以下,對本發明之實施形態之一例進行詳細說明。但是,本案發明並不限定於下述實施形態。
<本黏著片>
本發明之實施形態之一例之透明雙面黏著片係包含含有(甲基)丙烯酸系共聚物(A)、交聯劑(B)、波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑(C)及紫外線吸收劑(D)之黏著劑樹脂組合物(稱為「本黏著劑組合物」)的透明雙面黏著片(稱為「本黏著片」)。
[(甲基)丙烯酸系共聚物(A)]
作為本黏著片之基礎聚合物之(甲基)丙烯酸系聚合物可藉由為了使其聚合而使用之丙烯酸系單體或甲基丙烯酸系單體之種類、組成比率、進而聚合條件等,而適當調整玻璃轉移溫度(Tg)等特性。
本黏著片中之所謂「基礎聚合物」係指作為本黏著片之主成分之樹脂。並非規定具體含量。作為標準,為佔據本黏著片中所含之樹脂之50質量%以上、尤其65質量%以上、尤其80質量%以上(包含100質量%)質量%以上之樹脂。再者,於基礎聚合物為兩種以上之情形時,其等之合計量相當於上述含量。
作為(甲基)丙烯酸系(共)聚合物(A),例如除(甲基)丙烯酸烷基酯之均聚物以外,可列舉藉由使其與具有共聚性之單體成分進行聚合而獲得之共聚物,更佳為可列舉含有(甲基)丙烯酸烷基酯、及選自可與其共聚之含羧基單體、含羥基單體、含胺基單體、含環氧基單體、含醯胺基單體等乙烯基單體中之任一種以上之單體作為單體成分之共聚物。
更具體而言,可列舉包含選自側鏈之碳數4~18之直鏈或支鏈(甲基)丙烯酸烷基酯(以下亦稱為「共聚性單體A」)、可與其共聚之含羧基單體(以下亦稱為「共聚性單體B」)、乙烯基單體(以下亦稱為「共聚性單體C」)、側鏈之碳數為1~3之(甲基)丙烯酸酯(以下亦稱為「共聚性單體D」)、及含羥基單體(以下稱為「共聚性單體E」)中之任一種以上之單體之共聚物。
又,作為尤佳之例示,亦可列舉:(a)包含含有共聚性單體A以及共聚性單體B及/或共聚性單體C之單體成分之共聚物、或(b)包含含有共聚性單體A、共聚性單體B及/或共聚性單體C、以及共聚性單體D及/或共聚性單體E之單體成分之共聚物。具體而言,可列舉:共聚性單體A及B之共聚物、共聚性單體A及C之共聚物、共聚性單體A、B及C之共聚物、共聚性單體A、B及D之共聚物、共聚性單體A、B及E之共聚物、共聚性單體A、B、D及E之共聚物、共聚性單體A、C及D之共聚物、共聚性單體A、C及E之共聚物、共聚性單體A、C、D及E之共聚物、共聚性單體A、B、C及D之共聚物、共聚性單體A、B、C及E之共聚物、共聚性單體A、B、C、D及E之共聚物。
作為上述「共聚性單體A」,例如可列舉:(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸十三烷基酯、(甲基)丙烯酸十四烷基酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸異𦯉酯、3,5,5-三甲基環己烷(甲基)丙烯酸酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯等。該等亦可使用1種或組合2種以上而使用。
上述共聚性單體A較佳為於共聚物之所有單體成分中含有30質量%以上且90質量%以下,其中進而較佳為以35質量%以上或88質量%以下之範圍含有,其中尤其進而較佳為以40質量%以上或85質量%以下之範圍含有。
作為上述「共聚性單體B」,例如可列舉:(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫苯二甲酸、2-(甲基)丙烯醯氧基乙基苯二甲酸、2-(甲基)丙烯醯氧基丙基苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基琥珀酸、2-(甲基)丙烯醯氧基丙基琥珀酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸。該等亦可使用1種或組合2種以上。再者,「(甲基)丙烯酸」之含義包括丙烯酸及甲基丙烯酸。同樣,「(甲基)丙烯醯基」之含義包括丙烯醯基及甲基丙烯醯基。
作為上述「共聚性單體C」,可列舉於分子內具有乙烯基之化合物。作為此種化合物,可例示:烷基之碳數為1~12之(甲基)丙烯酸烷基酯類;以及於分子內具有羥基、醯胺基及烷氧基烷基等官能基之官能性單體類;以及聚伸烷基二醇二(甲基)丙烯酸酯類;以及乙酸乙烯酯、丙酸乙烯酯及月桂酸乙烯酯等乙烯酯單體;以及苯乙烯、氯苯乙烯、氯甲基苯乙烯、α-甲基苯乙烯及其他取代苯乙烯等芳香族乙烯基單體。該等亦可使用1種或組合2種以上。
上述共聚性單體B及上述共聚性單體C較佳為於共聚物之所有單體成分中以1.2質量%~15質量%以下之範圍含有,其中就獲得優異之黏著物性之觀點而言,較佳為以1.5質量%以上或10質量%以下之範圍含有,其中尤佳為以2質量%以上或8質量%以下之範圍含有。
作為上述「共聚性單體D」,可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯等。該等亦可使用1種或組合2種以上。
上述共聚性單體D較佳為於共聚物之所有單體成分中含有0質量%以上且70質量%以下,其中進而較佳為以3質量%以上或65質量%以下之範圍含有,其中尤其進而較佳為以5質量%以上或60質量%以下之範圍含有。
作為上述「共聚性單體E」,可列舉:(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸3-羥基丙酯、(甲基)丙烯酸2-羥基丁酯等(甲基)丙烯酸羥基烷基酯類。該等亦可使用1種或組合2種以上。
上述共聚性單體E較佳為於共聚物之所有單體成分中含有0質量%以上且30質量%以下,其中進而較佳為以0質量%以上或25質量%以下之範圍含有,其中尤其進而較佳為以0質量%以上或20質量%以下之範圍含有。
除了上述揭示者以外,亦可視需要適當使用順丁烯二酸酐、伊康酸酐等含酸酐基單體,(甲基)丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油酯,(甲基)丙烯酸3,4-環氧丁酯等含環氧基單體,(甲基)丙烯酸二甲基胺基乙酯、(甲基)丙烯酸二乙基胺基乙酯等含胺基之(甲基)丙烯酸酯系單體,(甲基)丙烯醯胺、N-第三丁基(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-甲氧基甲基(甲基)丙烯醯胺、N-丁氧基甲基(甲基)丙烯醯胺、雙丙酮(甲基)丙烯醯胺、順丁烯二醯胺、順丁烯二醯亞胺等含有醯胺基之單體,乙烯基吡咯啶酮、乙烯基吡啶、乙烯基咔唑等雜環系鹼性單體等。
作為(甲基)丙烯酸系(共)聚合物之具體例,例如可列舉:使(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸異硬脂酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸甲酯等單體成分(a),具有羧基之(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫苯二甲酸、2-(甲基)丙烯醯氧基乙基苯二甲酸、2-(甲基)丙烯醯氧基丙基苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基琥珀酸、2-(甲基)丙烯醯氧基丙基琥珀酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸等單體成分(b),及具有有機官能基等之(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯、順丁烯二酸單甲酯、伊康酸單甲酯、乙酸乙烯酯、(甲基)丙烯酸縮水甘油酯、(甲基)丙烯醯胺、(甲基)丙烯腈、氟化(甲基)丙烯酸酯、(甲基)丙烯酸聚矽氧酯等單體成分(c)進行共聚而獲得之(甲基)丙烯酸酯共聚物。
(甲基)丙烯酸系(共)聚合物之質量平均分子量較佳為10萬~150萬,其中較佳為15萬以上或130萬以下,其中尤佳為20萬以上或120萬以下。
於欲獲得凝聚力較高之黏著組合物之情形時,就分子量越大,越可藉由分子鏈之纏結而獲得凝聚力之觀點而言,質量平均分子量較佳為70萬~150萬,尤佳為80萬以上或130萬以下。另一方面,於欲獲得流動性或應力緩和性較高之黏著組合物之情形時,質量平均分子量較佳為7萬~70萬,尤佳為10萬以上或60萬以下。又,於成形黏著片等時不使用溶劑之情形時,難以使用分子量較大之聚合物,因此丙烯酸系共聚物之質量平均分子量較佳為7萬~70萬,尤佳為10萬以上或60萬以下,其中尤佳為15萬以上或50萬以下。
(丙烯酸系共聚物(A1))
作為本黏著片之較佳之基礎聚合物之一例,可列舉包含具備巨分子單體作為枝成分之接枝共聚物之(甲基)丙烯酸系共聚物(A1)。
只要將上述丙烯酸系共聚物(A1)作為基礎樹脂構成本黏著片,則本黏著片可於室溫狀態下保持片狀並且顯示自黏性,若於未交聯狀態下加熱,則具有熔融或流動之熱熔性,可進而使其光硬化,可於光硬化後發揮優異之凝聚力而進行接著。
由此,只要使用丙烯酸系共聚物(A1)作為本黏著片之基礎聚合物,則即便為未交聯狀態,亦可具備如下性質,即,於室溫(20℃)下顯示黏著性,且於100℃下軟化或流體化之性質,或加熱至50~90℃、更佳為60℃以上或80℃以下之溫度時軟化或流體化之性質。
構成上述丙烯酸系共聚物(A1)之幹成分之共聚物之玻璃轉移溫度較佳為-70~0℃。
此時,所謂構成幹成分之共聚物成分之玻璃轉移溫度,係指僅使組成丙烯酸系共聚物(A1)之幹成分之單體成分共聚而獲得之聚合物之玻璃轉移溫度。具體而言,意指自該共聚物各成分之均聚物獲得之聚合物之玻璃轉移溫度與構成比率,藉由Fox之計算式而算出之值。
再者,所謂Fox之計算式係指藉由以下之式而求出之計算值,可使用聚合物手冊[Polymer HandBook,J.Brandrup,Interscience,1989]所記載之值而求出。
1/(273+Tg)=Σ(Wi/(273+Tgi))
[式中,Wi表示單體i之重量分率,Tgi表示單體i之均聚物之Tg(℃)]
構成上述丙烯酸系共聚物(A1)之幹成分之共聚物成分之玻璃轉移溫度會對室溫狀態下之本黏著片之柔軟性、或本黏著片對被黏著體之潤濕性、即接著性造成影響,因此為了使本黏著片於室溫狀態下獲得適度之接著性(黏性),該玻璃轉移溫度較佳為-70℃~0℃,其中尤佳為-65℃以上或-5℃以下,其中尤佳為-60℃以上或-10℃以下。
但,即便該共聚物成分之玻璃轉移溫度設為相同溫度,亦可藉由調整分子量而調整黏彈性。例如可藉由減小共聚物成分之分子量而使其更柔軟化。
作為上述丙烯酸系共聚物(A1)之幹成分含有之(甲基)丙烯酸酯單體,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、丙烯酸山崳酯、(甲基)丙烯酸異𦯉酯、(甲基)丙烯酸2-苯氧基乙酯、3,5,5-三甲基環己烷丙烯酸酯、對異丙苯基苯酚EO改性(甲基)丙烯酸酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯、(甲基)丙烯酸苄酯等。於該等中,亦可使用具有親水基或有機官能基等之(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯等含羥基之(甲基)丙烯酸酯,或(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫苯二甲酸、2-(甲基)丙烯醯氧基乙基苯二甲酸、2-(甲基)丙烯醯氧基丙基苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基琥珀酸、2-(甲基)丙烯醯氧基丙基琥珀酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸、順丁烯二酸單甲酯、伊康酸單甲酯等含羧基單體,順丁烯二酸酐、伊康酸酐等含酸酐基單體,(甲基)丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油酯、(甲基)丙烯酸3,4-環氧丁酯等含環氧基單體,(甲基)丙烯酸二甲基胺基乙酯、(甲基)丙烯酸二乙基胺基乙酯等含胺基之(甲基)丙烯酸酯系單體,(甲基)丙烯醯胺、N-第三丁基(甲基)丙烯醯胺、N-羥甲基(甲基)丙烯醯胺、N-甲氧基甲基(甲基)丙烯醯胺、N-丁氧基甲基(甲基)丙烯醯胺、雙丙酮丙烯醯胺、順丁烯二醯胺、順丁烯二醯亞胺等含有醯胺基之單體,乙烯基吡咯啶酮、乙烯基吡啶、乙烯基咔唑等雜環系鹼性單體等。
又,亦可適當使用可與上述丙烯酸系單體或甲基丙烯酸系單體進行共聚之苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、乙烯基甲苯、丙烯腈、甲基丙烯腈、乙酸乙烯酯、丙酸乙烯酯、烷基乙烯醚、羥基烷基乙烯醚、烷基乙烯基單體等各種乙烯基單體。
又,丙烯酸系共聚物(A1)之幹成分較佳為含有疏水性之(甲基)丙烯酸酯單體與親水性之(甲基)丙烯酸酯單體作為結構單元。
若丙烯酸系共聚物(A1)之幹成分僅由疏水性單體構成,則認為有濕熱白化之傾向,因此較佳為將親水性單體亦導入至幹成分而防止濕熱白化。
具體而言,作為上述丙烯酸系共聚物(A1)之幹成分,可列舉疏水性之(甲基)丙烯酸酯單體、親水性之(甲基)丙烯酸酯單體、及巨分子單體之末端之聚合性官能基進行無規共聚而成之共聚物成分。
此處,作為上述疏水性之(甲基)丙烯酸酯單體,例如可列舉:(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、丙烯酸山崳酯、(甲基)丙烯酸異𦯉酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸二環戊烯氧基乙酯、甲基丙烯酸甲酯。
又,作為疏水性之乙烯基單體,可列舉:乙酸乙烯酯、苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、乙烯基甲苯、烷基乙烯基單體等。
作為上述親水性之(甲基)丙烯酸酯單體,例如可列舉:丙烯酸甲酯、(甲基)丙烯酸、(甲基)丙烯酸四氫糠酯、或(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯、(甲基)丙烯酸甘油酯等含羥基之(甲基)丙烯酸酯、或(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基六氫苯二甲酸、2-(甲基)丙烯醯氧基丙基六氫苯二甲酸、2-(甲基)丙烯醯氧基乙基苯二甲酸、2-(甲基)丙烯醯氧基丙基苯二甲酸、2-(甲基)丙烯醯氧基乙基順丁烯二酸、2-(甲基)丙烯醯氧基丙基順丁烯二酸、2-(甲基)丙烯醯氧基乙基琥珀酸、2-(甲基)丙烯醯氧基丙基琥珀酸、丁烯酸、反丁烯二酸、順丁烯二酸、伊康酸、順丁烯二酸單甲酯、伊康酸單甲酯等含羧基單體、順丁烯二酸酐、伊康酸酐等含酸酐基單體、(甲基)丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油酯、(甲基)丙烯酸3,4-環氧丁酯等含環氧基單體、甲氧基聚乙二醇(甲基)丙烯酸酯等烷氧基聚伸烷基二醇(甲基)丙烯酸酯、N,N-二甲基丙烯醯胺、羥基乙基丙烯醯胺等。
(枝成分:巨分子單體)
丙烯酸系共聚物(A1)較佳為導入巨分子單體作為接枝共聚物之枝成分,而含有源自巨分子單體之重複單元。
所謂巨分子單體係指具有末端之聚合性官能基及高分子量骨架成分之高分子單體。
巨分子單體之玻璃轉移溫度(Tg)較佳為高於構成上述丙烯酸系共聚物(A1)之共聚物成分之玻璃轉移溫度。
具體而言,由於巨分子單體之玻璃轉移溫度(Tg)會對本黏著片之加熱熔融溫度(熱熔溫度)造成影響,故而巨分子單體之玻璃轉移溫度(Tg)較佳為30℃~120℃,其中進而較佳為中40℃以上或110℃以下,其中進而較佳為50℃以上或100℃以下。
只要為此種玻璃轉移溫度(Tg),則可藉由調整分子量而保持優異之加工性或保管穩定性,並且可調整為於50℃至80℃附近熱熔。
所謂巨分子單體之玻璃轉移溫度係指該巨分子單體本身之玻璃轉移溫度,可藉由示差掃描熱量計(DSC)進行測定。
又,為了使得於室溫狀態下,枝成分彼此相互牽引,作為黏著劑組合物可維持如進行物理交聯之狀態,並且藉由加熱至適度之溫度,上述物理交聯解除而可獲得流動性,亦較佳為調整巨分子單體之分子量或含量。
就該觀點而言,巨分子單體較佳為於丙烯酸系共聚物(A1)中以5質量%~30質量%之比率含有,其中較佳為6質量%以上或25質量%以下,其中較佳為8質量%以上或20質量%以下。
又,巨分子單體之數量平均分子量較佳為500以上且未達8000,其中較佳為800以上或未達7500,其中較佳為1000以上或未達7000。
巨分子單體可適當使用通常製造者(例如東亞合成公司製造之巨分子單體等)。
巨分子單體之高分子量骨架成分較佳為包含丙烯酸系聚合物或乙烯系聚合物。
作為上述巨分子單體之高分子量骨架成分,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸新戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸異辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸第三丁基環己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸鯨蠟酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸異硬脂酯、丙烯酸山崳酯、(甲基)丙烯酸異𦯉酯、(甲基)丙烯酸2-苯氧基乙酯、3,5,5-三甲基環己烷丙烯酸酯、對異丙苯基苯酚EO改性(甲基)丙烯酸酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸羥基烷基酯、(甲基)丙烯酸、(甲基)丙烯酸縮水甘油酯、(甲基)丙烯醯胺、N,N-二甲基(甲基)丙烯醯胺、(甲基)丙烯腈、(甲基)丙烯酸烷氧基烷基酯、烷氧基聚伸烷基二醇(甲基)丙烯酸酯等(甲基)丙烯酸酯單體、或苯乙烯、第三丁基苯乙烯、α-甲基苯乙烯、乙烯基甲苯、烷基乙烯基單體、烷基乙烯酯、烷基乙烯醚、羥基烷基乙烯醚等各種乙烯基單體,該等可單獨使用或組合兩種以上而使用。
作為上述巨分子單體之末端聚合性官能基,例如可列舉甲基丙烯醯基、丙烯醯基、乙烯基等。
[交聯劑(B)]
作為交聯劑(B),較佳為至少具有雙鍵交聯之交聯劑。例如可列舉具有選自(甲基)丙烯醯基、環氧基、異氰酸酯基、羧基、羥基、碳二醯亞胺基、㗁唑啉基、氮丙啶基、乙烯基、胺基、亞胺基、醯胺基中之至少1種交聯性官能基之交聯劑,亦可使用1種或組合2種以上而使用。又,亦包含交聯劑(B)與(甲基)丙烯酸系共聚物(A)化學鍵結之態樣。
其中,較佳為使用多官能(甲基)丙烯酸酯。此處,多官能係指具有2個以上之交聯性官能基者。再者,亦可視需要具有3個以上、4個以上之交聯性官能基。
再者,上述交聯性官能基亦可由可去保護之保護基保護。
作為此種多官能(甲基)丙烯酸酯,例如可列舉:1,4-丁二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、甘油縮水甘油醚二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、雙酚A聚乙氧基二(甲基)丙烯酸酯、雙酚A聚烷氧基二(甲基)丙烯酸酯、雙酚F聚烷氧基二(甲基)丙烯酸酯、聚伸烷基二醇二(甲基)丙烯酸酯、三羥甲基丙烷三氧基乙基(甲基)丙烯酸酯、ε-己內酯改性三(2-羥基乙基)異氰尿酸酯三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、丙氧化季戊四醇三(甲基)丙烯酸酯、乙氧化季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、丙氧化季戊四醇四(甲基)丙烯酸酯、乙氧化季戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、三(丙烯醯氧基乙基)異氰尿酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三季戊四醇六(甲基)丙烯酸酯、三季戊四醇五(甲基)丙烯酸酯、羥基特戊酸新戊二醇二(甲基)丙烯酸酯、羥基特戊酸新戊二醇之ε-己內酯加成物之二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、烷氧基化三羥甲基丙烷三(甲基)丙烯酸酯、二三羥甲基丙烷四(甲基)丙烯酸酯等紫外線硬化型多官能單體類,此外可列舉:聚酯(甲基)丙烯酸酯、環氧(甲基)丙烯酸酯、(甲基)丙烯酸胺基甲酸酯、聚醚(甲基)丙烯酸酯等多官能丙烯酸酯低聚物類,此外還可列舉多官能丙烯醯胺等。
於上述列舉中,就提高對被黏著體之密接性或濕熱白化抑制效果之觀點而言,於上述多官能(甲基)丙烯酸酯單體中,較佳為含有羥基或羧基、醯胺基等極性官能基之多官能單體或低聚物。其中,較佳為使用具有羥基或醯胺基之多官能(甲基)丙烯酸酯。
就防止濕熱白化之觀點而言,較佳為含有疏水性之丙烯酸酯單體與親水性之丙烯酸酯單體作為上述(甲基)丙烯酸酯共聚物(A1)、即接枝共聚物之幹成分,進而較佳為使用具有羥基之多官能(甲基)丙烯酸酯作為交聯劑(B)。
又,為了調整密接性或耐濕熱性、耐熱性等效果,亦可進而添加與交聯劑(B)反應之單官能或多官能之(甲基)丙烯酸酯。
關於交聯劑(B)之含量,就使作為黏著劑組合物之柔軟性與凝聚力平衡之觀點而言,相對於上述(甲基)丙烯酸系共聚物(A)100質量份,較佳為以0.1~20質量份之比率含有,其中尤佳為0.5質量份以上或15質量份以下之比率,其中尤佳為1質量份以上或13質量份以下之比率。
[光聚合起始劑(C)]
本黏著片所使用之光聚合起始劑(C)係作為交聯劑(B)之交聯反應中之反應引發助劑發揮功能者,較佳為藉由照射可見光線、例如380 nm~700 nm之波長區域之光線,產生自由基而成為基礎樹脂之聚合反應之起點者。但是,可藉由僅照射可見光線而產生自由基,又,亦可藉由照射可見光區域以外之波長區域之光線而產生自由基。
就該觀點而言,光聚合起始劑(C)之波長405 nm下之吸光係數尤佳為10 mL/(g∙cm)以上,其中尤佳為15 mL/(g∙cm)以上,其中尤佳為25 mL/(g∙cm)以上。另一方面,作為波長405 nm下之吸光係數之上限,較佳為1×104
mL/(g∙cm)以下,更佳為1×103
mL/(g∙cm)以下。
本發明中之吸光係數相當於將光聚合起始劑(C)設為濃度1 g/L之甲醇溶液時之光程長1 cm時之吸光度。再者,光聚合起始劑(C)之吸光係數並非意指僅吸收特定波長之光,而意指特定波長之光之分解性能(自由基產生能)。具體而言,「波長405 nm下之吸光係數」係指照射波長405 nm之光時之光聚合起始劑之分解性能(自由基產生能)。
作為波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑,例如可列舉:2-苄基-2-二甲基胺基-1-(4-嗎啉基苯基)丁烷-1-酮、2-(4-甲基苄基)-2-二甲基胺基-1-(4-嗎啉基苯基)丁烷-1-酮、雙(η5
-2,4-環戊二烯-1-基)-雙(2,6-二氟-3-(1H-吡咯-1-基)苯基)鈦、雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、雙(2,6-二甲氧基苯甲醯基)2,4,4-三甲基戊基氧化膦、9-氧硫𠮿、2-氯-9-氧硫𠮿、3-甲基-9-氧硫𠮿、2,4-二甲基-9-氧硫𠮿、蒽醌、2-甲基蒽醌、2-乙基蒽醌、2-第三丁基蒽醌、2-胺基蒽醌、1,2-辛二酮-1-(4-(苯硫基)-2-(o-苯甲醯基肟))、1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-乙酮-1-(o-乙醯基肟)、樟腦醌,此外還可列舉三𠯤系光聚合起始劑等。此外,亦包含光聚合起始劑(C)與(甲基)丙烯酸系共聚物(A)化學鍵結之態樣。
