯物觸發之發炎性反應係藉由分析在THP-1衍生之巨噬細胞處理後發炎性細胞介素釋放來分析(參見圖4b及圖16)。在37℃及5% CO2 下使THP-1細胞(ATCC TIB-202)在補充有10% (v/v) FBS, 1% (v/v)青黴素-鏈黴素、L-麩醯胺酸、非必需胺基酸、丙酮酸鈉之RPMI 1640培養基中生長。實驗前兩天,在37℃及5% CO2 下將THP-1細胞(450k/mL)用25 nM佛波醇(phorbol) 12-肉豆蔻酸酯13-乙酸酯(PMA)處理24小時,以觸發分化為巨噬細胞。然後,將培養基替換為新鮮的RPMI培養基,並將細胞再培育24小時。此時,表型自懸浮細胞變為強黏附細胞。在實驗的早上,去除上清液並藉由在無酶細胞解離緩衝液(Thermo)中培育5分鐘使巨噬細胞提升。然後收集細胞,離心,並在完全RPMI培養基中培養至細胞密度為500k/mL。將100k細胞置於96孔板之每一孔中,使前兩行空著。在處理之前,使細胞重新黏附。在37℃及5% CO2 下將一式兩份孔用不同濃度之PMO-肽偶聯物處理2小時。僅培養基且無處理孔用作陰性對照,且10 ug/mL細菌脂多醣(LPS)處理用作陽性對照。處理後,將每一孔洗滌三次,給予新鮮培養基,並培育12小時。將上清液轉移至V型底部板,並以4000 rcf離心以除去碎片。上清液中之發炎性細胞介素係使用LEGENDplex人類發炎測試組(BioLegend)(基於螢光珠粒之分析)進行分析。所分析之細胞介素係:IL-1β、IFN-α2、IFN-γ、TFN-α、MCP-1、IL-6、IL-8、IL-10、IL-12p70、IL-17A、IL-18、IL-23及IL-33。分析係在BD LSRII流式細胞儀上實施且資料係使用BioLegend之隨附軟體分析。
實例 8 :重組表現 His6 -SUMO-G5 -DTA(C186S)過表現於大腸桿菌BL21 (DE3)細胞中(參見圖17)。將大約10 g細胞丸粒藉由在50 mL 20 mM Tris、150 mM NaCl、pH 7.5緩衝液(含30 mg溶菌酶、2 mg DNAase I及1片全蛋白酶抑制劑混合物)中音波處理進行裂解。將懸浮液以16,000 rpm離心30 min以去除細胞碎片。將上清液加載於5 mL HisTrap FF Ni-NTA管柱(GE Healthcare, UK)上並用30 mL於20 mM Tris、150 mM NaCl中之100 mM咪唑(pH 8.5)洗滌。用含有於20 mM Tris、150 mM NaCl中之300 mM咪唑之緩衝液(pH 8.5)自管柱溶析蛋白質。在Millipore離心過濾器單元(10K)中經由離心自蛋白質去除咪唑。然後利用SUMO蛋白酶(預先經重組表現)藉由在4℃下以1:1000蛋白酶:蛋白質比率在20 mM Tris、150 mM NaCl (pH 7.5)中培育過夜使His6 -SUMO標籤自蛋白質裂解。藉由使混合物流動穿過5 mL HisTrap FF Ni-NTA管柱將期望蛋白質與His6 -SUMO標籤分離。最終經純化蛋白質係藉由粒徑篩析層析使用HiLoad 26/600 Superdex 200製備級粒徑篩析層析管柱(GE Healthcare, UK)於20 mM Tris、150 mM NaCl (pH 7.5)緩衝液中分離。
使用SDS-PAGE凝膠分析蛋白質。另外,藉由ESI-QTOF LCMS分析蛋白質以證實分子量及純度。蛋白質電荷狀態包絡線係使用Agilent Mass Hunter Bioconfirm使用最大熵設置(Agilent Zorbax 300SB C3管柱:150 x 2.1 mm ID, 5 uM, 1% B 0-2 min, 自1%線性斜升至91% B 2至11 min、91%至9% B 11至12 min,流速:0.8 mL/min)進行解回旋。
實例 9 :免疫原性 序列之免疫原性(參見圖12)係使用在線伺服器計算。得分係任意數字,其中較高正值指示該肽具有免疫原性之機率較高,反之亦然。對於非天然殘基,B (β-丙胺酸)及X (6-胺基己酸)分別由a (丙胺酸)及L (白胺酸)代替用於搜尋操作。可看出,沒有肽預期會觸發免疫反應。
實例 10 :逆設計模型 發生器 - 遞迴神經網路 . 發生器係資料驅動工具以生成遵循「細胞穿透肽之本體論」之新肽序列。為擷取基本規則,對遞迴神經網路進行訓練-基於巢套式LSTM之模型(參見圖1a及圖10)。訓練資料集包含1150個序列,包括文庫創建中所用之唯一(非模組化)序列及來自CPPSite2.0之序列。(亦參見圖26、元件2604及圖27A步驟2702)。
預測器- 回旋神經網路 . 預測器自既定肽序列之PMO遞送(如在HeLa 654分析中所量測)估計螢光強度。將初始模型(原始:Conv1D)針對具有胺基酸指紋之列矩陣之肽序列的1D表示進行訓練(參見圖2、圖3及圖13)。然後,開發一系列2D表示以擷取長程相互作用:(i) Conv2D - 在個別指紋之間基於OR運算之2D表示;(ii) Conv2D Macrocycle - 在非對角線指數中具有顯式鏈接體指紋之2D表示;(iii) DeConv2D - 具有由每一非對角線指數之功能性決定之非對角線相互作用權重之2D變分表示(參見圖11)。所有指紋均使用RDKit生成。藉由將來自此工作之CPP文庫以及來自先前工作之CPP集合組合,編譯640個用於訓練之PMO-肽序列。(亦參見圖26、元件2606及圖27B、步驟2704)。
最佳化器 . 最佳化係使用基因演算法(GA)實施,其中單殘基突變涉及插入、刪除及調換,且多殘基突變係使用雜交實施。單殘基突變涉及選擇殘基之指數及刪除,或在插入/調換之情形中添加另一殘基,其中所有過程均係隨機的。對於雜交,序列長度及欲雜交之位置及雜交之序列(來自所有CPP之清單)所有均隨機選擇。針對以下目標函數對於所有LSTM生成之序列實施GA達1000個演進步驟:
Figure 02_image158
(參見圖26、元件2608及圖27C、步驟2708)。
基準測試模型 . 使用指紋及獨熱編碼用於訓練基準測試模型:支持向量回歸、高斯(Gaussian)過程回歸、核嶺回歸、k最近鄰回歸及XGBoost回歸。
超參數最佳化 . 用於發生器及預測器模型之所有超參數均使用SigOpt最佳化。
使用此模型,製備13種肽之清單。 4. 所合成預測肽之清單.
