TW202142719A - Magnetron plasma film-forming device - Google Patents
Magnetron plasma film-forming device Download PDFInfo
- Publication number
- TW202142719A TW202142719A TW110111616A TW110111616A TW202142719A TW 202142719 A TW202142719 A TW 202142719A TW 110111616 A TW110111616 A TW 110111616A TW 110111616 A TW110111616 A TW 110111616A TW 202142719 A TW202142719 A TW 202142719A
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- component
- area
- magnetic pole
- film forming
- Prior art date
Links
- 230000005415 magnetization Effects 0.000 claims abstract description 68
- 239000013077 target material Substances 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 28
- 239000010408 film Substances 0.000 description 126
- 230000004907 flux Effects 0.000 description 20
- 238000004544 sputter deposition Methods 0.000 description 20
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3452—Magnet distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3455—Movable magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
本發明係關於一種磁控電漿成膜裝置。The invention relates to a magnetron plasma film forming device.
先前以來,作為磁控電漿成膜裝置,已知有具備成膜輥、及與其對向之磁控電漿單元之磁控濺鍍成膜裝置。Heretofore, as a magnetron plasma film forming apparatus, a magnetron sputtering film forming apparatus equipped with a film forming roller and a magnetron plasma unit facing it has been known.
於該磁控濺鍍裝置,由磁控電漿單元產生磁場,藉此長時間保持自靶材釋放之電子,提高濺鍍之效率。In the magnetron sputtering device, the magnetron plasma unit generates a magnetic field, thereby maintaining the electrons released from the target for a long time and improving the efficiency of sputtering.
例如,提案有一種具備圓筒狀之靶材、與配置於其內部且彼此相鄰之4個磁鐵之磁控濺鍍成膜裝置(例如,參照下述專利文獻1)。
[先前技術文獻]
[專利文獻]For example, there has been proposed a magnetron sputtering film forming apparatus provided with a cylindrical target material and four magnets arranged inside and adjacent to each other (for example, refer to
[專利文獻1]日本專利特開2017-150082號公報[Patent Document 1] Japanese Patent Laid-Open No. 2017-150082
[發明所欲解決之問題][The problem to be solved by the invention]
然而,對於磁控電漿成膜裝置,謀求高成膜速度。However, in the magnetron plasma film forming apparatus, a high film forming speed is required.
然而,於上述之專利文獻1之構成,獲得高成膜速度存在限制。However, in the structure of
本發明係提供一種可高速成膜之磁控電漿成膜裝置。 [解決問題之技術手段]The invention provides a magnetron plasma film forming device capable of high-speed film forming. [Technical means to solve the problem]
本發明(1)包含一種磁控電漿成膜裝置,其具備:成膜輥;及磁控電漿單元,其與上述成膜輥對向配置;且上述磁控電漿單元具備:旋轉靶材,其之軸線於與上述成膜輥之軸線同一方向延伸;及磁體單元,其配置於上述旋轉靶材之徑向內側;且上述磁體單元具備:第1磁極部;及第2磁極部,其於正交於沿連結上述成膜輥之軸線與上述旋轉靶材之軸線之線段之第1方向之第2方向上,與上述第1磁極部相鄰;且上述第1磁極部及上述第2磁極部各自於上述第2方向上依序具有第1區域、第2區域、及第3區域;上述第1區域、上述第2區域、及上述第3區域各自具有將磁化方向於上述第1方向及上述第2方向分解而得之第1成分及第2成分之至少一者;於上述第1區域,上述第1成分相對於上述第2成分較大;於上述第2區域,上述第1成分相對於上述第2成分較大;於上述第3區域,上述第1成分相對於上述第2成分較小,且與上述第1區域之上述第1成分反向。The present invention (1) includes a magnetron plasma film forming apparatus including: a film forming roller; and a magnetron plasma unit arranged opposite to the film forming roller; and the magnetron plasma unit includes: a rotating target A material, the axis of which extends in the same direction as the axis of the film forming roller; and a magnet unit, which is arranged on the radially inner side of the rotating target; and the magnet unit includes: a first magnetic pole portion; and a second magnetic pole portion, It is adjacent to the first magnetic pole portion in a second direction orthogonal to the first direction along a line segment connecting the axis of the film forming roller and the axis of the rotating target; and the first magnetic pole portion and the first Each of the 2 magnetic pole portions sequentially has a first region, a second region, and a third region in the second direction; the first region, the second region, and the third region each have a magnetization direction in the first At least one of the first component and the second component obtained by decomposing the direction and the second direction; in the first area, the first component is larger than the second component; in the second area, the first The component is larger than the second component; in the third region, the first component is smaller than the second component, and is opposite to the first component in the first region.
於該磁控電漿裝置之第1磁極部及第2磁極部各者,構成為第1區域中主要沿第1方向,接著於第2區域中主要沿第2方向而朝向第3區域,於第3區域中,主要沿與第1區域之第1方向反向之第1方向之大致U字狀流通的磁化方向。因此,於第1磁極部之旋轉靶材之表面形成隧道形狀之磁場,於第2磁極部之旋轉靶材之表面形成隧道形狀之磁場,並可使其等接近。即,可使濺鍍角度(稍後敘述)變窄。其結果,可高速成膜。Each of the first magnetic pole portion and the second magnetic pole portion of the magnetron plasma device is configured such that the first area mainly follows the first direction, and then the second area mainly faces the third area along the second direction. In the third area, the magnetization direction flows mainly in a substantially U-shape in the first direction opposite to the first direction of the first area. Therefore, a tunnel-shaped magnetic field is formed on the surface of the rotating target of the first magnetic pole portion, and a tunnel-shaped magnetic field is formed on the surface of the rotating target of the second magnetic pole portion, which can be brought into close proximity. That is, the sputtering angle (described later) can be narrowed. As a result, high-speed film formation is possible.
本發明(2)包含(1)記載之磁控電漿成膜裝置,其中上述第1區域、及上述第3區域各自主要具有上述第1成分,上述第2區域主要具有上述第2成分。The present invention (2) includes the magnetron plasma film forming apparatus described in (1), wherein the first region and the third region each mainly have the first component, and the second region mainly has the second component.
