TW202123518A - 液流電池系統及其控制方法 - Google Patents
液流電池系統及其控制方法 Download PDFInfo
- Publication number
- TW202123518A TW202123518A TW108144259A TW108144259A TW202123518A TW 202123518 A TW202123518 A TW 202123518A TW 108144259 A TW108144259 A TW 108144259A TW 108144259 A TW108144259 A TW 108144259A TW 202123518 A TW202123518 A TW 202123518A
- Authority
- TW
- Taiwan
- Prior art keywords
- battery system
- electrode electrolyte
- unit
- electrolyte
- sub
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
一種液流電池系統及其控制方法。所述系統包括並聯的數個子電池系統模組、電力單元、正/負極電解液輸送單元、電性偵測單元與控制單元。電力單元與子電池系統模組中的至少一者電性接觸,並經由數個電性導通單元與其餘子電池系統模組形成通路或斷路。正/負極電解液輸送單元與子電池系統模組中的所述至少一個相通並與其餘子電池系統模組開通或隔絕。電性偵測單元用以偵測電力單元的電流值。控制單元連接電性導通單元與正/負極電解液輸送單元,並接收來自電性偵測單元的電流值訊號,來決定是否導通電性與正/負極電解液。
Description
本發明是有關於一種液流電池堆的技術,且特別是有關於一種液流電池系統及其控制方法。
液流電池(flow battery),亦稱為氧化還原液流電池(redox flow battery)是一種電化學儲能裝置,是透過電解液(正極電解液、負極電解液)中氧化還原反應機制的離子價數變化,進行充電/放電的電化學反應平台。
舉例來說,目前常見的液流電池之一是使用不同價數之釩離子硫酸水溶液進行如下的電化學反應:
正極反應:VO2 +
+ 2H+
+e-
←→VO2+
+ H2
O
負極反應:V2+
←→V3+
+e-
全反應式:VO2 +
+ 2H+
+V2+
←→VO2+
+ H2
O + V3+
氧化還原液流電池具有安全性高、可以完全充放電、能量效率高、電池壽命長、電解液劣化少、不會排放有害環境的氣體以及電解液儲存槽增加即可增加系統儲電容量等特徵,可用於解決再生能源常具的間歇特性,使得再生能源對於電力電網供電的不確定性獲得改善。
一般的液流電池系統是由數個電池單元串接堆疊而成串聯式電池堆(stack)。每個電池單元可包括但不限於離子交換膜以及兩側分別配設有細密多孔的石墨氈電極(作為正電極與負電極)與正極雙極板以及負極雙極板。正極電解液與負極電解液會流入電池堆再流出電池堆形成循環迴路。
然而,隨著電池堆的面積或體積增加,電解液的流通分布容易不均,發生死區(dead volume),造成電解液停滯及濃度極化,而影響電池內部質子與電子傳輸效能,導致電池整體效率不佳。此外,電池堆的面積或體積增加也會增加電解液流通阻力,甚者會造成電池洩漏與寄生電力損耗過高等問題。
本發明提供一種液流電池系統及其控制方法,可有效降低死區的發生、減少寄生電力損耗、進而提升液流電池系統可靠度與電池整體效率。
本發明的液流電池系統,包括並聯的數個子電池系統模組、電力單元、正/負極電解液輸送單元、電性偵測單元與控制單元。所述子電池系統模組互不連通。電力單元與子電池系統模組中的至少一者電性接觸,並經由數個電性導通單元與其餘子電池系統模組形成通路或斷路。至於正/負極電解液輸送單元則與子電池系統模組中的所述至少一個相通並與其餘子電池系統模組開通或隔絕。電性偵測單元與所述電力單元串聯,以偵測電力單元的電流值。控制單元連接上述電性導通單元與正/負極電解液輸送單元,並接收來自上述電性偵測單元的電流值訊號,來決定是否導通電性與正/負極電解液。