      超過 PMO 之倍數 超過 PMO 之倍數 * % ARG PPMO MW 淨電荷
MACH 1 ALKBRSAAKAVRWPKKKIKQASKKVAKYALXXXRKKKAASKXWLQLHWPRW 45 - 8 12,645 18
MACH 2 PPLRNAKKKNLKNNLKMDPKFTKKVKQGALKLNRRKKNRGPKGPXKHWTT 27 - 8 12,499 18
MACH 3 QKKRKSKANKKNWPKGKLSIHAKDYKQGPKAKXRKQRXR 38 - 10 11,324 17
MACH 4 KKGKKQNKKKHRWPKKKVPQPKKMFKQGABXRX 25 - 6 10,622 16
MACH 5 AKKKIAKAKKHRGPNBGIHAPVSKIKDPLKXXX 3 - 8 11,590 11
MACH 6 ALKBRSAAKAVRWPKKAIKQASKKVAKYALKXXRKKKAASKXWLQLHWPRW 43 - 8 12,603 18
MACH 7 XKHPXAVQBAARAWKVPAAALWKKKRLKKSSKQKKKWLWKARSAXKYXRLI 36 - 8 12,645 18
MACH 8 BKGKNLLAKIRRGPNGGNBQGSQGYLLYLLXRXRRQRXXYPWWRXKHXRWXXRXRGHXRRRRQXLKPDRXRGGKGSVS 39 - 21 15,929 22
MACH 9 KKKKNLNBKSRRGPNGGALQPSQGYLQPLNXRXRRQRXXYPWWRXKHXRWRXRYHXRRRRQXLKPG 38 - 21 14,845 22
MACH 11 TSNLKLHLAPPVKKKALKKPLYKAKKKKKVVSPTWXTDQEW 4 - 0 11,423 11
MACH 12 KGGKNLAKKIRRGPNGGALQPSQGYLLYLBXRXRRQRXXGPXWRXKHXRWXXXXXRPTHXRRRRQXL C PGRXRP C RGSVS 40 - 20 16,285 22
MACH 13 AKKKKLGBKALRWPNGK C PQPKEK C PKYLLGRXRRKRXRYPWWRXKHRRW 30 - 18 13,228 20
P1 (MACH 14) KXKKQQGKKKHR 2.9 9 8 8,159 8
P2 (MACH 15) KKKKKQBKKKHRWPMG 8.2 10 6 8,660 10
P3 (MACH 16) KKKKNQBKKKHRWPMKXCPQ 3.7 13 5 9,158 10
P4 (MACH 17) HKKKKQBKKKHRWP 6.5 10 7 8,480 10
P5 (MACH 18) KXKHQQQXK 1.4 6 0 7,803 4
P6 (MACH 19) KXKXT 1.1 5 0 7,254 2
P7 (MACH 20) KKKKKQBKKKHRWPKXXC 17.7 11 6 8,929 11
P8 KKKKKCBKKKHRWPKXXQ 6.3 - 6 8,929 11
P9 KKKXKQBKKKHRWPKKXC 11.0 - 6 8,929 11
P10 KCHKXKWKKPKRXKQKBK 14.9 - 6 8,929 11
P11 KKKKKQCKKKHRWPKXXC 12.9 - 6 8,961 11
P12 KKKKKQBKKKHRWPKXXG 13.3 - 6 8,883 11
P13 KKKKKQBKKKHRWPMGKXXC 8.9 - 5 9,117 11
P14 HKKKKQBKKKHRWPKXXC 6.2 - 6 8,938 11
P15 KXKHQQQXKKXXC 1.2 - 0 8,260 5
P16 KXKXTKXXC 1.1 - 0 7,712 3
P17 ALWKTLLKKVLKAPKKKRKV 15.3 - 5 9,029 9
P18 ALWKTLLKKVLKAPKKKRKVKXXC 6.0 - 4 9,487 10
P19 RQIKIWFQNRRMKWKK 8.2 - 19 8,899 7
P20 RQIKIWFQNRRMKWKKKXXC 10.5 - 15 9,357 8
P21 KKKKKQBKKKHRWP 14.0 - 7 8,471 10
P22 KKKKKQBKKKHRWPKXXCCC 5.6 - 5 9,135 11
P23 KKKKKQBKKKHRWAKXXC 12.7 - 6 8,903 11
P24 KXKHQQGP - 6 0 - 2
P25 KXKHQQGKKT - 6 0 - 5
P26 HKKKQQGKKKHRW - 9 8 - 9
P27 KKKKKQBKKKHRWPM - 10 7 - 10
P28 KKKKKQGKKHRWPMGG - 10 6 - 9
P29 KKKKNQBKKKHRWPMKXCP - 12 5 - 10
P30 KKKKKQBKKKHRWPKXXA 17.0 - 6 - 10
P31 KKKKKQBKKKHRWPKXAC 16.8 - 6 - 10
P32 KKKKKQBKKKHRWPKAXC 16.8 - 6 - 10
P33 KKKKKQBKKKHRWPAXXC 16.9 - 6 - 9
P34 KAKKKQBKKKHRWPKXXC 17.2 - 6 - 9
P35 KKKKKQBKAKHRWPKXXC 17.1 - 6 - 9
P36 KKKAKQBKKKHRWPKXXC 17.3 - 6 - 9
P37 KKKAKQBKAKHRWPKXXC 17.5 - 6 - 8
P38 KAKAKQBKKKHRWPKXXC 17.5 - 6 - 8
P39 KAKAKQBKAKHRWPKXXC 17.6 - 6 - 7
P40 KKKKKQBKKKHRWP 17.2 - 7 - 9