於該磁控濺鍍成膜裝置,因第1區域、及第3區域各自主要具有第1成分,第2區域主要具有第2成分,故第1磁極部及第2磁極部各者之構成簡單,但亦可高速成膜。In this magnetron sputtering film forming apparatus, since the first area and the third area each mainly have the first component, and the second area mainly has the second component, the structure of each of the first magnetic pole portion and the second magnetic pole portion is simple , But can also form high-speed films.
本發明(3)包含(1)記載之磁控電漿成膜裝置,其中上述第1區域與上述第2區域連續,上述第2區域與上述第3區域連續,於上述第1區域中,隨著朝向上述第2區域,上述第1成分變小,於上述第3區域中,隨著朝向上述第2區域,上述第1成分變小。The present invention (3) includes the magnetron plasma film forming apparatus described in (1), wherein the first region is continuous with the second region, and the second region is continuous with the third region, and in the first region, The first component becomes smaller toward the second region, and in the third region, the first component becomes smaller toward the second region.
於該磁控濺鍍成膜裝置,於第1磁極部及第2磁極部各者,因第1區域、第2區域及第3區域連續,故於第1磁極部之旋轉靶材之表面確實地形成隧道形狀之磁場,於第2磁極部之旋轉靶材之表面確實地形成隧道形狀之磁場。可使上述2個隧道形狀之磁場更接近。因此,可高速成膜。 [發明之效果]In this magnetron sputtering film forming apparatus, the first magnetic pole portion and the second magnetic pole portion are each continuous with the first region, the second region, and the third region. Therefore, the surface of the rotating target in the first magnetic pole portion is reliable. A tunnel-shaped magnetic field is formed, and a tunnel-shaped magnetic field is reliably formed on the surface of the rotating target of the second magnetic pole portion. The magnetic fields of the above two tunnel shapes can be made closer. Therefore, the film can be formed at high speed. [Effects of the invention]
本發明之磁控電漿成膜裝置可高速成膜。The magnetron plasma film forming device of the present invention can form a film at a high speed.
<磁控電漿成膜裝置之一實施形態>
參照圖1~圖4說明本發明之磁控電漿成膜裝置之一實施形態。另,於圖3,不將磁體單元18(稍後敘述)進行陰影處理,而以箭頭描繪第1區域23~第6區域28(稍後敘述)之磁化方向。<One embodiment of magnetron plasma film forming device>
An embodiment of the magnetron plasma film forming apparatus of the present invention will be described with reference to FIGS. 1 to 4. In addition, in FIG. 3, the magnet unit 18 (described later) is not shaded, and the magnetization direction of the
如圖1所示,磁控濺鍍成膜裝置1係一面搬送基材12,一面對基材12形成(成膜)膜13之捲對捲方式之成膜裝置。磁控濺鍍成膜裝置1具備搬送部2、與成膜部3。As shown in FIG. 1, the magnetron sputtering
搬送部2具備搬送箱4、送出輥5、捲取輥6、導輥7、及真空泵8。The
搬送箱4具有一方向較長之大致箱形狀。搬送箱4收容送出輥5、捲取輥6及導輥7。The
送出輥5及捲取輥6各者配置於搬送箱4內之一方向之一端部及另一端部各者。Each of the
導輥7於送出輥5及捲取輥6之間,配置有複數個。複數個導輥7以使基材12捲繞於成膜輥10之方式配置。A plurality of
真空泵8設置於搬送箱4。The vacuum pump 8 is installed in the
成膜部3具備成膜箱9、成膜輥10、及複數個磁控電漿單元11。The
成膜箱9與搬送箱4之一方向中間部連續。成膜箱9具有大致箱形狀。成膜箱9具有複數個隔板14。複數個隔板14以於成膜輥10之周方向,將成膜箱9劃分為複數個(3個)成膜室之方式,朝成膜輥10延伸。另,於成膜箱9,設置有無圖示之濺鍍氣體供給機。成膜箱9收容成膜輥10及複數個磁控電漿單元11。The film forming box 9 and the conveying
成膜輥10之軸線與搬送箱4之一方向正交。The axis of the
複數個磁控電漿單元11各者配置於複數個成膜室各者,與成膜輥10之徑向外側對向配置。複數個磁控電漿單元11沿成膜輥10之周方向相互隔開間隔配置。Each of the plurality of
於周方向上相鄰之磁控電漿單元11藉由隔板14隔開。複數個磁控電漿單元11各自具備電漿箱20、第1單元15、及第2單元16。The
如圖2所示,電漿箱20具有一側朝成膜輥10開口之大致箱形狀。電漿箱20沿成膜輥10之軸線延伸。電漿箱20收容第1單元15及第2單元16。第1單元15及第2單元16沿成膜輥10之周方向相互隔開間隔地相鄰配置。第1單元15及第2單元16通過電漿箱20之開口,面向成膜輥10。As shown in FIG. 2, the
第1單元15及第2單元16除旋轉靶材17(稍後敘述)之旋轉方向以外皆為相同之構成。因此,詳細說明第1單元15,簡單說明第2單元16。The
如圖3所示,第1單元15具備旋轉靶材17、與磁體單元18。As shown in FIG. 3, the
旋轉靶材17具有圓筒形狀,並具有與成膜輥10之軸線平行之軸線(剖視之中心)。旋轉靶材17例如可與成膜輥10之旋轉方向反向地旋轉(可環繞移動)。旋轉靶材17與陰極源(無圖示)電性連接,藉此,可作為陰極發揮作用。又,於旋轉靶材17之外周面,積層有靶材材料,即,旋轉靶材17於外周面具有用於形成膜13之材料。作為材料,列舉例如包含選自由In、Sn、Zn、Ga、Sb、Nb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W所組成之群之至少1種金屬的金屬氧化物。舉體而言,列舉例如銦錫複合氧化物(ITO)、銦鎵鋅複合氧化物(IGZO)、銦鎵複合氧化物(IGO)、銻錫複合氧化物(ATO)等。The