該等可使用該等中之任一種或其衍生物,又,亦可組合該等中之兩種以上而使用。又,亦可與波長405 nm下之吸光係數未達10 mL/(g∙cm)之光聚合起始劑併用。
光聚合起始劑根據自由基產生機制大致分類為兩種,大致分為裂解型光聚合起始劑與吸氫型光聚合起始劑,該裂解型光聚合起始劑係可使光聚合性起始劑自身之單鍵裂解分解而產生自由基,該吸氫型光聚合起始劑係光激發之起始劑與系中之氫供與體形成激發錯合物而可使氫供與體之氫轉移。
該等中之裂解型光聚合起始劑於藉由光照射產生自由基時分解而成為其他化合物,一旦被激發便不再具有作為反應起始劑之功能。因此,若使用該分子內裂解型作為於可見光線區域具有吸收波長之光聚合起始劑(C),則與使用吸氫型之情形相比,於藉由光線照射使黏著片交聯後,光線反應性之光聚合性起始劑不易殘留於本黏著劑組合物中,導致黏著片之非預期之經時變化或交聯促進、分解促進之可能性較低,因此較佳。又,關於光聚合性起始劑特有之著色,先前於添加對黏著劑照射可見光線而使其硬化之光聚合起始劑之情形時,有著色之虞,但反應分解物之可見光線區域之吸收消失,較佳為適當選擇消色者。
另一方面,吸氫型光聚合起始劑於藉由紫外線等活性能量線照射進行自由基產生反應時,不會產生如裂解型光聚合起始劑之分解物,因此反應結束後不易成為揮發成分,可減少對被黏著體之損傷。
作為上述裂解型光聚合起始劑,例如可列舉:2,2-二甲氧基-1,2-二苯基乙烷-1-酮、1-羥基環己基苯基酮、2-羥基-2-甲基-1-苯基-丙烷-1-酮、1-(4-(2-羥基乙氧基)苯基)-2-羥基-2-甲基-1-丙烷-1-酮、2-羥基-1-[4-{4-(2-羥基-2-甲基-丙醯基)苄基}苯基]-2-甲基-丙烷-1-酮、低聚(2-羥基-2-甲基-1-(4-(1-甲基乙烯基)苯基)丙酮)、苯基乙醛酸甲酯、2-苄基-2-二甲基胺基-1-(4-嗎啉基苯基)丁烷-1-酮、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基丙烷-1-酮、2-(二甲基胺基)-2-[(4-甲基苯基)甲基]-1-[4-(4-嗎啉基)苯基]-1-丁酮、雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、雙(2,6-二甲氧基苯甲醯基)2,4,4-三甲基戊基氧化膦、或其等之衍生物等。
其中,就利用裂解型光聚合性起始劑,反應後成為分解物且消色之方面而言,較佳為雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基戊基氧化膦等醯基氧化膦系光起始劑。
進而,就與包含具備巨分子單體作為枝成分之接枝共聚物之丙烯酸系共聚物之配合性而言,較佳為使用2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基戊基氧化膦等作為光聚合起始劑(C)。
光聚合起始劑(C)之含量並無特別限制。例如相對於(甲基)丙烯酸系共聚物(A)100質量份,尤佳為以0.1~10質量份之比率含有,其中尤佳為以0.2質量份以上或5質量份以下之比率含有,其中尤佳為以0.5質量份以上或3質量份以下之比率含有。但是,就與其他要素之平衡而言,亦可超過該範圍。光聚合起始劑可使用1種或組合2種以上而使用。
[紫外線吸收劑(D)]
紫外線吸收劑(D)只要為可吸收紫外線之物質即可,作為標準,較佳為藉由紫外線吸收劑(D)之添加,可使透明雙面黏著片之波長380 nm下之吸光度為0.3 mL/(g∙cm)以上、尤其為0.5 mL/(g∙cm)以上、尤其為1.0 mL/(g∙cm)以上之物質。
再者,波長380 nm下之吸光度係根據以下之式求出。
A380
=-Log(T380
/100)
A380
:波長380 nm下之吸光度
T380
;透明雙面黏著片之380 nm下之透過率(%)
作為紫外線吸收劑(D),例如較佳為具有選自由苯并三唑結構、二苯甲酮結構、三𠯤結構、苯甲酸酯結構、草醯苯胺結構、水楊酸酯結構及氰基丙烯酸酯結構所組成之群中之1種或2種以上之結構者。
其中,就紫外線吸收性之觀點而言,較佳為具有選自由苯并三唑結構、三𠯤結構及二苯甲酮結構所組成之群中之1種或2種以上之結構者。
又,就與包含具備巨分子單體作為枝成分之接枝共聚物之丙烯酸系共聚物之配合性之觀點而言,較佳為使用苯并三唑結構或二苯甲酮結構等作為紫外線吸收劑(D)。
紫外線吸收劑(D)之含量並無特別限制。例如相對於(甲基)丙烯酸系共聚物(A)100質量份,尤佳為以0.01~10質量份之比率含有,其中尤佳為以0.1質量份以上或5質量份以下之比率含有,其中尤佳為以0.2質量份以上或3質量份以下之比率含有。但是,就與其他要素之平衡而言,亦可超過該範圍。
就吸收紫外線且於除該紫外線以外之可見光區域開始光聚合之觀點而言,相對於光聚合起始劑(C)100質量份之紫外線吸收劑(D)之比率較佳為25~400質量份,其中尤佳為50質量份以上或300質量份以下,其中尤佳為80質量份以上或250質量份以下。紫外線吸收劑亦可使用1種或組合2種以上而使用。
[其他成分]
本黏著片亦可含有調配於通常之黏著組合物之公知成分作為上述以外之成分。例如可適當含有黏著賦予樹脂、或抗氧化劑、光穩定化劑、金屬減活劑、防銹劑、防老化劑、吸濕劑、防水解劑、增感劑、抗靜電劑、消泡劑、無機粒子等各種添加劑。
又,視需要,亦可視需要適當含有反應觸媒(三級胺系化合物、四級銨系化合物、月桂酸錫化合物等)。
[較佳之組成例]
作為本黏著劑組合物之尤佳組成之一例,可列舉如下組成例,即,含有包含具備巨分子單體作為枝成分之接枝共聚物之丙烯酸系共聚物作為(甲基)丙烯酸系共聚物(A),含有二官能、三官能等多官能(甲基)丙烯酸酯化合物作為交聯劑(B),含有裂解型光聚合起始劑作為光聚合起始劑(C),且含有具有苯并三唑結構或二苯甲酮結構之紫外線吸收劑作為紫外線吸收劑(D)。但是,並不限定於此種組成。
[積層構成]
本黏著片可為包含單一層之片材,亦可為積層2層以上而成之多層片材。
於將本黏著片製成多層黏著片之情形時,即形成具備中間層與最外層之積層構成之黏著片之情形時,較佳為由本黏著劑組合物形成該最外層。
於將本黏著片設為多層構成之情形時,各最外層之厚度與中間層之厚度之比率較佳為1:1~1:20,其中進而較佳為1:2~1:10。
若中間層之厚度為上述範圍,則積層體中之黏著材層之厚度之影響不會過大,不會因過於柔軟而裁剪或操作之作業性變差,因而較佳。
又,若最外層為上述範圍,則不存在對凹凸或彎曲之面之追隨性較差之情況,可維持對被黏著體之接著力或潤濕性,因而較佳。
作為將本黏著片設為多層構成之情形之一例,可列舉具備中間層(α層)與表層(β層)之多層構成,該中間層(α層)包含本黏著劑組合物、即含有(甲基)丙烯酸系共聚物(A)、交聯劑(B)、波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑(C)及紫外線吸收劑(D)之黏著劑樹脂組合物,該表層(β層)含有(甲基)丙烯酸系共聚物(A)及交聯劑(B),且不含紫外線吸收劑(D)。
作為具體之積層構成,可列舉β層/α層/β層、β層/α層/β層/α層/β層等。其中,更佳為β層/α層/β層即2種3層。亦可視需要於α層與β層之間介隔以釋氣阻隔層為代表之其他層。
藉由設置含有(甲基)丙烯酸系共聚物(A)及交聯劑(B)且不含紫外線吸收劑(D)之表層(β層),可抑制α層內之紫外線吸收劑(D)滲出。
再者,於形成β層之樹脂組合物中含有光聚合起始劑(C)、或其分解生成物、或者紫外線吸收劑(D)之情形時,例如將α層(中間層)與β層(表層)重疊後進行光照射時,有於作為表層之β層吸收光而將到達作為中間層之α層之光截斷、或紫外線吸收劑(D)自β層轉移至α層而阻礙α層之光硬化之虞。
就上述觀點而言,β層較佳為不具有光硬化性,更佳為具有熱硬化性。其中,β層更佳為不含光聚合起始劑(C)及紫外線吸收劑(D)之樹脂組合物。
於具備上述α層及β層之多層構成中,關於α層所使用之交聯劑(B),就提高與β層之密接性或濕熱白化抑制效果之觀點而言,較佳為含有羥基或羧基等極性官能基之多官能單體或低聚物。其中,更佳為使用具有羥基之多官能(甲基)丙烯酸系單體。
α層之交聯劑(B)之含量較佳為相對於α層之丙烯酸系共聚物(A)100質量份為0.5~50質量份之比率,其中較佳為1質量份以上或40質量份以下之比率,其中較佳為5質量份以上或30質量份以下之比率。藉由以該範圍含有交聯劑(B),硬化反應於短時間內充分進行,因此容易使硬化後之可靠性與耐濕熱白化性、柔軟性、成形為片狀時之加工適性等平衡化。
另一方面,β層所使用之交聯劑(B)就熱硬化性之觀點而言,較佳為含有選自(甲基)丙烯醯基、環氧基、異氰酸酯基、三聚氰胺基、二醇基、矽氧烷基及胺基中之至少1個有機官能基之交聯劑。
β層之交聯劑(B)之含量較佳為相對於β層之丙烯酸系共聚物(A)100質量份為0.1~20質量份之比率,其中較佳為0.2質量份以上或10質量份以下之比率。藉由以該範圍含有交聯劑(B),硬化反應於短時間內充分進行,因此於硬化後,作為黏著片,容易使黏性與可靠性、耐發泡性、階差吸收性(異物嚙入性)、柔軟性、成形為片狀時之加工適性等平衡化。
又,更佳為相較於β層而於α層中添加更多之交聯劑(B)。對硬化後之α層賦予較高之彈性而使其發揮作為芯材之功能,可對黏著片賦予優異之操作性。
於具備上述α層及β層之多層構成中,關於α層,就吸收紫外線且於除該紫外線以外之可見光區域開始光聚合之觀點而言,於α層中,相對於光聚合起始劑(C)100質量份,紫外線吸收劑(D)較佳為含有25~400質量份,其中更佳為50質量份以上或300質量份以下,進而較佳為80質量份以上或250質量份以下。
於具備上述α層及β層之多層構成中,關於積層α層與β層之順序、硬化之順序並無特別限定。具體而言,可例示以下之積層方法。
方法I:將未硬化之α層與β層積層後,藉由光照射或熱等使α層與β層硬化之方法。
方法II:於未硬化之α層積層藉由熱等而硬化之β層後,藉由光照射使α層硬化之方法。
方法III:於藉由光照射而硬化之α層積層未硬化之β層後,藉由熱等使β層硬化之方法。
方法IV:將分別成形且硬化之α層及β層重疊之方法。
其中,就層間密接力較強,耐濕熱發泡性、可靠性優異,且可抑制紫外線吸收劑之滲出而言,更佳為方法II。
β層較佳為進行熱硬化。
關於用以使β層硬化之加熱溫度,並無特別限定,可根據β層中所含之交聯劑(B)之種類與量而適當調整。若考慮硬化前之樹脂組合物之操作性或樹脂之耐熱性等,則具體而言,較佳為40~200℃,其中更佳為50℃以上或180℃以下,其中進而較佳為60℃以上或150℃以下。
另一方面,α層較佳為進行光硬化。
用以使α層硬化之光照射量以波長405 nm為基準較佳為100~8000 mJ/cm2
,其中更佳為500 mJ/cm2
以上或5000 mJ/cm2
以下,其中進而較佳為1000 mJ/cm2
以上或4000 mJ/cm2
以下。
作為出射光之光源,例如可列舉高壓水銀燈、金屬鹵化物燈、LED燈等。
此時,亦可將實質上不含波長380 nm以下之波長之光之光線、較佳為可見光線照射至本黏著片,使本黏著片進行光交聯。所謂「實質上不含未達380 nm之波長之光之光線」係指未達380 nm之波長之光之透光率未達10%之光。作為照射不含紫外線區域之波長之光之可見光線之方法,可使用僅出射不含紫外線區域之波長之光之可見光線之光源,亦可隔著不使紫外線區域之波長之光透過之濾光片照射。
於具備上述α層及β層之多層構成中,α層之厚度較佳為10~400 μm,其中更佳為20 μm以上或300 μm以下,其中進而較佳為30 μm以上或200 μm以下。
β層之厚度較佳為1~60 μm,其中更佳為3 μm以上或40 μm以下,其中進而較佳為5 μm以上或25 μm以下。
α層之厚度與β層之厚度之比率較佳為1:1~1:20,其中更佳為1:2~1:15。
若α層(中間層)之厚度為上述範圍,則容易獲得紫外線吸收性能,且可容易兼顧到α層之光硬化性能。又,不存在過於柔軟而裁剪或操作之作業性變差之情況,因而較佳。若β層(表層)之厚度為上述範圍,則不存在對凹凸或彎曲之面之追隨性較差之情況,可維持對被黏著體之接著力或潤濕性,因而較佳。
[片材厚度]
關於本黏著片之厚度,藉由使片材厚度變薄,可響應薄壁化要求,另一方面,若使片材厚度過薄,則有例如於被黏著面具有凹凸部之情形時無法充分地追隨於凹凸、或無法發揮充分之接著力之可能性。
就該觀點而言,本黏著片之厚度較佳為20~500 μm,其中尤佳為25 μm以上或350 μm以下,其中尤佳為50 μm以上或250 μm以下。
[特性]
本黏著片之紫外線透過率(JIS K7361-1)較佳為於波長380 nm下為50%以下,其中進而較佳為30%以下,其中進而較佳為10%以下。
另一方面,作為可見光區域之波長420 nm下之透光率較佳為70%以上,更佳為80%以上,進而較佳為85%以上。
本發明之透明雙面黏著片之100℃下之黏度較佳為50 Pa∙s~5000 Pa∙s,其中更佳為100 Pa∙s以上或3000 Pa∙s以下,其中更佳為150 Pa∙s以上或2500 Pa∙s以下。
<黏著片積層體>
本黏著片可直接單獨使用。又,亦可與其他構件積層而使用。
(本黏著片積層體)
例如,可於本黏著片之一側或兩側,積層膜、例如脫模膜或保護膜或積層該等而成之膜而構成黏著片積層體(稱為「本黏著片積層體」)。
可例示如下情形:於本黏著片積層體中,一側或兩側之脫模膜為波長410 nm以下之光之透光率為40%以下之脫模膜。其原因在於,若至少一脫模膜之波長410 nm以下之光之透光率為40%以下,則藉由將該脫模膜積層於本黏著片,即便本黏著片含有波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑(C),亦可有效地防止因可見光之照射而推進光聚合之情況。
就該觀點而言,較佳為一個或兩個脫模膜之波長410 nm以下之光之透光率為40%以下,其中進而較佳為30%以下,其中進而較佳為20%以下。
此處,作為波長410 nm以下之光之透光率為40%以下之脫模膜、即具有將可見光及紫外光之透光之一部分遮斷之作用之脫模膜,例如可列舉於包含調配有紫外線吸收劑之聚酯系、聚丙烯系、聚乙烯系樹脂之鑄膜或延伸膜塗佈聚矽氧樹脂而進行脫模處理者。又,可列舉於在包含調配有紫外線吸收劑之聚酯系、聚丙烯系、聚乙烯系樹脂之層之單面或雙面成形包含不含紫外線吸收劑之樹脂之層而成的多層鑄膜或延伸膜之一面,塗佈聚矽氧樹脂而進行脫模處理者。又,可列舉於包含聚酯系、聚丙烯系、聚乙烯系樹脂之鑄膜或延伸膜之一面塗佈含有紫外線吸收劑之塗料而設置紫外線吸收層,進而於該紫外線吸收層上塗佈聚矽氧樹脂而進行脫模處理者。又,可列舉於包含聚酯系、聚丙烯系、聚乙烯系樹脂之鑄膜或延伸膜之一面塗佈含有紫外線吸收劑之塗料而設置紫外線吸收層,於另一面塗佈聚矽氧樹脂而進行脫模處理者。又,可列舉將一面經脫模處理之包含聚酯系、聚丙烯系、聚乙烯系樹脂之樹脂膜之另一面與另外準備之未實施脫模處理之樹脂膜經由含有紫外線吸收劑之接著層或黏著層進行積層而成者。
上述脫模膜亦可視需要具有抗靜電層或硬塗層、增黏層等其他層。
脫模膜之厚度若過厚則裁剪加工性較差,若過薄則操作性較差,有容易於黏著片產生凹痕之可能性。就該觀點而言,脫模膜之厚度較佳為20 μm以上且300 μm以下,其中較佳為25 μm以上或250 μm以下,其中較佳為38 μm以上或200 μm以下。
於設為在兩側積層有脫模膜之構成之情形時,較佳為使一脫模膜與另一脫模膜之厚度或剝離力不同。
又,可例示如下情形:於本黏著片積層體中,一側或兩側之膜為波長380 nm以上且410 nm以下之光之透光率為40%以下之膜、例如脫模膜或保護膜或積層該等而成之膜。即,於包含含有(甲基)丙烯酸系共聚物(A)、交聯劑(B)、波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑(C)及紫外線吸收劑(D)之黏著劑樹脂組合物的透明雙面黏著片之一側或兩側,積層波長380 nm以上且410 nm以下之光之透光率為40%以下之膜,藉此可抑制至少波長405 nm暴露於該透明雙面黏著片,因此可抑制光聚合起始劑(C)產生自由基。
就該觀點而言,本黏著片積層體中之一側或兩側之膜進而較佳為波長380 nm以上且410 nm以下之光之透光率為40%以下,其中進而較佳為30%以下,其中進而較佳為20%以下,其中進而較佳為10%以下。
再者,作為較佳之構成例,可列舉於本黏著片積層體之單面或雙面積層波長410 nm以下之光之透光率為40%以下之表面保護膜的構成。
其原因在於,於本黏著片積層體之至少一面積層波長410 nm以下之光之透光率為40%以下之表面保護膜,藉此,即便本黏著片含有波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑(C),亦可有效地防止因可見光之照射而推進光聚合。
就該觀點而言,積層於本黏著片積層體之一面或兩面之表面保護膜較佳為波長410 nm以下之光之透光率為40%以下,其中進而較佳為30%以下,其中進而較佳為20%以下。
此處,作為波長410 nm以下之光之透光率為40%以下之表面保護膜、即具有將可見光及紫外光之透光之一部分遮斷之作用之表面保護膜,例如可列舉於聚酯系、聚丙烯系、聚乙烯系鑄膜或延伸膜之一面,塗佈具有再剝離性之微黏著樹脂,於另一面具備塗佈含有紫外線吸收劑之塗料而成之紫外線吸收層的積層膜。又,可列舉於聚丙烯系、聚乙烯系鑄膜或延伸膜之一面,塗佈調配有紫外線吸收劑之具有再剝離性之微黏著樹脂者。又,可列舉於包含調配有紫外線吸收劑之聚酯系、聚丙烯系、聚乙烯系樹脂之鑄膜或延伸膜,塗佈具有再剝離性之微黏著樹脂者。又,可列舉於在包含調配有紫外線吸收劑之聚酯系、聚丙烯系、聚乙烯系樹脂之層之單面或雙面成形包含不含紫外線吸收劑之樹脂之層而成之多層鑄膜或延伸膜之一面,塗佈具有再剝離性之微黏著樹脂者。又,可列舉於包含聚酯系、聚丙烯系、聚乙烯系樹脂之鑄膜或延伸膜之一面塗佈含有紫外線吸收劑之塗料而設置紫外線吸收層,進而於該紫外線吸收層上塗佈具有再剝離性之微黏著樹脂者。又,可列舉於包含聚酯系、聚丙烯系、聚乙烯系樹脂之鑄膜或延伸膜之一面塗佈含有紫外線吸收劑之塗料而設置紫外線吸收層,於另一面塗佈具有再剝離性之微黏著樹脂者。又,可列舉將於一面塗佈有具有再剝離性之微黏著樹脂之包含聚酯系、聚丙烯系、聚乙烯系樹脂之樹脂膜之另一面與另外準備之樹脂膜經由含有紫外線吸收劑之接著層或黏著層進行積層而成者等。
上述表面保護膜亦可視需要具有抗靜電層或硬塗層、增黏層等其他層。
(本圖像顯示裝置構成用積層體)
又,亦可經由本黏著片將2個圖像顯示裝置用構成構件進行積層而構成圖像顯示裝置構成用積層體(稱為「本圖像顯示裝置構成用積層體」)。
此時,作為2個圖像顯示裝置用構成構件,例如可列舉由觸控感測器、圖像顯示面板、表面保護面板及偏光膜所組成之群中之任一個、或兩種以上之組合。
作為本圖像顯示裝置構成用積層體之具體例,例如可列舉如下構成:脫模片材/本黏著片/觸控面板、脫模片材/本黏著片/保護面板、脫模片材/本黏著片/圖像顯示面板、圖像顯示面板/本黏著片/觸控面板、圖像顯示面板/本黏著片/保護面板、圖像顯示面板/本黏著片/觸控面板/本黏著片/保護面板、偏光膜/本黏著片/觸控面板、偏光膜/本黏著片/觸控面板/本黏著片/保護面板等。但是,並不限定於該等積層例。
上述觸控面板亦包含使保護面板內置觸控面板功能之結構體、或使圖像顯示面板內置觸控面板功能之結構體。
於本圖像顯示裝置構成用積層體中,上述2個圖像顯示裝置構成構件中之至少一個亦可為具備紫外線吸收性能者、例如含有紫外線吸收劑者。
由於本黏著片並非藉由紫外線而硬化者,而是藉由可見光而硬化,故而即便圖像顯示裝置構成構件為具備紫外線吸收性能者,亦可藉由透過該圖像顯示裝置構成構件照射可見光而使本黏著片硬化。
(本圖像顯示裝置)
可使用如上所述之本黏著片或本圖像顯示裝置構成用積層體構成圖像顯示裝置(稱為「本圖像顯示裝置」)。
作為本圖像顯示裝置,例如可構成液晶顯示器、有機EL顯示器、無機EL顯示器、電子紙、電漿顯示器及微機電系統(MEMS)顯示器等圖像顯示裝置。
於本圖像顯示裝置中,構成圖像顯示裝置之圖像顯示裝置構成構件中之至少一個亦可為具備紫外線吸收性能者、例如含有紫外線吸收劑者。
由於本黏著片並非藉由紫外線而硬化者,而是藉由可見光而硬化,故而即便圖像顯示裝置構成構件為具備紫外線吸收性能者,亦可藉由透過該圖像顯示裝置構成構件照射可見光而使本黏著片硬化。
<本黏著片之特徵與使用方法>
本黏著片具備紫外線吸收功能、及藉由紫外線區域以外之波長之光線、尤其可見光線之照射而硬化之硬化性。利用此種本黏著片之特性,例如可以如下方式製作圖像顯示裝置構成用積層體。
於將本黏著劑組合物形成為片狀後(片材製作步驟),經由光硬化前之本黏著片將2個圖像顯示裝置構成構件進行積層(一次貼附步驟),其次,照射至少波長405 nm之光、例如包含可見光區域之波長之光線之光,使上述本黏著片進行光交聯而硬化(二次貼附步驟),藉此,可製作圖像顯示裝置構成用積層體。
包含可見光區域之波長之光線之光亦可包含紫外線區域、即波長380 nm以下之波長之光,但於積層之圖像顯示裝置構成構件為容易紫外線劣化之構件之情形時,較佳為照射實質上不含波長380 nm以下之波長之光之光線、即可見光線,使本黏著片進行光交聯而硬化(二次貼附步驟)。
(片材製作步驟)
可將本黏著劑組合物成形為片狀而製作本黏著片。
作為將本黏著劑樹脂組合物成形為片狀之方法,可任意採用目前公知之方法。
此時,如上所述,亦可將本黏著劑樹脂組合物於上述脫模膜上成膜為片狀而製作本黏著片。
又,亦可將本黏著劑樹脂組合物於圖像顯示裝置構成構件上呈片狀製成膜,並於該圖像顯示裝置構成構件上積層本黏著片。
(一次貼附步驟)
只要本黏著片具備自黏性(黏性),則經由本黏著片重疊2個圖像顯示裝置構成構件便可一次貼附。
例如,只要本黏著片為將包含具備巨分子單體作為枝成分之接枝共聚物之丙烯酸系共聚物(A1)作為基礎聚合物者,則可於室溫狀態下保持片狀並且顯示自黏性,而且於未交聯狀態下,於常態、即於室溫附近,可具有適度之接著性、例如可剝離之程度之接著性(稱為“黏性”),因此可易於進行貼附時之定位等。進而又,若於未交聯狀態下加熱,則可熔融或流動(熱熔性),因此可追隨於印刷階差等凹凸部而填充黏著劑,可不產生氣泡等地填充。
積層時使用之貼合裝置可使用公知裝置。例如,可列舉:具備加熱板之電熱加壓機、或膜片方式之貼合機、輥貼合機、真空貼合機、手壓輥等。
再者,於本黏著片使用包含具備巨分子單體作為枝成分之接枝共聚物之丙烯酸系共聚物(A1)作為基礎聚合物之情形時,可於通常狀態、即室溫狀態下賦予優異之保管穩定性或裁剪加工性。並且,由於具有自黏性(黏性),故而僅將本黏著片壓抵於被黏著體便可簡單地獲得貼附程度之黏著性,因此容易進行貼附黏著材之定位,作業上非常便利。
進而,由於形狀保持性優異,故而可預先加工成任意形狀,因此亦可對照所要積層之圖像顯示裝置構成構件之尺寸,預先將成形於脫模膜上之本黏著片進行切割。
此時之切割方法一般為利用湯姆森(Thomson)刀之沖裁、利用超級切割機或雷射之切割,更佳為以容易剝離脫模膜之方式將正背任一者之脫模膜以邊框狀殘留而進行半切割。
於本黏著片具備熱熔性、即具備藉由加熱而柔軟化或流體化之性質之情形時,較佳為加熱本黏著片而積層2個圖像顯示裝置構成構件。藉由加熱本黏著片使其柔軟化或流體化,即便於被黏著面具有凹凸,亦可藉由加熱黏著片,追隨於凹凸而於該凹凸亦無間隙地進行填充。
作為本黏著片之加熱機構,例如可使用各種恆溫槽、或加熱板、電磁加熱裝置、加熱輥等。為了更有效率地進行貼合與加熱,例如較佳為使用電熱加壓機、或膜片方式之貼合機、輥貼合機等。
