TW202144370A - 矽肼合前驅物化合物 - Google Patents

矽肼合前驅物化合物 Download PDF

Info

Publication number
TW202144370A
TW202144370A TW110111745A TW110111745A TW202144370A TW 202144370 A TW202144370 A TW 202144370A TW 110111745 A TW110111745 A TW 110111745A TW 110111745 A TW110111745 A TW 110111745A TW 202144370 A TW202144370 A TW 202144370A
Authority
TW
Taiwan
Prior art keywords
silicon
formula
compound
independently selected
vapor deposition
Prior art date
Application number
TW110111745A
Other languages
English (en)
Other versions
TWI781566B (zh
Inventor
曼尼許 肯戴瓦
湯瑪士 H 邦姆
Original Assignee
美商恩特葛瑞斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商恩特葛瑞斯股份有限公司 filed Critical 美商恩特葛瑞斯股份有限公司
Publication of TW202144370A publication Critical patent/TW202144370A/zh
Application granted granted Critical
Publication of TWI781566B publication Critical patent/TWI781566B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/30Metallic substrate based on refractory metals (Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/40Metallic substrate based on other transition elements
    • B05D2202/45Metallic substrate based on other transition elements based on Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Polymers (AREA)

Abstract

本發明提供可用於在半導體裝置之製造中形成含矽膜之某些矽前驅物化合物,且更特定而言用於形成該等含矽膜之組合物及方法,該等含矽膜係例如包含矽、氮化矽、氧氮化矽、二氧化矽、碳摻雜之氮化矽或碳摻雜之氧氮化矽膜之膜。