磁體單元18收容於旋轉靶材17之徑向內側。磁體單元18具備磁軛19、第1磁極部21、及第2磁極部22。The
磁軛19具有於成膜輥10之軸線方向延伸之窄板形狀。磁軛19亦至少具有與成膜輥10對向之表面(第1方向一面、第1主表面)。作為磁軛19之材料,列舉例如鐵、不鏽鋼等之金屬等。The
第1磁極部21與第2磁極部22各自具有沿成膜輥10之軸線方向延伸之四角柱形狀。第1磁極部21與第2磁極部22固定於磁軛19之表面。第1磁極部21與第2磁極部22於第2方向相鄰配置。Each of the first
第2磁極部22位於第1磁極部21之第2方向一側。具體而言,第1磁極部21之第2方向一側面、與第2磁極部22之第2方向另一側面相互接觸。The second
第1磁極部21係於剖視下(沿著第1方向、及正交於第1方向之第2方向之剖視,該第1方向係沿著連結成膜輥10之軸線與旋轉靶材17之軸線之線段。以下,剖視係遵照此定義),於朝第2方向一側(與第2磁極部22相鄰之側)依序具有第1區域23、第2區域24、及第3區域25。第1區域23、第2區域24、及第3區域25各者係遍及第1方向而存在。
第1區域23、第2區域24、及第3區域25,係於第2方向將第1磁極部21分割成3個(例如分割成3等份)之分割區域。第1區域23、第2區域24、及第3區域25係各自具有特定之磁化方向。磁化方向係自S極朝N極之方向(朝向),圖3中以粗線箭頭顯示。The first
第1區域23、第2區域24、及第3區域25係具有將上述磁化方向於第1方向及第2方向分解而得之第1成分及第2成分之至少一者。於本實施形態,第1區域23及第3區域25主要具有第1成分,第2區域24主要具有第2成分。The
第1區域23之磁化方向朝向第1方向另一側。即,第1區域23之磁化方向係朝向成膜輥10之相反側。將第1區域23之磁化方向於第1方向及第2方向分解而得之成分(以下,稱為分解成分)係主要為第1成分,幾乎無第2成分。但,允許第1區域23中存在少量之第2成分。第1區域23之第1成分朝向第1方向另一側。The magnetization direction of the
第2區域24之磁化方向朝向第2方向一側。即,第2區域24之磁化方向朝向第3區域25。第2區域24之磁化方向之分解成分主要為第2成分,幾乎無第1成分。但,允許第2區域24中存在少量之第1成分。第2區域24之第2成分朝向第2方向一側。The magnetization direction of the
第3區域25之磁化方向朝向第1方向一側。即,第1區域23之磁化方向朝向成膜輥10。第3區域25之磁化方向之分解成分主要為第1成分,幾乎無第2成分。但,允許第3區域25中存在少量之第2成分。第3區域25之第1成分係與第1區域23之第1成分反向,具體而言朝向第1方向一側。The magnetization direction of the
因第1磁極部21具有含上述分解成分之第1區域23、第2區域24及第3區域25,故於第1磁極部21,構成為於第1區域23中主要沿第1方向另一側,接著於第2區域24中主要沿第2方向一側而朝向第3區域25,於第3區域25中主要沿第1方向一側之大致U字狀之流通的磁化方向。因此,於與第1磁極部21對向之旋轉靶材17之表面,形成隧道形狀之磁場。該磁場係自與第3區域25對應之表面暫時先接近成膜輥10,之後朝向與第1區域23對應之表面之抛物線狀。Since the first
第1磁極部21之尺寸係以與第1磁極部21對應之磁通密度之絕對值之最大值為特定範圍(稍後敘述)之方式設定,具體而言,第2方向長度相對於第1方向長度之比為例如0.3以上,較佳為0.5以上,更佳為0.7以上。The size of the first
第1區域23之第2方向長度相對於第1磁極部21之第2方向長度之比為例如0.2以上,又例如0.4以下。第2區域24之第2方向長度相對於第1磁極部21之第2方向長度之比與上述同樣。第3區域25之第2方向長度相對於第1磁極部21之第2方向長度之比與上述同樣。The ratio of the length in the second direction of the
又,第1磁極部21之第1方向長度為例如5 mm以上,較佳為10 mm以上,又例如100 mm以下,較佳為50 mm以下。第1磁極部21之第2方向長度為例如5 mm以上,較佳為10 mm以上,又例如100 mm以下,較佳為50 mm以下。第1區域23、第2區域24及第3區域25各者之第2方向長度為例如1 mm以上,較佳為3 mm以上,又例如50 mm以下,較佳為15 mm以下。Furthermore, the length in the first direction of the first
第2磁極部22朝向第2方向另一側依序具有作為第1區域之一例之第4區域26、作為第2區域之一例之第5區域27、及作為第3區域之一例之第6區域28。因此,第4區域26、第5區域27、及第6區域28朝向第2方向另一側(與第1磁極部21相鄰之側)依序配置。第4區域26、第5區域27、及第6區域28各者係於第2磁極部22中遍及第1方向存在,但於第2方向分割成3個(例如分割成3等份)之分割區域。第4區域26、第5區域27、及第6區域28各者以第1磁極部21及第2磁極部22之邊界線為基準,具有與第1區域23、第2區域24、及第3區域25各者線對稱之磁化方向。The second
第4區域26、第5區域27、及第6區域28具有磁化方向之分解成分即第1成分及第2成分之至少一者。於本實施形態,第4區域26及第6區域28主要具有第1成分,第5區域27主要具有第2成分。The
第4區域26之磁化方向朝向第1方向另一側。即,第1區域23之磁化方向朝向成膜輥10之相反側。即,第4區域26之磁化方向與第1區域23之磁化方向相同。第4區域26之磁化方向之分解成分主要為第1成分,幾乎無第2成分。但,允許第4區域26中存在少量之第2成分。第4區域26之第1成分與第1區域23之第1成分為相同之方向,且朝向第1方向另一側。The magnetization direction of the
第5區域27之磁化方向朝向第2方向另一側。即,第5區域27之磁化方向朝向第6區域28。藉此,第5區域27之磁化方向與第2區域24之磁化方向相反。第5區域27之磁化方向之分解成分主要為第2成分,幾乎無第1成分。但,允許第5區域27中存在少量之第1成分。第5區域27之第2成分與第2區域24之第2成分為反向,朝向第2方向另一側。The magnetization direction of the
第6區域28之磁化方向朝向第1方向一側。即,第6區域28之磁化方向朝向成膜輥10。第6區域28之磁化方向與第3區域25之磁化方向相同。第6區域28之磁化方向之分解成分主要為第1成分,幾乎無第2成分。但,允許第6區域28中存在少量之第2成分。第6區域28之第1成分與第3區域25之第1成分為相同之方向,朝向第1方向一側。The magnetization direction of the
因第2磁極部22具有含上述分解成分之第4區域26、第5區域27及第6區域28,故於與第2磁極部22對向之旋轉靶材17之表面,形成隧道形狀之磁場。該磁場係自與第6區域28對應之表面暫時先接近成膜輥10,之後朝向與第4區域26對應之表面之抛物線狀。Since the second
第2磁極部22之尺寸與第1磁極部21之尺寸同樣。The size of the second
作為第1磁極部21及第2磁極部22之材料,列舉例如釹磁鐵等永久磁鐵。Examples of materials for the first
如圖2所示,第2單元16具備可朝與成膜輥10之旋轉方向相同之方向旋轉之旋轉靶材17、及上述之磁體單元18。As shown in FIG. 2, the
且,於該一實施形態,可縮窄以下求得之濺鍍角度θ。Furthermore, in this embodiment, the sputtering angle θ obtained below can be narrowed.