* 藉由機器學習方法預測之活性. ** P8-P23係經設計或選擇用於SAR研究。 其中X係6-胺基己酸,B係β-丙胺酸,且 C 藉由L1 共價結合至另一 C ; 其中L1
Figure 02_image160
; M係
Figure 02_image161
Figure 02_image163
;且 R10 在每次出現時獨立地係H或鹵素。
實例 11 PMO-P7 之活性及毒性、劑量 - 反應曲線 PMO-P7之半最大有效濃度(EC50)係藉由在一定濃度範圍內(介於0.1與100 μM之間)量測此偶聯物優於PMO之eGFP螢光(使用HeLa654細胞)計算。所得EC50具有4 μM之值且最大效應濃度顯示相對於未偶聯PMO之45倍增加。
對於LDH分析,在37℃及5% CO2 下將TH1細胞維持於補充有10% (v/v) FBS及1% (v/v) Pen Strep之DMEM-高葡萄糖中。在處理前18小時,將TH1細胞以每孔8,000個細胞之密度平鋪於96孔板中。次日,在PBS (1X)中製備每一PMO-肽偶聯物之新鮮10 mM原液。原液之濃度係藉由量測260 nm處之吸光度並使用168,700 L mol-1 cm-1 之消光係數來測定。自細胞吸取生長培養基,並添加具有於補充有10% FBS及1% Pen Strep之DMEM-高葡萄糖中之不同濃度(1與200 μM之間)之每一各別偶聯物之處理培養基。在37℃及5% CO2 下將細胞利用處理培養基培育22小時。然後,將上清液處理培養基轉移至另一透明底部之96孔板用於分析。分析係使用CytoTox 96®非放射性細胞毒性分析(Promega)根據所包括之技術通報實施,唯一不同在於使用規定量之一半(25 μL每一上清液、25 μL LDH試劑及25 μL終止溶液)。吸光度係在BioTek Epoch微孔板分光光度計上在490 nm下量測。陽性及陰性對照分別對應於最大細胞溶解及未處理細胞。資料係藉由自所有處理條件(包括細胞溶解)減去未處理細胞之吸光度且然後除以經校正溶解值來處理。細胞毒性%係計算為:
Figure 02_image165
細胞存活率係藉由量測由受損細胞釋放至細胞培養上清液中之乳酸去氫酶(LDH)的量來評價。乳酸鹽至丙酮酸鹽之轉化產生NADH,其進而使黃色四唑鎓鹽(碘硝基四唑鎓紫;INT)還原為在490及492 nm下吸收之紅色甲臘染料。因此,上清液中LDH之量與甲臘之量成正比,且其告知溶解細胞(死亡或受損)之數量。
LDH釋放係使用TH1細胞評估並在1與200 μM之間之PMO-P7、PMO-P21及PMO-P23量測(圖22)。
實例 12 :內毒素分析 量測PMO-P7中內毒素之量。使用檢測及量化細菌內毒素之顯色LAL (鱟變形細胞溶解物)分析。LAL係美洲鱟(Atlantic horseshoe crab)之血球(變形細胞)提取物。此分析係基於LAL與細胞內毒素脂多醣(LPS)之反應,該脂多醣係革蘭氏陰性細菌之膜組分。在此方法中,將LAL試劑與顯色試劑(連接至對-硝基苯胺(黃色著色劑)之肽)混合以產生合成顯色受質。將樣品在培育前添加至此顯色受質。樣品中內毒素之存在在LAL試劑中產生一系列酶促反應,導致肽鍵斷裂,釋放對-硝基苯胺分子且因此產生黃色。內毒素之濃度係藉由在405-410 nm下量測吸光度來定量。使用用於動物研究之PMO-P7批次,使用0.5 mg PMO-P7作為乙酸鹽溶解於1 mL PBS (1X)中製備PMO-P7溶液。所用藥筒係0.01之Charles River Endosafe nexgen-PTS。將25 μL樣品置於藥筒之四個樣品儲存器之每一者中。讀取器將樣品與LAL (鱟變形細胞溶解物)試劑混合。將樣品與顯色受質組合且然後培育。混合後,量測孔之光學密度並針對內部歸檔之標準曲線進行分析。讀數為0.0471 EU/mg (EU:內毒素單位)。
PMO-P7作為其三氟乙酸之分子量為10,069 g/mol且作為其乙酸鹽為9,529 g/mol。
實例 13 動物研究 研究中所用小鼠含有與實例4之HeLa654細胞類似之轉基因。此小鼠模型在雞β-肌動蛋白啟動子下在全身遍在地表現EGFP-654轉基因。在人類β-球蛋白基因之內含子2處之突變核苷酸654包含於EGFP-654序列,此中斷EGFP-654編碼序列並阻止EGFP蛋白之正確轉譯。PMO之反義活性阻斷異常剪接並導致EGFP表現,此與HeLa 654分析中相同。在此研究中,使用Charles River Laboratory飼養之6至8週齡雄性EGFP-654小鼠。將該等小鼠分群圈養並隨意獲取食物及水。
在注射之前,PMO-肽經證實具有最小內毒素含量。為使用動物研究所用之PMO-P7批次進行內毒素分析量測,將0.5 mg PMO-P7作為乙酸鹽溶解於1 mL PBS (1X)中。所用藥筒係0.01之Charles River Endosafe nexgen-PTS。將25 μL樣品置於藥筒之四個樣品儲存器之每一者中。動物研究所用之PMO-P7批次(63 mg,作為乙酸鹽)顯示0.0471 EU/mg (EU係指內毒素單位)。
在3天馴化後,將小鼠隨機分至各組以指示劑量:5、10及30 mg/kg接受鹽水或PMO-P7之單次i.v. 尾靜脈注射。注射後7天,使小鼠安樂死以進行血清及組織樣品收集。迅速解剖四頭肌、橫膈膜、心臟,在液氮中速凍並儲存於-80℃下直至分析。
注射後7天收集所有群組之血清並使用Vet Axcel Clinical Chemistry System (Alfa Wassermann Diagnostic Technologies, LLC)測試腎損傷標記。特定地,血清BUN、肌酸酐及胱抑素C含量係分別使用ACE®肌酸酐試劑(Alfa Wassermann, Cat# SA1012)、ACE®血尿素氮試劑(Alfa Wassermann, Cat# SA2024)及Diazyme胱抑素C免疫分析(Diazyme Laboratories, Cat# DX133C-K)根據製造商之建議進行量測(參見圖24 A-C)。