本發明的液流電池系統的控制方法,包括利用上述電性偵測單元取得液流電池系統中的電力單元的電流值與功率值,並將電流值與功率值的訊號傳輸至上述控制單元。然後利用控制單元根據功率值與下式獲得時間因素,式中的α為修正係數,且a和b為常數。
時間因素=α.[(-a.電容量+ b)]/功率值
然後,利用所述控制單元根據上述電流值與上述時間因素,開啟或關閉上述數個電性導通單元中的至少一個,並經由控制上述負極電解液輸送單元與上述正極電解液輸送單元改變正極電解液與負極電解液的輸送狀態。
基於上述,既可有效提升液流電池系統可靠度,又可以將電解液在電池中進行有效且均勻的流場分配,改善電解液流通分布不均,避免死區的發生,提升電池內部質子與電子傳輸效能及電池整體效率;並且隨著分區域進行電解液及電性導通的方式,還可減少輸送泵浦寄生電力的損耗,有利提升氧化還原電池的電流密度及能量效率的結構設計,以有效提升儲能系統的可靠度及穩健性。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
請參考以下實施例及隨附圖式,以便更充分地了解本發明,但是本發明仍可以藉由多種不同形式來實踐,且不應將其解釋為限於本文所述之實施例。而在圖式中,為求明確起見對於各構件以及其相對尺寸可能未按實際比例繪製。
圖1是依照本發明的第一實施例的一種液流電池系統的示意圖。
請參照圖1,液流電池系統10包括並聯的N個子電池系統模組1001
、1002
…100N
、電力單元102、正極電解液輸送單元104、負極電解液輸送單元106、電性偵測單元108與控制單元110。所述N個子電池系統模組1001
、1002
…100N
互不連通,且N是大於1的整數,例如數量(N值)最佳可在2至8之間。在本實施例中,每個子電池系統模組1001
、1002
…100N
包括數個串聯的電池單元101如液流電池單元,且圖中的連續點「…」代表那裡有多個重複的構件或單元。由於子電池系統模組1001
、1002
…100N
是一個並聯系統,因此可以有效提高電池的可靠度。舉例來說,根據可靠度方程式Rsp
= 1-(1-Rss
)N
,其中Rss
是單一個子電池系統模組的可靠度,若以兩個子電池系統模組進行並聯設計,在相同單電池組件的條件下,可靠度將可以提升至88.2%;以四個子電池系統模組進行並聯設計,在相同單電池組件的條件下,可靠度將可以提升至98.6%;若以八個子電池系統模組進行並聯設計,在相同單電池組件的條件下,可靠度將可以提升至99.9%。
至於電力單元102是與N個子電池系統模組1001
、1002
…100N
中的至少一者電性接觸,在本實施例中是以第一個子電池系統模組1001
為例,但本發明並不限於此,在另一實施例中,電力單元102可與子電池系統模組1001
、1002
…100N
中的第二個或者兩個以上電性接觸。而且,經由數個電性導通單元112與其餘子電池系統模組1002
…100N
形成通路或斷路,其中電性導通單元112例如開關或繼電器。在如圖1所示的實施例中,正極電解液輸送單元104與N個子電池系統模組1001
、1002
…100N
中的第一個子電池系統模組1001
相通並可經由數個正極電解液導通單元114a與其餘子電池系統模組1002
…100N
開通或隔絕,其中正極電解液輸送單元104例如輸送泵浦,正極電解液導通單元114a例如閥件。因為直接與正極電解液輸送單元104相通的子電池系統模組就是直接與電力單元102電性接觸者,所以一旦電力單元102與子電池系統模組1001
、1002
…100N
中的第二個或者兩個以上電性接觸,則正極電解液輸送單元104也會相應地與該子電池系統模組相通。在如圖1所示的實施例中,負極電解液輸送單元106與N個子電池系統模組1001
、1002
…100N
中的第一個子電池系統模組1001
相通並可經由數個負極電解液導通單元114b與其餘子電池系統模組1002
…100N
開通或隔絕,其中負極電解液輸送單元106例如輸送泵浦,負極電解液導通單元114b例如閥件。因為直接與負極電解液輸送單元106相通的子電池系統模組就是直接與電力單元102電性接觸者,所以一旦電力單元102與子電池系統模組1001
、1002
…100N
中的第二個或者兩個以上電性接觸,則負極電解液輸送單元106也會相應地與該子電池系統模組相通。