於旋轉靶材17之外周面上,朝向旋轉靶材之圓周方向之一方向,測定磁通密度之切線方向成分。求出線段LS1與線段LS2所成之濺鍍角度θ,該線段LS1係連結相當於最大磁通密度之切線方向成分之點MAX_P及旋轉靶材17之中心者,該線段LS2係連結相當於最小磁通密度之切線方向成分之點MIN_P及旋轉靶材17之中心者。濺鍍角度θ藉由例如使用市場銷售之軟體模擬磁場而求出。The tangential direction component of the magnetic flux density is measured on the outer peripheral surface of the
此處,說明藉由上述模擬獲得之磁通密度之切線方向成分。Here, the tangential component of the magnetic flux density obtained by the above simulation is explained.
如圖3所示,於第1磁極部21,因第1區域23之磁化方向朝向第1方向另一側,第2區域24之磁化方向朝向第2方向一側,第3區域25之磁化方向朝向第1方向一側,故若自與第1區域23對應之旋轉靶材17之表面朝與第3區域25對應之旋轉靶材17之表面,測定磁通密度之切線方向成分,則如圖4所示,可獲得最小磁通密度MIN_P(即,負側之磁場之最強值)。As shown in FIG. 3, in the first
如圖3所示,於第2磁極部22,因第4區域26之磁化方向朝向第1方向另一側,第5區域27之磁化方向朝向第2方向另一側,第6區域28之磁化方向朝向第1方向一側,故若自與第6區域28對應之旋轉靶材17之表面朝與第4區域26對應之旋轉靶材17之表面,測定磁通密度之切線方向成分,則如圖4所示,獲得最大磁通密度MAX_P(即,正側之磁場之最強值)。As shown in FIG. 3, in the second
因此,若於旋轉靶材17之周方向,且於自第1區域23朝向第4區域26之一方向,測定磁通密度之切線方向成分,則如圖4所示,通常依序觀察到磁通密度之最小MIN_P與最大MAX_P。Therefore, if the tangential component of the magnetic flux density is measured in the circumferential direction of the
關於第2單元16,亦與第1單元15同樣。The
另,最小磁通密度MIN_P之絕對值與最大磁通密度MAX_P例如近似,具體而言相同。In addition, the absolute value of the minimum magnetic flux density MIN_P is similar to the maximum magnetic flux density MAX_P, for example, and is specifically the same.
上述濺鍍角度θ為例如40度以下,較佳為35度以下,更佳為30度以下,進而較佳為25度以下。只要濺鍍角度θ為上述之上限以下,則於旋轉靶材17之徑向外側,與最小磁通密度MIN_P對應之電漿、及與最大磁通密度MAX_P對應之電漿在周向之距離變近。因此,可集中自旋轉靶材17釋放之電子之密度較濃之區域。因此,可高速成膜。The sputtering angle θ is, for example, 40 degrees or less, preferably 35 degrees or less, more preferably 30 degrees or less, and still more preferably 25 degrees or less. As long as the sputtering angle θ is below the above upper limit, the distance between the plasma corresponding to the minimum magnetic flux density MIN_P and the plasma corresponding to the maximum magnetic flux density MAX_P in the radial direction outside of the
另一方面,濺鍍角度θ例如為5度以上。On the other hand, the sputtering angle θ is, for example, 5 degrees or more.
成膜速度可藉由使用市場銷售之軟體模擬稀薄流體求出。成膜速度亦稱為動態率。The film formation speed can be obtained by simulating a thin fluid using commercially available software. The film formation speed is also called the dynamic rate.
磁通密度之絕對值之最大值為例如40 mT以上,較佳為80 mT以上,更佳為120 mT以上,又例如10,000 mT以下。只要磁通密度之絕對值之最大值為上述之下限以上,則可穩定地維持電漿。The maximum value of the absolute value of the magnetic flux density is, for example, 40 mT or more, preferably 80 mT or more, more preferably 120 mT or more, and for example, 10,000 mT or less. As long as the maximum absolute value of the magnetic flux density is more than the above lower limit, the plasma can be maintained stably.