Description

矽肼合前驅物化合物
一般而言,本發明係關於用於在微電子裝置表面上沈積含矽膜之方法及前驅物。
在半導體製造中,化學惰性介電材料(例如,氮化矽(Si3 N4 )、氧氮化矽(SiOx Ny )、碳化矽(SiC)、氮化碳矽(SiCN)及氧化矽碳(SiCO)及/或二氧化矽(SiO2 ))之薄(例如<1000奈米厚度)鈍化層廣泛用於微電子裝置結構中,以充當多層裝置之結構元件,例如側壁間隔物元件、擴散遮罩、氧化障壁、溝槽隔離塗層、金屬間介電材料、鈍化層、絕緣體及蝕刻停止層。
藉由化學氣相沈積技術沈積含矽膜係形成該等膜之極具吸引力方法。特別期望涉及低沈積溫度(例如,低於約450℃之溫度)之CVD製程,但需要用於此目的之適宜矽前驅物化合物之可用性。在一些情形中,當積體電路之熱預算將允許時,可考慮較高之沈積溫度。在該等情形中,可利用>450℃之溫度以達成期望介電膜。
氮化矽(SiN)由於其高濕式蝕刻及抗O2 灰化性,已用於FinFET及閘極全環繞(GAA)結構之源極及汲極間隔物(S/D間隔物)。不幸地,SiN具有約7.5之高介電常數(k)。已開發碳及氮摻雜之SiO2 (SiCON)間隔物以降低介電常數並在沈積後處理期間維持優良濕式蝕刻及灰化抗性。當前,最佳濕式蝕刻及灰化抗性SiCON電介質具有大約4.0之k值。k值< 3.5之濕式蝕刻及灰化抗性電介質為下一代裝置所需。
另外,在微電子裝置之製作中、特定地在利用低溫氣相沈積技術用於形成氮化矽、二氧化矽及氧氮化矽膜之製程中,業內仍需要經改良有機矽前驅物及用於形成含矽膜之方法。具體而言,業內需要具有良好熱穩定性、高揮發性及與基板表面之反應性之液體矽前驅物。
本發明概言之係關於在半導體裝置之製造中含矽膜之形成,且更特定而言在相對較低溫度下用於形成該等含矽膜(例如,包含矽、氮化矽、氧氮化矽、二氧化矽、碳摻雜之氮化矽或氧化矽或碳摻雜之氧氮化矽膜之膜)之組合物及方法。
如本文所闡釋之式(I)化合物可在該等各種含矽膜之形成中用作前驅物化合物。氣相沈積條件及製程可利用該等前驅物化合物以形成含矽膜,包括諸如以下之製程:化學氣相沈積(CVD)、原子層沈積(ALD)、電漿增強之ALD (PEALD)、電漿增強之循環化學氣相沈積(PECCVD)、可流動化學氣相沈積(FCVD)、電漿增強之類似ALD的製程或利用含氧反應物、含氮反應物或其組合之ALD製程。
除非上下文另外明確指明,否則如本說明書及隨附申請專利範圍中所用,單數形式「一(a, an)」及「該」包括複數個指示物。除非上下文另外明確指明,否則如本說明書及隨附申請專利範圍中所用,術語「或」通常以其包括「及/或」之意義使用。
術語「約」通常係指認為相當於所列舉值(例如,具有相同功能或結果)之數字範圍。在許多情況下,術語「約」可包括經舍入至最近有效數字之數值。
使用端點表述之數值範圍包括歸屬於該範圍內之所有數值(例如,1至5包括1、1.5、2、2.75、3、3.80、4及5)。
在第一態樣中,本發明提供式(I)化合物:
Figure 02_image003
(I), 其中R1 及R2 獨立地選自C1 -C4 烷基、苯基、經取代之苯基或C4 -C6 環烷基,或可與其所結合之氮原子一起形成C3 -C5 含氮環;R3 及R4 獨立地選自氫及C1 -C4 烷基,或可與其所結合之Si原子一起形成C3 -C5 含矽環;且R5 及R6 獨立地選自氫及 C1 -C4 烷基; Q選自氯、溴、碘或下式之基團
Figure 02_image005
Figure 02_image006
;且 x係0或1,且 (i)    y係0,前提條件係當y係0時,Q不為下式之基團
Figure 02_image007
,或 (ii)   當x為1時,y為1。
如本文所用,術語「經取代之苯基」代表含有以下中之一或兩者作為取代基之苯基:C1 -C4 烷基、C1 -C4 烷氧基、C1 -C4 烷氧基羰基、C1 -C4 烷醯基氧基、C1 -C4 烷醯基胺基、鹵素、羧基、硝基、羥基、C1 -C4 伸烷基--OH、C1 -C4 伸烷基--CO2 R7 、--OC1 -C4 伸烷基--OH或--OC1 -C4 伸烷基--CO2 R7 ,其中R7 係C1 -C6 烷基。