請繼續參照圖1,電性偵測單元108與電力單元102串聯,以偵測電力單元102的電流值,其中電性偵測單元108例如安培計。電力單元102可包括電力輸出部116與電力輸入部118,其中電力輸出部116是將來自子電池系統模組1001
、1002
…100N
的電力輸出至外部負載、電力輸入部118則是用來將電力儲存至子電池系統模組1001
、1002
…100N
,其中電力輸出部116之電力來源為液流電池堆及其電解液、電力輸入部118之電力來源包括太陽能、風能等再生能源或市電。
在本實施例中,正極電解液會儲放在正極電解液儲存單元105,再透過正極電解液輸送單元104使正極電解液流經電池單元101的正極電極後,再流回正極電解液儲存單元105形成正極電解液的循環迴路;負極電解液則會儲放在負極電解液儲存單元107,再透過負極電解液輸送單元106使負極電解液流經電池單元101的負極電極後,再流回負極電解液儲存單元107形成負極電解液的循環迴路,其中正極電解液儲存單元105與負極電解液儲存單元107例如電解液體槽。然而,本發明並不限於此,正極電解液與負極電解液的存放與回收系統也可根據需求作變更。
而且,在本實施例中,液流電池系統10還可包括連接正極電解液輸送單元104的正極電解液控制單元120與連接負極電解液輸送單元106的負極電解液控制單元122,因此控制單元110在接收電流值的訊號後,可經由正極電解液控制單元120與負極電解液控制單元122控制正/負電解液的流速,其中控制單元110例如電腦、控制器或可程式邏輯控制器(PLC);正極電解液控制單元120與負極電解液控制單元122例如變頻器或控制器。文中的「/」若無其他解釋,則代表「與(and)」。
此外,為了清楚起見,雖然控制單元110看似獨立存在,但是控制單元110實際上分別連接電性導通單元112、正極電解液輸送單元104的正極電解液導通單元114a與負極電解液輸送單元106的負極電解液導通單元114b,並接收來自電性偵測單元108的訊號。此外,電性偵測單元108還可用來偵測電力單元102的功率值,其中電性偵測單元108也可包括功率計。當電性偵測單元108測到功率值的訊號,可決定是否導通電性與正/負極電解液。舉例來說,可根據下式獲得時間因素(time factor):
時間因素=α.[(-a.電容量+ b)]/功率值
式中的α為修正係數,且a和b為常數。
所述時間因素是根據功率值與電容量的關係(如圖2A所示),推算得到的功率值與時間因素的關係(如圖2B所示),若以本實施例的液流電池系統10為例;假設單一子電池系統模組1001
、1002
…或100N
可承受50安培,當啟動時,由控制單元110啟動正/負極電解液輸送單元104、106,並使正/負極電解液控制單元120與122控制正/負電解液輸送單元104、106維持在電解液基本輸送流率,此時僅有第一個子電池系統模組1001
的電解液導通及電性接觸電力單元102。然後,以電性偵測單元108隨時監測電力單元102的電流(或功率)狀態。當電力單元102的電流值小於基礎電流設定值時,控制單元110維持初始設定參數。當電力單元102的電流值大於50安培時(例如測出100安培),並連續時間超過上述時間因素[假設為20分鐘],則控制單元110提供控制訊號給正/負極電解液控制單元120與122,以增加正/負極電解液輸送量。
在本實施例中,液流電池系統10還可包括多個壓力感測單元124,分別裝置於正極電解液入口端104a與負極電解液入口端106a,用以偵測正極電解液與負極電解液的壓力,以提供訊號給控制單元110進行調節正極電解液控制單元120與負極電解液控制單元122進行正極及負極電解液輸送調整,其中壓力感測單元124例如壓力感測器。另外,液流電池系統10也可包括數個逆止閥126,分別設置於所述其餘子電池系統模組1002
…100N
的正極電解液排出管路128與負極電解液排出管路130中,可防止其他子電池系統模組排出的電解液逆流到未開通的子電池系統模組中,例如防止從第一個子電池系統模組1001
排出的正/負電解液逆流到子電池系統模組1002
;依此類推。而且,如圖3所示的實施例中,子電池系統模組1001
、1002
…100N
為N個,則逆止閥126有[2.(N-1)]個。