接著,說明使用該磁控濺鍍成膜裝置1,於基材12形成膜13之方法。Next, a method of forming the
首先,準備圖1所示之磁控濺鍍成膜裝置1。First, the magnetron sputtering
接著,將長條之基材12安裝於磁控濺鍍成膜裝置1。作為基材12,並無特別限定,列舉例如高分子薄膜、玻璃薄膜(薄膜玻璃)等。作為高分子薄膜,列舉例如聚酯系薄膜(聚對苯二甲酸乙二酯(PET:Polyethylene Terephthalate)薄膜、聚對苯二甲酸丁二酯薄膜、聚萘二甲酸乙二酯薄膜等)、聚碳酸酯系薄膜、烯烴系薄膜(聚乙烯薄膜、聚丙烯薄膜、環烯烴薄膜等)、丙烯酸系薄膜、聚醚碸系薄膜、聚芳酯系薄膜、三聚氰胺系薄膜、聚醯胺系薄膜、聚醯亞胺系薄膜、纖維素系薄膜、聚苯乙烯系薄膜。Next, the
為了將基材12安裝於磁控濺鍍成膜裝置1,而如圖1所示,將基材12捲繞於送出輥5,接著,一面由複數個導輥7引導基材12之長邊方向一端部,一面使其捲繞於成膜輥10,並使之捲取輥6捲取。In order to install the
接著,驅動真空泵8,使搬送箱4內及成膜箱9內成為真空。與此同時,將濺鍍氣體自無圖示之濺鍍氣體供給機供給至成膜箱9內。作為濺鍍氣體,列舉例如氬氣等惰性氣體,例如進而包含氧氣之反應性氣體等。Next, the vacuum pump 8 is driven to vacuum the inside of the
接著,一面自送出輥5朝捲取輥6連續搬送基材12,一面對旋轉靶材17施加陰極電壓。藉此,自旋轉靶材17釋放電子。Next, while continuously conveying the
於是,於第1單元15及第2單元16之各者,長時間保持上述電子。Therefore, each of the
於是,源自濺鍍氣體之原子(具體而言係氬原子)效率較佳地與旋轉靶材17碰撞,藉此,其材料之粒子自旋轉靶材17附著於成膜輥10之外周面上之基材12。藉此,利用濺鍍,如圖1所示,將膜13形成於基材12。Therefore, atoms (specifically, argon atoms) derived from the sputtering gas efficiently collide with the
<一實施形態之作用效果>
且,於該磁控濺鍍成膜裝置1之第1磁極部21,構成為於第1區域23中主要沿第1方向另一側,接著於第2區域24中主要沿第2方向一側而朝向第3區域25,於第3區域25中主要沿第1方向一側之大致U字狀之流通的磁化方向。因此,於第1磁極部21之旋轉靶材17之表面,形成隧道形狀之磁場。<Function and effect of one embodiment>
In addition, the first
又,於磁控濺鍍成膜裝置1之第2磁極部22,構成為於第4區域26中主要沿第1方向另一側,接著於第5區域27中主要沿第2方向另一側而朝向第6區域28,於第6區域28中主要沿第1方向一側之大致U字狀之流通的磁化方向。因此,於第2磁極部22之旋轉靶材17之表面,形成隧道形狀之磁場。In addition, the second
於第1磁極部21之旋轉靶材17之表面形成之隧道形狀之磁場、與在第2磁極部22之旋轉靶材17之表面形成之隧道形狀之磁場可接近。即,可使上述濺鍍角度θ變窄。其結果,可將自第1單元15之旋轉靶材17釋放之電子之密度較濃之區域、與自第2單元16之旋轉靶材17釋放之電子之密度較濃之區域集中。The tunnel-shaped magnetic field formed on the surface of the
因此,根據該磁控濺鍍成膜裝置1,可高速地使膜13成膜。Therefore, according to the magnetron sputtering
又,於該一實施形態,第1區域23及第3區域25各自主要具有第1成分,第2區域24主要具有第2成分。第4區域26、及第6區域28各自主要具有第1成分,第5區域27主要具有第2成分。因此,第1磁極部21及第2磁極部22各自之構成雖簡單,但可高速成膜。Moreover, in this embodiment, each of the
<變化例> 於以下之各變化例中,對與上述一實施形態同樣之構件及步驟附加相同之參照符號,省略其詳細之說明。又,各變化例除特別記載以外,可發揮與一實施形態同樣之作用效果。再者,可適當組合一實施形態及其變化例。<Examples of changes> In the following modification examples, the same reference numerals are attached to the same members and steps as those of the above-mentioned embodiment, and detailed descriptions thereof are omitted. In addition, each modified example can exhibit the same functions and effects as the first embodiment, except for special descriptions. Furthermore, an embodiment and its modification examples can be appropriately combined.
於一實施形態,由不同之構件構成第1磁極部21與第2磁極部22,但亦可以一個構件一體構成。In one embodiment, the first
又,於第1磁極部21中,第1區域23、第2區域24及第3區域25可由獨立之3個構件構成,或者,例如亦可使用如異極性磁鐵般之構件,由1個構件一體構成。於第2磁極部22中,第4區域26、第5區域27及第6區域28可由獨立之3個構件構成,或者,例如亦可使用如異極性磁鐵般之構件,由1個構件一體構成。In addition, in the first
於一實施形態,雖於第1磁極部21具有3個區域(第1區域23、第2區域24、第3區域25),但區域之數量並無特別限定,亦可為4個以上。又,於一實施形態,雖於第2磁極部22具有3個區域(第4區域26、第5區域27、第6區域28),但區域之數量並無特別限定,亦可為4個以上。In one embodiment, although the first
圖5顯示第1磁極部21具有5個區域,第2磁極部22具有5個區域之變化例。於圖5中,第1磁極部21朝第2方向一側依序具有第1主區域31、第1輔助區域32、第2區域24、第3輔助區域33、及第3主區域34。該變化例之第1主區域31與第1輔助區域32相當於一實施形態之第1區域23。變化例之第3輔助區域33與第3主區域34相當於一實施形態之第3區域25。FIG. 5 shows a modification example in which the first
第1主區域31之磁化方向之分解成分為第1成分。第1成分朝向第1方向另一側。The decomposed component of the magnetization direction of the first
第1輔助區域32之磁化方向之分解成分為第1成分與第2成分。第1成分朝向第1方向另一側。第2成分朝向第2方向一側。第1輔助區域32之第2方向長度例如與第1主區域31之第2方向長度近似,具體而言相同。因此,於包含第1主區域31及第1輔助區域32之第1區域23,第1成分相對於第2成分較大。The decomposed components of the magnetization direction of the first
第3主區域34之分解成分為第1成分。第1成分朝向第1方向一側。The decomposition component of the third
第3輔助區域33之磁化方向之分解成分為第1成分與第2成分。第1成分朝向第1方向一側。第2成分朝向第2方向一側。第3輔助區域33之第2方向長度例如與第3主區域34之第2方向長度近似,具體而言相同。因此,於包含第3主區域34及第3輔助區域33之第3區域25,第1成分相對於第2成分較大。The decomposition components of the magnetization direction of the third
第2磁極部22朝第2方向另一側依序具有第4主區域35、第4輔助區域36、第5區域27、第6輔助區域37、及第6主區域38。該變化例之第4主區域35與第4輔助區域36相當於一實施形態之第4區域26。變化例之第6輔助區域37與第6主區域38相當於一實施形態之第6區域28。The second