將20-25 mg小鼠組織在具有蛋白酶抑制劑混合物(Roche, 04693124001)之RIPA緩衝液(Thermo Fisher, Cat# 89900)中使用Fast Prep 24-5G儀器(MP Biomedical)均質化。將勻漿在4℃下以12,000 g離心10 min。所得上清液溶解產物藉由Pierce BCA蛋白質分析套組(Thermo Fisher, Cat# 23225)進行定量並儲存用於EGFP表現量測。特定地,將80 µg溶解產物等分於黑壁透明底部之96孔微孔板(Corning)中之每一孔中。使用SpectraMAx i3x微讀板儀(Molecular devices)藉由預設設置一式兩份量測每一樣品之EGFP螢光強度。然後針對由重組EGFP蛋白質(Origen, Cat#TP790050)構建之標準曲線繪製每一樣品之平均EGFP螢光強度,以量化EGFP蛋白質含量/µg蛋白質溶解產物(參見圖24 D-F)。
以引用方式併入 本申請案中通篇引用之所有參考(包括參考文獻、授權專利、公開專利申請案及及共同待決之專利申請案)之內容均以全文引用的方式明確地併入本文中。除非另有定義,否則本文所使用之所有技術及科學術語均符合熟習此項技術者所通常已知之含義。
等效形式 熟習此項技術者僅使用常規實驗即可識別或能夠確定本文中所闡述本揭示內容之具體實施例之多種等效形式。此等等效形式意欲涵蓋於以下申請專利範圍中。
2300:內部矩形 2302:內部矩形 2304:內部虛線 2500:通用計算裝置/計算裝置 2502:處理器 2504:記憶體 2506:儲存裝置 2508:高速介面 2510:高速擴充埠 2512:低速介面 2514:低速擴充埠 2602:文庫合成器模組/元件 2604:發生器網路模組/元件 2606:預測器網路模組/元件 2608:最佳化工具模組/元件
1 a) 顯示逆設計模型。模組化PMO-CPP文庫已測試活性並用於訓練機器學習演算法以設計新穎高活性CPP,然後對該等高活性CPP進行活體外及活體內活性及毒性評估。b) 顯示使用正交生物偶聯組合之四個模組。 2 a) 顯示以拓撲指紋表示之胺基酸殘基。b) 顯示一系列之序列表示:Conv1D (指紋之線性排列,其代表共價鍵結之殘基及局部相互作用)、Conv2D (指紋之成對接觸圖,其代表完全連接之分子圖表)、Conv2D Macrocycles (具有關於環狀共價鍵聯之顯式資訊之指紋的成對接觸圖,其代表具有額外資訊之完全連接之分子圖表)及DeConv2D (具有學習權重之成對變分接觸圖,其代表藉由學習功能值擷取之3D相互作用)。c) 顯示原始Conv1D模型之預測與實驗觀察MFI值之比較。d) 顯示對於訓練資料集中之序列(盒狀圖)及經驗證序列(藍色點)相對於PMO之倍數改良。e-g) 顯示與針對MFI之訓練及經驗證序列相比,在長度、序列中精胺酸殘基之百分比、序列之淨電荷方面經最佳化之關鍵性質。 3 a) 顯示Mach 3之正梯度圖。b) 顯示Mach3中最具陽性殘基之陽性(綠色)子結構。特定長度(30、35、40、45、50)之最佳序列之正梯度激活在c) 殘基位置及d) 指紋指數上平均。e) 顯示基於殘基位置表現最佳序列中之胺基酸群聚。f) 顯示最活躍指紋指數之子結構。 4 a) 顯示PMO單獨(一種已知活性肽Bpep-Bpep)及四種Mach肽之活性(在eGFP 654 HeLa細胞中之校正剪接)及毒性(LDH在RIPTEC細胞中之釋放)之劑量-反應曲線。活性係使用eGFP分析測定:將HeLa 654細胞與PMO-Mach構築體一起培育22 h,然後藉由流式細胞術分析。結果顯示為相對於PMO單獨之倍數增加,且係以技術上一式三份重複進行分析。毒性係使用以相同方式處理之腎上皮細胞(RPTEC TH1)測定並使用LDH釋放分析來分析。(* p < 0.01, 學生雙尾t測試)b) 顯示Mach PMO-肽不會觸發促發炎細胞介素之釋放,如藉由在人類巨噬細胞中發炎細胞介素檢測組(panel)所測定。將人類單核球源巨噬細胞用每一PMO-肽以各種濃度處理3 h,洗滌並培育12 h。經由基於珠粒之免疫分析及流式細胞術檢測釋放之細胞介素。 5 顯示用於概念驗證實驗之特定肽序列及名稱。 6 A) 顯示揭示利用每一模組化構築體處理之HeLa-654細胞之平均細胞螢光(n=3個重複孔)之熱圖。B) 顯示揭示利用每一模組化構築體處理後HeLa-654細胞之總細胞計數之熱圖。每一實驗之上限為5000個細胞。低細胞計數提示細胞毒性。C) 顯示揭示細胞計數乘以平均螢光(FxC)之熱圖,此給出擷取模組化構築體之兩個最重要參數之單一度量。 7 顯示揭示HeLa-654分析中所測試之600個構築體(n=1個重複孔)之FxC的熱圖。最有效化合物係PMO-DPV6-SV40-W/R,一種在測試之前未預測到特別值得注意之肽組合。用「X」標記之盒係閘控細胞計數為零之構築體。 8 顯示揭示HeLa-654分析中所測試之600個構築體之平均螢光強度(n=1個重複孔)的熱圖。用「X」標記之盒係閘控細胞計數為零之構築體。 9 顯示揭示用600個構築體處理後之總細胞計數(n=1個重複孔)的熱圖。閘控細胞數目之上限係5,000。 10 顯示訓練序列之Jaro-Winkler自我相似性。a) 顯示發生器(巢套式LSTM)訓練中所用之序列。b) 顯示預測器(基於回旋神經網路之模型)訓練中所用之序列。 11 顯示訓練(資料集之80%)、驗證(資料集之20%)之預測及實驗絕對強度圖示,其中模型之準確度百分比在標題中所提及訓練值之範圍內。超參數最佳化後獲得具有128位元指紋之不同表示之模型,a) Conv1D、b) Conv2D、c) Conv2D Macrocycles及d) DeConv2D。 