第一實施例的液流電池系統10因為裝設有電性偵測單元108、電性導通單元112、正/負極電解液導通單元114a與114b、控制單元110等,因此能根據電流值與時間因素控制正/負極電解液的輸送(或中止)以及子電池系統模組的開啟(或關閉),以使正/負極電解液在液流電池系統10中進行有效且均勻的流場分配,避免死區(dead volume)的發生,提升電池內部質子與電子傳輸效能及電池整體效率。
圖3是依照本發明的第二實施例的一種液流電池系統的示意圖,其中使用與第一實施例相同的元件符號來表示相同或近似的構件或單元,且相同或近似的構件或單元也可參照上述內容,不再贅述。
請參照圖3,液流電池系統30與液流電池系統10相比是屬於大型的電池系統,所以其中的子電池系統模組3001
、3002
… 300N
明顯包含更多的電池單元101,且每個子電池系統模組3001
、3002
…300N
包括多個串並聯的電池單元101。而且,由於液流電池系統30龐大,所以為了確保正/負極電解液的輸送順利,第二實施例中使用多個正極電解液輸送單元302a與多個正極電解液輸送單元302b,使每個子電池系統模組3001
、3002
…300N
連接一個正極電解液輸送單元302a與一個負極電解液輸送單元302b。而且,控制單元110同樣能接收來自電性偵測單元108的電流值與功率值的訊號,來決定是否導通電性與正/負極電解液。例如,當電力單元102的電流值變小且連續時間超過上述時間因素的時候,控制單元110會提供控制訊號給被選的子電池系統模組(如300N
)所對應的正極電解液輸送單元302a、負極電解液輸送單元302b與電性導通單元112,以停止輸送正極電解液與負極電解液進入被選的子電池系統模組300N
並關閉被選的子電池系統模組300N
,以此類推。
隨著電力單元102的電流(或功率)值愈小,切斷的正/負極電解液輸送單元302a/302b愈多,關閉的子電池系統模組越多,可以達到有效降低寄生電力的損耗,並且可以提高電解液輸送的均勻程度。
圖4是依照本發明的第三實施例的一種液流電池系統的啟動步驟圖。本實施例的控制方法主要是根據上述實施例的液流電池系統中的電力單元的電流值與功率值進行一連串的控制,且於常態控制之前的啟動步驟顯示於本圖,而第三實施例的一種液流電池系統的控制步驟則顯示於圖5。
在圖4中,先進行步驟S400,啟動液流電池系統,使正極電解液與負極電解液輸入所述子電池系統模組中的至少一者(例如圖1的1001
或圖3的3001
)。所述液流電池系統可參照第一或第二實施例。然後,利用電性偵測單元取得電力單元的電流值與功率值,並將所述電流值與所述功率值的訊號傳輸至控制單元(步驟S402)。接收到上述訊號的控制單元,可根據所述功率值與下式獲得時間因素(步驟S404):
時間因素=α.[(-a.電容量+ b)]/功率值
式中的α為修正係數,且a和b為常數。
在步驟S406中,確認電流值是否大於基礎電流設定值,若是電流值大於基礎電流設定值,則進行步驟S408;電流值小於基礎電流設定值,則維持初始設定參數(步驟S410)。
在步驟S408中,確認連續時間是否超過上述時間因素,若是連續時間超過時間因素,則進行步驟S412;連續時間未超過時間因素,則維持初始設定參數(步驟S410)。
在步驟S412中,控制單元會提供控制訊號給被選的子電池系統模組所對應的電性導通單元(例如圖1或圖3的112) 開啟所述被選的子電池系統模組,且經由正/負極電解液控制單元(例如圖1的120、122)增加正極電解液的輸送量;或者經由正/負極電解液輸送單元(例如圖3的302a、302b)輸送正極電解液與負極電解液進入所述被選的子電池系統模組。步驟S412之後接續突5的步驟S500。
在步驟S500中,偵測電力單元的電流值與功率值,並將所述電流值與所述功率值的訊號傳輸至控制單元(如同步驟S402)。在步驟S502中,接收到上述訊號的控制單元,可根據所述功率值與上式獲得時間因素(如同步驟S404)。
在步驟S504中,確認電流值是否大於前次量測的電流值,若是電流值大於前次量測的電流值,則進行步驟S506;電流值小於前次量測的電流值,則進行步驟S508。
在步驟S506中,如為圖1的液流電池系統10,則進行步驟S510;如為圖3的液流電池系統30,則進行步驟S512。
在步驟S508中,確認連續時間是否超過上述時間因素,若是連續時間超過時間因素,則進行步驟S514;連續時間未超過時間因素,則回到步驟S500。