此時,亦可藉由加熱圖像顯示裝置構成構件中之一者或兩者,而加熱本黏著片。
此時,若本黏著片之軟化溫度為50℃以上,則可使加工特性或常溫下之保管特性充分。另一方面,若本黏著片之軟化溫度為100℃以下,則不僅可抑制對圖像顯示面板或前表面面板之熱損傷,而且亦可防止本黏著片過度流動而溢出。
由此,本黏著片之軟化溫度較佳為50~100℃,其中進而較佳為55℃以上或95℃以下,其中進而較佳為60℃以上或90℃以下。
加熱本黏著片時,較佳為經由本黏著片將2個圖像顯示裝置構成構件重疊而積層後,將積層體於減壓環境下進行加熱。
藉由於減壓環境下加熱積層體,可防止貼合後於本黏著片內混入氣泡或混入異物。
(二次貼附步驟)
於二次貼附步驟中,對於經由本黏著片積層2個圖像顯示裝置構成構件而成之積層體,自至少一圖像顯示裝置構成用構件之外側,透過該圖像顯示裝置構成用構件,將至少波長405 nm之光、例如包含可見光區域之波長之光線之光、即可見光線照射至本黏著片,使本黏著片進行光交聯而硬化。
藉由如此光交聯,可使本黏著片充分交聯,因此可使其具有儘可能地充分對抗例如自保護面板等圖像顯示裝置構成構件產生之釋氣之氣壓的黏著力與凝聚力。並且,由於本黏著片具有紫外線吸收性,故而可抑制黏著片自身以及圖像顯示裝置構成構件之因紫外線所致之劣化。
至少波長405 nm之光可自包含例如選自太陽、螢光燈、LED、有機EL、無機EL及圖像顯示裝置用發光模組中之至少1種或2種以上之組合之光源進行照射。
照射可見光線時,較佳為照射實質上不含紫外線區域之波長之光、例如未達365 nm之波長之光之可見光線。
此處,所謂「實質上不含未達365 nm之波長之光」係指未達365 nm之波長之光之發光強度未達1 mW/cm2
。
其中,較佳為將至少波長405 nm之光、例如包含可見光區域之波長之光線且實質上不含波長380 nm以下之波長之光的光線照射至本黏著片,使本黏著片進行光交聯而硬化。
此處,所謂「實質上不含380 nm以下之波長之光」,意指380 nm以下之波長之光之發光強度為5 mW/cm2
以下、較佳為1 mW/cm2
以下。
作為照射不含380 nm以下之波長之光、即紫外線區域之波長之光之可見光線之方法,亦可使用僅出射不含紫外線區域之波長之光之可見光線之光源。例如可使用包含選自太陽、螢光燈、LED、有機EL、無機EL及圖像顯示裝置用發光模組中之至少1種或2種以上之組合之光源。
又,亦可隔著不使紫外線區域之波長之光透過之濾光片而照射。例如,可列舉如下方法:使用亦出射紫外線區域之波長之光之高壓水銀燈或金屬鹵化物燈、氙弧燈、碳弧燈等發光燈或太陽光作為光源,隔著波長380 nm下之透光率未達10%且波長405 nm下之透光率為60%以上之濾光片,將可見光線照射至接著劑組合物。
上述濾光片亦可為構成本黏著片積層體之脫模膜、或積層於本黏著片積層體之表面而使用之表面保護膜。
調整可見光交聯之程度時,除了控制可見光之照射量之方法以外,亦可藉由隔著上述濾光片照射可見光,而以將可見光之透光之一部分遮斷之方式調整可見光交聯之程度。
<語句說明等>
再者,一般而言,所謂「片材」,於JIS之定義上係指較薄、其厚度相比於長度及寬度較小且平坦之製品,一般而言,所謂「膜」係指厚度相比於長度及寬度極小、最大厚度被任意地限定之較薄且平坦之製品,通常以輥之形式供給(日本工業標準JIS K6900)。然而,片材與膜之邊界並未限定,於本發明中,文語上無需區分兩者,因此,於本發明中,於稱為「膜」之情形時,亦包含「片材」,於稱為「片材」之情形時,亦包含「膜」。
又,於如圖像顯示面板、保護面板等般表達為「面板」之情形時,包含板體、片材及膜。
於本說明書中,於記載為「X~Y」(X、Y為任意數字)之情形時,若無特別說明,則包含「X以上且Y以下」之含義,並且亦包含「較佳為大於X」或「較佳為小於Y」之含義。
又,於記載為「X以上」(X為任意數字)之情形時,若無特別說明,則包含「較佳為大於X」之含義,於記載為「Y以下」(Y為任意數字)之情形時,若無特別說明,則亦包含「較佳為小於Y」之含義。
[實施例]
以下,藉由實施例及比較例進一步進行說明。但是,本發明並不限定於該等。
本實施例中測定之波長405 nm及波長365 nm下之光之累計光量係使用累計光量計(UIT-250,牛尾電機公司製造)進行測定。
[實施例1-1]
對作為(甲基)丙烯酸系共聚物(A)之包含數量平均分子量3000之聚甲基丙烯酸甲酯巨分子單體(Tg80℃)15質量份、丙烯酸丁酯81質量份、及丙烯酸4質量份之共聚物(A-1,質量平均分子量30萬)1 kg,添加作為交聯劑(B)之二甲基丙烯酸甘油酯(日油公司製造,Blemmer GMR)(B-1)100 g、作為光聚合起始劑(C)之Esacure KTO46(C-1)(Lanberti公司製造)15g、作為紫外線吸收劑(D)之2,6-二苯基-4-(2-羥基-4-己氧基苯基)-1,3,5-三𠯤(BASF公司製造,TINUVIN 1577)(D-1)5 g,並均勻混合,而獲得黏著劑組合物1。
光聚合起始劑(C-1)之405 nm下之吸光係數為7.4×101
(mL/(g∙cm))。
其次,將上述黏著劑組合物1於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)上以厚度成為100 μm之方式成形為片狀後,被覆經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm),製成黏著片積層體1。
[實施例1-2]
將作為(甲基)丙烯酸系共聚物(A)之數量平均分子量1400之聚甲基丙烯酸甲酯巨分子單體(Tg55℃)10質量份及(甲基)丙烯酸2-乙基己酯(Tg:-70℃)90質量份進行無規共聚而成的丙烯酸系接枝共聚物(A-2)(重量平均分子量:23萬)1 kg、作為交聯劑(B)之三環癸烷二甲基丙烯酸酯(新中村化學公司製造,製品名:DCP)(B-2)50 g、作為光聚合起始劑(C)之Irgacure 369(C-2)(BASF公司製造)15 g、以及作為紫外線吸收劑(D)之2-(2H-苯并三唑-2-基)-4,6-二第三戊基苯酚(城北化學公司製造,JF-80)(D-2)20 g進行均勻混合,製作黏著樹脂組合物2。
其次,於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)上,以成為100 μm之方式塗佈黏著劑組合物4後,被覆經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm),製成黏著片積層體2。
光聚合起始劑(C-2)之405 nm下之吸光係數為1.6×102
(mL/(g∙cm))。
[實施例1-3]
對作為(甲基)丙烯酸系共聚物(A)之包含(甲基)丙烯酸2-乙基己酯76質量份、乙酸乙烯酯20質量份及丙烯酸4質量份之共聚物(A-3,質量平均分子量40萬)1 kg,添加作為交聯劑(B)之丙氧化季戊四醇四丙烯酸酯(新中村化學公司製造,ATM-4P)(B-3)200 g、作為光聚合起始劑(C)之Irgacure 819(C-3)(BASF公司製造)7 g、以及作為紫外線吸收劑(D)之2,2'-二羥基-4-甲氧基二苯甲酮(Chemipro Kasei公司製造,Kemisorb111)(D-3)10 g,並均勻混合,獲得黏著劑組合物3。
光聚合起始劑(C-3)之405 nm下之吸光係數為9.0×102
(mL/(g∙cm))。
以經剝離處理之2片聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRF,厚度75 μm/三菱樹脂公司製造,DIAFOIL MRT,厚度38 μm)夾著黏著樹脂組合物3,並以厚度成為100 μm之方式賦形為片狀,製成中間層用片材(α)。
對市售之包含丙烯酸系共聚物(A-4,質量平均分子量130萬)之黏著劑溶液(綜研化學公司製造,SK-Dyne1882,固形物成分濃度約17%)1 kg,添加作為異氰酸酯系交聯劑之L-45(B-5)(綜研化學公司製造)1.85 g及作為環氧系交聯劑之E-5XM(B-6)(綜研化學公司製造)0.5 g,製備黏著劑組合物4。
於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)上,以乾燥後之膜厚成為20~30 μm之方式塗敷上述黏接著層用塗敷液後,於80℃下乾燥5分鐘。將其於23℃下固化7天,使交聯劑反應,製成黏著層用片材(β)。
進而,於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm)上,亦同樣地以使黏著劑組合物4乾燥後之膜厚成為20~30 μm之方式塗敷上述黏接著層用塗敷液後,於80℃下乾燥5分鐘。將其於23℃下固化7天,使交聯劑反應,製成黏著層用片材(β')。
將中間層樹脂用片材(α)之兩側之PET膜依序剝離去除,並且將黏著層用樹脂片材(β)及(β')之黏著面依序貼合於中間層用片材(α)之兩表面,製作包含(β)/(α)/(β')之積層體(厚度150 μm)。
隔著殘留於(β)及(β')之表面之PET膜,以波長365 nm之累計光量成為1000 mJ/cm2
、波長405 nm之累計光量成為1400 mJ/cm2
之方式,利用高壓水銀燈照射光,使中間層樹脂用片材(α)進行光交聯,從而製作黏著片積層體3。
[實施例1-4]
使用於加入紫外線吸收劑之PET膜(厚度100 μm)塗佈有聚矽氧脫模劑之脫模膜,代替經剝離處理之聚對苯二甲酸乙二酯膜(DIAFOIL MRV,厚度100 μm),除此以外,以與實施例1-1相同之方式製成黏著片積層體4。
[實施例1-5]
於實施例1-1中製成之黏著片積層體之聚對苯二甲酸乙二酯膜(DIAFOIL MRV,厚度100 μm)之表面,積層包含微黏著層(5 μm)/聚對苯二甲酸乙二酯膜(25 μm)/紫外線吸收層(3 μm)之表面保護膜之微黏著層面,製成包含脫模膜/黏著片/脫模膜/表面保護膜之構成之黏著片積層體5。
[比較例1-1]
作為光聚合起始劑,代替Esacure KTO46(C-1)而添加Esacure TZT(C-4)15 g,除此以外,以與實施例1-1相同之方式製成黏著片積層體6。
光聚合起始劑(C-4)之405 nm下之吸光係數未達10(mL/(g∙cm)),過低而無法測定。
[比較例1-2]
除不添加紫外線吸收劑(D-2)以外,以與實施例1-2相同之方式製成黏著片積層體7。
[比較例1-3]
對市售之包含丙烯酸系共聚物(A-4,質量平均分子量130萬)之黏著劑溶液(綜研化學公司製造,SK-Dyne1882,固形物成分濃度約17%)1 kg,添加作為異氰酸酯系交聯劑之L-45(B-5)(綜研化學公司製造)1.85 g及作為環氧系交聯劑之E-5XM(B-6)(綜研化學公司製造)0.5 g、作為紫外線吸收劑(D)之2,2'-二羥基-4-甲氧基二苯甲酮(Chemipro Kasei公司製造,Kemisorb111)(D-3)10 g,並均勻混合,製成黏著劑組合物7。
其次,於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)上,以乾燥後之厚度成為50 μm之方式塗佈上述黏著劑組合物後,於80℃下乾燥5分鐘,獲得厚度50 μm之片狀之黏著劑組合物7。
於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm)上,亦同樣地以乾燥後之厚度成為50 μm之方式進行塗佈後,於80℃下乾燥5分鐘,獲得厚度50 μm之片狀之黏著劑組合物7。將該等積層並設為厚度100 μm後,被覆經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm)。將其於室溫(23℃)下固化7天,使交聯劑反應,製成黏著片積層體8。
<評價>
[光學特性]
將實施例1-1~1-5及比較例1-1~1-3中製作之黏著片積層體兩側之PET膜依序剝離,以夾入於2片鈉鈣玻璃(厚度0.5 mm)間之方式貼附黏著片,實施高壓釜處理(70℃,表壓0.2 MPa,20分鐘),進行精貼附。關於黏著片積層體1、2、4、5、6、7,使用介隔UV切割濾光片之高壓水銀燈,以波長405 nm之累計光量成為3000 mJ/cm2
之方式進行光照射,製成光學特性評價用樣品。
藉由分光光度計(島津製作所股份有限公司製造,機器名「UV2450」)測定製成之試片之波長區域360~430 nm下之透光率。
將380 nm下之透光率未達50%者判定為UV吸收性「○(良好)」,將50%以上者判定為UV吸收性「×(較差)」。結果示於表1。
[黏著力]
關於實施例1-1~1-5及比較例1-1~1-3中製作之黏著片,將一脫模膜剝離,並利用手壓輥將作為襯底膜之聚對苯二甲酸乙二酯膜(東洋紡織公司製造,商品名「COSMOSHINE A4300」,厚度100 μm)進行輥壓接。將其裁剪成10 mm寬×100 mm長之短條狀,使用手壓輥將剝離剩餘之脫模膜而露出之黏著面輥貼附於鈉鈣玻璃。實施高壓釜處理(70℃,表壓0.2 MPa,20分鐘)而進行精貼附後,關於黏著片積層體1、2、4、5、6、7,使用介隔UV切割濾光片之高壓水銀燈,以波長405 nm之累計光量成為3000 mJ/cm2
、波長365 nm之累計光量成為5 mJ/cm2
以下之方式照射可見光,製成黏著力測定樣品。
一面將襯底膜以呈180°之角度以剝離速度60 mm/分鐘拉伸,一面自玻璃剝離黏著片,利用荷重元測定拉伸強度,測定黏著片對玻璃之180°剝離強度(N/cm),於表1中表示為「玻璃接著力」。結果示於表1。
[凹凸吸收性]
對58 mm×110 mm×厚度0.8 mm之玻璃之周緣部(長邊側3 mm,短邊側15 mm)實施厚度20 μm之印刷,準備開口部為52 mm×80 mm之附印刷階差之玻璃板1。
又,對58 mm×110 mm×厚度0.8 mm之玻璃之周緣部(長邊側3 mm,短邊側15 mm)實施厚度10 μm之印刷,準備開口部為52 mm×80 mm之附印刷階差之玻璃板2。
將黏著片積層體之一脫模膜剝離,輥貼合於54 mm×82 mm厚度0.5 mm之鈉鈣玻璃。
其次,將剩餘之脫模膜剝離,於附印刷階差之玻璃板1及2之印刷面,以黏著面之4邊施加於印刷階差之方式使用真空加壓機進行加壓壓接後(絕對壓力5 kPa,溫度70℃,加壓壓力0.04 MPa),實施高壓釜處理(70℃,表壓0.2 MPa,20分鐘)進行精貼附。關於黏著片積層體1、2、4、5、6、7,自實施了印刷之玻璃側,使用介隔UV切割濾光片之高壓水銀燈,以波長405 nm之累計光量成為3000 mJ/cm2
之方式進行光照射,製成評價用樣品。
關於上述評價用樣品,將可於附20 μm之印刷階差之玻璃板1之階差附近無氣泡等地貼合者判定為凹凸吸收性「◎(優異)」,將關於附10 μm之印刷階差之玻璃板2可於階差附近無氣泡等地貼合者判定為凹凸吸收性「○(良好)」,將關於附印刷階差之玻璃1及2於階差附近看到氣泡者判定為凹凸吸收性「×(較差)」。將結果示於表1。
[耐熱性]
將實施例1-1~1-5及比較例1-1~1-3中製成之黏著片之單面之脫模膜剝離,利用手壓輥於該露出面貼附COP膜(日本瑞翁公司製造,100 μm)。其次,將上述黏著片切成50 mm×80 mm後,剝離剩餘之脫模膜,並利用手壓輥貼附於厚度0.5 mm之鈉鈣玻璃,實施高壓釜處理(溫度80℃,氣壓0.4 MPa,30分鐘)。關於黏著片積層體1、2、4、5、6、7,自COP面,使用介隔UV切割濾光片之高壓水銀燈,以波長405 nm之累計光量成為3000 mJ/cm2
之方式進行光照射,製成評價用樣品。
關於上述評價用樣品,於85℃下固化6小時,將無發泡等且外觀未看到變化者判定為耐熱性「○(良好)」,將看到發泡或剝離者判定為耐熱性「×(較差)」。將結果示於表1。
[耐光性]
將黏著片積層體之一脫模膜剝離,輥貼合於150 mm×200 mm厚度2 mm之鈉鈣玻璃。其次,將剩餘之脫模膜剝離,於露出之黏著面,輥貼合於150 mm×200 mm厚度2 mm之鈉鈣玻璃,實施高壓釜處理(溫度80℃,氣壓0.4 MPa,30分鐘)。
關於黏著片積層體1、2、4、5、6、7,使用高壓水銀燈,以波長405 nm之累計光量成為3000 mJ/cm2
之方式進行光照射,製成評價用樣品。
使用氙耐光性試驗機(Suntest CPS,ATLAS公司製造)對上述評價用樣品照射紫外線24小時,將未於黏著片看到隆起等者判定為耐光性「○(良好)」,將看到隆起或剝離者判定為耐光性「×(較差)」。將結果示於表1。
[表1] 實施例1-1 實施例1-2 實施例1-3 實施例1-4 實施例1-5 比較例1-1 比較例1-2 比較例1-3
中間層 接著層
丙烯酸系共聚物 A-1 100 100 100 100
A-2 100 100
A-3 100
A-4 100 100
交聯劑 B-1 10 10 10 10
B-2 5 5
B-3 20
L-45 1.85 1.85
E-5XM 0.5 0.5
光起始劑 C-1 1.5 1.5 1.5
C-2 1 1
C-3 0.7
C-4 1.5
UV吸收劑 D-1 0.5 0.5 0.5 0.5
D-2 2
D-3 1 1
備註 積層構成 UV切割PET UV切割保護膜
光起始劑 吸光係數(405 nm) mL/(g∙cm) 7.4×101 1.6×102 9.0×102 7.4×101 7.4×101 <10 1.6×102 -
玻璃接著力 N/cm 8 4 10 8 8 2 4 5
黏著片透光率(%) 350 nm 0 0 0 0 0 0 80 0
360 nm 1 0 0 1 1 1 84 0
370 nm 11 2 0 11 11 11 86 0
380 nm 44 17 3 44 44 44 86 1
390 nm 71 55 19 71 71 71 88 13
400 nm 81 77 51 81 81 81 88 42
410 nm 87 86 77 87 87 87 89 73
420 nm 89 89 87 89 89 89 89 86
430 nm 89 89 89 89 89 89 89 89
UV吸收性 〇 〇 〇 〇 〇 〇 × 〇
貼合可靠性 凹凸吸收性 ◎ ◎ 〇 ◎ ◎ ◎ ◎ ×
耐熱性 〇 〇 〇 〇 〇 × 〇 〇
耐光性 〇 〇 〇 〇 〇 〇 × 〇
綜合評價 〇 〇 〇 〇 〇 〇 × ×
關於實施例1-1中使用之經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)、實施例1-4中使用之於加入紫外線吸收劑之PET膜(厚度100 μm)塗佈有聚矽氧脫模劑之脫模膜、及實施例1-5中使用之表面保護膜,藉由分光光度計(島津製作所股份有限公司製造,機器名「UV2450」)測定波長區域380~450 nm之透光率。結果示於表2。
關於黏著片積層體1、黏著片積層體4及黏著片積層體5,分別以經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)、實施例1-4中使用之於加入紫外線吸收劑之PET膜(厚度100 μm)塗佈有聚矽氧脫模劑之脫模膜及表面保護膜側朝上之方式靜置。自該膜側照射螢光燈(照度1100Lx)之光7天。照射之光之波長405 nm下之累計光量約為43 J/cm2
,波長365 nm下之累計光量約為1 mJ/cm2
以下,無法測定。
關於光照射處理前後之黏著片積層體1及4,藉由以下方法求出黏著材之凝膠分率。結果示於表2。
1)稱量黏著劑組合物(W1),包裹於預先測得重量之SUS絲網(W0)。
2)將上述SUS絲網浸漬於100 mL之乙酸乙酯中24小時。
3)取出SUS絲網,於75℃下半乾燥4小時。
4)求出乾燥後之重量(W2),根據下述式測定黏著劑組合物之凝膠分率。
凝膠分率(%)=100×(W2-W0)/W1
關於保管穩定性,將凝膠分率之變化於螢光燈照射前後未達5點者判定為「○(良好)」,將光照射後凝膠分率增加5點以上者判定為「×(較差)」。將結果示於表2。
[表2] 實施例1-1 實施例1-4 實施例1-5
脫模PET
透光率(%) 380 nm 84 26 0
390 nm 85 33 0
400 nm 86 23 0
410 nm 86 13 1
420 nm 87 5 9
430 nm 87 3 39
440 nm 88 2 69
450 nm 88 1 81
凝膠分率 光照射前 0% 0% 0%
光照射後 68% 2% 0%
保管穩定性 × 〇 〇
實施例1-1~1-5之黏著片積層體係不僅具有優異之紫外線吸收性能,而且具有兼顧到貼合時之凹凸吸收性或構件貼合後之可靠性之優異品質者。
相對於此,比較例1-1係使用波長405 nm下之吸光係數未達10 mL/(g∙cm)之光聚合起始劑,因此亦即未使用波長405 nm下之吸光係數為10 mL/(g∙cm)以上之光聚合起始劑,因此即便進行光照射,黏著材亦不會硬化,無法獲得2次貼附後之黏著力或貼合後之可靠性。
比較例1-2不含紫外線吸收劑(D),無法獲得紫外線吸收性能。因此,於耐光性試驗中看到黏著片之發泡,貼合可靠性較差。
比較例1-3係藉由熱交聯而使黏著材組合物交聯之黏著片。由於不具有光硬化性層,故而貼合時之凹凸吸收性較差。
又,實施例1-4係使用加入紫外線吸收劑之PET膜作為脫模膜。藉此,可抑制貼合於構件前黏著材組合物之光硬化反應進行,可製成保管穩定性優異之黏著片積層體。
又,實施例1-5係於脫模膜之表面積層具有紫外線吸收層之表面保護膜。藉此,可抑制貼合於構件前黏著材組合物之光硬化反應進行,可製成保管穩定性優異之黏著片積層體。
以下,藉由實施例2-1~2-3及比較例2-1~2-2進一步詳細地進行說明。
但是,本發明並不限定於該等。再者,下述實施例及比較例中使用之各層之黏著樹脂組合物之組成示於表3。
[實施例2-1]
對作為(甲基)丙烯酸系共聚物(2-A)之包含(甲基)丙烯酸2-乙基己酯76質量份、乙酸乙烯酯20質量份、丙烯酸4質量份之共聚物(2-A-1,質量平均分子量40萬)1 kg,添加作為交聯劑(2-B)之丙氧化季戊四醇四丙烯酸酯(新中村化學公司製造,ATM-4P)(2-B-1)200 g、作為光聚合起始劑(2-C)之Irgacure 369(2-C-1)(BASF公司製造)8 g、作為紫外線吸收劑(2-D)之2,2'-二羥基-4-甲氧基二苯甲酮(Chemipro Kasei公司製造,Kemisorb111)(2-D-1)10 g,並均勻混合,獲得黏著樹脂組合物2-1。
光聚合起始劑(2-C-1)之405 nm下之吸光係數為1.6×102
mL/(g∙cm)。
以經剝離處理之2片聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRF,厚度75 μm/三菱樹脂公司製造,DIAFOIL MRT,厚度38 μm)夾著黏著樹脂組合物2-1,並以厚度成為110 μm之方式賦形為片狀,製成中間層用片材(α-1)。
對市售之包含丙烯酸系共聚物(2-A-2,質量平均分子量130萬)之黏著劑溶液(綜研化學公司製造,SK-Dyne1882,固形物成分濃度約17%)1 kg,添加作為異氰酸酯系交聯劑之L-45(2-B-2)(綜研化學公司製造)1.85 g及作為環氧系交聯劑之E-5XM(2-B-3)(綜研化學公司製造)0.5 g,製備黏著樹脂組合物2。於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRV,厚度100 μm)上,以乾燥後之厚度成為20 μm之方式塗敷上述黏接著層用塗敷液後,於80℃下乾燥5分鐘而使β層熱硬化,製成表層用片材(β-1)。