12 顯示A) 預測序列相對於實驗強度之新穎性。B) 基於用於預測T細胞表位之在線工具(IEDB)之免疫原性得分。 13 顯示訓練集中以MFI之遞降次序排列之序列之梯度激活 - 正激活在A) 自C-末端之殘基位置及B) 指紋指數上平均;且負激活在C) 自C-末端之殘基位置及D) 指紋指數上平均。E) 精胺酸、F) 離胺酸、G) 組胺酸及H) 胺基己酸之初始胺基酸之化學子結構以及指紋指數。 14 顯示Mach肽使PMO之遞送增強40-50倍,如藉由活體外外顯子跳躍分析所測定。實驗活性(藍色)與預測活性(灰色)相當。 15 顯示一半的Mach CPP在5uM下係無毒的,如藉由A) LDH釋放分析及B) MTT分析所測定。細胞毒性報告為LDH釋放與細胞溶解產物相比之百分比,且存活率報告為相對於無處理之百分比。 16 顯示在人類單核球源巨噬細胞中檢測之細胞介素之發炎檢測組結果。 17(a)-(d) 顯示Mach-LPSTGG肽與G5 -DTA之接合的SDS page凝膠之考馬斯(coomassie)染色。 18 顯示在三個不同生物重複中以5 μM之濃度針對每一PMO-肽偶聯物量測之PMO-肽偶聯物的活性(eGFP分析)。eGFP螢光相對於經未偶聯PMO處理之細胞經正規化。 19 顯示PMO-P7相對於其類似物(PMO-P8至PMO-P12)之優良活性。 20 顯示在不存在KXXC之情況下,相對於類似物PMO-肽偶聯物,在肽C-末端處之KXXC基序不會導致PMO遞送增加。PMO-肽偶聯物對在肽C-末端處不存在及存在KXXC基序之情況下之活性(eGFP分析)。 21 顯示PMO-P7衍生物PMO-P21、PMO-P22及PMO-P23在5 μM下之活性。 22 A) 顯示PMO-P7 (乙酸鹽)之劑量-反應曲線(eGFP及LDH)之表示。B) 顯示PMO-P21 (乙酸鹽)之劑量-反應曲線(eGFP及LDH)之表示。C) 顯示PMO-P23 (乙酸鹽)之劑量-反應曲線(eGFP及LDH)之表示。 23 顯示肽6中之聚離胺酸主鏈係其在PMO遞送中活性改良之主要原因。內部矩形2300係在KXXC基序中含有Ala取代之PMO-肽偶聯物(PMO-8至PMO-11)之活性。內部矩形2302係在聚離胺酸主鏈中含有Ala取代之PMO-肽偶聯物(PMO-12至PMO-17)之活性。內部虛線2304係在C-末端沒有Cys殘基之兩種PMO-肽偶聯物(PMO-8及PMO-18)之活性。一個星號(*)指示p值小於0.005 (p<0.005)。兩個星號(**)指示p值小於0.0005 (p<0.0005)。三個星號(***)指示p值小於0.00005 (p<0.00005)。四個星號(****)指示p值小於0.000005 (p<0.000005)。 24 顯示P7在增強四頭肌、橫膈膜及心臟中之GFP蛋白質含量的同時不顯示腎毒性。A) 顯示7天後BUN (血尿素氮)含量無顯著變化,B) 顯示7天後肌酸酐含量無顯著變化且C) 顯示7天後胱抑素C含量無顯著變化。D) 顯示四頭肌中之GFP蛋白質含量(1300 pg GFP/μg蛋白質在30 mg/kg下且4000 pg GFP/μg蛋白質在60 mg/kg下);鹽水N=6, 10mg/kg N=6, 30mg/kg N=7, 60mg/kg N=4。E) 顯示橫膈膜中之GFP蛋白質含量(1100 pg GFP/μg蛋白質在30 mg/kg下且2500 pg GFP/μg蛋白質在60 mg/kg下);鹽水 N=6, 10mg/kg N=6, 30mg/kg N=6, 60mg/kg N=4。F) 顯示心臟中之GFP蛋白質含量(2000 pg GFP/μg蛋白質在30 mg/kg下且2200 pg GFP/μg蛋白質在60 mg/kg下);鹽水 N=6, 10mg/kg N=7, 30mg/kg N=8, 60mg/kg N=4。(N參照所用小鼠之數量)。 25 顯示可用於實施本文所描述技術之計算裝置的實例。 26 顯示如根據本文所述之方法用於使用機器學習識別一或多種具有最佳活性之細胞穿透肽之文庫合成器-發生器-預測器-識別器模組化系統的方塊圖。 27A 27B 27C 共同地係顯示圖26之文庫合成器-發生器-預測器-識別器模組之使用方法的流程圖。
Figure 110102559-A0101-11-0002-1

Claims (54)

  1. 一種肽-寡核苷酸偶聯物,其包含式II之化合物:
    Figure 03_image167
    (II) 或其醫藥上可接受之鹽, 其中: A′選自-N(H)CH2 C(O)NH2 、-N(C1-6 -烷基)CH2 C(O)NH2
    Figure 03_image169
    Figure 03_image171
    ,其中 R5 係-C(O)(O-烷基)x -OH,其中x係3-10且每一烷基在每次出現時獨立地係C2-6 -烷基, 或R5 選自-C(O)C1-6 -烷基、三苯甲基、單甲氧基三苯甲基、-(C1-6 -烷基)-R6 、-(C1-6 -雜烷基)-R6 、芳基-R6 、雜芳基-R6 、-C(O)O-(C1-6 -烷基)-R6 、-C(O)O-芳基-R6 、-C(O)O-雜芳基-R6
    Figure 03_image173
    ; 其中R6 選自OH、SH及NH2 ,或R6 係O、S或NH,其每一者共價鏈接至固體載體; 每一R1 獨立地選自OH及-N(R3 )(R4 ),其中每一R3 及R4 在每次出現時獨立地係-C1-6 -烷基; 每一R2 在每次出現時獨立地選自H、核鹼基及經化學保護基團官能化之核鹼基,其中該核鹼基在每次出現時獨立地包含選自吡啶、嘧啶、三嗪烷、嘌呤及去氮-嘌呤之C3-6 -雜環; z係8-40;且 E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基、