在步驟S510中,控制單元會提供控制訊號給被選的子電池系統模組所對應的電性導通單元、正極電解液控制單元與負極電解液控制單元,以經由正極電解液控制單元增加正極電解液的輸送量、經由負極電解液控制單元增加負極電解液的輸送量並開啟被選的子電池系統模組。以此類推,隨著電力單元的電流(或功率)值愈大,受到正/負電解液控制單元的控制,正/負電解液輸送單元輸送的量也會愈多,開啟的子電池系統模組也越多。在本實施例中,假設單一子電池系統模組可承受50安培,當電力單元的電流值逐漸增加至200安培時,則開啟的子電池系統模組(含第一個子電池系統模組)為4個(=200安培/50安培),以此類推;同時,隨著電流值與基礎電流值比值越大,時間因素會越短。
在步驟S512中,控制單元會提供控制訊號給被選的子電池系統模組所對應的正極電解液輸送單元、負極電解液輸送單元與電性導通單元,以輸送正極電解液與負極電解液進入被選的子電池系統模組並開啟被選的子電池系統模組。以此類推,隨著電力單元的電流(或功率)值愈大,正/負電解液輸送單元開啟的數量也會變多,開啟的子電池系統模組也越多。
在步驟S514中,如為圖1的液流電池系統10,則進行步驟S516;如為圖3的液流電池系統30,則進行步驟S518。
在步驟S516中,控制單元會提供控制訊號給被選的子電池系統模組所對應的電性導通單元、正極電解液控制單元與負極電解液控制單元,以經由正極電解液控制單元關閉正極電解液導通單元,使正極電解液的輸送量減少,並經由負極電解液控制單元關閉負極電解液導通單元,使負極電解液的輸送量減少,同時關閉被選的子電池系統模組,可以達到有效降低寄生電力的損耗,且提高電解液輸送的均勻。
在步驟S518中,控制單元會提供控制訊號給被選的子電池系統模組所對應的電性導通單元、正極電解液輸送單元與負極電解液輸送單元,以關閉正/負極電解液輸送單元而停止輸送正極電解液與負極電解液進入被選的子電池系統模組,同時關閉所述被選的子電池系統模組,可以達到有效降低寄生電力的損耗,且提高電解液輸送的均勻。
綜上所述,本發明藉由多個子電池系統模組分成多區段型式實施成一個並聯系統,除了具有高可靠度,還能將電解液在電池中進行有效且均勻的流場分配,改善電解液流通分布不均,避免死區(dead volume)的發生,提升電池內部質子與電子傳輸效能及電池整體效率,並有效降低寄生電力損耗,有利提升氧化還原電池的電流密度及能量效率的結構設計,以有效提升儲能系統的可靠度及穩健性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10、30:液流電池系統
1001
、1002
、100N
、3001
、3002
、300N
:子電池系統模組
101:電池單元
102:電力單元
104、302a:正極電解液輸送單元
104a:正極電解液入口端
105:正極電解液儲存單元
106、302b:負極電解液輸送單元
106a:負極電解液入口端
107:負極電解液儲存單元
108:電性偵測單元
110:控制單元
112:電性導通單元
114a:正極電解液導通單元
114b:負極電解液導通單元
116:電力輸出部
118:電力輸入部
120:正極電解液控制單元
122:負極電解液控制單元
124:壓力感測單元
126:逆止閥
128:正極電解液排出管路
130:負極電解液排出管路
S400、S402、S404、S406、S408、S410、S412、S500、S502、S504、S506、S508、S510、S512、S514、S516、S518:步驟
圖1是依照本發明的第一實施例的一種液流電池系統的示意圖。
圖2A是功率值與電容量的關係圖。
圖2B是功率值與時間因素的關係圖。
圖3是依照本發明的第二實施例的一種液流電池系統的示意圖。
圖4是依照本發明的第三實施例的一種液流電池系統的啟動步驟圖。
圖5是第三實施例的一種液流電池系統的控制步驟圖。
10:液流電池系統
1001
、1002
、100N
:子電池系統模組
101:電池單元
102:電力單元
104:正極電解液輸送單元
104a:正極電解液入口端
105:正極電解液儲存單元
106:負極電解液輸送單元
106a:負極電解液入口端
107:負極電解液儲存單元