進而,於經剝離處理之聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRQ,厚度75 μm)上,亦同樣地,以乾燥後之厚度成為20 μm之方式塗敷黏著樹脂組合物2後,於80℃下乾燥5分鐘而使β層熱硬化,製成表層用片材(β'-1)。
將中間層用片材(α-1)兩側之PET膜依序剝離去除,並且將表層用片材(β-1)及(β'-1)之黏著面依序貼合於兩表面,製作包含(β-1)/(α-1)/(β'-1)之積層體。
隔著殘留於(β-1)及(β'-1)之表面之PET膜,以波長405 nm之累計光量成為1500 mJ/cm2
之方式使用高壓水銀燈進行照射,使α層硬化,製作透明雙面黏著片積層體2-1(厚度150 μm)。
[實施例2-2]
對(甲基)丙烯酸系共聚物(2-A-1)1 kg添加交聯劑(2-B-1)200 g、作為光聚合起始劑(2-C)之Esacure KTO46(2-C-2)(Lanberti公司製造)20 g、紫外線吸收劑(2-D-1)20 g並均勻混合,獲得黏著樹脂組合物2-3。
光聚合起始劑(2-C-2)之405 nm下之吸光係數為7.4×101
mL/(g∙cm)。
以經剝離處理之2片聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRF,厚度75 μm/三菱樹脂公司製造,DIAFOIL MRT,厚度38 μm)夾著黏著樹脂組合物2-3,並以厚度成為60 μm之方式賦形為片狀,製成中間層用片材(α-2)。
與實施例2-1同樣地,將中間層用片材(α-2)兩側之PET膜依序剝離去除,並且將表層用片材(β-1)及(β'-1)之黏著面依序貼合於兩表面,製作包含(β-1)/(α-2)/(β'-1)之積層體。
隔著殘留於(β-1)及(β'-1)之表面之PET膜,以波長405 nm之累計光量成為3000 mJ/cm2
之方式使用高壓水銀燈進行照射,使α層硬化,製作透明雙面黏著片積層體2-2(厚度100 μm)。
[實施例2-3]
對(甲基)丙烯酸系共聚物(2-A-1)1 kg添加交聯劑(2-B-1)200 g、光聚合起始劑(2-C-2)8 g、紫外線吸收劑(2-D-1)20 g,並均勻混合,獲得黏著樹脂組合物2-4。
以經剝離處理之2片聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRF,厚度75 μm/三菱樹脂公司製造,DIAFOIL MRT,厚度38 μm)夾著黏著樹脂組合物2-4,並以厚度成為60 μm之方式賦形為片狀,製成中間層用片材(α-3)。
與實施例2-1同樣地,將中間層用片材(α-3)兩側之PET膜依序剝離去除,並且將表層用片材(β-1)及(β'-1)之黏著面依序貼合於雙面,製作包含(β-1)/(α-3)/(β'-1)之積層體。
隔著殘留於(β-1)及(β'-1)之表面之PET膜,以波長405 nm之累計光量成為3000 mJ/cm2
之方式使用高壓水銀燈進行照射,使α層硬化,製作透明雙面黏著片積層體2-3(厚度100 μm)。
[比較例2-1]
對(甲基)丙烯酸系共聚物(2-A-1)1 kg,添加交聯劑(2-B-1)200 g、作為光聚合起始劑(2-C)之Esacure TZT(2-C-3)(Lanberti公司製造)10 g、作為紫外線吸收劑(2-D)之2,2'-二羥基-4-甲氧基二苯甲酮(Chemipro Kasei公司製造,Kemisorb111)(2-D-1)20 g,並均勻混合,獲得黏著樹脂組合物2-5。
光聚合起始劑(2-C-3)之405 nm下之吸光係數未達10 mL/(g∙cm),過低而無法測定。
以經剝離處理之2片聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRF,厚度75 μm/三菱樹脂公司製造,DIAFOIL MRT,厚度38 μm)夾著黏著樹脂組合物2-5,並以厚度成為110 μm之方式賦形為片狀,製成中間層用片材(α-4)。
與實施例2-1同樣地,將中間層用片材(α-4)兩側之PET膜依序剝離去除,並且將表層用片材(β-1)及(β'-1)之黏著面依序貼合於兩表面,製作包含(β-1)/(α-4)/(β'-1)之積層體。
隔著殘留於(β-1)及(β'-1)之表面之PET膜,以波長405 nm之累計光量成為1500 mJ/cm2
之方式使用高壓水銀燈進行照射,使α層硬化,製作透明雙面黏著片積層體2-4(厚度100 μm)。
[比較例2-2]
對(甲基)丙烯酸系共聚物(2-A-1)1 kg,添加交聯劑(2-B-1)200 g、光聚合起始劑(2-C-2)8 g並均勻混合,獲得黏著樹脂組合物2-6。此時,未添加紫外線吸收劑(2-D)。
以經剝離處理之2片聚對苯二甲酸乙二酯膜(三菱樹脂公司製造,DIAFOIL MRF,厚度75 μm/三菱樹脂公司製造,DIAFOIL MRT,厚度38 μm)夾著黏著樹脂組合物2-6,並以厚度成為110 μm之方式賦形為片狀,製成中間層用片材(α-5)。
與實施例2-1同樣地,將中間層用片材(α-5)兩側之PET膜依序剝離去除,並且將表層用片材(β-1)及(β'-1)之黏著面依序貼合於兩表面,製作包含(β-1)/(α-5)/(β'-1)之積層體。
隔著殘留於(β-1)及(β'-1)之表面之PET膜,以波長405 nm之累計光量成為1500 mJ/cm2
之方式使用高壓水銀燈進行照射,使α層硬化,製作透明雙面黏著片積層體2-5(厚度150 μm)。
<評價>
[紫外線吸收性能]
將實施例2-1~2-3及比較例2-1~2-2中製作之透明雙面黏著片積層體之兩側之PET膜依序剝離,以夾入於2片鈉鈣玻璃(54×82 mm,厚度0.5 mm)間之方式貼附黏著片後,實施高壓釜處理(70℃,表壓0.2 MPa,20分鐘)進行精貼附,作為紫外線吸收性能評價用樣品。
藉由分光光度計(島津製作所股份有限公司製造,機器名「UV2450」)測定所製成之試片之波長區域360~430 nm下之透光率。將380 nm下之透光率未達50%者判定為「○(良好)」,將50%以上者判定為「×(較差)」。結果示於表4。
[玻璃接著力]
關於實施例2-1~2-3及比較例2-1~2-2中製作之透明雙面黏著片,剝離一剝離膜,利用手壓輥將作為襯底膜之聚對苯二甲酸乙二酯膜(東洋紡織公司製造,商品名「COSMOSHINE A4300」,厚度100 μm)進行輥壓接。將其裁剪成10 mm寬×100 mm長之短條狀,使用手壓輥將剝離剩餘之剝離膜而露出之黏著面輥貼附於鈉鈣玻璃。對其實施高壓釜處理(70℃,表壓0.2 MPa,20分鐘)而進行精貼附,製成黏著力測定樣品。一面將襯底膜以呈180°之角度以剝離速度60 mm/分鐘進行拉伸,一面自玻璃剝離黏著片,藉由荷重元測定拉伸強度,測定黏著片對玻璃之180°剝離強度,結果示於表4。
[保持力(偏移長度)]
將實施例2-1~2-3及比較例2-1~2-2中製作之黏著片裁剪成50 mm×100 mm後,將單面之剝離膜剝離,以該黏著片之單面重疊於襯底用聚對苯二甲酸乙二酯膜(厚度38 μm)之方式利用手壓輥進行貼附,將其裁剪成寬25 mm×長度100 mm之短條狀而作為試片。其次,將殘留之剝離膜剝離,將試片以對垂直地豎立設置之SUS板(厚度120 mm,5 mm×1.5 mm)重疊20 mm之長度之方式藉由手壓輥進行貼附。此時,透明雙面黏著片與SUS板之貼附面積成為25 mm×20 mm。
其後,使試片於40℃之氛圍下固化15分鐘後,對試片沿垂直方向安裝並施加荷重500 g之砝碼,靜置30分鐘後,測定SUS與試片之貼附位置向下方之偏移長度( mm)。
將偏移長度未達1 mm者判定為「◎(優異)」,將偏移長度為1 mm以上且未達2 mm者判定為「〇(良好)」,將偏移長度為2 mm以上者判定為「×(較差)」。將結果示於表4。
[耐發泡可靠性]
作為耐發泡可靠性評價用樣品,使用2片與紫外線吸收性能評價用樣品相同者。將其於85℃下固化100小時,將無發泡等且外觀未看到變化者判定為「○(良好)」,將看到發泡或剝離者判定為「×(較差)」。將結果示於表4。
[表3] 黏著樹脂組成物 2-1 2-2 2-3 2-4 2-5 2-6
(甲基)丙烯酸系共聚物(A) A-1 100 100 100 100 100
A-2 100
交聯劑(B) B-1 20 20 20 20 20
B-2 0.185
B-3 0.05
光聚合起始劑(C) C-1 0.8 0.8
C-2 2 0.8
C-3 1
紫外線吸收劑(D) D-1 1 2 2 2
光聚合起始劑(C)
吸光係數 405 nm 1.6×102 - 7.4×101 7.4×101 <10 1.6×102
[表4] 實施例2-1 實施例2-2 實施例2-3 比較例2-1 比較例2-2
透光率[%] 360 nm 0 0 0 0 84
370 nm 0 0 0 0 85
380 nm 3 4 3 3 88
390 nm 19 21 18 20 88
400 nm 51 53 52 53 89
410 nm 77 78 78 79 89
420 nm 87 87 87 88 89
430 nm 89 89 89 89 89
紫外線吸收性能 〇 〇 〇 〇 ×
玻璃接著力[N/cm] 10 9 10 2 7
保持力(40℃) ◎
(1 mm) ◎
(1 mm) 〇
(1.9 mm) ×
(落下) ◎
(<1 mm)
耐發泡可靠性 〇 〇 〇 × 〇
綜合評價 ◎ ◎ 〇 × ×
對實施例2-1~2-3之黏著片積層體進行觀察,結果未觀察到紫外線吸收劑(D)之滲出。
實施例2-1~2-3之黏著片積層體係維持黏著力或保持力、耐濕熱可靠性等特性並且賦予優異之紫外線吸收性能者。
比較例2-1由於使用波長405 nm之吸光係數未達10 mL/(g∙cm)之光聚合起始劑,故而即便進行光照射,黏著劑亦不會硬化,黏著力或貼合後之可靠性較差。
比較例2-2由於α層不含紫外線吸收劑(D),故而紫外線吸收性能較差。Hereinafter, an example of the embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
<The adhesive sheet>
The transparent double-sided adhesive sheet of an example of the embodiment of the present invention contains a (meth)acrylic copolymer (A), a crosslinking agent (B), and an absorption coefficient at a wavelength of 405 nm of 10 mL/(g∙cm) ) Transparent double-sided adhesive sheet (referred to as "this adhesive sheet") of the adhesive resin composition of the above photopolymerization initiator (C) and ultraviolet absorber (D) (referred to as "this adhesive composition") .
[(Meth) acrylic copolymer (A)]
The (meth)acrylic polymer used as the base polymer of the adhesive sheet can be determined by the type, composition ratio, and polymerization conditions of the acrylic monomer or methacrylic monomer used for polymerization. Properly adjust the glass transition temperature (Tg) and other characteristics.
The so-called "base polymer" in this adhesive sheet refers to the resin that is the main component of this adhesive sheet. The specific content is not specified. As a standard, it is a resin that occupies 50% by mass or more of the resin contained in the adhesive sheet, especially 65% by mass or more, especially 80% by mass or more (including 100% by mass). Furthermore, when there are two or more base polymers, the total amount of them corresponds to the above-mentioned content.
As the (meth)acrylic (co)polymer (A), for example, in addition to the homopolymer of (meth)acrylic acid alkyl ester, it can be obtained by polymerizing it with a copolymerizable monomer component. The copolymer, more preferably, contains alkyl (meth)acrylate, and is selected from carboxyl-containing monomers, hydroxyl-containing monomers, amine-containing monomers, epoxy-containing monomers, and A copolymer in which any one or more monomers among vinyl monomers such as amide-based monomers are used as monomer components.
More specifically, examples include straight-chain or branched (meth)acrylic acid alkyl esters with 4 to 18 carbon atoms selected from the side chain (hereinafter also referred to as "copolymerizable monomer A"), which can be copolymerized therewith. Carboxyl group-containing monomer (hereinafter also referred to as "copolymerizable monomer B"), vinyl monomer (hereinafter also referred to as "copolymerizable monomer C"), side chain carbon number 1-3 (methyl) A copolymer of any one or more monomers among acrylate (hereinafter also referred to as "copolymerizable monomer D") and a hydroxyl-containing monomer (hereinafter referred to as "copolymerizable monomer E").
In addition, as a particularly good example, it can also be cited: (a) a copolymer containing monomer components containing comonomer A and comonomer B and/or comonomer C, or (b) containing A copolymer of the monomer components of the comonomer A, the comonomer B and/or the comonomer C, and the comonomer D and/or the comonomer E. Specifically, examples include: copolymers of comonomers A and B, copolymers of comonomers A and C, copolymers of comonomers A, B, and C, copolymers of comonomers A, B, and Copolymer of D, copolymer of comonomer A, B and E, copolymer of comonomer A, B, D and E, copolymer of comonomer A, C and D, copolymer of comonomer Copolymers of A, C, and E, copolymers of comonomers A, C, D, and E, copolymers of comonomers A, B, C, and D, copolymers of comonomers A, B, C, and E The copolymer of, the copolymer of comonomers A, B, C, D and E.
Examples of the above-mentioned "copolymerizable monomer A" include n-butyl (meth)acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, and tertiary butyl (meth)acrylate. Ester, amyl (meth)acrylate, isoamyl (meth)acrylate, neopentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, (meth)acrylic acid Heptyl ester, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, Tertiary butyl cyclohexyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, ( Tridecyl (meth)acrylate, tetradecyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, ( Meth) acrylate, 3,5,5-trimethylcyclohexane (meth)acrylate, dicyclopentyl (meth)acrylate, dicyclopentenyl (meth)acrylate, (meth) Base) Dicyclopentenoxyethyl acrylate and the like. These can also be used 1 type or in combination of 2 or more types.
The above-mentioned copolymerizable monomer A preferably contains 30% by mass or more and 90% by mass or less in all monomer components of the copolymer, and more preferably, it is contained in the range of 35% by mass or more or 88% by mass or less, especially More preferably, it is contained in the range of 40% by mass or more or 85% by mass or less.
As the above-mentioned "copolymerizable monomer B", for example, (meth)acrylic acid, 2-(meth)acryloxyethylhexahydrophthalic acid, 2-(meth)acryloxypropyl Hexahydrophthalic acid, 2-(meth)acryloxyethyl phthalic acid, 2-(meth)acryloxypropyl phthalic acid, 2-(meth)acryloxyethyl Maleic acid, 2-(meth)acryloxypropyl maleic acid, 2-(meth)acryloxyethyl succinic acid, 2-(meth)acryloxypropyl Succinic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid. These can also be used 1 type or in combination of 2 or more types. Furthermore, the meaning of "(meth)acrylic acid" includes acrylic acid and methacrylic acid. Similarly, the meaning of "(meth)acryloyl" includes allyl and methacryloyl.
Examples of the above-mentioned "copolymerizable monomer C" include compounds having a vinyl group in the molecule. Examples of such compounds include: alkyl (meth)acrylates with an alkyl group of 1 to 12 carbon atoms; and functionalities having functional groups such as hydroxyl, amido, and alkoxyalkyl in the molecule Monomers; and polyalkylene glycol di(meth)acrylates; and vinyl ester monomers such as vinyl acetate, vinyl propionate, and vinyl laurate; and styrene, chlorostyrene, and methyl chloride Aromatic vinyl monomers such as styrene, α-methylstyrene and other substituted styrenes. These can also be used 1 type or in combination of 2 or more types.