    Figure 03_image174
    Figure 03_image176
    ; 其中 Q係-C(O)(CH2 )6 C(O)-或-C(O)(CH2 )2 S2 (CH2 )2 C(O)-; R7 係-(CH2 )2 OC(O)N(R8 )2 ,其中R8 係-(CH2 )6 NHC(=NH)NH2 ; L係-C(O)(CH2 )1-6 -C7-15 -雜芳香族-(CH2 )1-6 C(O)-,其中L藉由醯胺鍵共價鏈接至J; J係載劑肽; G選自H、-C(O)C1-6 -烷基、苯甲醯基及硬脂醯基,其中G共價鏈接至J; 其中以下條件中之至少一者為真: 1) A′係
    Figure 03_image178
    ;或2) E′係
    Figure 03_image180
    ;且 其中該載劑肽J選自以下序列: MACH 1 ALKBRSAAKAVRWPKKKIKQASKKVAKYALXXXRKKKAASKXWLQLHWPRW MACH 2 PPLRNAKKKNLKNNLKMDPKFTKKVKQGALKLNRRKKNRGPKGPXKHWTT MACH 3 QKKRKSKANKKNWPKGKLSIHAKDYKQGPKAKXRKQRXR MACH 4 KKGKKQNKKKHRWPKKKVPQPKKMFKQGABXRX MACH 5 AKKKIAKAKKHRGPNBGIHAPVSKIKDPLKXXX MACH 6 ALKBRSAAKAVRWPKKAIKQASKKVAKYALKXXRKKKAASKXWLQLHWPRW MACH 7 XKHPXAVQBAARAWKVPAAALWKKKRLKKSSKQKKKWLWKARSAXKYXRLI MACH 8 BKGKNLLAKIRRGPNGGNBQGSQGYLLYLLXRXRRQRXXYPWWRXKHXRWXXRXRGHXRRRRQXLKPDRXRGGKGSVS MACH 9 KKKKNLNBKSRRGPNGGALQPSQGYLQPLNXRXRRQRXXYPWWRXKHXRWRXRYHXRRRRQXLKPG MACH 11 TSNLKLHLAPPVKKKALKKPLYKAKKKKKVVSPTWXTDQEW MACH 12 KGGKNLAKKIRRGPNGGALQPSQGYLLYLBXRXRRQRXXGPXWRXKHXRWXXXXXRPTHXRRRRQXL C PGRXRP C RGSVS MACH 13 AKKKKLGBKALRWPNGK C PQPKEK C PKYLLGRXRRKRXRYPWWRXKHRRW P1 (MACH 14) KXKKQQGKKKHR P2 (MACH 15) KKKKKQBKKKHRWPMG P3 (MACH 16) KKKKNQBKKKHRWPMKXCPQ P4 (MACH 17) HKKKKQBKKKHRWP P5 (MACH 18) KXKHQQQXK P6 (MACH 19) KXKXT P7 (MACH 20) KKKKKQBKKKHRWPKXXC P8 KKKKKCBKKKHRWPKXXQ P9 KKKXKQBKKKHRWPKKXC P10 KCHKXKWKKPKRXKQKBK P11 KKKKKQCKKKHRWPKXXC P12 KKKKKQBKKKHRWPKXXG P13 KKKKKQBKKKHRWPMGKXXC P14 HKKKKQBKKKHRWPKXXC P15 KXKHQQQXKKXXC P16 KXKXTKXXC P17 ALWKTLLKKVLKAPKKKRKV P18 ALWKTLLKKVLKAPKKKRKVKXXC P19 RQIKIWFQNRRMKWKK P20 RQIKIWFQNRRMKWKKKXXC P21 KKKKKQBKKKHRWP P22 KKKKKQBKKKHRWPKXXCCC P23 KKKKKQBKKKHRWAKXXC P24 KXKHQQGP P25 KXKHQQGKKT P26 HKKKQQGKKKHRW P27 KKKKKQBKKKHRWPM P28 KKKKKQGKKHRWPMGG P29 KKKKNQBKKKHRWPMKXCP P30 KKKKKQBKKKHRWPKXXA P31 KKKKKQBKKKHRWPKXAC P32 KKKKKQBKKKHRWPKAXC P33 KKKKKQBKKKHRWPAXXC P34 KAKKKQBKKKHRWPKXXC P35 KKKKKQBKAKHRWPKXXC P36 KKKAKQBKKKHRWPKXXC P37 KKKAKQBKAKHRWPKXXC P38 KAKAKQBKKKHRWPKXXC P39 KAKAKQBKAKHRWPKXXC P40 KKKKKQBKKKHRWP
    其中X係6-胺基己酸,B係β-丙胺酸,且 C 藉由L1 共價結合至另一 C ; 其中L1
    Figure 03_image181
    ; M係
    Figure 03_image182
    Figure 03_image184
    ;且 R10 在每次出現時獨立地係H或鹵素。
  2. 如請求項1之偶聯物,其中E′選自H、-C1-6 -烷基、-C(O)C1-6 -烷基、苯甲醯基、硬脂醯基、三苯甲基、單甲氧基三苯甲基、二甲氧基三苯甲基、三甲氧基三苯甲基及
    Figure 03_image186
  3. 如請求項1之偶聯物,其中 A′選自-N(C1-6 -烷基)CH2 C(O)NH2
    Figure 03_image187
    Figure 03_image189
  4. 如請求項1之偶聯物,其中E′選自H、-C(O)CH3 、苯甲醯基、硬脂醯基、三苯甲基、4-甲氧基三苯甲基及
    Figure 03_image191
  5. 如請求項1之偶聯物,其中A′選自-N(C1-6 -烷基)CH2 C(O)NH2