108:電性偵測單元
110:控制單元
112:電性導通單元
114a:正極電解液導通單元
114b:負極電解液導通單元
116:電力輸出部
118:電力輸入部
120:正極電解液控制單元
122:負極電解液控制單元
124:壓力感測單元
126:逆止閥
128:正極電解液排出管路
130:負極電解液排出管路
Claims (19)
- 一種液流電池系統,包括: 並聯的多數個子電池系統模組,且所述多數個子電池系統模組互不連通; 電力單元,與所述多數個子電池系統模組中至少一者電性接觸,並經由多數個電性導通單元與其餘的所述子電池系統模組形成通路或斷路; 至少一正極電解液輸送單元,與所述多數個子電池系統模組中的所述至少一者相通並與其餘的所述子電池系統模組開通或隔絕; 至少一負極電解液輸送單元,與所述多數個子電池系統模組中的所述至少一者相通並與其餘的所述子電池系統模組開通或隔絕; 電性偵測單元,與所述電力單元串聯,以偵測所述電力單元的電流值;以及 控制單元,連接所述電性導通單元、所述正極電解液輸送單元與所述負極電解液輸送單元,並接收來自所述電性偵測單元的所述電流值的訊號,來決定是否導通電性與正和負極電解液。
- 如申請專利範圍第1項所述的液流電池系統,其中所述電性偵測單元更包括偵測所述電力單元的功率值,且所述控制單元根據下式獲得時間因素,作為決定是否導通電性與正和負極電解液的因素: 時間因素=α.[(-a.電容量+ b)]/功率值 式中的α為修正係數,且a和b為常數。
- 如申請專利範圍第1項所述的液流電池系統,其中每個所述子電池系統模組包括多數個串聯的電池單元。
- 如申請專利範圍第3項所述的液流電池系統,更包括多數個負極電解液導通單元與多數個正極極電解液導通單元,所述多數個負極電解液導通單元分別開通或隔絕所述負極電解液輸送單元與其餘的所述子電池系統模組,且所述多數個正極電解液導通單元分別開通或隔絕所述正極電解液輸送單元與其餘的所述子電池系統模組。
- 如申請專利範圍第4項所述的液流電池系統,更包括正極電解液控制單元與負極電解液控制單元,且所述正極電解液控制單元連接所述正極電解液輸送單元,以控制正極電解液的流速;所述負極電解液控制單元連接所述負極電解液輸送單元,以控制負極電解液的流速。
- 如申請專利範圍第3項所述的液流電池系統,更包括多個壓力感測單元,分別裝置於正極電解液入口端與負極電解液入口端,用以偵測正極電解液與負極電解液的壓力。
- 如申請專利範圍第1項所述的液流電池系統,其中每個所述子電池系統模組包括多數個串並聯的電池單元。
- 如申請專利範圍第7項所述的液流電池系統,其中所述正極電解液輸送單元的數量是多數個,所述負極電解液輸送單元的數量是多數個,且每個所述子電池系統模組連接一個所述正極電解液輸送單元與一個所述負極電解液輸送單元。
- 如申請專利範圍第3項或第7項所述的液流電池系統,更包括多數個逆止閥,分別設置於所述其餘的子電池系統模組的正極電解液排出管路與負極電解液排出管路中。
- 如申請專利範圍第9項所述的液流電池系統,更包括正極電解液儲存單元與負極電解液儲存單元,且所述正極電解液儲存單元經由所述正極電解液輸送單元供應所述正極電解液,並經由所述正極電解液排出管路回收所述正極電解液;所述負極電解液儲存單元經由所述負極電解液輸送單元供所述應負極電解液,並經由所述負極電解液排出管路回收所述負極電解液。
- 一種如申請專利範圍第1~10項中任一項所述的液流電池系統的控制方法,包括: 利用所述電性偵測單元取得所述電力單元的電流值與功率值,並將所述電流值與所述功率值的訊號傳輸至所述控制單元; 利用所述控制單元根據所述功率值與下式獲得時間因素, 時間因素=α.[(-a.電容量+ b)]/功率值 式中的α為修正係數,且a和b為常數;以及 利用所述控制單元根據所述電流值與所述時間因素,開啟或關閉所述多數個電性導通單元中的至少一個,並經由控制所述負極電解液輸送單元與所述正極電解液輸送單元改變正極電解液與負極電解液的輸送狀態。
- 如申請專利範圍第11項所述的控制方法,其中在利用所述電性偵測單元取得所述電力單元的所述電流值與所述功率值之前,更包括:啟動所述液流電池系統,使正極電解液與負極電解液輸入所述多數個子電池系統模組中的所述至少一者。