在一個實施例中,R1 、R2 、R3 、R4 、R5 及R6 中之每一者獨立地選自甲基、乙基或異丙基。
在另一實施例中,式(I)化合物具有式:
Figure 02_image008
在另一實施例中,式(I)化合物選自下式之化合物:
Figure 02_image010
Figure 02_image012
Figure 02_image014
在另一實施例中,本發明提供具有下式之化合物:
Figure 02_image016
, 其中Q係氯、溴或碘、或下式之基團
Figure 02_image018
, 其中R1 及R2 獨立地選自C1 -C4 烷基、苯基、經取代之苯基或C4 -C6 環烷基,或可與其所結合之氮原子一起形成C3 -C5 含氮環。
在某些實施例中,Q係氯。
在另一實施例中,本發明提供具有下式之式(I)化合物
Figure 02_image019
, 其中R1 及R2 獨立地選自C1 -C4 烷基、苯基、經取代之苯基或C4 -C6 環烷基,n係1、2或3,且R4 選自氫、氯、溴或碘、或選自下式之基團
Figure 02_image021
Figure 02_image023
在某些實施例中,R1 及R2 獨立地選自甲基、乙基及異丙基。在其他實施例中,n為1。
在另一實施例中,本發明提供具有下式之式(I)化合物:
Figure 02_image025
Figure 02_image027
在某些實施例中,式(I)化合物具有小於100ppm、50ppm或小於10ppm氯污染物。
式(I)化合物可用作前驅物用於在微電子裝置之表面上沈積含矽膜。在某些實施例中,膜亦含有氮及/或氧及/或碳。
因此,在第二態樣中,本發明提供在微電子裝置之表面上沈積含矽膜之方法,其包含在氣相沈積條件下在反應腔室中將至少一種式(I)化合物引入至之該表面上。
如本文所用,術語「含矽膜」係指諸如二氧化矽、氮化矽、氧氮化矽、碳化矽、碳氮化矽、氧碳氮化矽、低-k含矽薄膜、高-k閘極矽酸鹽膜及低溫矽磊晶膜之膜。
在某些實施例中,氣相沈積條件包含稱為化學氣相沈積、脈衝化學氣相沈積及原子層沈積之反應條件。在脈衝化學氣相沈積之情形中,可在有或沒有中間(惰性氣體)吹掃步驟之情況下利用一系列前驅物化合物及共反應物之交替脈衝以使膜厚度累積至期望終點。
在某些實施例中,上文所描述前驅物化合物之脈衝時間(即,前驅物暴露於基板之持續時間)在約1與10秒之間之範圍內。當利用吹掃步驟時,持續時間為約1至4秒或1至2秒。在其他實施例中,共反應物之脈衝時間在1至60秒之範圍內。在其他實施例中,共反應物之脈衝時間在約5至約10秒之範圍內。
在一個實施例中,氣相沈積條件包含約350℃至約750℃之溫度及約1至約1000托(Torr)之壓力。在另一實施例中,氣相沈積條件包含約350℃至約650℃之溫度。
以上化合物可藉由任何適宜氣相沈積技術(例如CVD、數位(脈衝) CVD、ALD及脈衝電漿製程)用於形成高純度含矽薄膜。可利用該等氣相沈積製程以藉由利用約350℃至約550℃之沈積溫度在微電子裝置上形成含矽膜,以形成厚度為約20埃至約2000埃之膜。
在本發明製程中,上述化合物可與期望微電子裝置基板以任何適宜方式在例如單晶圓CVD、ALD及/或PECVD或PEALD腔室中或在含有多個晶圓之爐中反應。
或者,本發明之製程可作為ALD或類似ALD的製程實施。如本文所用,術語「ALD或類似ALD」係指諸如以下之製程:(i) 將包括式(I)之矽前驅物化合物及氧化及/或還原氣體之每一反應物依序引入至諸如單晶圓ALD反應器、半間歇ALD反應器或間歇式爐ALD反應器之反應器中,或(ii)將包括式(I)之矽前驅物化合物及氧化及/或還原氣體之每一反應物藉由使基板移動或旋轉至反應器之不同區段以暴露於基板或微電子裝置表面,且每一區段由惰性氣體簾幕隔開,即,空間ALD反應器或捲到捲ALD反應器。
在一態樣中,本發明係關於電漿增強之原子層沈積(PEALD)製程,其使用本文所述之式(I)前驅物連同氫電漿或氮電漿一起沈積低濕式蝕刻速率及抗O2 灰化之低k薄膜。氮電漿可使用式(I)化合物用於形成氮化矽膜。