The copolymerizable monomer B and the copolymerizable monomer C are preferably contained in the range of 1.2% by mass to 15% by mass or less in all monomer components of the copolymer. Among them, from the viewpoint of obtaining excellent adhesive properties, It is preferably contained in a range of 1.5% by mass or more or 10% by mass or less, and particularly preferably in a range of 2% by mass or more or 8% by mass or less.
As said "copolymerizable monomer D", methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, etc. are mentioned. These can also be used 1 type or in combination of 2 or more types.
The above-mentioned copolymerizable monomer D is preferably contained in all monomer components of the copolymer from 0% by mass to 70% by mass, and more preferably in the range of 3% by mass or more or 65% by mass, especially More preferably, it is contained in the range of 5 mass% or more or 60 mass% or less.
Examples of the above-mentioned "copolymerizable monomer E" include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth) Hydroxyalkyl (meth)acrylates such as 2-hydroxybutyl acrylate. These can also be used 1 type or in combination of 2 or more types.
The above-mentioned copolymerizable monomer E preferably contains 0% by mass or more and 30% by mass or less in all monomer components of the copolymer, and more preferably, it is contained in the range of 0% by mass or more or 25% by mass or less, especially More preferably, it is contained in the range of 0% by mass or more or 20% by mass or less.
In addition to the above disclosure, if necessary, anhydride group-containing monomers such as maleic anhydride and itaconic anhydride, glycidyl (meth)acrylate, glycidyl α-ethyl acrylate, and (meth)acrylic acid can also be appropriately used. 3,4-epoxybutyl ester and other epoxy-containing monomers, (meth)acrylic acid dimethylaminoethyl, (meth)acrylic acid diethylaminoethyl and other amino group-containing (meth) Acrylate-based monomers, (meth)acrylamide, N-tert-butyl(meth)acrylamide, N-methylol(meth)acrylamide, N-methoxymethyl(meth)acrylamide, Base) acrylamide, N-butoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, maleic amide, maleic imide, etc. Contain amide group The monomers include vinyl pyrrolidone, vinyl pyridine, vinyl carbazole and other heterocyclic basic monomers.
Specific examples of (meth)acrylic (co)polymers include, for example, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, decyl (meth)acrylate, ( Monomer components (a) such as lauryl meth)acrylate, isostearyl (meth)acrylate, butyl (meth)acrylate, ethyl (meth)acrylate, methyl (meth)acrylate, etc., with a carboxyl group Of (meth)acrylic acid, 2-(meth)acryloxyethylhexahydrophthalic acid, 2-(meth)acryloxypropylhexahydrophthalic acid, 2-(meth)propylene Acetoxyethyl phthalic acid, 2-(meth)acryloxypropyl phthalic acid, 2-(meth)acryloxyethyl maleic acid, 2-(meth)propylene Acrylic acid, 2-(meth)acryloxyethyl succinic acid, 2-(meth)acryloxypropyl succinic acid, crotonic acid, fumaric acid , Maleic acid, itaconic acid and other monomer components (b), and hydroxyethyl (meth)acrylate with organic functional groups, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate Ester, (meth) glyceryl acrylate, monomethyl maleate, monomethyl itaconic acid, vinyl acetate, glycidyl (meth)acrylate, (meth)acrylamide, (methyl) ) A (meth)acrylate copolymer obtained by copolymerizing monomer components (c) such as acrylonitrile, fluorinated (meth)acrylate, and polysiloxane (meth)acrylate.
The mass average molecular weight of the (meth)acrylic (co)polymer is preferably 100,000 to 1.5 million, of which it is preferably 150,000 or more or 1.3 million or less, and particularly preferably 200,000 or more or 1.2 million or less.
When it is desired to obtain an adhesive composition with higher cohesive force, from the viewpoint that the larger the molecular weight, the more cohesive force can be obtained by the entanglement of molecular chains, the mass average molecular weight is preferably 700,000 to 1.5 million, and it is particularly preferred Above 800,000 or below 1.3 million. On the other hand, when it is desired to obtain an adhesive composition with high fluidity or stress relaxation properties, the mass average molecular weight is preferably 70,000 to 700,000, and more preferably 100,000 or more or 600,000 or less. In addition, when a solvent is not used when forming an adhesive sheet, etc., it is difficult to use a polymer with a larger molecular weight. Therefore, the mass average molecular weight of the acrylic copolymer is preferably 70,000 to 700,000, and more preferably 100,000 or more or 60 10,000 or less, especially 150,000 or more or 500,000 or less.
(Acrylic copolymer (A1))
As an example of a preferable base polymer of the present adhesive sheet, a (meth)acrylic copolymer (A1) containing a graft copolymer having a macromonomer as a branch component can be cited.
As long as the acrylic copolymer (A1) is used as the base resin to form the adhesive sheet, the adhesive sheet can maintain a sheet shape at room temperature and exhibit self-adhesiveness. If heated in an uncrosslinked state, it will have melting or The fluid hot-melt property can further light-harden, and it can exert excellent cohesive force for bonding after light-hardening.
Therefore, as long as the acrylic copolymer (A1) is used as the base polymer of the adhesive sheet, even if it is in an uncrosslinked state, it can have the following properties, that is, it exhibits adhesiveness at room temperature (20°C), and The property of softening or fluidizing at 100°C, or the property of softening or fluidizing when heated to a temperature of 50-90°C, more preferably 60°C or more or 80°C or less.
The glass transition temperature of the copolymer constituting the dry component of the acrylic copolymer (A1) is preferably -70 to 0°C.
At this time, the so-called glass transition temperature of the copolymer component constituting the dry component refers to the glass transition temperature of the polymer obtained by copolymerizing only the monomer component constituting the dry component of the acrylic copolymer (A1). Specifically, it means the glass transition temperature and composition ratio of the polymer obtained from the homopolymer of each component of the copolymer, and the value calculated by the formula of Fox.
In addition, the so-called Fox calculation formula refers to the calculated value obtained by the following formula, which can be obtained using the value described in the polymer handbook [Polymer HandBook, J. Brandrup, Interscience, 1989].
1/(273+Tg)=Σ(Wi/(273+Tgi))
[In the formula, Wi represents the weight fraction of monomer i, and Tgi represents the Tg (°C) of the homopolymer of monomer i]
The glass transition temperature of the copolymer component constituting the dry component of the acrylic copolymer (A1) will affect the flexibility of the adhesive sheet at room temperature, or the wettability of the adhesive sheet to the adherend, that is, the adhesiveness Therefore, in order to obtain proper adhesion (tackiness) of the adhesive sheet at room temperature, the glass transition temperature is preferably -70°C to 0°C, and particularly preferably -65°C or higher or -5°C Below, among them, it is particularly preferably -60°C or higher or -10°C or lower.
However, even if the glass transition temperature of the copolymer component is set to the same temperature, the viscoelasticity can be adjusted by adjusting the molecular weight. For example, it can be made softer by reducing the molecular weight of the copolymer component.
Examples of the (meth)acrylate monomer contained in the dry component of the acrylic copolymer (A1) include: methyl (meth)acrylate, ethyl (meth)acrylate, and propyl (meth)acrylate , Isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, tertiary butyl (meth)acrylate, (meth)acrylate Base) amyl acrylate, isoamyl (meth)acrylate, neopentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, ( 2-ethylhexyl methacrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate , Decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, (meth) Stearyl acrylate, isostearyl (meth)acrylate, behenyl acrylate, iso-(meth)acrylate, 2-phenoxyethyl (meth)acrylate, 3,5,5-trimethyl Cyclohexane acrylate, p-cumyl phenol EO modified (meth)acrylate, dicyclopentyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentene (meth)acrylate Cyclopentenyloxyethyl, benzyl (meth)acrylate and the like. Among them, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, glycerol (meth)acrylate, etc., having hydrophilic groups or organic functional groups, etc. can also be used Hydroxyl-containing (meth)acrylates such as esters, or (meth)acrylic acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid, 2-(meth)acryloyloxypropylhexa Hydrophthalic acid, 2-(meth)acryloyloxyethyl phthalic acid, 2-(meth)acryloyloxypropyl phthalic acid, 2-(meth)acryloyloxyethyl cis Butenedioic acid, 2-(meth)acryloxypropyl maleic acid, 2-(meth)acryloxyethyl succinic acid, 2-(meth)acryloxypropyl Carboxyl-containing monomers such as succinic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, monomethyl maleate and monomethyl itaconic acid, maleic anhydride, Iconic anhydride and other acid anhydride group-containing monomers, glycidyl (meth)acrylate, α-ethyl glycidyl acrylate, 3,4-epoxybutyl (meth)acrylate and other epoxy group-containing monomers, ( (Meth)acrylic acid ester monomers containing amine groups such as dimethylaminoethyl methacrylate and diethylaminoethyl (meth)acrylate, (meth)acrylamide, N-th Tributyl(meth)acrylamide, N-methylol(meth)acrylamide, N-methoxymethyl(meth)acrylamide, N-butoxymethyl(methyl) Monomers containing amide groups such as acrylamide, diacetone acrylamide, maleic amide, maleimide, etc., heterocyclic rings such as vinyl pyrrolidone, vinyl pyridine, vinyl carbazole, etc. Department of basic monomers, etc.
In addition, styrene, tertiary butyl styrene, α-methylstyrene, vinyl toluene, acrylonitrile, methacrylic acid monomers which can be copolymerized with the above-mentioned acrylic monomers or methacrylic monomers can also be suitably used. Various vinyl monomers such as nitrile, vinyl acetate, vinyl propionate, alkyl vinyl ether, hydroxyalkyl vinyl ether, and alkyl vinyl monomer.
In addition, the dry component of the acrylic copolymer (A1) preferably contains a hydrophobic (meth)acrylate monomer and a hydrophilic (meth)acrylate monomer as structural units.
If the dry component of the acrylic copolymer (A1) is composed only of hydrophobic monomers, it is considered to have a tendency to whiten under moist heat. Therefore, it is preferable to introduce hydrophilic monomers into the dry components to prevent whitening under moist heat.
Specifically, as the dry component of the above-mentioned acrylic copolymer (A1), hydrophobic (meth)acrylate monomers, hydrophilic (meth)acrylate monomers, and macromonomer terminals can be cited It is a copolymer component formed by random copolymerization of polymerizable functional groups.
Here, as the above-mentioned hydrophobic (meth)acrylate monomer, for example, n-butyl (meth)acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, ( Tertiary butyl meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, neopentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate Ester, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, ( (Meth) tertiary butyl cyclohexyl acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, (meth) Base) cetyl acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl acrylate, iso-(meth)acrylate, cyclohexyl (meth)acrylate, ( Dicyclopentenoxyethyl meth)acrylate, methyl methacrylate.
In addition, examples of hydrophobic vinyl monomers include vinyl acetate, styrene, tertiary butyl styrene, α-methylstyrene, vinyl toluene, and alkyl vinyl monomers.
As the above-mentioned hydrophilic (meth)acrylate monomers, for example, methyl acrylate, (meth)acrylic acid, tetrahydrofurfuryl (meth)acrylate, or hydroxyethyl (meth)acrylate, (meth)acrylate (Meth)acrylic acid esters containing hydroxyl groups such as hydroxypropyl acrylate, hydroxybutyl (meth)acrylate, glycerol (meth)acrylate, or (meth)acrylic acid, 2-(meth)acrylic acid Ethyl hexahydrophthalic acid, 2-(meth)acryloyloxypropylhexahydrophthalic acid, 2-(meth)acryloyloxyethyl phthalic acid, 2-(meth)propylene Acryoxypropyl phthalic acid, 2-(meth)acryloxyethyl maleic acid, 2-(meth)acryloxypropyl maleic acid, 2-(methyl) ) Acrylic oxyethyl succinic acid, 2-(meth) acryloxy propyl succinic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, maleic acid Monomethyl, monomethyl itaconic acid and other carboxyl group-containing monomers, maleic anhydride, itaconic anhydride and other acid anhydride group-containing monomers, glycidyl (meth)acrylate, α-ethyl glycidyl acrylate, Epoxy group-containing monomers such as 3,4-epoxybutyl (meth)acrylate, alkoxy polyalkylene glycol (meth)acrylate such as methoxy polyethylene glycol (meth)acrylate , N,N-dimethyl acrylamide, hydroxyethyl acrylamide, etc.
(Branch component: macromolecular monomer)
The acrylic copolymer (A1) preferably incorporates a macromonomer as the branch component of the graft copolymer, and contains repeating units derived from the macromonomer.
The so-called macromolecular single system refers to polymer monomers with terminal polymerizable functional groups and high molecular weight backbone components.
The glass transition temperature (Tg) of the macromonomer is preferably higher than the glass transition temperature of the copolymer component constituting the acrylic copolymer (A1).
Specifically, since the glass transition temperature (Tg) of the macromonomer will affect the heating and melting temperature (hot melting temperature) of the adhesive sheet, the glass transition temperature (Tg) of the macromonomer is preferably 30°C~ 120°C, among them, 40°C or higher or 110°C or lower is more preferable, and among them, 50°C or higher or 100°C or lower is still more preferable.
As long as it is such a glass transition temperature (Tg), excellent processability and storage stability can be maintained by adjusting the molecular weight, and it can be adjusted to be heat-melted at around 50°C to 80°C.
The so-called glass transition temperature of the macromonomer refers to the glass transition temperature of the macromonomer itself, which can be measured by a differential scanning calorimeter (DSC).
In addition, in order to allow the branch components to pull each other at room temperature, the adhesive composition can maintain a state of physical crosslinking, and by heating to an appropriate temperature, the physical crosslinking is released and fluidity can be obtained It is also preferable to adjust the molecular weight or content of the macromonomer.
From this point of view, the macromonomer is preferably contained in the acrylic copolymer (A1) at a ratio of 5 mass% to 30 mass%, and among them, it is preferably 6 mass% or more or 25 mass% or less. It is preferably 8% by mass or more or 20% by mass or less.
In addition, the number average molecular weight of the macromonomer is preferably 500 or more and less than 8,000, and more preferably 800 or less or less than 7,500, and more preferably 1,000 or less or less than 7,000.
As the macromonomer, a common manufacturer (for example, the macromonomer manufactured by Toagosei, etc.) can be appropriately used.
The high molecular weight backbone component of the macromonomer preferably contains an acrylic polymer or a vinyl polymer.
Examples of the high molecular weight skeleton component of the macromonomer include: methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, ( N-Butyl (meth)acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, tertiary butyl (meth)acrylate, amyl (meth)acrylate, (meth)acrylic acid Isoamyl ester, neopentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, N-octyl acrylate, isooctyl acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, decyl (meth)acrylate, (meth)acrylate Base) isodecyl acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, isopropyl (meth)acrylate Stearyl ester, behenyl acrylate, iso(meth)acrylate, 2-phenoxyethyl (meth)acrylate, 3,5,5-trimethylcyclohexane acrylate, p-cumene -Based phenol EO modified (meth)acrylate, (meth)dicyclopentyl acrylate, (meth)acrylate, dicyclopentenyl (meth)acrylate, (meth)acrylate, dicyclopentenyloxyethyl, (meth) ) Benzyl acrylate, hydroxyalkyl (meth)acrylate, (meth)acrylic acid, glycidyl (meth)acrylate, (meth)acrylamide, N,N-dimethyl(meth)propylene (Meth)acrylate monomers such as amide, (meth)acrylonitrile, alkoxyalkyl (meth)acrylate, alkoxypolyalkylene glycol (meth)acrylate, or styrene , Tertiary butyl styrene, α-methyl styrene, vinyl toluene, alkyl vinyl monomer, alkyl vinyl ester, alkyl vinyl ether, hydroxy alkyl vinyl ether and other vinyl monomers, etc. It can be used alone or in combination of two or more.
As the terminal polymerizable functional group of the macromonomer, for example, a methacryl group, an acryl group, a vinyl group, etc. may be mentioned.
[Crosslinking agent (B)]
As the crosslinking agent (B), a crosslinking agent having at least double bond crosslinking is preferred. For example, it may be selected from the group consisting of (meth)acrylic acid group, epoxy group, isocyanate group, carboxyl group, hydroxyl group, carbodiimide group, azolinyl group, aziridinyl group, vinyl group, amino group, imine group The crosslinking agent of at least one kind of crosslinkable functional group among the group and the amide group can also be used 1 type or in combination of 2 or more types. In addition, the crosslinking agent (B) and the (meth)acrylic copolymer (A) are chemically bonded.
Among them, it is preferable to use a polyfunctional (meth)acrylate. Here, polyfunctional means having two or more crosslinkable functional groups. Furthermore, it may have 3 or more, 4 or more crosslinkable functional groups as needed.
Furthermore, the above-mentioned cross-linkable functional group may also be protected by a protective group that can be deprotected.
Examples of such polyfunctional (meth)acrylates include 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, and glycerol di(meth)acrylic acid Ester, glycerol glycidyl ether di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, tricyclodecane dimethanol Di(meth)acrylate, bisphenol A polyethoxy bis(meth)acrylate, bisphenol A polyalkoxy bis(meth)acrylate, bisphenol F polyalkoxy bis(meth) Acrylate, polyalkylene glycol di(meth)acrylate, trimethylolpropane trioxyethyl (meth)acrylate, ε-caprolactone modified tris(2-hydroxyethyl)iso Cyanurate tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propoxylated pentaerythritol tri(meth)acrylate, ethoxylated pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate Ester, propoxylated pentaerythritol tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, polyethylene glycol di(meth)acrylate, tris(acrylic acid) (Oxyethyl) isocyanurate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, tripentaerythritol hexa(meth)acrylate, Tripentaerythritol penta(meth)acrylate, hydroxypivalate neopentyl glycol di(meth)acrylate, hydroxypivalate neopentyl glycol ε-caprolactone adduct bis(meth)acrylic acid Ester, trimethylolpropane tri(meth)acrylate, alkoxylated trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate and other UV-curing types Functional monomers, in addition to polyfunctional acrylics such as polyester (meth)acrylate, epoxy (meth)acrylate, (meth)acrylate urethane, polyether (meth)acrylate, etc. In addition to ester oligomers, polyfunctional acrylamide and the like can also be mentioned.
In the above list, from the viewpoint of improving the adhesion to the adherend or the effect of suppressing damp heat whitening, the above-mentioned polyfunctional (meth)acrylate monomer preferably contains a hydroxyl group, a carboxyl group, an amide group, etc. Polyfunctional monomers or oligomers with polar functional groups. Among them, it is preferable to use a polyfunctional (meth)acrylate having a hydroxyl group or an amido group.
From the viewpoint of preventing damp heat whitening, it is preferable to contain a hydrophobic acrylate monomer and a hydrophilic acrylate monomer as the dry component of the (meth)acrylate copolymer (A1), that is, the graft copolymer Furthermore, it is more preferable to use a polyfunctional (meth)acrylate having a hydroxyl group as the crosslinking agent (B).
In addition, in order to adjust the effects such as adhesiveness, moisture and heat resistance, and heat resistance, a monofunctional or polyfunctional (meth)acrylate that reacts with the crosslinking agent (B) may be further added.
Regarding the content of the crosslinking agent (B), from the viewpoint of balancing the flexibility and cohesive force of the adhesive composition, relative to 100 parts by mass of the (meth)acrylic copolymer (A), it is preferably It is contained in a ratio of 0.1 to 20 parts by mass, particularly preferably at a ratio of 0.5 parts by mass or more or 15 parts by mass or less, and particularly preferably at a ratio of 1 part by mass or more or 13 parts by mass or less.
[Photopolymerization initiator (C)]
The photopolymerization initiator (C) used in the adhesive sheet functions as a reaction initiation aid in the cross-linking reaction of the cross-linking agent (B), preferably by irradiating visible light, such as 380 nm to 700 The light in the wavelength region of nm generates free radicals and becomes the starting point of the polymerization reaction of the base resin. However, free radicals can be generated by irradiating only visible light, and free radicals can also be generated by irradiating light in a wavelength range other than the visible light range.
From this point of view, the absorbance coefficient of the photopolymerization initiator (C) at a wavelength of 405 nm is particularly preferably 10 mL/(g∙cm) or more, and particularly preferably 15 mL/(g∙cm) or more, where Especially preferably, it is 25 mL/(g∙cm) or more. On the other hand, as the upper limit of the absorption coefficient at a wavelength of 405 nm, it is preferably 1×104
mL/(g∙cm) or less, preferably 1×103
mL/(g∙cm) or less.
The absorbance coefficient in the present invention is equivalent to the absorbance when the optical path length is 1 cm when the photopolymerization initiator (C) is set to a methanol solution with a concentration of 1 g/L. Furthermore, the light absorption coefficient of the photopolymerization initiator (C) does not mean only absorbing light of a specific wavelength, but means the decomposition performance (radical generation energy) of light of a specific wavelength. Specifically, the "absorption coefficient at a wavelength of 405 nm" refers to the decomposition performance (radical generation energy) of the photopolymerization initiator when irradiated with light with a wavelength of 405 nm.
As a photopolymerization initiator with an absorption coefficient of 10 mL/(g∙cm) or more at a wavelength of 405 nm, for example, 2-benzyl-2-dimethylamino-1-(4-morpholinyl) Phenyl) butane-1-one, 2-(4-methylbenzyl)-2-dimethylamino-1-(4-morpholinylphenyl)butan-1-one, bis(η5
-2,4-Cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, bis(2,4,6-trimethyl) (2,4,6-trimethylbenzyl)-phenylphosphine oxide, 2,4,6-trimethylbenzyldiphenylphosphine oxide, (2,4,6-trimethylbenzyl)ethoxybenzene Phosphine oxide, bis(2,6-dimethoxybenzyl) 2,4,4-trimethylpentyl phosphine oxide, 9-oxysulfur, 2-chloro-9-oxysulfur 𠮿, 3-Methyl-9-oxysulfur 𠮿, 2,4-Dimethyl-9-oxysulfur, Anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-aminoanthraquinone, 1,2-octanedion-1-(4-(phenylsulfide) Yl)-2-(o-benzyl oxime)), 1-[9-ethyl-6-(2-methylbenzyl)-9H-carbazol-3-yl]-ethanone- 1-(o-Acetyl oxime), camphorquinone, and tri-based photopolymerization initiators can also be cited. In addition, it also includes a state in which the photopolymerization initiator (C) and the (meth)acrylic copolymer (A) are chemically bonded.
These can use any one of these or a derivative thereof, and can also be used in combination of two or more of these. In addition, it can also be used in combination with a photopolymerization initiator with an absorbance coefficient of less than 10 mL/(g∙cm) at a wavelength of 405 nm.
Photopolymerization initiators are roughly classified into two types according to the free radical generation mechanism. They are roughly divided into cleavage-type photopolymerization initiators and hydrogen-absorbing-type photopolymerization initiators. The cleavage-type photopolymerization initiators can be photopolymerizable The single bond of the initiator itself is cleaved and decomposed to generate free radicals. The hydrogen-absorbing photopolymerization initiator is a light-excited initiator and the hydrogen donor in the system to form an excited complex to make the hydrogen donor The hydrogen transfer.