第4主區域35之磁化方向之分解成分為第1成分。第1成分朝向第1方向另一側。The decomposed component of the magnetization direction of the fourth
第4輔助區域36之磁化方向之分解成分為第1成分與第2成分。第1成分朝向第1方向另一側。第2成分朝向第2方向另一側。第4輔助區域36之第2方向長度例如與第4主區域35之第2方向長度近似,具體而言相同。因此,於包含第4主區域35及第4輔助區域36之第4區域26,第1成分相對於第2成分較大。The decomposed components of the magnetization direction of the fourth
第6主區域38之分解成分為第1成分。第1成分朝向第1方向一側。The decomposition component of the sixth
第6輔助區域37之磁化方向之分解成分為第1成分與第2成分。第1成分朝向第1方向一側。第2成分朝向第2方向另一側。第6輔助區域37之第2方向長度例如與第6主區域38之第2方向長度近似,具體而言相同。因此,於包含第6主區域38及第6輔助區域37之第6區域28,第1成分相對於第2成分較大。The decomposition components of the magnetization direction of the sixth
只要於旋轉靶材17之表面形成上述隧道形狀之磁場,則第1磁極部21與第2磁極部22之磁化方向之朝向並無限定。一實施形態之第1區域23、第2區域24、第3區域25、第4區域26、第5區域27、及第6區域28之磁化方向各者亦可反轉。具體而言,如圖6所示,第1區域23及第4區域26之磁化方向朝向第1方向一側。第2區域24之磁化方向朝向第2方向另一側。第5區域27之磁化方向朝向第2方向一側。第3區域25及第6區域28之磁化方向朝向第1方向另一側。於圖6所示之變化例,形成於與第1磁極部21對向之旋轉靶材17之表面之隧道形狀之磁場係自對應於第1區域23之表面暫時先接近成膜輥10,之後朝向對應於第3區域25之表面的抛物線狀。形成於與第2磁極部22對向之旋轉靶材17之表面之隧道形狀之磁場係自對應於第4區域26之表面暫時先接近成膜輥10,之後朝向對應於第6區域28之表面之抛物線狀。As long as the above-mentioned tunnel-shaped magnetic field is formed on the surface of the
於圖7所示之變化例,於第1磁極部21中,第1區域23及第2區域24連續,第2區域24及第3區域25連續。In the modified example shown in FIG. 7, in the first
於第1區域23中,隨著朝向第2區域24,第1成分變小。即,第1區域23之磁化方向隨著接近第2區域24,相對於第1方向之傾斜逐漸(連續)變強。第1區域23之第1成分朝向第1方向另一側。In the
又,於第3區域25中,隨著隨向第2區域24,第1成分變小。即,第3區域25之磁化方向隨著接近第2區域24,相對於第1方向之傾斜逐漸(連續)變強。第3區域25之第1成分朝向第1方向一側。In addition, in the
於第2區域24中,於接近第1區域23之一端部區域,第1成分朝向第1方向另一側且微小,又,於接近第3區域25之另一端部區域,第1成分朝向第1方向一側且微小,於該等間之中間區域,作為分解成分,實質上無第1成分,僅為第2成分。In the
第1磁極部21之磁化方向構成如暫時先自第1區域23之第1方向一面接近第2區域24之第1方向另一面,之後到達第3區域25之第1方向一面之大致抛物線。The magnetization direction of the first
於第2磁極部22中,第4區域26及第5區域27連續,第5區域27及第6區域28連續。In the second
於第4區域26中,隨著朝向第5區域27,第1成分變小。即,第4區域26之磁化方向隨著接近第5區域27,相對於第1方向之傾斜逐漸(連續)變強。第4區域26之第1成分朝向第1方向另一側。In the
又,於第6區域28中,隨著朝向第5區域27,第1成分變小。即,第6區域28之磁化方向隨著接近第5區域27,相對於第1方向之傾斜逐漸(連續)變強。第6區域28之第1成分朝向第1方向一側。In addition, in the
於第5區域27中接近第4區域26之一端部區域,第1成分朝向第1方向另一側且微小,又,於第5區域27中接近第6區域28之另一端部區域,第1成分朝向第1方向一側且微小,於該等間之中間區域,作為分解成分,實質上無第1成分,僅為第2成分。In the
因此,第2磁極部22之磁化方向構成如暫時先自第4區域26之第1方向一面接近第5區域27之第1方向另一面,之後到達第6區域28之第1方向一面之大致抛物線。Therefore, the magnetization direction of the second
於圖7所示之磁控濺鍍成膜裝置1,於第1磁極部21中,因第1區域23、第2區域24及第3區域25連續,故構成抛物線狀之磁化方向。因此,於與第1磁極部21對應之旋轉靶材17之表面,確實地形成隧道形狀之磁場。In the magnetron sputtering
於第2磁極部22,因第4區域26、第5區域及第6區域28連續,故構成抛物線狀之磁化方向。因此,於與第2磁極部22對應之旋轉靶材17之表面,確實地形成隧道形狀之磁場。Since the
可使上述2個隧道形狀之磁場更接近,可使自第1單元15之旋轉靶材17釋放之電子之密度較濃之區域、與自第2單元16之旋轉靶材17釋放之電子之密度較濃之區域更集中。因此,可高速成膜。The above-mentioned two tunnel-shaped magnetic fields can be made closer, and the density of electrons released from the
圖8係圖7所示之第1磁極部21及第2磁極部22各者之第2方向長度過短之變化例。FIG. 8 is a modification example in which the length in the second direction of each of the first
於該變化例,第1磁極部21具有上述之第1區域23、第2區域24及第3區域25。第2磁極部22具有上述之第4區域26、第5區域27及第6區域28。
[實施例]In this modified example, the first
以下顯示實施例及比較例,更具體地說明本發明。另,本發明並非限定於任何實施例及比較例。又,以下之記載中使用之調配比例(含有比例)、物性值、參數等具體之數值可替換為上述「用於實施發明之形態」中記載之與該等對應之調配比例(含有比例)、物性值、參數等該等記載之上限值(作為「以下」、「未達」定義之數值)或下限值(作為「以上」、「超過」定義之數值)。Examples and comparative examples are shown below to explain the present invention more specifically. In addition, the present invention is not limited to any Examples and Comparative Examples. In addition, specific numerical values such as the blending ratio (content ratio), physical property values, and parameters used in the following description can be replaced with the corresponding blending ratio (content ratio), as described in the above-mentioned "Forms for Carrying Out the Invention", Physical property values, parameters, etc. record the upper limit (as the value defined as "below" or "not reached") or lower limit (as the value defined as "above" or "exceeding").