一般而言,使用式(I)之前驅物化合物所產生之期望膜可藉由選擇每一化合物以及利用還原或氧化共反應物來定製。參見例如以下方案1,其說明式(I)化合物可如何用於氣相沈積製程中:
Figure 02_image029
方案1
因此,在另一實施例中,上述氣相沈積製程可進一步包含涉及將膜暴露於還原氣體之步驟。在本發明之某些實施例中,還原氣體包含選自H2 、肼(N2 H4 )、甲基肼、第三丁基肼、1,1-二甲基肼、1,2-二甲基肼及NH3 之氣體。
式(I)化合物使能夠低溫CVD及/或ALD形成含矽膜。該等化合物展現高揮發性及化學反應性,但在前驅物揮發或蒸發所涉及之溫度下關於熱降解係穩定的,此允許將所得前驅物蒸氣一致且可重複地輸送至沈積區或反應腔室。式(I)化合物之化學反應性允許在傳統矽前驅物材料(例如TEOS)為惰性且因此展現較少或沒有沈積行為之低溫下之膜生長。
在另一實施例中,氣相沈積製程可進一步包含涉及將前驅物暴露於氧化氣體(例如O2 、O3 、N2 O、水蒸氣、醇或氧電漿)之步驟。在某些實施例中,氧化氣體進一步包含惰性氣體,例如氬氣、氦氣、氮氣或其組合。在另一實施例中,氧化氣體進一步包含氮氣,其可與式(I)之前驅物在電漿條件下反應以形成氧氮化矽膜。
當使用式(I)之前驅物化合物時,碳及氮併入該等膜中係該等化合物之組成的自然結果;另外,可利用例如呈甲烷、乙烷、乙烯或乙炔之形式的碳以將碳含量進一步引入至含矽膜中,由此產生碳化矽。
本文所揭示之沈積方法可涉及一或多種吹掃氣體。用於吹掃掉未消耗反應物及/或反應副產物之吹掃氣體係不與前驅物反應之惰性氣體。實例性吹掃氣體包括(但不限於)氬氣、氮氣、氦氣、氖氣、氫氣及其混合物。在某些實施例中,將吹掃氣體(例如Ar)以約10至約2000 sccm範圍內之流速供應至反應器達約0.1至1000秒,由此吹掃未反應之材料及可留在反應器中之任何副產物。
供應矽前驅物化合物、氧化氣體、還原氣體及/或其他前驅物、源氣體及/或試劑之各別步驟可藉由改變供應其之序列及/或改變所得介電膜之化學計量組成來實施。
將能量供應至式(I)之矽前驅物化合物及氧化氣體、還原氣體或其組合中之至少一者以誘發反應並在微電子裝置基板上形成含矽膜。該能量可藉由但不限於熱、脈衝熱、電漿、脈衝電漿、螺旋波電漿、高密度電漿、感應耦合電漿、X-射線、電子束、光子、遠端電漿方法及其組合提供。在某些實施例中,可使用次級RF頻率源以改質基板表面處之電漿特徵。在其中沈積涉及電漿之實施例中,電漿發生製程可包含其中電漿直接在反應器中發生之直接電漿發生製程,或另一選擇其中電漿係在反應區及基板「遠端」發生、供應至反應器中之遠端電漿發生製程。
如本文所用,術語「微電子裝置」對應於半導體基板(包括3D NAND結構)、平板顯示器及微機電系統(MEMS),該等經製造用於微電子、積體電路或電腦晶片應用。應理解,術語「微電子裝置」並不意欲以任何方式限制且包括包含負通道金屬氧化物半導體(nMOS)及/或正通道金屬氧化物半導體(pMOS)電晶體且最終將變成微電子裝置或微電子組裝之任何基板。該等微電子裝置含有至少一個基板,該基板可選自例如矽、SiO2 、Si3 N4 、OSG、FSG、碳化矽、氫化碳化矽、氮化矽、氫化氮化矽、碳氮化矽、氫化碳氮化矽、氮化硼、抗反射塗層、光阻劑、鍺、含鍺、含硼、Ga/As、撓性基板、多孔無機材料、金屬(例如銅及鋁)及擴散障壁層(例如但不限於TiN、Ti(C)N、TaN、Ta(C)N、Ta、W或WN)。膜與各種後續處理步驟(例如,化學機械平坦化(CMP)及各向異性蝕刻製程)相容。
某些式(I)化合物可藉由以下製備:以下式之二氯化合物開始;
Figure 02_image031
, 及使該化合物與各種胺及疊氮基化合物反應。
其他式(I)化合物可根據以下流程圖以環三亞甲基二氯矽烷作為主要反應物與各種胺及疊氮基化合物開始來製備:
Figure 02_image033
本發明可藉由其某些實施例之以下實例進一步說明,但應理解,除非另外特定指出,否則包括該等實例僅用於說明之目的且並不意欲限制本發明之範圍。
實例 實例 1
Figure 02_image035