The cleavage-type photopolymerization initiator among them decomposes when generating free radicals by light irradiation to become other compounds, and once excited, it no longer functions as a reaction initiator. Therefore, if the intramolecular cleavage type is used as a photopolymerization initiator (C) having an absorption wavelength in the visible light region, compared with the case of using a hydrogen absorbing type, after the adhesive sheet is crosslinked by light irradiation, The light-reactive photopolymerizable initiator is not easy to remain in the adhesive composition, resulting in unintended changes over time of the adhesive sheet or the possibility of cross-linking promotion and decomposition promotion is low, so it is preferred. In addition, regarding the unique coloration of the photopolymerizable initiator, when the photopolymerization initiator that is irradiated with visible light to harden the adhesive is added, there is a risk of coloring, but the visible light region of the reaction decomposition product Absorption disappears, and it is better to select a decolorizer appropriately.
On the other hand, the hydrogen-absorbing type photopolymerization initiator does not produce decomposition products such as the cleavage type photopolymerization initiator when irradiated with active energy rays such as ultraviolet rays, so it is not easy to become volatile after the reaction is completed. The ingredients can reduce the damage to the adherend.
As the above-mentioned cleavage-type photopolymerization initiator, for example, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy- 2-Methyl-1-phenyl-propane-1-one, 1-(4-(2-hydroxyethoxy)phenyl)-2-hydroxy-2-methyl-1-propane-1-one, 2-hydroxy-1-[4-{4-(2-hydroxy-2-methyl-propanyl)benzyl}phenyl]-2-methyl-propan-1-one, oligo(2-hydroxyl -2-Methyl-1-(4-(1-methylvinyl)phenyl)acetone), methyl phenylglyoxylate, 2-benzyl-2-dimethylamino-1-(4 -Morpholinylphenyl)butan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinylpropane-1-one, 2-(dimethyl Amino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, bis(2,4,6-trimethyl) (2,4,6-trimethylbenzyl)-phenylphosphine oxide, 2,4,6-trimethylbenzyldiphenylphosphine oxide, (2,4,6-trimethylbenzyl)ethoxybenzene Phosphine oxide, bis(2,6-dimethoxybenzyl) 2,4,4-trimethylpentyl phosphine oxide, or derivatives thereof.
Among them, bis(2,4,6-trimethylbenzyl)-phenylphosphine oxide is preferred in terms of using a cleavage-type photopolymerizable initiator to become a decomposed product after the reaction and decolorize. , 2,4,6-trimethylbenzyl diphenyl phosphine oxide, (2,4,6-trimethylbenzyl) ethoxyphenyl phosphine oxide, bis(2,6-di (Methoxybenzyl)-2,4,4-trimethylpentyl phosphine oxide and other phosphine oxide-based photoinitiators.
Furthermore, in terms of compatibility with acrylic copolymers containing graft copolymers with macromonomers as branching components, it is preferable to use 2,4,6-trimethylbenzyldiphenyl oxide Phosphine, (2,4,6-trimethylbenzyl)ethoxyphenyl phosphine oxide, bis(2,6-dimethoxybenzyl)-2,4,4-trimethyl Pentyl phosphine oxide and the like are used as the photopolymerization initiator (C).
The content of the photopolymerization initiator (C) is not particularly limited. For example, relative to 100 parts by mass of the (meth)acrylic copolymer (A), it is particularly preferably contained in a ratio of 0.1-10 parts by mass, and particularly preferably contained in a ratio of 0.2 parts by mass or more or 5 parts by mass or less, wherein Particularly preferably, it is contained in a ratio of 0.5 parts by mass or more or 3 parts by mass or less. However, in terms of balance with other elements, it may exceed this range. A photopolymerization initiator can be used 1 type or in combination of 2 or more types.
[Ultraviolet absorber (D)]
The ultraviolet absorber (D) only needs to be a substance that can absorb ultraviolet rays. As a standard, it is preferable to add the ultraviolet absorber (D) to make the absorbance at 380 nm of the transparent double-sided adhesive sheet 0.3 mL /(g∙cm) or more, especially 0.5 mL/(g∙cm) or more, especially 1.0 mL/(g∙cm) or more.
In addition, the absorbance at a wavelength of 380 nm is calculated according to the following formula.
A380
=-Log(T380
/100)
A380
:Absorbance at a wavelength of 380 nm
T380
;Transmittance under 380 nm of transparent double-sided adhesive sheet (%)
As the ultraviolet absorber (D), it is preferable to have, for example, a benzotriazole structure, a benzophenone structure, a triazole structure, a benzoate structure, an aniline structure, a salicylate structure, and a cyano group. One or two or more structures in the group consisting of acrylate structure.
Among them, from the viewpoint of ultraviolet absorption, it is preferable to have one or more structures selected from the group consisting of a benzotriazole structure, a triazole structure, and a benzophenone structure.
In addition, from the viewpoint of compatibility with acrylic copolymers containing graft copolymers with macromonomers as branching components, it is preferable to use a benzotriazole structure or a benzophenone structure as the ultraviolet absorber.剂(D).
The content of the ultraviolet absorber (D) is not particularly limited. For example, relative to 100 parts by mass of the (meth)acrylic copolymer (A), it is particularly preferably contained in a ratio of 0.01-10 parts by mass, and particularly preferably contained in a ratio of 0.1 parts by mass or more or 5 parts by mass or less, wherein Particularly preferably, it is contained in a ratio of 0.2 parts by mass or more or 3 parts by mass or less. However, in terms of balance with other elements, it may exceed this range.
From the viewpoint of absorbing ultraviolet rays and starting photopolymerization in the visible light region other than the ultraviolet rays, the ratio of the ultraviolet absorber (D) to 100 parts by mass of the photopolymerization initiator (C) is preferably 25 to 400 parts by mass Among them, it is particularly preferably 50 parts by mass or more or 300 parts by mass or less, and particularly preferably 80 parts by mass or more or 250 parts by mass or less. The ultraviolet absorber can also be used 1 type or in combination of 2 or more types.
[Other ingredients]
This adhesive sheet may also contain a well-known component blended in a usual adhesive composition as a component other than the above. For example, it may appropriately contain adhesion-imparting resins, or antioxidants, light stabilizers, metal deactivators, rust inhibitors, anti-aging agents, moisture absorbents, water decomposers, sensitizers, antistatic agents, defoamers, Various additives such as inorganic particles.
In addition, if necessary, a reaction catalyst (a tertiary amine compound, a quaternary ammonium compound, a tin laurate compound, etc.) can also be appropriately contained.
[Preferable composition example]
As an example of a particularly preferable composition of the adhesive composition, the following composition example can be cited, that is, an acrylic copolymer containing a graft copolymer having a macromonomer as a branch component is contained as a (meth)acrylic copolymer (A), containing bifunctional, trifunctional and other polyfunctional (meth)acrylate compounds as crosslinking agent (B), containing a cleavage type photopolymerization initiator as photopolymerization initiator (C), and containing benzene The ultraviolet absorber of triazole structure or benzophenone structure is used as the ultraviolet absorber (D). However, it is not limited to this composition.
[Layer structure]
The adhesive sheet may be a sheet including a single layer, or a multilayer sheet composed of two or more layers.
When the adhesive sheet is made into a multilayer adhesive sheet, that is, when an adhesive sheet composed of a laminated layer with an intermediate layer and an outermost layer is formed, it is preferable to form the outermost layer from the adhesive composition.
When the adhesive sheet has a multilayer structure, the ratio of the thickness of each outermost layer to the thickness of the intermediate layer is preferably 1:1 to 1:20, and more preferably 1:2 to 1:10.
If the thickness of the intermediate layer is in the above range, the thickness of the adhesive material layer in the laminate will not be too large, and it will not be too soft to cut or deteriorate the workability of the operation, which is preferable.
In addition, if the outermost layer is in the above range, there is no poor followability to uneven or curved surfaces, and the adhesion or wettability to the adherend can be maintained, which is preferable.
As an example of a case where the present adhesive sheet has a multilayer structure, a multilayer structure including an intermediate layer (α layer) and a surface layer (β layer) can be cited. The intermediate layer (α layer) contains the adhesive composition, that is, contains ( Meth) acrylic copolymer (A), crosslinking agent (B), photopolymerization initiator (C) and ultraviolet absorber (D) with an absorption coefficient of 10 mL/(g∙cm) or more at a wavelength of 405 nm ), the surface layer (β layer) contains a (meth)acrylic copolymer (A) and a crosslinking agent (B), and does not contain an ultraviolet absorber (D).
Specific examples of the layered structure include β layer/α layer/β layer, β layer/α layer/β layer/α layer/β layer, and the like. Among them, two types of three layers, β layer/α layer/β layer, are more preferable. It is also possible to intervene other layers represented by the outgas barrier layer between the α layer and the β layer as needed.
By providing a surface layer (β layer) that contains (meth)acrylic copolymer (A) and crosslinking agent (B) and does not contain ultraviolet absorber (D), the ultraviolet absorber (D) in the α layer can be suppressed Ooze.
Furthermore, when the resin composition for forming the β layer contains the photopolymerization initiator (C), its decomposition product, or the ultraviolet absorber (D), for example, the α layer (intermediate layer) and the β layer (Surface layer) When light is irradiated after being overlapped, the β layer as the surface layer absorbs light and intercepts the light reaching the α layer as the intermediate layer, or the ultraviolet absorber (D) transfers from the β layer to the α layer and hinders the α layer The light hardens.
From the above viewpoints, the β layer preferably does not have photocuring properties, and more preferably has thermosetting properties. Among them, the β layer is more preferably a resin composition that does not contain the photopolymerization initiator (C) and the ultraviolet absorber (D).
In the multi-layer structure provided with the above-mentioned α layer and β layer, the crosslinking agent (B) used in the α layer preferably contains hydroxyl groups or Multifunctional monomers or oligomers with polar functional groups such as carboxyl groups. Among them, it is more preferable to use a polyfunctional (meth)acrylic monomer having a hydroxyl group.
The content of the crosslinking agent (B) of the α layer is preferably 0.5-50 parts by mass relative to 100 parts by mass of the acrylic copolymer (A) of the α layer, and preferably 1 part by mass or more or 40 parts by mass The following ratios are preferably 5 parts by mass or more or 30 parts by mass or less. By containing the crosslinking agent (B) in this range, the curing reaction fully proceeds in a short time, so it is easy to balance the reliability after curing with the heat and humidity resistance, flexibility, and the processing suitability when forming into a sheet. .
On the other hand, the crosslinking agent (B) used in the β layer is preferably selected from the group consisting of (meth)acrylic acid groups, epoxy groups, isocyanate groups, melamine groups, and glycols from the viewpoint of thermosetting properties. A crosslinking agent with at least one organic functional group among the group, the siloxane group and the amine group.
The content of the crosslinking agent (B) of the β layer is preferably 0.1 to 20 parts by mass relative to 100 parts by mass of the acrylic copolymer (A) of the β layer, and more preferably 0.2 parts by mass or more or 10 parts by mass The following ratio. By containing the cross-linking agent (B) in this range, the curing reaction fully proceeds in a short time. Therefore, after curing, it is easy to improve the adhesiveness, reliability, foam resistance, and step absorbency (foreign matter) as an adhesive sheet. Nipability), flexibility, and processing suitability when formed into a sheet are balanced.
Furthermore, it is more preferable to add more crosslinking agent (B) to the α layer than to the β layer. The α layer after curing is given high elasticity to make it function as a core material, and it can give excellent handling properties to the adhesive sheet.
In the multi-layer structure including the above-mentioned α layer and β layer, the α layer absorbs ultraviolet rays and starts photopolymerization in the visible light region other than the ultraviolet rays. In the α layer, relative to the photopolymerization initiator ( C) 100 parts by mass, the ultraviolet absorber (D) preferably contains 25-400 parts by mass, more preferably 50 parts by mass or more or 300 parts by mass or less, and still more preferably 80 parts by mass or more or 250 parts by mass or less.
In the multilayer structure provided with the above-mentioned α layer and β layer, the order of laminating the α layer and the β layer and the order of curing are not particularly limited. Specifically, the following stacking method can be exemplified.
Method I: After the uncured α layer and β layer are laminated, the α layer and the β layer are hardened by light irradiation or heat.
Method II: After the uncured α layer is laminated with the β layer hardened by heat or the like, the α layer is hardened by light irradiation.
Method III: After the α layer is hardened by light irradiation, the unhardened β layer is laminated, and then the β layer is hardened by heat or the like.
Method IV: A method of overlapping the separately formed and hardened α layer and β layer.
Among them, the method II is more preferable in terms of strong interlayer adhesion, excellent resistance to damp and heat foaming, excellent reliability, and ability to suppress the exudation of the ultraviolet absorber.
The β layer is preferably thermally hardened.
The heating temperature for hardening the β layer is not particularly limited, and can be appropriately adjusted according to the type and amount of the crosslinking agent (B) contained in the β layer. In consideration of the handleability of the resin composition before curing, the heat resistance of the resin, etc., specifically, 40 to 200°C is preferred, among which 50°C or higher or 180°C is more preferred, and 60°C is even more preferred. Above or below 150°C.
On the other hand, the α layer is preferably photocured.
The amount of light irradiation used to harden the α layer is preferably 100~8000 mJ/cm based on the wavelength of 405 nm2
, Which is more preferably 500 mJ/cm2
Above or 5000 mJ/cm2
Below, among them, 1000 mJ/cm is more preferred2
Above or 4000 mJ/cm2
the following.
As a light source that emits light, for example, a high-pressure mercury lamp, a metal halide lamp, an LED lamp, etc. can be cited.
At this time, it is also possible to irradiate the adhesive sheet with light that does not substantially contain light with a wavelength of less than 380 nm, preferably visible light, to cause the adhesive sheet to be photo-crosslinked. The so-called "light that does not substantially contain light with a wavelength of less than 380 nm" refers to light with a light transmittance of less than 10% for the light of a wavelength of less than 380 nm. As a method of irradiating visible rays that do not contain wavelengths in the ultraviolet region, a light source that emits only visible rays that do not contain wavelengths in the ultraviolet region can be used, or through a filter that does not transmit light of wavelengths in the ultraviolet region.片irradiation.
In the multi-layer structure having the above α layer and β layer, the thickness of the α layer is preferably 10 to 400 μm, more preferably 20 μm or more or 300 μm or less, and still more preferably 30 μm or more or 200 μm or less.
The thickness of the β layer is preferably 1-60 μm, more preferably 3 μm or more or 40 μm or less, and even more preferably 5 μm or more or 25 μm or less.
The ratio of the thickness of the α layer to the thickness of the β layer is preferably 1:1 to 1:20, and more preferably 1:2 to 1:15.
If the thickness of the α layer (intermediate layer) is in the above range, it is easy to obtain ultraviolet absorbing performance, and the photocuring performance of the α layer can be easily achieved. In addition, it is preferable because it is not too soft to reduce the workability of cutting or handling. If the thickness of the β layer (surface layer) is in the above range, there is no poor followability to uneven or curved surfaces, and the adhesion or wettability to the adherend can be maintained, which is preferable.
[Sheet thickness]
Regarding the thickness of the adhesive sheet, by making the thickness of the sheet thinner, it can respond to the request for thinning. On the other hand, if the thickness of the sheet is too thin, for example, it may not be sufficient when the surface to be adhered has unevenness. The ground follows the unevenness, or the possibility of insufficient adhesion.
From this point of view, the thickness of the adhesive sheet is preferably 20 to 500 μm, among which 25 μm or more or 350 μm or less is particularly preferred, and among them, 50 μm or more or 250 μm or less is particularly preferred.
[characteristic]
The ultraviolet transmittance (JIS K7361-1) of the adhesive sheet is preferably 50% or less at a wavelength of 380 nm, wherein it is more preferably 30% or less, and is even more preferably 10% or less.
On the other hand, the light transmittance at a wavelength of 420 nm, which is the visible light region, is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more.
The viscosity at 100°C of the transparent double-sided adhesive sheet of the present invention is preferably 50 Pa∙s~5000 Pa∙s, more preferably 100 Pa∙s or more or 3000 Pa∙s or less, and more preferably 150 Pa∙s s or more or 2500 Pa∙s or less.
<Adhesive sheet laminate>
The adhesive sheet can be directly used alone. In addition, it can also be used in layers with other members.
(This adhesive sheet laminate)
For example, a layered film, such as a release film or a protective film, or a film formed by layering on one or both sides of the adhesive sheet, can form an adhesive sheet laminate (referred to as "the adhesive sheet laminate").
The following can be exemplified: In the present adhesive sheet laminate, the release film on one or both sides is a release film with a light transmittance of 40% or less for light with a wavelength of 410 nm or less. The reason is that if the light transmittance of at least one release film with a wavelength of 410 nm or less has a light transmittance of 40% or less, by laminating the release film on the adhesive sheet, even if the adhesive sheet contains a light with a wavelength of 405 nm The photopolymerization initiator (C) with an absorption coefficient of 10 mL/(g∙cm) or more can also effectively prevent the advancement of photopolymerization due to visible light irradiation.
From this point of view, it is preferable that the light transmittance of light with a wavelength of 410 nm or less of one or two release films is 40% or less, among which 30% or less is more preferable, and 20% or less is still more preferable.
Here, as a release film with a light transmittance of 40% or less for light with a wavelength of 410 nm or less, that is, a release film that has a function of partially blocking the transmission of visible light and ultraviolet light, for example, include The cast film or stretched film of polyester, polypropylene, polyethylene resin with ultraviolet absorber is coated with silicone resin for release treatment. Also, it can be exemplified in a multi-layer cast film formed by molding a layer containing a resin containing no ultraviolet absorber on one or both sides of a layer containing a polyester, polypropylene, or polyethylene resin blended with an ultraviolet absorber Or one side of the stretched film is coated with silicone resin for release treatment. In addition, it can be enumerated that one surface of a cast film or stretched film containing polyester-based, polypropylene-based, or polyethylene-based resin is coated with a coating containing an ultraviolet absorber to provide an ultraviolet absorbing layer, and then the ultraviolet absorbing layer is coated with a poly Those who perform mold release treatment with silicone resin. In addition, it can be enumerated that one surface of a cast film or stretched film containing polyester-based, polypropylene-based, or polyethylene-based resin is coated with a coating containing an ultraviolet absorber to provide an ultraviolet absorbing layer, and a silicone resin is coated on the other surface. Those who perform demolding treatment. In addition, it can be enumerated that one side of a resin film containing polyester-based, polypropylene-based, and polyethylene-based resins and a separately prepared resin film that has not undergone a release treatment are passed through an adhesive layer containing an ultraviolet absorber. Or the adhesive layer is laminated.
The above-mentioned release film may also have other layers such as an antistatic layer or a hard coat layer, a tackifying layer, etc., if necessary.
If the thickness of the release film is too thick, the cutting processability will be poor, and if the thickness is too thin, the operability will be poor, and there is a possibility of dents in the adhesive sheet. From this point of view, the thickness of the release film is preferably 20 μm or more and 300 μm or less, wherein it is preferably 25 μm or more or 250 μm or less, and particularly preferably 38 μm or more or 200 μm or less.
In the case where the release film is laminated on both sides, it is preferable to make the thickness or peeling force of one release film and the other release film different.
In addition, the following cases can be exemplified: In the present adhesive sheet laminate, the film on one or both sides is a film with a light transmittance of 40% or less for light with a wavelength of 380 nm or more and 410 nm or less, such as a mold release film or a protective film. Film or laminated film. That is, it contains a (meth)acrylic copolymer (A), a crosslinking agent (B), and a photopolymerization initiator (C) with an absorption coefficient of 10 mL/(g∙cm) or more at a wavelength of 405 nm The transparent double-sided adhesive sheet of the adhesive resin composition of the ultraviolet absorber (D) is laminated with a film with a light transmittance of 40% or less for light with a wavelength of 380 nm or more and 410 nm or less, thereby The transparent double-sided adhesive sheet can be prevented from being exposed to at least the wavelength of 405 nm, and therefore the photopolymerization initiator (C) can be prevented from generating free radicals.
From this point of view, the film on one or both sides of the adhesive sheet laminate is more preferably a light transmittance with a wavelength of 380 nm or more and 410 nm or less, 40% or less, and more preferably 30%. Hereinafter, among them, 20% or less is more preferable, and among them, 10% or less is still more preferable.
Furthermore, as a preferable example of the structure, the structure of a surface protective film having a light transmittance of 40% or less of light with a wavelength of 410 nm or less on one side or two area layers of the adhesive sheet laminate can be cited.
The reason is that at least one area layer of the adhesive sheet laminate has a surface protective film with a light transmittance of 40% or less at a wavelength of 410 nm or less, so that even if the adhesive sheet contains an absorption coefficient of 10 at a wavelength of 405 nm The photopolymerization initiator (C) above mL/(g∙cm) can also effectively prevent the promotion of photopolymerization due to the irradiation of visible light.
From this point of view, the surface protective film laminated on one or both sides of the adhesive sheet laminate preferably has a light transmittance of 40% or less with a wavelength of 410 nm or less, and more preferably 30% or less, and further Preferably it is 20% or less.
Here, as a surface protection film with a light transmittance of less than 40% for light with a wavelength of 410 nm or less, that is, a surface protection film having a function of partially blocking the transmission of visible light and ultraviolet light, for example, polyester Laminated film with a UV-absorbing layer coated with a coating containing UV absorbers on one side of a cast film or stretched film that is coated with a repeelable micro-adhesive resin. In addition, it can be exemplified that one surface of a polypropylene-based, polyethylene-based cast film or stretched film is coated with a micro-adhesive resin with re-peelability prepared with an ultraviolet absorber. In addition, it can be exemplified by a cast film or stretched film containing a polyester-based, polypropylene-based, or polyethylene-based resin blended with an ultraviolet absorber and coated with a micro-adhesive resin having releasability. Also, it can be exemplified in a multi-layer cast film formed by single-sided or double-sided molding of a layer containing a polyester-based, polypropylene-based, or polyethylene-based resin blended with a UV-absorbent resin. Or one side of the stretched film is coated with re-peelable micro-adhesive resin. In addition, a coating containing an ultraviolet absorber is applied to one side of a cast film or stretched film containing polyester-based, polypropylene-based, or polyethylene-based resin to provide an ultraviolet absorbing layer, and then coating the ultraviolet absorbing layer with Re-peelable micro-adhesive resin. In addition, it can be enumerated that one surface of a cast film or stretched film containing polyester-based, polypropylene-based, or polyethylene-based resin is coated with a coating containing an ultraviolet absorber to provide an ultraviolet absorbing layer, and the other surface is coated with a peelable Those with slightly adhesive resin. In addition, the resin film containing polyester, polypropylene, and polyethylene resins coated on one side with a micro-adhesive resin with releasability and a separately prepared resin film containing ultraviolet absorbers can be used. Subsequent layers or adhesive layers are laminated, etc.