實施例1
對圖1~3所示之一實施形態記載之磁控濺鍍成膜裝置1進行模擬。
第1磁極部21及第2磁極部22之尺寸如表1所記載。Example 1
The magnetron sputtering
實施例2
除使第1區域23~第6區域28之磁化方向各者反轉以外,與實施例1同樣地,對圖6所述之磁控濺鍍成膜裝置1進行模擬。Example 2
Except that the magnetization directions of the
實施例3
如圖7所示,以第1磁極部21之磁化方向構成抛物線之方式,使第1區域23與第2區域24連續,使第2區域24與第3區域25連續,又,以第2磁極部22之磁化方向構成抛物線之方式,使第4區域26與第5區域27連續,使第5區域27與第6區域28連續,除此以外與實施例1同樣地,對圖7所示之磁控濺鍍成膜裝置1進行模擬。Example 3
As shown in FIG. 7, the magnetization direction of the first
實施例4
除將第1磁極部21及第2磁極部22各者之第2方向長度自20 mm變更為8 mm以外,與實施例3同樣地,對圖8所示之磁控濺鍍成膜裝置1進行模擬。Example 4
Except that the length in the second direction of each of the first
比較例1
除第1磁極部21不具有第1區域23,又,第2磁極部22不具有第4區域26,又,將尺寸變更為如表2所示以外,與實施例1同樣地,對圖9所示之磁控濺鍍成膜裝置1進行模擬。Comparative example 1
Except that the first
<評估>
針對磁控濺鍍成膜裝置1,評估以下項目。將該等結果記載於表3。<Evaluation>
For the magnetron sputtering
(1)濺鍍角度θ、磁通密度之最大值及最小值
就實施例1~實施例4及比較例1各者之磁控濺鍍成膜裝置1,利用使用以下軟體之有限要素法模擬磁場求出濺鍍角度θ、磁通密度之最大值及最小值。(1) Sputtering angle θ, maximum and minimum magnetic flux density
For the magnetron sputtering
軟體名:JMAG(JSOL公司製) 計算方法:有限要素法Software name: JMAG (manufactured by JSOL) Calculation method: finite element method
(2)成膜速度
藉由使用以下軟體之模擬稀薄流體求出實施例1~實施例3及比較例1各者之磁控濺鍍成膜裝置1之成膜速度。實施例1~實施例3之成膜速度係將比較例1之成膜速度設為100時作為其比例而求出。(2) Film forming speed
The film forming speed of the magnetron sputtering
軟體名:DSMC-Neutrals(Wavefront公司製) 計算方法:Direct Simulation Monte Carlo(DSMC:直接模擬蒙地卡羅)法Software name: DSMC-Neutrals (manufactured by Wavefront) Calculation method: Direct Simulation Monte Carlo (DSMC: Direct Simulation Monte Carlo) method
[表1] [Table 1]
[表2] [Table 2]
[表3] [table 3]
另,上述發明係作為本發明之例示之實施形態而提供,但此僅為例示,並非限定性解釋。由該技術領域之業者明瞭之本發明之變化包含於稍後敘述之申請專利範圍內。In addition, the above-mentioned invention is provided as an exemplary embodiment of this invention, but this is only an illustration, and is not interpreted restrictively. Variations of the present invention that are understood by those in this technical field are included in the scope of patent applications described later.
[產業上之可利用性][Industrial availability]
磁控濺鍍成膜裝置可用於形成膜。The magnetron sputtering film forming device can be used to form the film.
1:磁控濺鍍成膜裝置
2:搬送部
3:成膜部
4:搬送箱
5:送出輥
6:捲取輥
7:導輥
8:真空泵
9:成膜箱
10:成膜輥
11:磁控電漿單元
12:基材
13:膜
14:隔板
15:第1單元
16:第2單元
17:旋轉靶材
18:磁體單元
19:磁軛
20:電漿箱
21:第1磁極部
22:第2磁極部
23:第1區域
24:第2區域
25:第3區域
26:第4區域
27:第5區域
28:第6區域
31:第1主區域
32:第1輔助區域
33:第3輔助區域
34:第3主區域
35:第4主區域
36:第4輔助區域
37:第6輔助區域
38:第6主區域
LS1:線段
LS2:線段
MAX_P:點
MIN_P:點
θ:濺鍍角度1: Magnetron sputtering film forming device
2: Conveying department
3: Film forming part
4: Transport box
5: Delivery roller
6: take-up roller
7: Guide roller
8: Vacuum pump
9: Film forming box
10: Film forming roller
11: Magnetron plasma unit
12: Substrate
13: Membrane
14: Partition
15:
圖1係本發明之一實施形態即磁控濺鍍成膜裝置之剖視圖。 圖2係圖1之磁控濺鍍成膜裝置具備之磁控電漿單元之放大剖視圖。 圖3係圖2所示之磁體單元之放大圖。 圖4係顯示磁通密度之切線方向成分、與濺鍍角度θ之關係之圖表。 圖5係圖3所示之磁體單元之變化例,即磁極部具有5個區域之變化例。 圖6係圖3所示之磁體單元之變化例,即磁極部之磁化方向與圖3反向之變化例。 圖7係圖3所示之磁體單元之變化例,即相鄰之2個區域連續之變化例。 圖8係圖7所示之磁極部之變化例,即其之第2方向長度較短之變化例。 圖9係比較例之磁體單元之放大圖。Fig. 1 is a cross-sectional view of a magnetron sputtering film forming apparatus which is an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of a magnetron plasma unit included in the magnetron sputtering film forming apparatus of FIG. 1. FIG. Fig. 3 is an enlarged view of the magnet unit shown in Fig. 2. Figure 4 is a graph showing the relationship between the tangential direction component of the magnetic flux density and the sputtering angle θ. Fig. 5 is a modification example of the magnet unit shown in Fig. 3, that is, a modification example in which the magnetic pole portion has 5 regions. FIG. 6 is a modification example of the magnet unit shown in FIG. 3, that is, a modification example where the magnetization direction of the magnetic pole part is opposite to that of FIG. 3. Fig. 7 is a modification example of the magnet unit shown in Fig. 3, that is, a modification example in which two adjacent regions are continuous. Fig. 8 is a modification example of the magnetic pole portion shown in Fig. 7, that is, a modification example of a shorter length in the second direction. Fig. 9 is an enlarged view of the magnet unit of the comparative example.