將CTMDCS (環三亞甲基二氯矽烷)(1 g, 7.08 mmol)置於20 mL玻璃小瓶中。添加戊烷(2 mL),隨後添加TEA (三乙胺) (1.3 g, 12.8 mmol)。向所得混濁溶液中逐滴添加UDMH (不對稱二甲肼) (1.1g, 16.6 mmol)。發生非常放熱之反應,並立即形成濃稠沈澱。固體用10 mL乙醚萃取,並將合併之萃取物過濾並在減壓下去除揮發物,產生約0.5g、80%純度之淺黃色油狀物。
藉由NMR分析粗製物。29Si NMR分析顯示單一主要矽物種,且產物已藉由13C及1H NMR證實。粗製物之總體純度為大約80%。產物可藉由短程蒸餾進一步純化,以獲得高純度、半導體級材料。
NMR分析:1 H NMR(C6D6): δ 1.58 (t, 4H, CH2), 1.90 (m, 2H, CH2), 2.27 (s, 12H, NN(CH3)2);13 C {1H} NMR(C6D6): δ 13.6 (CH2), 22.7 (CH2), 52.5 (CH3);29 Si NMR (C6D6): δ -11.49
實例 2
Figure 02_image037
在配備有磁力攪拌棒、熱電偶適配器及溫度讀出之1L三頸圓底燒瓶中,將1,3-二氯-四甲基-二矽氧烷(10 g, 49.2 mmol)溶於戊烷(200 mL) (T1= 24.1℃)中。向此澄清溶液中添加TEA (11g, 108 mmol)。形成略微混濁之反應混合物(T1= 25.3℃)。向所得反應混合物中添加作為乙醚(5 mL)溶液之UDMH (6.5g, 108 mmol)。UDMH溶液係經10分鐘之時期逐滴添加(約1 mL/min)。觀察到立即發煙,並在頂部空間中形成密集沈澱。添加5分鐘之後,觀察到大量沈澱。使反應混合物再靜置2小時,隨後藉助粗過濾器過濾。將鹽用50 mL己烷洗滌兩次。合併之洗滌液經受真空蒸餾並在室溫下降至1.2托將揮發物去除。將所得混濁黏性油狀物過濾並藉由1H、13C及29Si NMR分析。產率7.2g, 約90%純度產率58%粗製物。儘管未嘗試進一步純化,但可藉由蒸餾進一步純化來獲得電子級材料。
NMR分析:1 H NMR(C6D6): δ 0.25 (s, 12H, Si-CH3 ), 2.21 (bs, 2H, NH ), 2.29 (s, 12H, NN(CH3 )2);13 C {1H} NMR(C6D6): δ -0.74 (Si-CH3), 52.4 (N-CH3); 29Si NMR (C6D6): δ -16.16
實例 3 將CTMDCS (1 g, 7.08 mmol)置於20 mL玻璃小瓶中。添加戊烷(2 mL),隨後添加TEA (1.3 g, 12.8 mmol)。向所得混濁溶液中逐滴添加UDMH (1.1g, 16.6 mmol)。發生非常放熱之反應,並立即形成濃稠沈澱。固體用10 mL乙醚萃取,並將合併之萃取物過濾並在減壓下去除揮發物,產生約0.5g、80%純度之淺黃色油狀物。
藉由NMR分析粗製物。29 Si NMR分析顯示單一主要矽物種。產物係藉由13 C及1 H NMR證實。總體純度為大約80%。
NMR分析:1 H NMR(C6 D6 ): δ 1.58 (t, 4H, CH2 ), 1.90 (m, 2H, CH2 ), 2.27 (s, 12H, NN(CH3 )2 );13 C {1 H} NMR(C6 D6 ): δ 13.6 (CH2 ), 22.7 (CH2 ), 52.5 (CH3 );29 Si NMR (C6 D6 ): δ -11.49
實例 4 - 2-(2- -1,1,2,2- 四甲基乙矽烷 -1- )-1,1- 二甲肼 之合成
Figure 02_image039
將配備有機械頂置式攪拌器、熱電偶探針、溫度讀出及氮氣入口適配器、溶劑進給線(3/8" PTFE管道)、用於加載試劑及過濾之單獨3/8" PTFE管道之10L反應器乾燥並用氮氣吹掃。將5 L過濾漏斗檢查洩漏至80 mT,並用氮氣吹掃過夜。