The above-mentioned surface protection film may also have other layers such as an antistatic layer, a hard coating layer, and a tackifying layer as needed.
(Layered body for constructing this image display device)
In addition, two image display device constituent members may be layered through the adhesive sheet to form a layered body for image display device configuration (referred to as "layered body for image display device configuration").
At this time, as the two component members for the image display device, for example, any one of the group consisting of a touch sensor, an image display panel, a surface protection panel, and a polarizing film, or a combination of two or more thereof .
As a specific example of the laminated body for the structure of the image display device, for example, the following structures can be cited: release sheet/main adhesive sheet/touch panel, release sheet/main adhesive sheet/protective panel, release sheet/ This adhesive sheet/image display panel, image display panel/this adhesive sheet/touch panel, image display panel/this adhesive sheet/protection panel, image display panel/this adhesive sheet/touch panel/this adhesive sheet /Protection panel, polarizing film/this adhesive sheet/touch panel, polarizing film/this adhesive sheet/touch panel/this adhesive sheet/protective panel, etc. However, it is not limited to these laminated examples.
The above-mentioned touch panel also includes a structure having a built-in touch panel function in the protection panel, or a structure having a built-in touch panel function in the image display panel.
In the laminated body for constructing an image display device of the present invention, at least one of the two image display device constituent members described above may be one having ultraviolet absorbing performance, for example, one containing an ultraviolet absorber.
Since the adhesive sheet is not cured by ultraviolet rays, but cured by visible light, even if the constituent members of the image display device have ultraviolet absorbing properties, they can be cured by irradiating visible light through the constituent members of the image display device. Harden the adhesive sheet.
(This image display device)
An image display device (referred to as "this image display device") can be constructed using the above-mentioned adhesive sheet or the layered body for constructing the image display device.
As this image display device, for example, an image display device such as a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, a plasma display, and a microelectromechanical system (MEMS) display can be configured.
In the present image display device, at least one of the image display device constituent members constituting the image display device may be one having ultraviolet absorbing performance, for example, one containing an ultraviolet absorber.
Since the adhesive sheet is not cured by ultraviolet rays, but cured by visible light, even if the constituent members of the image display device have ultraviolet absorbing properties, they can be cured by irradiating visible light through the constituent members of the image display device. Harden the adhesive sheet.
<Characteristics of this adhesive sheet and how to use it>
The adhesive sheet has ultraviolet absorption function and curability that is cured by irradiation of light with wavelengths outside the ultraviolet range, especially visible light. Utilizing the characteristics of this adhesive sheet, for example, a laminate for forming an image display device can be produced as follows.
After the adhesive composition is formed into a sheet shape (sheet production step), the two image display device constituent members are layered through the adhesive sheet before photocuring (one attachment step), and secondly, at least a wavelength is irradiated Light of 405 nm, for example, light including light of a wavelength in the visible light region, photo-crosslinks and hardens the above-mentioned present adhesive sheet (secondary attachment step), thereby making it possible to produce a laminate for image display device construction.
The light including the light of the wavelength of the visible light region may also include the light of the ultraviolet region, that is, the light of the wavelength below 380 nm. However, when the component of the laminated image display device is easily degraded by ultraviolet rays, it is better to irradiate the substance. It does not contain light with a wavelength of less than 380 nm, that is, visible light, so that the adhesive sheet is photo-crosslinked and hardened (secondary attachment step).
(Steps for making sheets)
The adhesive composition can be formed into a sheet to produce the adhesive sheet.
As a method for molding the adhesive resin composition into a sheet shape, any currently known method can be used arbitrarily.
At this time, as described above, the present adhesive resin composition may be formed into a sheet on the above-mentioned release film to produce the present adhesive sheet.
In addition, the adhesive resin composition may be formed into a film in the form of a sheet on an image display device constituent member, and the adhesive sheet may be laminated on the image display device constituent member.
(One-time attaching step)
As long as the adhesive sheet has self-adhesive properties (adhesiveness), the two image display device components can be attached at one time via the adhesive sheet.
For example, as long as the adhesive sheet contains an acrylic copolymer (A1) containing a graft copolymer with a macromonomer as a branch component as the base polymer, it can maintain a sheet shape at room temperature and exhibit self-adhesion In the uncrosslinked state, it has moderate adhesiveness, such as peelable adhesiveness (called "tackiness") in the normal state, that is, near room temperature, so it can be easily attached. The positioning and so on. Furthermore, if it is heated in an uncrosslinked state, it can be melted or flowed (hot-melt property), so it can be filled with an adhesive following the unevenness such as a printing step, and can be filled without generating bubbles or the like.
A known device can be used for the laminating device used in the lamination. For example, it may be an electrothermal press equipped with a heating plate, or a laminating machine of a film method, a roll laminating machine, a vacuum laminating machine, a hand roller, etc.
Furthermore, when the present adhesive sheet uses an acrylic copolymer (A1) containing a graft copolymer with a macromonomer as a branching component as the base polymer, it can provide excellent performance under normal conditions, that is, at room temperature. The storage stability or cutting processability. In addition, due to its self-adhesiveness (adhesiveness), the adhesive sheet can be easily adhered to the adherend by pressing the adhesive sheet against the adherend. Therefore, the positioning of the adhesive material is easy to perform, and the operation is very convenient. .
Furthermore, since it is excellent in shape retention, it can be processed into any shape in advance. Therefore, it is also possible to cut the adhesive sheet formed on the release film in advance according to the size of the image display device constituent members to be laminated.
The cutting method at this time is generally punching with a Thomson knife, cutting with a super cutter or laser, and it is better to use a method to easily peel off the release film. The shape remains and half-cut.
When the adhesive sheet has heat-melt properties, that is, it has the property of being softened or fluidized by heating, it is preferable to heat the adhesive sheet to laminate two image display device constituent members. By heating the adhesive sheet to soften or fluidize it, even if the surface to be adhered has unevenness, the adhesive sheet can be heated to follow the unevenness and fill the unevenness without gaps.
As the heating mechanism of the adhesive sheet, for example, various constant temperature baths, or heating plates, electromagnetic heating devices, heating rollers, etc. can be used. In order to perform bonding and heating more efficiently, for example, it is preferable to use an electric heating press, or a film-type bonding machine, a roll bonding machine, or the like.
At this time, the adhesive sheet can also be heated by heating one or both of the constituent members of the image display device.
At this time, if the softening temperature of the adhesive sheet is 50°C or higher, the processing characteristics and storage characteristics at room temperature can be sufficient. On the other hand, if the softening temperature of the adhesive sheet is below 100°C, not only the thermal damage to the image display panel or the front surface panel can be suppressed, but also the excessive flow and overflow of the adhesive sheet can be prevented.
Therefore, the softening temperature of the adhesive sheet is preferably 50 to 100°C, wherein it is more preferably 55°C or higher or 95°C or lower, and particularly preferably 60°C or higher or 90°C or lower.
When heating the adhesive sheet, it is preferable to stack two image display device constituent members via the adhesive sheet, and then heat the laminate under a reduced pressure environment.
By heating the laminate under a reduced pressure environment, bubbles or foreign matter can be prevented from being mixed in the adhesive sheet after lamination.
(Second attachment step)
In the secondary attaching step, the layered body formed by laminating two image display device constituent members through this adhesive sheet passes through the image display device constituent member from the outside of at least one image display device constituent member , Irradiate light with a wavelength of at least 405 nm, such as light with a wavelength in the visible light region, that is, visible light to the adhesive sheet, so that the adhesive sheet is photo-crosslinked and hardened.
Through such photocrosslinking, the adhesive sheet can be fully crosslinked, so that it can have as much adhesion and cohesion as possible against the outgassing pressure generated by the components of the image display device such as the self-protection panel. In addition, since the adhesive sheet has ultraviolet absorbing properties, it is possible to suppress the deterioration of the adhesive sheet itself and the components of the image display device due to ultraviolet rays.
Light with a wavelength of at least 405 nm can be irradiated from a light source including at least one or a combination of two or more selected from the group consisting of, for example, the sun, fluorescent lamps, LEDs, organic EL, inorganic EL, and light-emitting modules for image display devices.
When irradiating visible light, it is preferable to irradiate light with a wavelength that does not substantially contain ultraviolet rays, for example, visible light with a wavelength of less than 365 nm.
Here, the so-called "substantially free of light with a wavelength of less than 365 nm" means that the luminous intensity of light with a wavelength of less than 365 nm is less than 1 mW/cm2
.
Among them, it is preferable to irradiate light with a wavelength of at least 405 nm, such as light with a wavelength in the visible light region and substantially free of light with a wavelength below 380 nm, to the adhesive sheet, so that the adhesive sheet is photo-crosslinked And hardened.
Here, the so-called "substantially free of light with a wavelength below 380 nm" means that the luminous intensity of light with a wavelength below 380 nm is 5 mW/cm2
Below, preferably 1 mW/cm2
the following.
As a method of irradiating visible rays that do not contain light with a wavelength of less than 380 nm, that is, light with a wavelength in the ultraviolet region, a light source that emits only visible rays of light with a wavelength that does not include the ultraviolet region can also be used. For example, a light source including at least one or a combination of two or more selected from the group consisting of sun, fluorescent lamp, LED, organic EL, inorganic EL, and light-emitting module for image display devices can be used.
In addition, it may be irradiated through a filter that does not transmit light of wavelengths in the ultraviolet region. For example, the following methods can be cited: use high-pressure mercury lamps or metal halide lamps, xenon arc lamps, carbon arc lamps, etc., or sunlight as the light source, which also emits light of wavelengths in the ultraviolet region, and transmit light at a wavelength of 380 nm A filter with a rate of less than 10% and a light transmittance of 60% or more at a wavelength of 405 nm irradiates visible light to the adhesive composition.
The above-mentioned filter may also be a release film constituting the adhesive sheet laminate or a surface protection film laminated on the surface of the adhesive sheet laminate.
When adjusting the degree of visible light crosslinking, in addition to the method of controlling the amount of visible light irradiation, the visible light can also be adjusted by blocking part of the visible light transmission through the above-mentioned filter. .
<Sentence explanation etc.>
Furthermore, generally speaking, the so-called "sheet" in the definition of JIS refers to a product that is thinner and whose thickness is smaller and flat compared to the length and width. Generally speaking, the so-called "film" refers to the thickness of the product. Thinner and flat products whose length and width are extremely small and whose maximum thickness is arbitrarily limited are usually supplied in the form of rolls (Japanese Industrial Standards JIS K6900). However, the boundary between the sheet and the film is not limited. In the present invention, there is no need to distinguish between the two in the text. Therefore, in the present invention, when it is called "film", it also includes "sheet". In the case of "sheet", "film" is also included.
In addition, when it is expressed as a "panel" like an image display panel, a protection panel, etc., it includes a board, a sheet, and a film.
In this manual, when it is described as "X~Y" (X and Y are arbitrary numbers), unless otherwise specified, it includes the meaning of "more than X and less than Y", and also includes "preferably greater than X" or "preferably less than Y" means.
In addition, when it is described as "more than X" (X is an arbitrary number), unless otherwise specified, it includes the meaning of "preferably greater than X", and when it is described as "below Y" (Y is an arbitrary number) In the case, unless otherwise specified, it also includes the meaning of "preferably less than Y".
[Example]
Hereinafter, further description will be given with examples and comparative examples. However, the present invention is not limited to these.
The cumulative light intensity of light at a wavelength of 405 nm and a wavelength of 365 nm measured in this embodiment was measured using a cumulative light meter (UIT-250, manufactured by Ushio Electric Co., Ltd.).
[Example 1-1]
To the (meth)acrylic copolymer (A) containing 15 parts by mass of polymethyl methacrylate macromonomer (Tg80°C) with a number average molecular weight of 3000, 81 parts by mass of butyl acrylate, and 4 parts by mass of acrylic acid Copolymer (A-1, mass average molecular weight 300,000) 1 kg, add 100 g of glyceryl dimethacrylate (Blemmer GMR, manufactured by NOF Corporation) (B-1) as a crosslinking agent (B), as 15g of Esacure KTO46 (C-1) (manufactured by Lanberti) as a photopolymerization initiator (C), 2,6-diphenyl-4-(2-hydroxy-4-hexoxy) as an ultraviolet absorber (D) (Phenylphenyl)-1,3,5-tris (manufactured by BASF, TINUVIN 1577) (D-1) 5 g, and uniformly mixed to obtain an adhesive composition 1.
The absorbance coefficient at 405 nm of the photopolymerization initiator (C-1) is 7.4×101
(mL/(g∙cm)).
Next, after the above-mentioned adhesive composition 1 was formed into a sheet with a thickness of 100 μm on the peeled polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRV, thickness 100 μm), A polyethylene terephthalate film (manufactured by Mitsubishi Plastics Co., Ltd., DIAFOIL MRQ, thickness 75 μm) is coated with peeling treatment to form an adhesive sheet laminate 1.
[Example 1-2]
As the (meth)acrylic copolymer (A), 10 parts by mass of polymethyl methacrylate macromonomer with a number average molecular weight of 1400 (Tg55°C) and 2-ethylhexyl (meth)acrylate (Tg) : -70°C) Acrylic graft copolymer (A-2) (weight average molecular weight: 230,000) 1 kg of random copolymerization of 90 parts by mass, tricyclodecane as crosslinking agent (B) Methacrylate (manufactured by Shinnakamura Chemical Co., Ltd., product name: DCP) (B-2) 50 g, Irgacure 369 (C-2) (manufactured by BASF Corporation) as a photopolymerization initiator (C) 15 g, and As ultraviolet absorber (D) 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (manufactured by Johoku Chemical Co., Ltd., JF-80) (D-2) 20 g Perform uniform mixing to produce adhesive resin composition 2.
Next, after peeling off the polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRV, thickness 100 μm), the adhesive composition 4 is applied so that it becomes 100 μm, and the coating is peeled off. The polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRQ, thickness 75 μm) is made into an adhesive sheet laminate 2.
The absorbance coefficient at 405 nm of the photopolymerization initiator (C-2) is 1.6×102
(mL/(g∙cm)).
[Example 1-3]
For the (meth)acrylic copolymer (A), the copolymer (A-3, mass Average molecular weight 400,000) 1 kg, add 200 g of propylene oxide pentaerythritol tetraacrylate (manufactured by Shinnakamura Chemical Co., Ltd., ATM-4P) (B-3) as a crosslinking agent (B), as a photopolymerization initiator (C ) Irgacure 819 (C-3) (manufactured by BASF Corporation) 7 g, and 2,2'-dihydroxy-4-methoxybenzophenone (manufactured by Chemipro Kasei Corporation, Kemisorb111 ) (D-3) 10 g, and uniformly mixed to obtain adhesive composition 3.
The absorbance coefficient at 405 nm of the photopolymerization initiator (C-3) is 9.0×102
(mL/(g∙cm)).
Adhesive resin composition 3 was sandwiched between 2 sheets of polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRF, thickness 75 μm/manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRT, thickness 38 μm) after peeling treatment, and It was shaped into a sheet so that the thickness became 100 μm, and an intermediate layer sheet (α) was prepared.
To 1 kg of commercially available adhesive solution containing acrylic copolymer (A-4, mass average molecular weight 1.3 million) (manufactured by Soken Chemical Co., Ltd., SK-Dyne 1882, solid content of about 17%), add it as an isocyanate compound L-45 (B-5) (manufactured by Soken Chemical Co., Ltd.) as a linking agent 1.85 g and E-5XM (B-6) (manufactured by Soken Chemical Co., Ltd.) as an epoxy-based crosslinking agent 0.5 g to prepare an adhesive composition 4.
On a polyethylene terephthalate film (manufactured by Mitsubishi Plastics Co., Ltd., DIAFOIL MRV, thickness 100 μm) that has undergone peeling treatment, apply the above-mentioned adhesive layer coating so that the film thickness after drying becomes 20-30 μm. After applying the liquid, dry it at 80°C for 5 minutes. This was cured at 23°C for 7 days to react the crosslinking agent to prepare a sheet (β) for an adhesive layer.
Furthermore, on the peeled polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRQ, thickness 75 μm), the thickness of the adhesive composition 4 after drying is similarly set to 20-30 After applying the above-mentioned adhesive layer coating liquid in a μm method, it was dried at 80°C for 5 minutes. This was cured at 23°C for 7 days to react the crosslinking agent to prepare a sheet (β') for an adhesive layer.
The PET films on both sides of the intermediate layer resin sheet (α) are peeled off in order, and the adhesive surfaces of the adhesive layer resin sheets (β) and (β') are sequentially bonded to the intermediate layer sheet On both surfaces of (α), a laminate (thickness 150 μm) containing (β)/(α)/(β') was produced.
Through the PET film remaining on the surface of (β) and (β'), the cumulative light intensity at a wavelength of 365 nm becomes 1000 mJ/cm2
、The cumulative light intensity of wavelength 405 nm becomes 1400 mJ/cm2
In this method, light is irradiated with a high-pressure mercury lamp, and the intermediate layer resin sheet (α) is photo-crosslinked, so that the adhesive sheet laminate 3 is produced.
[Example 1-4]
Used for PET film with UV absorber (thickness 100 μm) and release film coated with silicone release agent, instead of peeling-treated polyethylene terephthalate film (DIAFOIL MRV, thickness 100 μm) Except for this, an adhesive sheet laminate 4 was produced in the same manner as in Example 1-1.
[Example 1-5]
The surface of the polyethylene terephthalate film (DIAFOIL MRV, thickness 100 μm) of the adhesive sheet laminate made in Example 1-1, the laminate contains a micro-adhesive layer (5 μm)/polyterephthalate The micro-adhesive layer of the surface protection film of the ethylene glycol film (25 μm)/ultraviolet absorption layer (3 μm) is made into an adhesive sheet laminate 5 including a release film/adhesive sheet/release film/surface protection film .
[Comparative Example 1-1]
As a photopolymerization initiator, 15 g of Esacure TZT (C-4) was added instead of Esacure KTO46 (C-1), and an adhesive sheet laminate 6 was produced in the same manner as in Example 1-1 except that Esacure TZT (C-4) was added.
The absorbance coefficient at 405 nm of the photopolymerization initiator (C-4) is less than 10 (mL/(g∙cm)), which is too low to be measured.
[Comparative Example 1-2]
Except not adding the ultraviolet absorber (D-2), an adhesive sheet laminate 7 was produced in the same manner as in Example 1-2.
[Comparative Example 1-3]
To 1 kg of commercially available adhesive solution containing acrylic copolymer (A-4, mass average molecular weight 1.3 million) (manufactured by Soken Chemical Co., Ltd., SK-Dyne 1882, solid content of about 17%), add it as an isocyanate compound L-45 (B-5) (manufactured by Soken Chemical Co., Ltd.) as a linking agent 1.85 g and E-5XM (B-6) (manufactured by Soken Chemical Co., Ltd.) as an epoxy-based crosslinking agent 0.5 g, as a UV absorber ( D) 10 g of 2,2'-dihydroxy-4-methoxybenzophenone (made by Chemipro Kasei, Kemisorb 111) (D-3), and uniformly mixed to prepare adhesive composition 7.
Next, after peeling off the polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRV, thickness 100 μm), apply the adhesive composition so that the thickness after drying becomes 50 μm, Dry at 80°C for 5 minutes to obtain a sheet-like adhesive composition 7 with a thickness of 50 μm.
On the peeled polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRQ, thickness 75 μm), the same is applied to the thickness after drying to become 50 μm, and then at 80°C After drying for 5 minutes, a sheet-like adhesive composition 7 with a thickness of 50 μm was obtained. After the laminated layers were set to a thickness of 100 μm, a peeling-treated polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRQ, thickness 75 μm) was coated. This was cured at room temperature (23° C.) for 7 days, the crosslinking agent was reacted, and an adhesive sheet laminate 8 was produced.
<Evaluation>
[Optical characteristics]
The PET films on both sides of the adhesive sheet laminate produced in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-3 were peeled off in order to sandwich 2 sheets of soda lime glass (thickness 0.5 mm) Paste the adhesive sheet in an intermittent way, perform autoclave treatment (70°C, gauge pressure 0.2 MPa, 20 minutes) for precision pasting. Regarding the adhesive sheet laminate 1, 2, 4, 5, 6, 7, using a high-pressure mercury lamp with a UV cut filter, the cumulative light intensity at a wavelength of 405 nm becomes 3000 mJ/cm2
Light irradiation was carried out in the same manner to prepare a sample for optical characteristic evaluation.
The light transmittance in the wavelength region of 360-430 nm of the finished test piece was measured by a spectrophotometer (manufactured by Shimadzu Corporation, machine name "UV2450").
If the light transmittance at 380 nm is less than 50%, it is judged as the UV absorption "○ (good)", and the light transmittance at 380 nm or more is judged as the UV absorption "× (poor)". The results are shown in Table 1.
[Adhesion]
Regarding the adhesive sheets produced in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-3, a release film was peeled off, and the polyethylene terephthalate as the backing film was removed with a hand roller The diester film (manufactured by Toyobo Co., Ltd., trade name "COSMOSHINE A4300", thickness 100 μm) is roll-bonded. Cut it into short strips of 10 mm width x 100 mm length, and use a hand roller to stick the exposed adhesive surface after peeling off the remaining release film to the soda lime glass. After carrying out autoclave treatment (70°C, gauge pressure 0.2 MPa, 20 minutes) for precision bonding, for the adhesive sheet laminates 1, 2, 4, 5, 6, and 7, use high pressure that mediates UV cut filters Mercury lamp, the cumulative light quantity with a wavelength of 405 nm becomes 3000 mJ/cm2
、The cumulative light intensity of the wavelength of 365 nm becomes 5 mJ/cm2
Irradiate visible light in the following way to make a sample for adhesion measurement.
On one side, the substrate film is stretched at an angle of 180° at a peeling speed of 60 mm/min. On the other side, the adhesive sheet is peeled from the glass. The tensile strength is measured by the load cell, and the 180° peel strength of the adhesive sheet to the glass (N/cm) ), expressed as "Glass Adhesion" in Table 1. The results are shown in Table 1.
[Concave-convex absorbency]
Perform printing with a thickness of 20 μm on the periphery of the glass of 58 mm×110 mm×thickness 0.8 mm (long side 3 mm, short side 15 mm), and prepare an opening of 52 mm×80 mm with printing step Glass plate 1.
In addition, the peripheral edge of the glass of 58 mm×110 mm×thickness 0.8 mm (3 mm on the long side and 15 mm on the short side) is printed with a thickness of 10 μm, and the opening is 52 mm×80 mm. Poor glass plate 2.
The release film of one of the adhesive sheet laminates is peeled off, and the roll is attached to the soda lime glass of 54 mm×82 mm thickness 0.5 mm.