- 如申請專利範圍第12項所述的控制方法,其中所述電流值小於基礎電流設定值時,所述控制單元維持初始設定參數。
- 如申請專利範圍第12項所述的控制方法,其中所述電流值大於基礎電流設定值並滿足連續時間超過所述時間因素時,所述控制單元提供控制訊號給被選的所述子電池系統模組所對應的所述電性導通單元、正極電解液控制單元與負極電解液控制單元,以經由所述正極電解液控制單元增加所述正極電解液的輸送量、經由所述負極電解液控制單元增加所述負極電解液的輸送量並開啟所述被選的子電池系統模組。
- 如申請專利範圍第12項所述的控制方法,其中所述電流值大於基礎電流設定值並滿足連續時間超過所述時間因素時,所述控制單元提供控制訊號給被選的所述子電池系統模組所對應的所述正極電解液輸送單元、所述負極電解液輸送單元與所述電性導通單元,以輸送所述正極電解液與所述負極電解液進入所述被選的子電池系統模組並開啟所述被選的子電池系統模組。
- 如申請專利範圍第11項所述的控制方法,其中所述電流值大於前次量測的電流值時,所述控制單元提供控制訊號給被選的所述子電池系統模組所對應的所述電性導通單元、正極電解液控制單元與負極電解液控制單元,以經由所述正極電解液控制單元增加所述正極電解液的輸送量、經由所述負極電解液控制單元增加所述負極電解液的輸送量並開啟所述被選的子電池系統模組。
- 如申請專利範圍第11項所述的控制方法,其中所述電流值大於前次量測的電流值時,所述控制單元提供控制訊號給被選的所述子電池系統模組所對應的所述正極電解液輸送單元、所述負極電解液輸送單元與所述電性導通單元,以輸送所述正極電解液與所述負極電解液進入所述被選的子電池系統模組並開啟所述被選的子電池系統模組。
- 如申請專利範圍第11項所述的控制方法,其中所述電流值小於前次量測的電流值並滿足連續時間超過所述時間因素時,所述控制單元提供控制訊號給被選的所述子電池系統模組所對應的所述電性導通單元、正極電解液控制單元與負極電解液控制單元,以經由所述正極電解液控制單元減少所述正極電解液的輸送量、經由所述負極電解液控制單元減少所述負極電解液的輸送量並關閉所述被選的子電池系統模組。
- 如申請專利範圍第11項所述的控制方法,其中所述電流值小於前次量測的電流值並滿足連續時間超過所述時間因素時,所述控制單元提供控制訊號給被選的所述子電池系統模組所對應的所述正極電解液輸送單元、所述負極電解液輸送單元與所述電性導通單元,以停止輸送所述正極電解液與所述負極電解液進入所述被選的子電池系統模組並關閉所述被選的子電池系統模組。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144259A TWI726516B (zh) | 2019-12-04 | 2019-12-04 | 液流電池系統及其控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144259A TWI726516B (zh) | 2019-12-04 | 2019-12-04 | 液流電池系統及其控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI726516B TWI726516B (zh) | 2021-05-01 |
TW202123518A true TW202123518A (zh) | 2021-06-16 |
Family
ID=77036536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108144259A TWI726516B (zh) | 2019-12-04 | 2019-12-04 | 液流電池系統及其控制方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI726516B (zh) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102148390B (zh) * | 2010-02-10 | 2013-08-28 | 大连融科储能技术发展有限公司 | 对于液流储能电流或电压进行分配的电池系统及控制方法 |