10:成膜輥 10: Film forming roller
15:第1單元
15:
17:旋轉靶材 17: Rotating target
18:磁體單元 18: Magnet unit
19:磁軛 19: Magnetic yoke
21:第1磁極部 21: 1st magnetic pole part
22:第2磁極部 22: 2nd magnetic pole part
23:第1區域
23:
24:第2區域
24:
25:第3區域
25:
26:第4區域
26:
27:第5區域
27:
28:第6區域
28:
LS1:線段 LS1: Line segment
LS2:線段 LS2: Line segment
MAX_P:點 MAX_P: point
MIN_P:點 MIN_P: point
θ:濺鍍角度 θ: Sputtering angle
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020061332A JP7530730B2 (en) | 2020-03-30 | 2020-03-30 | Magnetron plasma deposition equipment |
JP2020-061332 | 2020-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202142719A true TW202142719A (en) | 2021-11-16 |
Family
ID=77929394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110111616A TW202142719A (en) | 2020-03-30 | 2021-03-30 | Magnetron plasma film-forming device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7530730B2 (en) |
KR (1) | KR20220159383A (en) |
CN (1) | CN115398028A (en) |
TW (1) | TW202142719A (en) |
WO (1) | WO2021200635A1 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158625A (en) * | 1997-11-25 | 1999-06-15 | Sony Corp | Magnetron sputtering film forming device |
JP4161642B2 (en) * | 2002-08-26 | 2008-10-08 | 旭硝子株式会社 | Sputter deposition method and magnetron sputtering apparatus |
CN101283114B (en) * | 2005-10-07 | 2012-04-18 | 国立大学法人东北大学 | Magnetron sputtering apparatus |
JP5147072B2 (en) * | 2006-07-31 | 2013-02-20 | 国立大学法人 岡山大学 | Magnetic field generator and nuclear magnetic resonance apparatus provided with the magnetic field generator |
JP2011225932A (en) | 2010-04-20 | 2011-11-10 | Fuji Electric Co Ltd | Sputtering film deposition system for pattern deposition |
JP2012083212A (en) * | 2010-10-12 | 2012-04-26 | Aisin Seiki Co Ltd | Rotation angle detection device |
PL2661514T3 (en) | 2011-01-06 | 2020-11-16 | Bühler AG | Magnetron assembly and sputtering system comprising the same |
US20150060262A1 (en) * | 2011-08-11 | 2015-03-05 | Dennis R. Hollars | Sputtering systems for liquid target materials |
JP6067300B2 (en) * | 2012-09-28 | 2017-01-25 | 住友理工株式会社 | Magnetron sputtering film forming apparatus and magnetron sputtering film forming method |
JP2015193863A (en) * | 2014-03-31 | 2015-11-05 | 株式会社Screenホールディングス | sputtering device |
JP6371591B2 (en) | 2014-06-10 | 2018-08-08 | 日東電工株式会社 | Sputtering apparatus and manufacturing method of long film with ITO film |
JP6627462B2 (en) * | 2015-12-02 | 2020-01-08 | 住友金属鉱山株式会社 | Rotational support for web-shaped film-forming target, film-formed body manufacturing method using the same, and apparatus therefor |
JP6673590B2 (en) * | 2017-12-27 | 2020-03-25 | キヤノントッキ株式会社 | Sputter deposition equipment |
-
2020
- 2020-03-30 JP JP2020061332A patent/JP7530730B2/en active Active
-
2021
- 2021-03-26 CN CN202180025338.0A patent/CN115398028A/en active Pending
- 2021-03-26 KR KR1020227033531A patent/KR20220159383A/en active Search and Examination
- 2021-03-26 WO PCT/JP2021/012813 patent/WO2021200635A1/en active Application Filing
- 2021-03-30 TW TW110111616A patent/TW202142719A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2021200635A1 (en) | 2021-10-07 |
JP2021161450A (en) | 2021-10-11 |
KR20220159383A (en) | 2022-12-02 |
CN115398028A (en) | 2022-11-25 |
JP7530730B2 (en) | 2024-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI427168B (en) | Spattering apparatus, manufacturing method for transparent conductive film | |
CN104169456B (en) | Sputtering apparatus | |
JP5824072B2 (en) | Sputtering equipment | |
JP6494296B2 (en) | Sputtering apparatus, thin film manufacturing method | |
CN102037154B (en) | Magnet unit, and magnetron sputtering device | |
WO2018068833A1 (en) | Magnet arrangement for a sputter deposition source and magnetron sputter deposition source | |
KR102092815B1 (en) | Method for applying thin-film coatings and manufacturing line for implementing same | |
JP2012052191A (en) | Sputtering apparatus | |
JP2016132807A (en) | Sputtering apparatus and method for manufacturing thin film | |
TW202142719A (en) | Magnetron plasma film-forming device | |
JP2020502359A (en) | Deposition apparatus, method for coating flexible substrate, and flexible substrate having coating | |
JP7530724B2 (en) | Magnetron plasma deposition equipment | |
WO2020196307A1 (en) | Magnetron plasma deposition apparatus | |
WO2023116603A1 (en) | Semiconductor chamber | |
CN114761610A (en) | Magnetron sputtering film forming apparatus | |
JP5231962B2 (en) | Sheet plasma deposition system | |
JP2008127582A (en) | Composite type sputtering system and composite type sputtering method | |
JP7328744B2 (en) | Film forming apparatus and method for manufacturing electronic device | |
TWI850508B (en) | Thin film manufacturing equipment | |
JP2013237897A (en) | Vacuum film deposition system, gas barrier film, and laminate with gas barrier property | |
JP2006213963A (en) | Low temperature sputtering process and system | |
US20190323121A1 (en) | Thin film coating method and the manufacturing line for its implementation | |
JP2020504230A (en) | Deposition apparatus for coating flexible substrate, method for coating flexible substrate, and flexible substrate having coating | |
JP2011149043A (en) | Sputtering film deposition apparatus, and method for manufacturing sputtered film using the same |