Next, peel off the remaining release film, and apply pressure to the printing surface of the glass plates 1 and 2 with the printing step by applying the 4 sides of the adhesive surface to the printing step using a vacuum press after pressure bonding ( The absolute pressure is 5 kPa, the temperature is 70°C, the pressure is 0.04 MPa), and the autoclave treatment (70°C, gauge pressure 0.2 MPa, 20 minutes) is carried out for precision bonding. Regarding the adhesive sheet laminate 1, 2, 4, 5, 6, and 7, from the glass side where the printing is performed, a high-pressure mercury lamp with a UV cut filter is used, and the cumulative light intensity at a wavelength of 405 nm becomes 3000 mJ/cm2
Light irradiation was carried out in this way to prepare samples for evaluation.
Regarding the samples for evaluation mentioned above, the ones that can be bonded to the glass plate 1 with a printing step of 20 μm without air bubbles or the like are judged to be "◎ (excellent)" for the uneven absorbency, and the printing with a 10 μm The glass plate 2 with the step difference can be judged to be "○ (good)" if it is bonded without bubbles near the difference, and the glass 1 and 2 with a printing step are judged as bubbles are seen near the difference. It is "× (poor)" for the absorbency of unevenness. The results are shown in Table 1.
[Heat resistance]
The one-sided release film of the adhesive sheets prepared in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-3 was peeled off, and a COP film (Japan Rui Made by Weng Company, 100 μm). Next, after cutting the above-mentioned adhesive sheet into 50 mm×80 mm, peel off the remaining release film, and use a hand roller to attach to soda lime glass with a thickness of 0.5 mm, and perform autoclave treatment (temperature 80°C, air pressure 0.4 MPa ,30 minutes). Regarding the adhesive sheet laminate 1, 2, 4, 5, 6, and 7, from the COP surface, using a high-pressure mercury lamp with a UV cut filter, the cumulative light intensity at a wavelength of 405 nm becomes 3000 mJ/cm2
Light irradiation was carried out in this way to prepare samples for evaluation.
Regarding the above evaluation samples, they were cured at 85°C for 6 hours. Those with no foaming and no change in appearance were judged as heat resistance "○ (good)", and those with foaming or peeling were judged as heat resistance" × (poor)". The results are shown in Table 1.
[Lightfastness]
The release film of one of the laminated body of the adhesive sheet is peeled off, and the roll is attached to the soda lime glass of 150 mm×200 mm thickness 2 mm. Next, peel off the remaining release film, roll-fit the soda lime glass of 150 mm×200 mm thickness 2 mm on the exposed adhesive surface, and perform autoclave treatment (temperature 80°C, air pressure 0.4 MPa, 30 minutes).
For the adhesive sheet laminates 1, 2, 4, 5, 6, and 7, a high-pressure mercury lamp is used, and the cumulative light intensity at a wavelength of 405 nm becomes 3000 mJ/cm2
Light irradiation was carried out in this way to prepare samples for evaluation.
A xenon light resistance tester (Suntest CPS, manufactured by ATLAS) was used to irradiate the above-mentioned evaluation sample with ultraviolet rays for 24 hours. If no swelling was seen on the adhesive sheet, it was judged as light fastness "○ (good)", and swelling or The peeler was judged as "× (poor)" in light resistance. The results are shown in Table 1.
[Table 1] Example 1-1 Example 1-2 Example 1-3 Example 1-4 Example 1-5 Comparative example 1-1 Comparative example 1-2 Comparative example 1-3
middle layer Subsequent layer
Acrylic copolymer A-1 100 100 100 100
A-2 100 100
A-3 100
A-4 100 100
Crosslinking agent B-1 10 10 10 10
B-2 5 5
B-3 20
L-45 1.85 1.85
E-5XM 0.5 0.5
Photoinitiator C-1 1.5 1.5 1.5
C-2 1 1
C-3 0.7
C-4 1.5
UV absorber D-1 0.5 0.5 0.5 0.5
D-2 2
D-3 1 1
Remark Build-up UV cut PET UV cutting protective film
Absorption coefficient of photoinitiator (405 nm) mL/(g∙cm) 7.4×10 1 1.6×10 2 9.0×10 2 7.4×10 1 7.4×10 1 <10 1.6×10 2 -
Glass adhesive N/cm 8 4 10 8 8 2 4 5
Adhesive sheet light transmittance (%) 350 nm 0 0 0 0 0 0 80 0
360 nm 1 0 0 1 1 1 84 0
370 nm 11 2 0 11 11 11 86 0
380 nm 44 17 3 44 44 44 86 1
390 nm 71 55 19 71 71 71 88 13
400 nm 81 77 51 81 81 81 88 42
410 nm 87 86 77 87 87 87 89 73
420 nm 89 89 87 89 89 89 89 86
430 nm 89 89 89 89 89 89 89 89
UV absorption 〇 〇 〇 〇 〇 〇 X 〇
Fitting reliability Convex absorbency ◎ ◎ 〇 ◎ ◎ ◎ ◎ X
Heat resistance 〇 〇 〇 〇 〇 X 〇 〇
Light fastness 〇 〇 〇 〇 〇 〇 X 〇
Overview 〇 〇 〇 〇 〇 〇 X X
Regarding the peel-off polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRV, thickness 100 μm) used in Example 1-1, the UV absorber used in Example 1-4 PET film (thickness 100 μm) coated with silicone mold release film, and the surface protection film used in Examples 1-5, using a spectrophotometer (manufactured by Shimadzu Corporation, machine name " UV2450") measures the light transmittance in the wavelength range of 380 to 450 nm. The results are shown in Table 2.
Regarding the adhesive sheet laminate 1, the adhesive sheet laminate 4, and the adhesive sheet laminate 5, a polyethylene terephthalate film (manufactured by Mitsubishi Plastics Co., Ltd., DIAFOIL MRV, thickness 100 μm), which has been peeled off, is used as an example. The PET film (thickness 100 μm) with UV absorber used in 1-4 is allowed to stand with the release film coated with silicone release agent and the surface protection film side up. The film was irradiated with the light of a fluorescent lamp (illuminance 1100Lx) for 7 days. The cumulative amount of light at the wavelength of 405 nm of the irradiated light is about 43 J/cm2
, The cumulative amount of light at a wavelength of 365 nm is about 1 mJ/cm2
The following cannot be measured.
Regarding the adhesive sheet laminates 1 and 4 before and after the light irradiation treatment, the gel fraction of the adhesive material was obtained by the following method. The results are shown in Table 2.
1) Weigh the adhesive composition (W1), and wrap it in the pre-measured SUS wire mesh (W0).
2) Immerse the above SUS wire mesh in 100 mL of ethyl acetate for 24 hours.
3) Take out the SUS screen and semi-dry it at 75°C for 4 hours.
4) Calculate the weight (W2) after drying, and measure the gel fraction of the adhesive composition according to the following formula.
Gel fraction (%)=100×(W2-W0)/W1
Regarding storage stability, the change in gel fraction before and after fluorescent lamp irradiation was judged as "○ (good)", and the gel fraction increased by 5 points or more after light irradiation was judged as "×( Poor)". The results are shown in Table 2.
[Table 2] Example 1-1 Example 1-4 Example 1-5
Light transmittance of demoulded PET (%) 380 nm 84 26 0
390 nm 85 33 0
400 nm 86 twenty three 0
410 nm 86 13 1
420 nm 87 5 9
430 nm 87 3 39
440 nm 88 2 69
450 nm 88 1 81
Gel fraction Before light exposure 0% 0% 0%
After light exposure 68% 2% 0%
Storage stability X 〇 〇
The adhesive sheet laminate system of Examples 1-1 to 1-5 not only has excellent ultraviolet absorption performance, but also has excellent quality that takes into account the uneven absorption during bonding or the reliability after the components are bonded.
In contrast, Comparative Example 1-1 uses a photopolymerization initiator with an absorbance coefficient of less than 10 mL/(g∙cm) at a wavelength of 405 nm, so the absorbance coefficient at a wavelength of 405 nm is not used as 10 mL /(g∙cm) or more of the photopolymerization initiator, so even if light is irradiated, the adhesive material will not harden, and the adhesive force after the second attachment or the reliability after the attachment cannot be obtained.
Comparative Example 1-2 does not contain the ultraviolet absorber (D), and the ultraviolet absorption performance cannot be obtained. Therefore, foaming of the adhesive sheet was seen in the light resistance test, and the bonding reliability was poor.
Comparative Examples 1-3 are adhesive sheets in which the adhesive material composition is crosslinked by thermal crosslinking. Since it does not have a photocurable layer, it has poor absorption of unevenness during bonding.
In addition, in Examples 1-4, a PET film added with an ultraviolet absorber was used as the release film. Thereby, the progress of the photocuring reaction of the adhesive material composition before being attached to the member can be suppressed, and an adhesive sheet laminate having excellent storage stability can be obtained.
In addition, Examples 1-5 are a surface protection film having an ultraviolet absorbing layer on the surface area of the release film. Thereby, the progress of the photocuring reaction of the adhesive material composition before being attached to the member can be suppressed, and an adhesive sheet laminate having excellent storage stability can be obtained.
Hereinafter, examples 2-1 to 2-3 and comparative examples 2-1 to 2-2 will be described in further detail.
However, the present invention is not limited to these. Furthermore, the composition of the adhesive resin composition of each layer used in the following Examples and Comparative Examples is shown in Table 3.
[Example 2-1]
For the (meth)acrylic copolymer (2-A) containing 76 parts by mass of 2-ethylhexyl (meth)acrylate, 20 parts by mass of vinyl acetate, and 4 parts by mass of acrylic acid (2-A) -1, Mass average molecular weight 400,000) 1 kg, add propylene oxide pentaerythritol tetraacrylate (manufactured by Shinnakamura Chemical Co., Ltd., ATM-4P) (2-B-1) 200 g as a crosslinking agent (2-B), Irgacure 369(2-C-1) (manufactured by BASF) as a photopolymerization initiator (2-C) 8 g, 2,2'-dihydroxy-4-methyl as an ultraviolet absorber (2-D) 10 g of oxybenzophenone (manufactured by Chemipro Kasei, Kemisorb 111) (2-D-1), and uniformly mixed to obtain an adhesive resin composition 2-1.
The absorbance coefficient at 405 nm of the photopolymerization initiator (2-C-1) is 1.6×102
mL/(g∙cm).
Adhesive resin composition 2-1 is sandwiched by two peeled polyethylene terephthalate films (manufactured by Mitsubishi Plastics, DIAFOIL MRF, thickness 75 μm/manufactured by Mitsubishi Plastics, DIAFOIL MRT, thickness 38 μm) , And shape it into a sheet so that the thickness becomes 110 μm to prepare an intermediate layer sheet (α-1).
1 kg of commercially available adhesive solution containing acrylic copolymer (2-A-2, mass average molecular weight 1.3 million) (manufactured by Soken Chemical Co., Ltd., SK-Dyne1882, solid content of about 17%), added as isocyanate L-45(2-B-2) (manufactured by Soken Chemical Co., Ltd.) as a crosslinking agent 1.85 g and E-5XM(2-B-3) (manufactured by Soken Chemical Co., Ltd.) as an epoxy-based crosslinking agent 0.5 g , Preparation of adhesive resin composition 2. On the peeled polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRV, thickness 100 μm), apply the adhesive layer coating solution so that the thickness after drying becomes 20 μm , Dried at 80°C for 5 minutes to thermally harden the β layer to prepare a sheet (β-1) for the surface layer.
Furthermore, on the peeled polyethylene terephthalate film (manufactured by Mitsubishi Plastics, DIAFOIL MRQ, thickness 75 μm), in the same way, the adhesive resin composition is applied so that the thickness after drying becomes 20 μm After the product 2, it was dried at 80°C for 5 minutes to thermally harden the β layer to prepare a surface layer sheet (β'-1).
The PET films on both sides of the intermediate layer sheet (α-1) are peeled off in order, and the adhesive surfaces of the surface layer sheets (β-1) and (β'-1) are sequentially attached to the two surfaces. Create a laminate containing (β-1)/(α-1)/(β'-1).
Through the PET film remaining on the surface of (β-1) and (β'-1), the cumulative light intensity at a wavelength of 405 nm becomes 1500 mJ/cm2
In this way, a high-pressure mercury lamp was used to irradiate the α layer to produce a transparent double-sided adhesive sheet laminate 2-1 (thickness 150 μm).
[Example 2-2]
Add 200 g of crosslinking agent (2-B-1) to 1 kg of (meth)acrylic copolymer (2-A-1) and Esacure KTO46(2-C) as a photopolymerization initiator (2-C) -2) 20 g of (manufactured by Lanberti), 20 g of ultraviolet absorber (2-D-1) and uniformly mixed to obtain an adhesive resin composition 2-3.
The absorbance coefficient at 405 nm of the photopolymerization initiator (2-C-2) is 7.4×101
mL/(g∙cm).
Adhesive resin composition 2-3 is sandwiched by two peeled polyethylene terephthalate films (manufactured by Mitsubishi Plastics, DIAFOIL MRF, thickness 75 μm/manufactured by Mitsubishi Plastics, DIAFOIL MRT, thickness 38 μm) , And shape it into a sheet so that the thickness becomes 60 μm to prepare a sheet for intermediate layer (α-2).
In the same manner as in Example 2-1, the PET films on both sides of the intermediate layer sheet (α-2) were peeled off in order, and the surface layer sheets (β-1) and (β'-1) were adhered The surfaces are attached to the two surfaces in sequence to produce a laminate containing (β-1)/(α-2)/(β'-1).
Through the PET film remaining on the surface of (β-1) and (β'-1), the cumulative light intensity at a wavelength of 405 nm becomes 3000 mJ/cm2
The method uses a high-pressure mercury lamp to irradiate to harden the α layer to produce a transparent double-sided adhesive sheet laminate 2-2 (thickness 100 μm).
[Example 2-3]
Add 200 g of crosslinking agent (2-B-1), 8 g of photopolymerization initiator (2-C-2), and ultraviolet absorber to 1 kg of (meth)acrylic copolymer (2-A-1) (2-D-1) 20 g, and uniformly mixed to obtain an adhesive resin composition 2-4.
Adhesive resin composition 2-4 is sandwiched between 2 sheets of polyethylene terephthalate film (manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRF, thickness 75 μm/manufactured by Mitsubishi Plastics Corporation, DIAFOIL MRT, thickness 38 μm) after peeling treatment. , And shape it into a sheet so that the thickness becomes 60 μm to prepare a sheet for intermediate layer (α-3).
As in Example 2-1, the PET films on both sides of the intermediate layer sheet (α-3) were peeled off in order, and the surface layer sheets (β-1) and (β'-1) were adhered The surfaces are attached to both sides in sequence to produce a laminate containing (β-1)/(α-3)/(β'-1).
Through the PET film remaining on the surface of (β-1) and (β'-1), the cumulative light intensity at a wavelength of 405 nm becomes 3000 mJ/cm2
The method uses a high-pressure mercury lamp to irradiate to harden the α layer to produce a transparent double-sided adhesive sheet laminate 2-3 (thickness 100 μm).
[Comparative Example 2-1]
To (meth)acrylic copolymer (2-A-1) 1 kg, add 200 g of crosslinking agent (2-B-1) and Esacure TZT (2-C) as a photopolymerization initiator (2-C) C-3) (manufactured by Lanberti) 10 g, 2,2'-dihydroxy-4-methoxybenzophenone (manufactured by Chemipro Kasei, Kemisorb 111) as an ultraviolet absorber (2-D) (2- D-1) 20 g and uniformly mixed to obtain adhesive resin composition 2-5.
The absorbance coefficient at 405 nm of the photopolymerization initiator (2-C-3) is less than 10 mL/(g∙cm), which is too low to be measured.
Adhesive resin composition 2-5 is sandwiched by two peeled polyethylene terephthalate films (manufactured by Mitsubishi Plastics, DIAFOIL MRF, thickness 75 μm/manufactured by Mitsubishi Plastics, DIAFOIL MRT, thickness 38 μm) , And shape it into a sheet so that the thickness becomes 110 μm to prepare an intermediate layer sheet (α-4).
As in Example 2-1, the PET films on both sides of the intermediate layer sheet (α-4) were peeled off in order, and the surface layer sheets (β-1) and (β'-1) were adhered The surfaces are attached to the two surfaces in sequence to produce a laminate containing (β-1)/(α-4)/(β'-1).
Through the PET film remaining on the surface of (β-1) and (β'-1), the cumulative light intensity at a wavelength of 405 nm becomes 1500 mJ/cm2
The method uses a high-pressure mercury lamp to irradiate to harden the α layer to produce a transparent double-sided adhesive sheet laminate 2-4 (thickness 100 μm).
[Comparative Example 2-2]
To (meth)acrylic copolymer (2-A-1) 1 kg, add 200 g of crosslinking agent (2-B-1) and 8 g of photopolymerization initiator (2-C-2) and mix them uniformly , To obtain the adhesive resin composition 2-6. At this time, no ultraviolet absorber (2-D) was added.
Adhesive resin composition 2-6 is sandwiched by two peeled polyethylene terephthalate films (manufactured by Mitsubishi Plastics, DIAFOIL MRF, thickness 75 μm/manufactured by Mitsubishi Plastics, DIAFOIL MRT, thickness 38 μm) , And shape it into a sheet so that the thickness becomes 110 μm to prepare an intermediate layer sheet (α-5).
As in Example 2-1, the PET films on both sides of the intermediate layer sheet (α-5) were peeled off in order, and the surface layer sheets (β-1) and (β'-1) were adhered The surfaces are attached to the two surfaces in sequence to produce a laminate containing (β-1)/(α-5)/(β'-1).
Through the PET film remaining on the surface of (β-1) and (β'-1), the cumulative light intensity at a wavelength of 405 nm becomes 1500 mJ/cm2
The method uses a high-pressure mercury lamp to irradiate to harden the α layer to produce a transparent double-sided adhesive sheet laminate 2-5 (thickness 150 μm).
<Evaluation>
[Ultraviolet absorption performance]
The PET films on both sides of the transparent double-sided adhesive sheet laminate made in Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-2 were peeled off in order to sandwich 2 sheets of soda lime glass ( After attaching the adhesive sheet in a space of 54×82 mm, thickness 0.5 mm), it is subjected to autoclave treatment (70°C, gauge pressure 0.2 MPa, 20 minutes) for fine attachment, and is used as a sample for evaluation of ultraviolet absorption performance.
The light transmittance in the wavelength region of 360-430 nm of the prepared test piece was measured with a spectrophotometer (manufactured by Shimadzu Corporation, machine name "UV2450"). If the light transmittance at 380 nm is less than 50%, it is judged as "○ (good)", and if the light transmittance is more than 50%, it is judged as "× (poor)". The results are shown in Table 4.
[Glass Adhesive Force]
Regarding the transparent double-sided adhesive sheets produced in Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-2, a release film was peeled off, and the polyethylene terephthalate as the backing film The diester film (manufactured by Toyobo Co., Ltd., trade name "COSMOSHINE A4300", thickness 100 μm) is roll-bonded. Cut it into short strips of 10 mm width x 100 mm length, and use a hand roller to stick the exposed adhesive surface after peeling off the remaining peeling film to the soda lime glass. It was subjected to autoclave treatment (70°C, gauge pressure 0.2 MPa, 20 minutes) to perform precision bonding to prepare an adhesive force measurement sample. On one side, the substrate film was stretched at an angle of 180° at a peeling speed of 60 mm/min. On the other hand, the adhesive sheet was peeled from the glass. The tensile strength was measured by a load cell, and the 180° peel strength of the adhesive sheet to the glass was measured. Shown in Table 4.
[Retention force (offset length)]
After cutting the adhesive sheets produced in Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-2 to 50 mm×100 mm, peel off the release film on one side, and overlap the adhesive sheets on one side A polyethylene terephthalate film (thickness: 38 μm) was attached to the substrate using a hand roller, and it was cut into short strips with a width of 25 mm x a length of 100 mm and used as a test piece. Next, the remaining peeling film was peeled off, and the test piece was attached by a hand roller by overlapping a length of 20 mm on a vertically erected SUS plate (thickness 120 mm, 5 mm×1.5 mm). At this time, the adhesion area between the transparent double-sided adhesive sheet and the SUS board becomes 25 mm×20 mm.
After that, the test piece was cured in an atmosphere of 40°C for 15 minutes, then the test piece was installed in the vertical direction and a weight of 500 g was applied. After standing for 30 minutes, the attachment position of the SUS and the test piece was measured downward. The offset length (mm).
If the offset length is less than 1 mm is judged as "◎ (excellent)", if the offset length is 1 mm or more and less than 2 mm is judged as "〇 (good)", if the offset length is 2 mm or more It is judged as "× (poor)". The results are shown in Table 4.
[Foaming Reliability]
As the sample for foaming resistance reliability evaluation, two pieces of the same sample as the sample for ultraviolet absorption performance evaluation were used. This was cured at 85°C for 100 hours, and those with no foaming or the like and no change in appearance were judged as "○ (good)", and those with foaming or peeling were judged as "x (poor)". The results are shown in Table 4.
[table 3] Adhesive resin composition 2-1 2-2 2-3 2-4 2-5 2-6
(Meth) acrylic copolymer (A) A-1 100 100 100 100 100
A-2 100
Crosslinking agent (B) B-1 20 20 20 20 20
B-2 0.185
B-3 0.05
Photopolymerization initiator (C) C-1 0.8 0.8
C-2 2 0.8
C-3 1
UV absorber (D) D-1 1 2 2 2
Photopolymerization initiator (C) Absorption coefficient 405 nm 1.6×10 2 - 7.4×10 1 7.4×10 1 <10 1.6×10 2
[Table 4] Example 2-1 Example 2-2 Example 2-3 Comparative example 2-1 Comparative example 2-2
Transmittance[%] 360 nm 0 0 0 0 84
370 nm 0 0 0 0 85
380 nm 3 4 3 3 88
390 nm 19 twenty one 18 20 88
400 nm 51 53 52 53 89
410 nm 77 78 78 79 89
420 nm 87 87 87 88 89
430 nm 89 89 89 89 89
UV absorption performance 〇 〇 〇 〇 X
Glass adhesion [N/cm] 10 9 10 2 7
Holding power (40℃) ◎ (1 mm) ◎ (1 mm) 〇(1.9 mm) × (falling) ◎ (<1 mm)
Resistant to foaming reliability 〇 〇 〇 X 〇
Overview ◎ ◎ 〇 X X
Observation of the pressure-sensitive adhesive sheet laminates of Examples 2-1 to 2-3 showed that no bleeding of the ultraviolet absorber (D) was observed.
The adhesive sheet laminate system of Examples 2-1 to 2-3 maintains the characteristics of adhesiveness or retention, humidity and heat resistance and reliability, and imparts excellent ultraviolet absorption performance.
In Comparative Example 2-1, a photopolymerization initiator with an absorbance coefficient of less than 10 mL/(g∙cm) at a wavelength of 405 nm was used. Therefore, even if light is irradiated, the adhesive will not be hardened, and the adhesive strength may not be hardened after bonding. The reliability is poor.
In Comparative Example 2-2, since the α layer does not contain the ultraviolet absorber (D), the ultraviolet absorption performance is poor.