將Cl2 Me4 Si2 (100 g, 534 mmol)及TEA (114g)在手套箱內部在1L燒瓶中合併。發生一些發煙,且溶液變得略混濁。在500 mL加液漏斗中製備UDMH (64.2g, 81.2 mL)於乙醚(約220 mL)中之溶液。向反應器加載2.5L己烷並冷卻至-4℃。冷卻器設定至-10℃。使用3/8" PTFE管道在氮氣流下加載Cl2 Me4 Si2 及TEA混合物(純淨)。添加額外量之己烷(約500 mL)。將混合物在氮氣下攪拌。在氮氣流下,將含存於乙醚中之UDMH  (310 mL溶液)之加料漏斗安裝在反應器上。經45分鐘以約6.8 mL /min之速率逐滴添加UDMH溶液。在保持反應溫度低於0℃的同時,將反應混合物在室溫下攪拌過夜,隨後藉助5L燒結過濾漏斗過濾。將固體用己烷(500 mL)洗滌兩次,並在-21.1℃下在降至4.8托之減壓下去除溶劑。將所得無色油狀物轉移至3頸圓底燒瓶中以進一步純化。標題化合物藉由1H NMR、13C NMR及29Si NMR鑑別為主要中間體。
NMR分析:1 H NMR(C6D6): δ 0.22 (s, 6H, Si-CH3 ), 0.49 (s, 6H, Si-CH3 ), 1.89 (bs, 1H, NH ), 2.12 (s, 6H, NN(CH3 )2);13 C {1H} NMR(C6D6): δ -1.8, 2.7 (Si-CH3),  52.4 (N-CH3);29 Si NMR (C6D6): δ -9.1, 19.4。
實例 5
Figure 02_image041
部分經取代之中間體(2-(2-氯-1,1,2,2-四甲基乙矽烷-1-基)-1,1-二甲肼) (0.21 g, 1 mmol) (如實例4中所合成)可進一步在存於己烷(20 mL)中之三乙胺(0.101 g, 1 mmol)之存在下與化學計量量之二乙胺(0.73 g, 1 mmol)反應。將所得漿液過濾並在減壓下去除揮發物以獲得標題化合物。產物可藉由蒸餾進一步純化。
實例 6 – 使用式 (I) 之矽前驅物及 Ar/N2 電漿之 PEALD 氮化矽沈積 ( 預測的 ) 使用式(I)之矽前驅物及Ar/N2 電漿作為共反應物氣體沈積含矽膜,其中製程條件如下表中所述。
反應器壓力 2 T
製程溫度 250-700℃
載氣 Ar (以300 sccm)
電漿功率 300瓦特
電漿
脈衝序列 (i) 矽前驅物20秒;(ii) 惰性氣體吹掃20秒;(iii) 氮電漿15秒;及(iv)惰性氣體吹掃20秒。
實例 7 – 使用式 (I) 之矽前驅物及 Ar/O2 電漿之 PEALD 氧化矽沈積 使用式(I)之矽前驅物及Ar/O2 電漿作為共反應物沈積含矽膜,其中製程條件如下表中所述。
反應器壓力 2 T
製程溫度 250-700℃
載氣 Ar (以100 sccm)
電漿功率 250瓦特
電漿
脈衝序列 (i)矽前驅物20秒;(ii) 惰性氣體吹掃20秒;(iii) 氧電漿15秒;及(iv) 惰性氣體吹掃20秒。
實例 8 – CVD 沈積 將式(I)化合物蒸發並引入至CVD腔室中可在40托下利用溫和加熱至40℃完成。前驅物可藉助圓形淋浴頭分散以提供至加熱基板之均勻遞送。預期氮氣、氧氣(O2 )及一氧化二氮(N2 O)之混合物將在基板含有金屬、矽及氮化矽之區域之處共同反應,且SiCOx膜將在450℃下沈積10分鐘。預期該前驅物及製程在結構化基板上沈積均勻、高度保形之塗層,並具有期望之介電性能及優良濕式蝕刻抗性。預期此膜在O2 電漿中灰化30秒後,其濕式蝕刻抗性顯示輕微增加。
實例 9 – PECVD 沈積 將式(I)化合物蒸發並引入至PE-CVD腔室中可在1托下利用在35℃下溫和加熱完成。前驅物可藉助圓形淋浴頭分散以均勻遞送至直接氬電漿(250瓦特)中。亦可將氮及氨(NH3 )共反應物之混合物引入至電漿中且預期導致前驅物之氣相分解及SiCNx膜在加熱基板(300℃)上之沈積。預期基板包含金屬及介電特徵之高縱橫比圖案,且預期所沈積之膜在該等特徵上展現可接受之保形性。預期此前驅物及製程在整個圖案化基板上沈積組成上均勻之膜,且在O2 中電漿灰化之前和之後均展示可接受之濕式蝕刻抗性。
本發明已特定參考其某些實施例詳細闡述,但應理解,可在本發明之精神及範圍內進行各種變化及修改。
Figure 110111745-A0101-11-0002-1