    Figure 03_image192
    Figure 03_image194
    ;且 E′係
    Figure 03_image196
  6. 如請求項1之偶聯物,其中A′係
    Figure 03_image197
    ,且 E′選自H、-C(O)CH3 、三苯甲基、4-甲氧基三苯甲基、苯甲醯基及硬脂醯基。
  7. 如請求項1之偶聯物,其中式IA之該肽-寡核苷酸偶聯物係選自以下之肽-寡核苷酸偶聯物:
    Figure 03_image198
    (Ia);及
    Figure 03_image200
    (Ib) 其中E′選自H、C1-6 -烷基、-C(O)CH3 、苯甲醯基及硬脂醯基。
  8. 如請求項1或7之偶聯物,其中該肽-寡核苷酸偶聯物具有式(Ia)。
  9. 如請求項1或7之偶聯物,其中該肽-寡核苷酸偶聯物具有式(Ib)。
  10. 如請求項1至7中任一項之偶聯物,其中每一R1 係N(CH3 )2
  11. 如請求項1至7中任一項之偶聯物,其中每一R2 係在每次出現時獨立地選自腺嘌呤、鳥嘌呤、胞嘧啶、5-甲基-胞嘧啶、胸腺嘧啶、尿嘧啶及次黃嘌呤之核鹼基。
  12. 如請求項1至7中任一項之偶聯物,其中L係-C(O)(CH2 )1-6 -DBCO-(CH2 )1-6 C(O)-。
  13. 如請求項1至7中任一項之偶聯物,其中L係
    Figure 03_image202
  14. 如請求項1至7中任一項之偶聯物,其中L1
    Figure 03_image204
    ;且 M係
    Figure 03_image205
  15. 如請求項1至7中任一項之偶聯物,其中L1
    Figure 03_image207
    ;且 M係
    Figure 03_image208
  16. 如請求項1至7中任一項之偶聯物,其中L1 共價鏈接至兩個半胱胺酸之側鏈以形成以下結構:
    Figure 03_image210
  17. 如請求項1至7中任一項之偶聯物,其中G選自H、C(O)CH3 、苯甲醯基及硬脂醯基。
  18. 如請求項1至7中任一項之偶聯物,其中G係H或-C(O)CH3
  19. 如請求項1至7中任一項之偶聯物,其中G係H。
  20. 如請求項1至7中任一項之偶聯物,其中G係-C(O)CH3
  21. 如請求項1之偶聯物,其中該肽-寡核苷酸偶聯物與未偶聯寡核苷酸相比展示至少40倍攝取改良。
  22. 如請求項1之偶聯物,其中該肽-寡核苷酸偶聯物與未偶聯寡核苷酸相比展示至少5倍攝取改良。
  23. 如請求項1之偶聯物,其中該肽-寡核苷酸偶聯物係無毒的。
  24. 如請求項1之偶聯物,其中肽-寡核苷酸偶聯物係無免疫原性的。
  25. 一種醫藥組合物,其包含如請求項1至24中任一項之偶聯物及至少一種醫藥上可接受之載劑。
  26. 一種使用機器學習識別一或多種具有最佳活性之細胞穿透肽之方法,該方法包含: a.)     合成訓練寡核苷酸-細胞穿透肽偶聯物之文庫; b.)     藉由使用該合成文庫訓練巢套式長短期記憶(LSTM)遞迴神經網路模型生成種子肽序列; c.)     預測來自該等所生成種子肽序列中之哪些肽序列具有胺基酸殘基之預定結構-活性關係;及 d.)     使用活性預測器-基因演算法最佳化器廻圈識別該等所預測肽序列中之一或多個最佳者。
  27. 如請求項26之方法,其中該預測包含將該等種子肽序列與胺基酸殘基之拓撲指紋進行比較。
  28. 如請求項27之方法,其中該預測包含將該等拓撲指紋之活性表示為Conv1D、Conv2D、Conv2D Macrocycle及DeConv2D卷積。
  29. 如請求項28之方法,其中該活性係平均螢光強度。
  30. 如請求項28之方法,其中該Conv1D卷積係針對具有胺基酸指紋之列矩陣之肽序列之一維表示進行訓練。
  31. 如請求項28之方法,其中該Conv2D卷積係利用OR運算在肽序列之二維表示中之個別指紋之間進行訓練。
  32. 如請求項28之方法,其中該Conv2D Macrocycle卷積係針對在非對角線指數中具有顯式鏈接體指紋之肽序列之二維表示進行訓練。
  33. 如請求項28之方法,其中該DeConv2D卷積係針對具有非對角線相互作用權重之二維變分表示進行訓練,該等非對角線相互作用權重係由每一非對角線指數之功能性決定。
  34. 如請求項26之方法,其中該預測包含使用卷積神經網路模型針對平均螢光強度訓練該等種子肽序列。
  35. 如請求項26之方法,其中該識別包含該活性預測器-基因演算法最佳化器廻圈之目標函數,以最大化如由該卷積神經網路模型所預測之平均螢光強度。
  36. 如請求項26之方法,其中該識別包含該活性預測器-基因演算法最佳化器廻圈之目標函數,以最小化序列長度及精胺酸含量。
  37. 如請求項36之方法,其中該最小化精胺酸含量係單一精胺酸殘基。
  38. 如請求項36之方法,其中該肽之該最小化序列長度係20個或以下之殘基。
  39. 如請求項26之方法,其中該基因演算法包含具有插入或刪除及調換之單一殘基突變或具有插入及/或刪除及調換之多殘基突變。
  40. 如請求項26之方法,其中該基因演算法實施目標函數:
    Figure 03_image212
    其中 強度 = 平均螢光強度 R計數 = 精胺酸殘基數 長度 = 序列長度 淨電荷 = 目標序列之淨電荷。
  41. 如請求項26之方法,其中合成該訓練寡核苷酸-細胞穿透肽偶聯物之文庫包含: (a) 使式(III)化合物
    Figure 03_image214
    (III) 與式(IV)化合物接觸
    Figure 03_image215
    (IV) 以形成式(V)化合物
    Figure 03_image217