JP2016503943A (ja) * | 2012-12-14 | 2016-02-08 | ハイドラレドックス テクノロジーズ ホールディングス リミテッド | レドックス・フロー・バッテリ・システム及びそれを制御する方法 |
CN107394243B (zh) * | 2017-07-10 | 2020-12-22 | 上海电气集团股份有限公司 | 一种液流电池储能系统及具有间歇性能源的系统 |
-
2019
- 2019-12-04 TW TW108144259A patent/TWI726516B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI726516B (zh) | 2021-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5065909B2 (ja) | バナジウムレドックス電池エネルギー蓄積システムの効率及び電力出力を最適化するシステム及び方法 | |
AU2003227443B2 (en) | Method for operating redox flow battery and redox flow battery cell stack | |
KR101609907B1 (ko) | 레독스 흐름 전지 시스템 및 그 제어방법 | |
US6498462B2 (en) | Generator control system to accommodate a decrease in a power grid voltage | |
JP2006108124A (ja) | 燃料電池システムの効率を制御する技術 | |
WO2007040545A2 (en) | Vanadium redox battery cell stack | |
US20210180197A1 (en) | Water electrolysis system and control method thereof | |
US9853454B2 (en) | Vanadium redox battery energy storage system | |
KR20120125259A (ko) | 수소로부터 전기 에너지를 생성하고 전기 에너지로부터 수소를 생성하기 위한 시스템의 동작 관리 | |
CN106795638A (zh) | 多堆叠电化学压缩机系统及操作方法 | |
CN110620250A (zh) | 液流电池储能装置和液流电池储能系统 | |
CN109585883B (zh) | 全钒液流电池荷电状态的实时监测方法及系统 | |
KR102357651B1 (ko) | 레독스 흐름 전지의 모듈 시스템 | |
KR101760983B1 (ko) | 플로우 배터리 및 플로우 배터리의 전해액 혼합 방지 방법 | |
KR102178304B1 (ko) | 밸런싱 유로를 사용하는 레독스 흐름전지 | |
TWI726516B (zh) | 液流電池系統及其控制方法 | |
TWI536651B (zh) | 電池模組 | |
JP6783774B2 (ja) | 電気化学セルのスタックを備えた電気システム、およびこのシステムを制御する方法 | |
KR100988815B1 (ko) | 연료전지의 시스템의 운전방법 | |
US11735789B2 (en) | Device for managing the state of health of an electrolyte in a redox flow battery system | |
CN221352818U (zh) | 一种液流电池电堆和储能系统 | |
US20240097172A1 (en) | Inline sensors for electrolyte precipitation detection in redox flow battery system | |
KR101572033B1 (ko) | 연료전지 스택의 활성화 장치 | |
CN115469237B (zh) | 一种基于非线性模型预测的钒液流电池峰值功率估计方法 | |
KR102441603B1 (ko) | 레독스 흐름 전지 시스템 및 그의 충전도 밸런싱 방법 |