Claims (10)

  1. 一種式(I)之化合物,
    Figure 03_image043
    (I), 其中R1 及R2 獨立地選自C1 -C4 烷基、苯基、經取代之苯基或C4 -C6 環烷基,或可與其所結合之氮原子一起形成C3 -C5 含氮環;R3 及R4 獨立地選自氫或C1 -C4 烷基,或可與其所結合之Si原子一起形成C3 -C5 含矽環;且R5 及R6 獨立地選自氫或C1 -C4 烷基; Q選自氯、溴、碘或下式之基團
    Figure 03_image045
    Figure 03_image046
    ;且 x係0或1,且 (i)  y係0,前提條件係當y係0時,Q不為下式之基團
    Figure 03_image048
    ,或 (ii) 當x為1時,y為1。
  2. 如請求項1之化合物,其中R1 、R2 、R3 、R4 、R5 及R6 中之每一者獨立地選自甲基、乙基或異丙基。
  3. 如請求項1之化合物,其具有下式:
    Figure 03_image050
    , 其中Q係如請求項1中所闡釋。
  4. 如請求項1之化合物,其選自以下:
    Figure 03_image052
    Figure 03_image054
    Figure 03_image056
  5. 如請求項1之化合物,其具有下式:
    Figure 03_image058
    , 其中Q係氯、溴或碘、或下式之基團
    Figure 03_image060
    , 其中R1 及R2 獨立地選自C1 -C4 烷基、苯基、經取代之苯基或C4 -C6 環烷基,或可與其所結合之氮原子一起形成C3 -C5 含氮環。
  6. 如請求項5之化合物,其中Q係下式之基團
    Figure 03_image062
    , 且其中R1 及R2 係甲基。
  7. 如請求項1之化合物,其具有下式:
    Figure 03_image064
    , 其中R1 及R2 獨立地選自C1 -C4 烷基、苯基、經取代之苯基或C4 -C6 環烷基,n係1、2或3,且R4 係氯、溴或碘、或選自下式之基團
    Figure 03_image066
    Figure 03_image068
  8. 如請求項7之化合物,其中R1 及R2 獨立地選自氫、甲基、乙基及異丙基。
  9. 一種在微電子裝置之表面上形成含矽膜之方法,其包含在氣相沈積條件下將至少一種如請求項1之式(I)化合物引導至反應腔室中之該表面。
  10. 如請求項9之方法,其中該等氣相沈積條件係選自化學氣相沈積(CVD)、原子層沈積(ALD)、電漿增強之ALD (PEALD)、電漿增強之循環化學氣相沈積(PECCVD)、可流動化學氣相沈積(FCVD)、電漿增強之類似ALD的製程或ALD製程。
TW110111745A 2020-03-31 2021-03-31 矽肼合前驅物化合物 TWI781566B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/836,444 2020-03-31
US16/836,444 US11492364B2 (en) 2020-03-31 2020-03-31 Silicon hydrazido precursor compounds