    (V) (b) 使式(VI)化合物
    Figure 03_image219
    (VI) 與式(VII)化合物在銅觸媒之存在下接觸
    Figure 03_image221
    (VII) 以形成式(VIII)化合物
    Figure 03_image223
    (VIII) (c)使式(V)化合物
    Figure 03_image225
    (V) 與式(VIII)化合物在偶合劑之存在下接觸
    Figure 03_image227
    (VIII) 以形成式(II)化合物
    Figure 03_image229
    (II)。
  42. 如請求項41之方法,其中肽1、肽2及肽3中之每一者各自獨立地係細胞穿透肽。
  43. 如請求項41之方法,其中肽1、肽2及肽3係細胞穿透肽,且其中該等細胞穿透肽獨立地係兩親性肽、核靶向肽、胞內體破壞性肽、嵌合肽、環狀肽、二環肽、半胱胺酸鏈接之大環肽、含有至少一個非天然胺基酸殘基之肽或寡精胺酸肽。
  44. 如請求項41之方法,其中步驟(a)係在水中實施。
  45. 如請求項41之方法,其中步驟(b)之該銅觸媒係溴化銅(I)。
  46. 如請求項41之方法,其中步驟(c)之該偶合劑係參(2-羧基乙基)膦鹽酸鹽(TCEP)。
  47. 如請求項41之方法,其中步驟(a)之溶劑係水,步驟(b)之溶劑係水/DMSO,且步驟(c)之溶劑係水/DMSO。
  48. 如請求項41之方法,其中步驟(a)及(b)之產物對於步驟(c)之反應條件係惰性的。
  49. 如請求項41之方法,其中步驟(a)及(b)之產物可不經任何純化用於步驟(c)中。
  50. 如請求項41之方法,其中最終產物不需要進一步純化。
  51. 如請求項41之方法,其中最終產物可用於立即活體外測試。
  52. 一種如請求項1之偶聯物之用途,其用於製造用於治療疾病之藥劑。
  53. 如請求項52之用途,其中該疾病係神經肌肉疾病。
  54. 如請求項53之用途,其中該神經肌肉疾病係杜興氏肌肉營養不良症(Duchenne muscular dystrophy)。
TW110102559A 2020-01-24 2021-01-22 藉由可解釋機器學習設計反義寡核苷酸遞送肽 TW202146053A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202062965555P 2020-01-24 2020-01-24
US62/965,555 2020-01-24
US202163134405P 2021-01-06 2021-01-06
US63/134,405 2021-01-06

Publications (1)

Publication Number Publication Date
TW202146053A true TW202146053A (zh) 2021-12-16

Family

ID=76993091

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102559A TW202146053A (zh) 2020-01-24 2021-01-22 藉由可解釋機器學習設計反義寡核苷酸遞送肽

Country Status (4)

Country Link
EP (1) EP4093441A1 (zh)
JP (1) JP2023513437A (zh)
TW (1) TW202146053A (zh)
WO (1) WO2021150867A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201700751XA (en) * 2012-09-25 2017-03-30 Genzyme Corp Peptide-linked morpholino antisense oligonucleotides for treatment of myotonic dystrophy
EP3697422A4 (en) * 2017-10-17 2021-08-11 Sarepta Therapeutics, Inc. CELL-PENETANT PEPTIDES FOR ANTISENSE RELEASE

Also Published As

Publication number Publication date
JP2023513437A (ja) 2023-03-31
EP4093441A1 (en) 2022-11-30
WO2021150867A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
KR102644053B1 (ko) 펩티드 올리고뉴클레오티드 콘주게이트
US20210290772A1 (en) Trimeric peptides for antisense delivery
JP7320500B2 (ja) アンチセンス送達のための細胞透過性ペプチド
AU2008218939B2 (en) RNA targeting compounds and methods for making and using same
TWI740866B (zh) 肽寡核苷酸結合物
JP2023138661A (ja) 二環式ペプチドオリゴヌクレオチドコンジュゲート
TW202146053A (zh) 藉由可解釋機器學習設計反義寡核苷酸遞送肽
US20210260206A1 (en) Chimeric peptides for antisense deliver
TWI837102B (zh) 用於反義遞送之細胞穿透肽
EA039716B1 (ru) Пептид-олигонуклеотидные конъюгаты