Publications (2)

Publication Number Publication Date
TW202144370A true TW202144370A (zh) 2021-12-01
TWI781566B TWI781566B (zh) 2022-10-21

Family

ID=77855526

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111136529A TW202302613A (zh) 2020-03-31 2021-03-31 矽肼合前驅物化合物
TW110111745A TWI781566B (zh) 2020-03-31 2021-03-31 矽肼合前驅物化合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111136529A TW202302613A (zh) 2020-03-31 2021-03-31 矽肼合前驅物化合物

Country Status (7)

Country Link
US (1) US11492364B2 (zh)
EP (1) EP4126887A4 (zh)
JP (2) JP7400120B2 (zh)
KR (1) KR20220160057A (zh)
CN (1) CN115485285A (zh)
TW (2) TW202302613A (zh)
WO (1) WO2021202312A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531679B2 (en) * 2002-11-14 2009-05-12 Advanced Technology Materials, Inc. Composition and method for low temperature deposition of silicon-containing films such as films including silicon nitride, silicon dioxide and/or silicon-oxynitride
US7122222B2 (en) * 2003-01-23 2006-10-17 Air Products And Chemicals, Inc. Precursors for depositing silicon containing films and processes thereof
US7579496B2 (en) 2003-10-10 2009-08-25 Advanced Technology Materials, Inc. Monosilane or disilane derivatives and method for low temperature deposition of silicon-containing films using the same
US7601860B2 (en) * 2003-10-10 2009-10-13 Advanced Technology Materials, Inc. Composition and method for low temperature chemical vapor deposition of silicon-containing films including silicon carbonitride and silicon oxycarbonitride films
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
US8101788B2 (en) 2006-09-29 2012-01-24 Air Liquide Electronics U.S. Lp Silicon precursors and method for low temperature CVD of silicon-containing films
US8129555B2 (en) 2008-08-12 2012-03-06 Air Products And Chemicals, Inc. Precursors for depositing silicon-containing films and methods for making and using same
EP2373830B1 (en) 2008-10-20 2014-04-30 Dow Corning Corporation Cvd precursors
US9443736B2 (en) 2012-05-25 2016-09-13 Entegris, Inc. Silylene compositions and methods of use thereof
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US20160314962A1 (en) 2016-06-30 2016-10-27 American Air Liquide, Inc. Cyclic organoaminosilane precursors for forming silicon-containing films and methods of using the same
US11049714B2 (en) * 2017-09-19 2021-06-29 Versum Materials Us, Llc Silyl substituted organoamines as precursors for high growth rate silicon-containing films
US11289487B2 (en) 2018-02-23 2022-03-29 Micron Technology, Inc. Doped titanium nitride materials for DRAM capacitors, and related semiconductor devices, systems, and methods

Also Published As

Publication number Publication date
US20210300952A1 (en) 2021-09-30
CN115485285A (zh) 2022-12-16
US11492364B2 (en) 2022-11-08
TW202302613A (zh) 2023-01-16
EP4126887A4 (en) 2024-06-19
JP7400120B2 (ja) 2023-12-18
KR20220160057A (ko) 2022-12-05
JP2023521602A (ja) 2023-05-25
TWI781566B (zh) 2022-10-21
JP2024045097A (ja) 2024-04-02
EP4126887A1 (en) 2023-02-08
WO2021202312A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI386414B (zh) 包含碳氮化矽及氧碳氮化矽薄膜之含矽薄膜之低溫化學氣相沉積用組成物及方法
TWI774299B (zh) 用於製造含矽薄膜之前驅物及方法
TWI781566B (zh) 矽肼合前驅物化合物
JP7164789B2 (ja) 550℃以上の温度でALDを使用してSi含有膜を堆積させるための前駆体及びプロセス
TW202204368A (zh) 矽前驅物化合物及形成含矽膜之方法
JP7463563B2 (ja) 蒸着前駆体化合物及び使用のプロセス
US20230088079A1 (en) Silicon precursors
TWI830206B (zh) 矽前驅物化合物及形成含矽膜之方法
CN116848288A (zh) 高通量沉积方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent