TW202120913A - Optical measuring method - Google Patents

Optical measuring method Download PDF

Info

Publication number
TW202120913A
TW202120913A TW108142800A TW108142800A TW202120913A TW 202120913 A TW202120913 A TW 202120913A TW 108142800 A TW108142800 A TW 108142800A TW 108142800 A TW108142800 A TW 108142800A TW 202120913 A TW202120913 A TW 202120913A
Authority
TW
Taiwan
Prior art keywords
surface image
image
pixels
positioning mark
optical measurement
Prior art date
Application number
TW108142800A
Other languages
Chinese (zh)
Other versions
TWI749409B (en
Inventor
蕭瑋仁
蔡鈞亦
張巍耀
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW108142800A priority Critical patent/TWI749409B/en
Publication of TW202120913A publication Critical patent/TW202120913A/en
Application granted granted Critical
Publication of TWI749409B publication Critical patent/TWI749409B/en

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention discloses an optical measuring method for measuring a surface of an object. The method comprises the following steps. First, an input light beam is provided. Then, a spatial light modulator, having a plurality of pixels, is provided in the light path of the input light beam, and the plurality of pixels selectively convert the input light beam into a testing light beam. The spatial light modulator can be controlled to activate a first pixel group among the plurality of pixels for not modulating the input light beam, and the first pixel group corresponds to a positioning mark on the surface of the object. Then, a first surface image and a second surface image, corresponding to the surface of the object, are obtained at a first time and a second time respectively. Then, the first surface image and the second surface image are aligned according to the positioning marks therewithin.

Description

光學量測方法Optical measurement method

本發明係關於一種光學量測方法,特別是關於一種解析物件表面影像的光學量測方法。The present invention relates to an optical measurement method, in particular to an optical measurement method for analyzing the surface image of an object.

在產品製造完成後,都會經過一定的測試程序,用來把關產品的品質。一般來說,會仰賴人力檢查產品的外觀是否缺損,或者藉由觀察產品的外觀來判斷功能是否正常。但有些產品的結構比較細緻,有時實在無法要求人員使用肉眼檢查出瑕疵。傳統上,當肉眼無法判別是否有瑕疵時,可以借助攝影機來拍攝產品的外觀,藉由放大拍攝到的影像,便可以檢查產品特定區域的外觀。舉例來說,晶圓磊晶完成後也時常會藉由攝影機來拍攝晶圓表面,藉由晶圓的表面影像來檢查晶圓中每個元件的磊晶品質。After the product is manufactured, it will go through a certain test procedure to check the quality of the product. Generally speaking, people will rely on manpower to check whether the appearance of the product is defective, or by observing the appearance of the product to determine whether the function is normal. However, the structure of some products is relatively detailed, and sometimes it is impossible to require personnel to detect defects with the naked eye. Traditionally, when the naked eye cannot tell whether there is a defect, the appearance of the product can be captured with the help of a camera, and the appearance of a specific area of the product can be checked by zooming in on the captured image. For example, after wafer epitaxy is completed, the surface of the wafer is often photographed by a camera, and the epitaxial quality of each component in the wafer is checked by the surface image of the wafer.

由於晶圓中的元件尺寸非常小,表面影像往往需要有相當高的解析度,才能詳細地檢查磊晶品質。然而,為了提高影像解析度,常會使用拍攝多張影像合成為單一影像的手法,但時常會因為攝影機的震動或晶圓的位移,使拍攝到的表面影像產生偏移而有解析度不佳的情況。因此,業界需要一種新的光學量測方法,能夠在表面影像發生偏移時,有效地校準表面影像,以提高表面影像的解析度。Due to the very small size of the components in the wafer, the surface image often needs to have a relatively high resolution in order to check the epitaxial quality in detail. However, in order to improve the image resolution, the method of combining multiple images into a single image is often used. However, due to the vibration of the camera or the displacement of the wafer, the captured surface image is offset and the resolution is not good. Happening. Therefore, the industry needs a new optical measurement method that can effectively calibrate the surface image when the surface image is offset, so as to improve the resolution of the surface image.

本發明提供了一種光學量測方法,在把結構光投射至物件的表面時,會避開物件的定位標記。藉此,在拍攝物件的表面影像時,會發現定位標記沒有受到結構光的干擾,使得表面影像更容易進行後續的對準與校正程序。The invention provides an optical measurement method, which avoids the positioning mark of the object when the structured light is projected onto the surface of the object. In this way, when shooting the surface image of the object, it will be found that the positioning mark is not interfered by the structured light, making the surface image easier to perform subsequent alignment and correction procedures.

本發明提供一種光學量測方法,用以量測物件的表面,所述光學量測方法包含以下步驟。首先,提供輸入光線。於輸入光線的光學路徑上,提供空間光調製器,空間光調製器具有多個像素,所述多個像素用以選擇性地調變輸入光線為測試光線。並且,控制空間光調製器,使所述多個像素中的第一像素群組不調變輸入光線,第一像素群組對應表面的定位標記的位置。並且,分別於第一時間與第二時間取得表面的第一表面影像與第二表面影像。並且,依據第一表面影像與第二表面影像中的定位標記,對準第一表面影像與第二表面影像。The present invention provides an optical measurement method for measuring the surface of an object. The optical measurement method includes the following steps. First, provide input light. On the optical path of the input light, a spatial light modulator is provided. The spatial light modulator has a plurality of pixels for selectively modulating the input light into a test light. In addition, the spatial light modulator is controlled so that the first pixel group of the plurality of pixels does not modulate the input light, and the first pixel group corresponds to the position of the positioning mark on the surface. And, the first surface image and the second surface image of the surface are obtained at the first time and the second time respectively. And, according to the positioning marks in the first surface image and the second surface image, the first surface image and the second surface image are aligned.

於一些實施例中,空間光調製器的所述多個像素於第一時間可以對應第一圖樣,空間光調製器的所述多個像素於第二時間可以對應第二圖樣。此外,於依據第一表面影像與第二表面影像中的定位標記,對準第一表面影像與第二表面影像的步驟中,包含以下步驟。首先,定位第一表面影像中的定位標記,據以產生第一座標。並且,定位第二表面影像中的定位標記,據以產生第二座標。並且,比對第一座標與第二座標,計算第一偏移值。並且,依據第一偏移值,補償第二表面影像,使第二表面影像對準第一表面影像。In some embodiments, the plurality of pixels of the spatial light modulator may correspond to a first pattern at a first time, and the plurality of pixels of the spatial light modulator may correspond to a second pattern at a second time. In addition, the step of aligning the first surface image and the second surface image according to the positioning marks in the first surface image and the second surface image includes the following steps. First, locate the positioning mark in the first surface image, and generate the first coordinate accordingly. In addition, the positioning mark in the second surface image is positioned, and the second coordinate is generated accordingly. In addition, the first coordinate and the second coordinate are compared, and the first offset value is calculated. And, according to the first offset value, the second surface image is compensated so that the second surface image is aligned with the first surface image.

於一些實施例中,第一表面影像可以對應該表面的第一取像範圍,第二表面影像可以對應表面的第二取像範圍,第一取像範圍不等於第二取像範圍。此外,於對準該第一表面影像與該第二表面影像的步驟中,更可以設定第一取像範圍與第二取像範圍於表面重疊的區域為交集取像範圍。並且,更可以移除第一表面影像與第二表面影像於交集取像範圍以外的資料。In some embodiments, the first surface image may correspond to the first imaging range of the surface, and the second surface image may correspond to the second imaging range of the surface, and the first imaging range is not equal to the second imaging range. In addition, in the step of aligning the first surface image and the second surface image, it is further possible to set the area where the first image capturing range and the second image capturing range overlap on the surface as the intersection image capturing range. In addition, it is possible to remove data outside the intersection of the first surface image and the second surface image.

於一些實施例中,光學量測方法更可以包含以下步驟。首先,可以預先取得表面的初始表面影像。並且,可以計算定位標記於初始表面影像中的位置,據以產生計算結果。並且,可以依據計算結果,自所述多個像素中選擇第一像素群組,使第一像素群組對應初始表面影像中的定位標記的位置。此外,第一像素群組可以對應表面上的不投影範圍,不投影範圍的面積大於定位標記的面積,且不投影範圍的中心位置可以大致上等於定位標記的中心位置。In some embodiments, the optical measurement method may further include the following steps. First, the initial surface image of the surface can be obtained in advance. In addition, the position of the positioning mark in the initial surface image can be calculated, and the calculation result can be generated accordingly. Moreover, the first pixel group may be selected from the plurality of pixels according to the calculation result, so that the first pixel group corresponds to the position of the positioning mark in the initial surface image. In addition, the first pixel group may correspond to the non-projection range on the surface, the area of the non-projection range is larger than the area of the positioning mark, and the center position of the non-projection range may be substantially equal to the center position of the positioning mark.

綜上所述,本發明提供的光學量測方法,在把結構光投射至物件的表面時,會避開物件的定位標記。並且,本發明提供的光學量測方法可以利用定位標記重疊多次拍攝的表面影像,由於定位標記沒有受到結構光的干擾,使得多次拍攝的表面影像更容易進行後續的對準與校正程序。In summary, the optical measurement method provided by the present invention avoids the positioning mark of the object when the structured light is projected onto the surface of the object. In addition, the optical measurement method provided by the present invention can use positioning marks to overlap surface images taken multiple times. Since the positioning marks are not interfered by structured light, the surface images taken multiple times are easier to perform subsequent alignment and correction procedures.

下文將進一步揭露本發明之特徵、目的及功能。然而,以下所述者,僅為本發明之實施例,當不能以之限制本發明之範圍,即但凡依本發明申請專利範圍所作之均等變化及修飾,仍將不失為本發明之要意所在,亦不脫離本發明之精神和範圍,故應將視為本發明的進一步實施態樣。The features, objectives and functions of the present invention will be further disclosed below. However, the following are only examples of the present invention, and should not be used to limit the scope of the present invention, that is, all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention will still be the essence of the present invention. Without departing from the spirit and scope of the present invention, it should be regarded as a further implementation aspect of the present invention.

請一併參閱圖1與圖2A,圖1係繪示依據本發明一實施例之光學量測系統的示意圖,圖2A係繪示依據本發明一實施例之物件表面的示意圖。如圖所示,本發明所揭露的光學量測方法可以應用於光學量測系統1,而光學量測系統1可以用來檢測物件20。在此,物件20可以是晶圓或者是載板,用以裝載待測元件200。待測元件200設置於物件20的表面20a上,且可以是晶片、晶粒、面板或者電路,本實施例在此不加以限制。此外,物件20的表面20a上還可以具有定位標記202,實務上在進行檢測時,可以利用定位標記202對齊物件20。另外,圖1繪示的光學量測系統1可以具有光源10、透鏡11、分光單元12、透鏡13、空間光調製器(spatial light modulator)14、透鏡15、影像擷取設備16以及處理單元17,以下說明光學量測系統1的光學架構。Please refer to FIGS. 1 and 2A together. FIG. 1 is a schematic diagram of an optical measurement system according to an embodiment of the present invention, and FIG. 2A is a schematic diagram of an object surface according to an embodiment of the present invention. As shown in the figure, the optical measurement method disclosed in the present invention can be applied to the optical measurement system 1, and the optical measurement system 1 can be used to detect an object 20. Here, the object 20 may be a wafer or a carrier board for loading the component 200 under test. The component under test 200 is disposed on the surface 20a of the object 20, and can be a chip, a die, a panel, or a circuit, which is not limited in this embodiment. In addition, the surface 20a of the object 20 may also have a positioning mark 202. In practice, the positioning mark 202 may be used to align the object 20 during detection. In addition, the optical measurement system 1 shown in FIG. 1 may have a light source 10, a lens 11, a beam splitting unit 12, a lens 13, a spatial light modulator 14, a lens 15, an image capture device 16, and a processing unit 17. , The optical architecture of the optical measurement system 1 is described below.

光源10係用來提供輸入光線,雖然圖1繪示了光源10是點光源,但本實施例不加以限制,例如光源10也可以是面光源。此外,光源10可以是白光光源或者是非同調光源,從而輸入光線可以是白光光線或者是一種非同調光光線。在此,光源10提供的輸入光線會進入透鏡11,透鏡11的功能是將來自點光源的輸入光線轉換成平行光。於所屬技術領域具有通常知識者應該明白,光源10大致上會在透鏡11的焦點位置,從而經過透鏡11的輸入光線,大致上可被視為一個平面光。當然,如果光源10原本就是平行面光源,實務上也可以不需要透鏡11。The light source 10 is used to provide input light. Although FIG. 1 shows that the light source 10 is a point light source, this embodiment is not limited. For example, the light source 10 may also be a surface light source. In addition, the light source 10 may be a white light source or a non-coherent light source, so the input light can be a white light light or a non-coherent light source. Here, the input light provided by the light source 10 enters the lens 11, and the function of the lens 11 is to convert the input light from the point light source into parallel light. Those with ordinary knowledge in the relevant technical field should understand that the light source 10 is roughly at the focal position of the lens 11, so that the input light passing through the lens 11 can be roughly regarded as a plane light. Of course, if the light source 10 is originally a parallel surface light source, the lens 11 may not be required in practice.

此外,於輸入光線的光學路徑上,還可以設置有分光單元12以及空間光調製器14。於圖1繪示的例子中,空間光調製器14可以設置於透鏡11以及分光單元12之間,而空間光調製器14可以將至少部分的輸入光線轉換為測試光線,其中所述測試光線可以例如是第一結構光。實務上,分光單元12可以是一種光學分光鏡,可以將從空間光調製器14來的測試光線反射向透鏡13,使得測試光線能夠經過透鏡13照射向物件20。於一個例子中,輸入光線與空間光調製器14調變後的測試光線可以是同一方向,而經過分光單元12反射的測試光線可以是垂直輸入光線的方向。In addition, a beam splitting unit 12 and a spatial light modulator 14 may also be provided on the optical path of the input light. In the example shown in FIG. 1, the spatial light modulator 14 can be disposed between the lens 11 and the beam splitting unit 12, and the spatial light modulator 14 can convert at least part of the input light into test light, wherein the test light can be For example, the first structured light. In practice, the beam splitting unit 12 may be an optical beam splitter, which can reflect the test light from the spatial light modulator 14 to the lens 13 so that the test light can irradiate the object 20 through the lens 13. In an example, the input light and the test light modulated by the spatial light modulator 14 may be in the same direction, and the test light reflected by the light splitting unit 12 may be in a direction perpendicular to the input light.

空間光調製器14可以具有多個像素,且所述多個像素可以排列成陣列形式。在此所稱的每一個「像素」可以由液晶組成,所述多個像素能選擇透光與不透光狀態,從而可以決定測試光線能否通過或通過的比例。舉例來說,空間光調製器14可以依據處理單元17提供的控制指令cmd,來決定哪些像素被開啟或部分開啟,哪些像素被關閉。於一個例子中,圖1中的空間光調製器14可以具有一種穿透式的像素陣列,所述穿透式的像素陣列可以具有一液晶層(圖未示),藉由控制指令cmd控制所述液晶層中的液晶旋轉方向,決定測試光線能以多少比例通過特定像素。為了方便說明本實施例的空間光調製器14,請一併參閱圖1、圖2A與圖2B,圖2B係繪示依據本發明一實施例之空間光調製器的示意圖。如圖所示,空間光調製器14可以具有多個陣列排列的像素140,所述像素140可以受控於控制指令cmd來調整測試光線能通過的比例。The spatial light modulator 14 may have a plurality of pixels, and the plurality of pixels may be arranged in an array form. Each "pixel" referred to herein can be composed of liquid crystals, and the plurality of pixels can be selected in a light-transmissive state or a non-transparent state, so as to determine whether the test light can pass or the ratio of passing. For example, the spatial light modulator 14 can determine which pixels are turned on or partially turned on, and which pixels are turned off according to the control command cmd provided by the processing unit 17. In one example, the spatial light modulator 14 in FIG. 1 may have a transmissive pixel array, and the transmissive pixel array may have a liquid crystal layer (not shown), which is controlled by the control command cmd. The rotation direction of the liquid crystal in the liquid crystal layer determines the proportion of test light that can pass through a specific pixel. To facilitate the description of the spatial light modulator 14 of this embodiment, please refer to FIG. 1, FIG. 2A and FIG. 2B together. FIG. 2B is a schematic diagram of the spatial light modulator according to an embodiment of the present invention. As shown in the figure, the spatial light modulator 14 may have a plurality of pixels 140 arranged in an array, and the pixels 140 may be controlled by a control command cmd to adjust the proportion of test light passing through.

於一個例子中,多個像素140和物件20的表面20a有空間上的對應關係,例如任一個像素140可以對應到表面20a上的一個特定位置。反之,表面20a上的任一個位置也可以對應到空間光調製器14中的一個特定像素140。當多個像素140和表面20a的對應關係被建立出來後,其中部分的像素140可以被定義為第一像素群組142,第一像素群組142會大致上對應表面20a的定位標記202的位置。實務上,本實施例提供的空間光調製器14中,第一像素群組142可以看成一個不調變測試光線的區域,即第一像素群組142中的像素140可以讓測試光線全部通過。舉例來說,第一像素群組142會對應表面20a上的一個不投影範圍,不投影範圍的中心位置大致上等於定位標記202的中心位置,且不投影範圍的面積會略大於定位標記202所佔面積。In an example, there is a spatial correspondence between the plurality of pixels 140 and the surface 20a of the object 20. For example, any pixel 140 can correspond to a specific position on the surface 20a. Conversely, any position on the surface 20a can also correspond to a specific pixel 140 in the spatial light modulator 14. After the corresponding relationship between the plurality of pixels 140 and the surface 20a is established, some of the pixels 140 can be defined as the first pixel group 142, and the first pixel group 142 will roughly correspond to the position of the positioning mark 202 on the surface 20a . In practice, in the spatial light modulator 14 provided in this embodiment, the first pixel group 142 can be regarded as an area where the test light is not modulated, that is, the pixels 140 in the first pixel group 142 can pass all the test light. For example, the first pixel group 142 corresponds to a non-projection range on the surface 20a, the center position of the non-projection range is approximately equal to the center position of the positioning mark 202, and the area of the non-projection range is slightly larger than that of the positioning mark 202. Occupies area.

以實際的例子來說,如果已知要反覆檢測類似的一批物件20,則處理單元17可以預先儲存有像素140和表面20a的對應關係,並且也可以預先儲存定位標記202的位置。也就是說,由於處理單元17預先儲存有像素140和表面20a的對應關係,可以查找哪些像素140會對應到初始表面影像中的定位標記的周圍區域。接著,處理單元17再將對應初始表面影像中的定位標記周圍區域的多個像素140設定為第一像素群組142。於一個例子中,為了快速完成設定第一像素群組142的步驟,所述初始表面影像解析度可以較低或也可以沒有充分對焦,只要能讓處理單元17看出初始表面影像中的定位標記,即能符合本實施例的初始表面影像的範疇。Taking a practical example, if it is known that a batch of similar objects 20 is to be repeatedly detected, the processing unit 17 may pre-store the correspondence between the pixels 140 and the surface 20a, and may also pre-store the position of the positioning mark 202. In other words, since the processing unit 17 pre-stores the correspondence between the pixels 140 and the surface 20a, it is possible to find out which pixels 140 correspond to the surrounding area of the positioning mark in the initial surface image. Then, the processing unit 17 sets a plurality of pixels 140 corresponding to the area around the positioning mark in the initial surface image as the first pixel group 142. In one example, in order to quickly complete the step of setting the first pixel group 142, the resolution of the initial surface image may be low or not fully focused, as long as the processing unit 17 can see the positioning marks in the initial surface image. , Which can meet the scope of the initial surface image of this embodiment.

另一方面,本實施例不限制空間光調製器14要具有穿透式的像素陣列,例如空間光調製器14也有可能具有反射式的像素陣列。舉例來說,如果像素140是反射式的架構,則像素140可能由液晶層和反射鏡組成。在此,像素140同樣也可以藉由控制像素中的液晶旋轉方向,決定測試光線被反射鏡反射的比例。此外,反射式的像素140也有可能沒有液晶層而僅具有反射鏡,例如每一個像素140可以就是一面小反射鏡,控制指令cmd可以決定哪些像素140可以將測試光線反射到表面20a。同樣地,縱使像素140是反射式的架構,第一像素群組142仍可看成是一個不調變測試光線的區域,即第一像素群組142中的像素140可以讓測試光線全部反射到表面20a。另外,空間光調製器14有可能會與偏振片搭配使用,不過由於偏振片的功能及用途係所屬技術領域中具有通常知識者皆能理解,再加上其並非本發明之重點,在此不予贅述。On the other hand, this embodiment does not limit the spatial light modulator 14 to have a transmissive pixel array. For example, the spatial light modulator 14 may also have a reflective pixel array. For example, if the pixel 140 has a reflective structure, the pixel 140 may be composed of a liquid crystal layer and a mirror. Here, the pixel 140 can also determine the proportion of the test light reflected by the mirror by controlling the rotation direction of the liquid crystal in the pixel. In addition, the reflective pixels 140 may have no liquid crystal layer but only a mirror. For example, each pixel 140 may be a small mirror. The control command cmd can determine which pixels 140 can reflect the test light to the surface 20a. Similarly, even though the pixels 140 have a reflective structure, the first pixel group 142 can still be regarded as an area where the test light is not modulated, that is, the pixels 140 in the first pixel group 142 can allow all the test light to be reflected to the surface. 20a. In addition, the spatial light modulator 14 may be used in conjunction with a polarizer. However, since the function and use of the polarizer can be understood by those with ordinary knowledge in the technical field, and it is not the focus of the present invention, it is not here. To repeat.

測試光線在經過物件20的表面20a反射後,可以再次經過透鏡13射向分光單元12。由於分光單元12的光學特性,來自透鏡13的光線可以直接穿透分光單元12而進入透鏡15,並且再被透鏡15聚焦而導引至影像擷取設備16。於一個例子中,影像擷取設備16可以設置在分光單元12的一側,用來接收從透鏡13反射回來的參考光線,以及接收從物件20的表面20a反射回來的光線。於一個例子中,為了看清楚在某一高度的表面20a,影像擷取設備16可以在多個連續時間點拍攝多張物件20的表面影像,以提高表面影像的解析度。After being reflected by the surface 20 a of the object 20, the test light can pass through the lens 13 and be directed to the spectroscopic unit 12 again. Due to the optical characteristics of the light splitting unit 12, the light from the lens 13 can directly penetrate the light splitting unit 12 and enter the lens 15 and then is focused by the lens 15 and guided to the image capturing device 16. In one example, the image capturing device 16 may be disposed on one side of the beam splitting unit 12 to receive the reference light reflected from the lens 13 and the light reflected from the surface 20 a of the object 20. In one example, in order to clearly see the surface 20a at a certain height, the image capturing device 16 may capture multiple surface images of the object 20 at multiple consecutive time points to improve the resolution of the surface image.

舉例來說,影像擷取設備16在第一時間可以取得表面20a的第一表面影像,影像擷取設備16在第二時間可以取得表面20a的第二表面影像,第一時間與第二時間可以是先後兩個拍攝時間點,本實施例在此不加以限制。為了方便說明,請一併參閱圖1、圖2A、圖2B、圖3A與圖3B,圖3A係繪示依據本發明一實施例之第一表面影像的示意圖,圖3B係繪示依據本發明一實施例之第二表面影像的示意圖。如圖所示,在第一時間,空間光調製器14可以將測試光線調變為第一結構光,從而影像擷取設備16可以拍攝第一結構光照射到表面20a,以得到第一表面影像3。實務上,由於第一結構光可能帶有特定的圖樣,如果表面20a的定位標記202也被投影上特定的圖樣,可能在第一表面影像3中不易判讀。因此,本實施例的空間光調製器14會控制第一像素群組142中的像素140,使得第一像素群組142中的像素140不調變測試光線,使得表面20a的定位標記202不會被投影上特定的圖樣。For example, the image capturing device 16 can obtain the first surface image of the surface 20a at the first time, and the image capturing device 16 can obtain the second surface image of the surface 20a at the second time. The first time and the second time can be It is two shooting time points one after another, and this embodiment is not limited here. For the convenience of description, please refer to FIGS. 1, 2A, 2B, 3A and 3B together. FIG. 3A is a schematic diagram of a first surface image according to an embodiment of the present invention, and FIG. 3B is a schematic diagram of a first surface image according to an embodiment of the present invention. A schematic diagram of the second surface image of an embodiment. As shown in the figure, at the first time, the spatial light modulator 14 can modulate the test light into the first structured light, so that the image capturing device 16 can shoot the first structured light and irradiate the surface 20a to obtain the first surface image 3. In practice, since the first structured light may have a specific pattern, if the positioning mark 202 on the surface 20a is also projected on the specific pattern, it may be difficult to distinguish in the first surface image 3. Therefore, the spatial light modulator 14 of this embodiment will control the pixels 140 in the first pixel group 142 so that the pixels 140 in the first pixel group 142 do not modulate the test light, so that the positioning mark 202 on the surface 20a will not be affected. A specific pattern is projected.

換句話說,由於第一像素群組142中的像素140不調變測試光線,使得第一表面影像3中的定位標記30沒有投影上第一結構光,可以讓定位標記30容易且清楚地被讀取出來。並且,由於第一像素群組142以外的其他像素140都正常地調變測試光線,使得物件20的表面20a上的其他部分(例如待測元件200)都有被投影上第一結構光,因此也可以正常地檢測物件20。In other words, because the pixels 140 in the first pixel group 142 do not modulate the test light, the positioning marks 30 in the first surface image 3 are not projected on the first structured light, so that the positioning marks 30 can be read easily and clearly take out. In addition, since other pixels 140 outside the first pixel group 142 normally modulate the test light, other parts on the surface 20a of the object 20 (for example, the device under test 200) are projected on the first structured light. The object 20 can also be detected normally.

同樣地,在第二時間,空間光調製器14可以將測試光線調變為第二結構光,從而影像擷取設備16可以拍攝第二結構光照射到表面20a,以得到第二表面影像4。在此,第二結構光可以和第一結構光具有不同的相位,又或者第二結構光可以和第一結構光帶有不同的圖樣,本實施例在此不限制。如前所述,本實施例的空間光調製器14同樣會控制第一像素群組142中的像素140,使得第一像素群組142中的像素140不調變測試光線,使得表面20a的定位標記202不會被投影上第二結構光。由於第一像素群組142中的像素140不調變測試光線,使得第二表面影像4中的定位標記40同樣可以容易且清楚地被讀取出來。Similarly, at the second time, the spatial light modulator 14 can modulate the test light into the second structured light, so that the image capturing device 16 can shoot the second structured light and irradiate the surface 20a to obtain the second surface image 4. Here, the second structured light may have a different phase from the first structured light, or the second structured light may have a different pattern from the first structured light, which is not limited in this embodiment. As mentioned above, the spatial light modulator 14 of this embodiment also controls the pixels 140 in the first pixel group 142 so that the pixels 140 in the first pixel group 142 do not modulate the test light, so that the positioning mark on the surface 20a 202 will not be projected on the second structured light. Since the pixels 140 in the first pixel group 142 do not modulate the test light, the positioning marks 40 in the second surface image 4 can also be read out easily and clearly.

以實際的例子來說,由於影像擷取設備16先後拍攝第一表面影像3和第二表面影像4時,因為某些不理想的因素,可能導致物件20相對於影像擷取設備16發生偏移。此時,本實施例的處理單元17便可以接收第一表面影像3和第二表面影像4,並利用第一表面影像3中的定位標記30和第二表面影像4中的定位標記40,將第一表面影像3和第二表面影像4對齊。請參閱圖4,圖4係繪示依據本發明一實施例之定位標記偏移的示意圖。如圖所示,假設第一表面影像3中的定位標記30定義有一個中心點A,為了方便運算,處理單元17可以給中心點A一個座標(a1,a2)。同樣地,處理單元17可以找出第二表面影像4中的定位標記40,並在相同的座標系內,給中心點B一個座標(b1,b2)。In a practical example, when the image capturing device 16 successively shoots the first surface image 3 and the second surface image 4, some undesirable factors may cause the object 20 to shift relative to the image capturing device 16 . At this time, the processing unit 17 of this embodiment can receive the first surface image 3 and the second surface image 4, and use the positioning mark 30 in the first surface image 3 and the positioning mark 40 in the second surface image 4 to convert The first surface image 3 and the second surface image 4 are aligned. Please refer to FIG. 4. FIG. 4 is a schematic diagram illustrating the offset of the positioning mark according to an embodiment of the present invention. As shown in the figure, assuming that the positioning mark 30 in the first surface image 3 defines a center point A, the processing unit 17 may give the center point A a coordinate (a1, a2) for the convenience of calculation. Similarly, the processing unit 17 can find the positioning mark 40 in the second surface image 4, and give the center point B a coordinate (b1, b2) in the same coordinate system.

當中心點A和中心點B的座標不相同時,可以知道影像擷取設備16或物件20在第一時間和第二時間之間發生了震動,使得物件20相對於影像擷取設備16發生偏移。因此,處理單元17可以先判斷中心點A和中心點B的偏移程度(即第一偏移值),所述第一偏移值在第一方向上可以是b1-a1,而在第二方向上可以是b2-a2。接著,處理單元17可以選擇以第一表面影像3為基礎,基於所述第一偏移值平移第二表面影像4。例如,將整個第二表面影像4在第一方向上移動-(b1-a1),在第二方向上移動-(b2-a2),使得第二表面影像4能夠重疊第一表面影像3。如此一來,處理單元17便完成了第一表面影像3和第二表面影像4的對齊作業。When the coordinates of the center point A and the center point B are not the same, it can be known that the image capturing device 16 or the object 20 vibrated between the first time and the second time, causing the object 20 to deviate from the image capturing device 16 shift. Therefore, the processing unit 17 may first determine the degree of deviation between the center point A and the center point B (that is, the first offset value). The first offset value may be b1-a1 in the first direction, and in the second direction. The direction can be b2-a2. Then, the processing unit 17 may choose to use the first surface image 3 as a basis to translate the second surface image 4 based on the first offset value. For example, moving the entire second surface image 4 in the first direction-(b1-a1), and in the second direction-(b2-a2), so that the second surface image 4 can overlap the first surface image 3. In this way, the processing unit 17 completes the alignment operation of the first surface image 3 and the second surface image 4.

於一個例子中,處理單元17有可能不基於中心點A與中心點B計算定位標記30和定位標記40的偏移程度,例如處理單元17也可以選擇其他方便定義的點或線來計算所述第一偏移值。此外,如果物件20和影像擷取設備16之間還發生了相對轉動,處理單元17也可以基於多個點、點和線或線和線的組合,來計算定位標記30和定位標記40各自的角度,以判斷定位標記30和定位標記40的轉動程度。換句話說,第一偏移值不僅有可能用來指示平移的程度,也有可能用來指示轉動的程度,本實施例不加以限制。In an example, the processing unit 17 may not calculate the offset degree of the positioning mark 30 and the positioning mark 40 based on the center point A and the center point B. For example, the processing unit 17 may also select other points or lines that are conveniently defined to calculate the The first offset value. In addition, if there is a relative rotation between the object 20 and the image capturing device 16, the processing unit 17 can also calculate the respective positions of the positioning mark 30 and the positioning mark 40 based on a combination of multiple points, points and lines or lines and lines. Angle to determine the degree of rotation of the positioning mark 30 and the positioning mark 40. In other words, the first offset value may not only be used to indicate the degree of translation, but also may be used to indicate the degree of rotation, which is not limited in this embodiment.

另外,由於影像擷取設備16的拍攝範圍應該是固定的,如果在兩次拍攝之間,物件20相對於影像擷取設備16發生偏移,於所屬技術領域具有通常知識者應可以理解,影像擷取設備16這兩次拍攝到的畫面範圍應有些許的不同。也就是說,第一表面影像3可以對應表面20a的第一取像範圍,第二表面影像4可以對應表面20a的第二取像範圍,第一取像範圍不等於第二取像範圍。另一方面,由於第一取像範圍不等於第二取像範圍,處理單元17也可以裁切第一表面影像3和第二表面影像4,僅保留第一取像範圍和第二取像範圍重疊處(交集取像範圍)的影像內容。實務上,縱使物件20相對於影像擷取設備16發生偏移,也不至於偏移的太多,多數會在可以接受的程度內。從而,被裁切掉的部分第一表面影像3和第二表面影像4,也是屬於影像畫面的邊緣,不會影響檢測待測元件200的目的。In addition, since the shooting range of the image capturing device 16 should be fixed, if the object 20 is offset relative to the image capturing device 16 between two shots, those with ordinary knowledge in the technical field should understand that the image The range of the frame captured by the capture device 16 should be slightly different these two times. That is, the first surface image 3 may correspond to the first imaging range of the surface 20a, and the second surface image 4 may correspond to the second imaging range of the surface 20a, and the first imaging range is not equal to the second imaging range. On the other hand, since the first image capturing range is not equal to the second image capturing range, the processing unit 17 can also crop the first surface image 3 and the second surface image 4, leaving only the first image capturing range and the second image capturing range. The image content at the overlap (intersection acquisition range). In practice, even if the object 20 is shifted relative to the image capturing device 16, it will not shift too much, and most of it will be within an acceptable level. Therefore, the cut-out parts of the first surface image 3 and the second surface image 4 are also the edges of the image frame, and will not affect the purpose of detecting the device under test 200.

於一個例子中,處理單元17完成第一表面影像3和第二表面影像4的對齊作業之後,還有可能組合第一表面影像3和第二表面影像4,使得組合出來的表面影像可以有更高的解析度,並更能表現完整的細節。當然,本實施例不限制處理單元17只能對齊兩張表面影像,例如影像擷取設備16如果連續拍攝了多張表面影像,處理單元17也可以依序對齊或組合這些表面影像。In one example, after the processing unit 17 completes the alignment operation of the first surface image 3 and the second surface image 4, it is also possible to combine the first surface image 3 and the second surface image 4, so that the combined surface image can have more High resolution, and can show complete details. Of course, this embodiment does not limit the processing unit 17 to only align two surface images. For example, if the image capture device 16 continuously captures multiple surface images, the processing unit 17 can also align or combine these surface images in sequence.

值得一提的是,處理單元17不一定要預先儲存有像素140和表面20a的對應關係,並且不一定要預先儲存定位標記202的位置。舉例來說,如果時常檢測不同的物件,則處理單元17可以在正式測試前,先讓影像擷取設備16拍攝一張物件20表面20a的初始表面影像。接著,處理單元17可以計算定位標記202於初始表面影像中的位置,據以產生計算結果。並且,處理單元17可以依據計算結果,自多個像素140中選擇出第一像素群組142,使第一像素群組142對應初始表面影像中的定位標記的位置。It is worth mentioning that the processing unit 17 does not necessarily have to store the correspondence between the pixels 140 and the surface 20a in advance, and it does not have to store the positions of the positioning marks 202 in advance. For example, if different objects are frequently detected, the processing unit 17 may first allow the image capturing device 16 to capture an initial surface image of the surface 20a of the object 20 before the formal test. Then, the processing unit 17 can calculate the position of the positioning mark 202 in the initial surface image to generate a calculation result accordingly. In addition, the processing unit 17 may select the first pixel group 142 from the plurality of pixels 140 according to the calculation result, so that the first pixel group 142 corresponds to the position of the positioning mark in the initial surface image.

為了再次說明本發明的光學量測方法的步驟,請一併參考圖1到圖5,圖5係繪示依據本發明一實施例之光學量測方法的步驟流程圖。如圖所示,於步驟S50中,光源10提供輸入光線。於步驟S52中,於輸入光線的光學路徑上,提供空間光調製器14,空間光調製器14具有多個像素140,所述多個像素140用以選擇性地調變輸入光線為測試光線。於步驟S54中,處理單元17可以控制空間光調製器14,使所述多個像素140中的第一像素群組142不調變輸入光線,第一像素群組142對應物件20表面20a中的定位標記202的位置。接著,於步驟S56中,影像擷取設備16分別於第一時間與第二時間取得表面20a的第一表面影像3與第二表面影像4。接著,於步驟S58中,處理單元17可以依據第一表面影像3與第二表面影像4中的定位標記30和定位標記40,對準第一表面影像3與第二表面影像4。本發明光學量測方法的其他步驟細節,已於前述實施例詳細說明,在此不予贅述。In order to explain the steps of the optical measurement method of the present invention again, please refer to FIGS. 1 to 5 together. FIG. 5 shows a flowchart of the optical measurement method according to an embodiment of the present invention. As shown in the figure, in step S50, the light source 10 provides input light. In step S52, a spatial light modulator 14 is provided on the optical path of the input light. The spatial light modulator 14 has a plurality of pixels 140 for selectively modulating the input light into a test light. In step S54, the processing unit 17 may control the spatial light modulator 14 so that the first pixel group 142 of the plurality of pixels 140 does not modulate the input light, and the first pixel group 142 corresponds to the position on the surface 20a of the object 20 Mark the location of 202. Then, in step S56, the image capturing device 16 obtains the first surface image 3 and the second surface image 4 of the surface 20a at the first time and the second time, respectively. Then, in step S58, the processing unit 17 can align the first surface image 3 and the second surface image 4 according to the positioning marks 30 and the positioning marks 40 in the first surface image 3 and the second surface image 4. The details of other steps of the optical measurement method of the present invention have been described in detail in the foregoing embodiment, and will not be repeated here.

綜上所述,本發明提供的光學量測方法,在把結構光投射至物件的表面時,會避開物件的定位標記。並且,本發明提供的光學量測方法可以利用定位標記重疊多次拍攝的表面影像,由於定位標記沒有受到結構光的干擾,使得多次拍攝的表面影像更容易進行後續的對準與校正程序。In summary, the optical measurement method provided by the present invention avoids the positioning mark of the object when the structured light is projected onto the surface of the object. In addition, the optical measurement method provided by the present invention can use positioning marks to overlap surface images taken multiple times. Since the positioning marks are not interfered by structured light, the surface images taken multiple times are easier to perform subsequent alignment and correction procedures.

1:光學量測系統 10:光源 11:透鏡 12:分光單元 13:透鏡 14:空間光調製器 140:像素 142:第一像素群組 15:透鏡 16:影像擷取設備 17:處理單元 20:物件 20a:表面 200:待測元件 202:定位標記 3:第一表面影像 30:影像中的定位標記 4:第二表面影像 40:影像中的定位標記 A、B:影像中的定位標記的中心點 cmd:控制指令 S50~S58:步驟流程1: Optical measurement system 10: light source 11: lens 12: Spectroscopic unit 13: lens 14: Spatial light modulator 140: pixels 142: The first pixel group 15: lens 16: Image capture equipment 17: Processing unit 20: Object 20a: surface 200: component under test 202: Positioning mark 3: The first surface image 30: Positioning mark in the image 4: Second surface image 40: Positioning mark in the image A, B: The center point of the positioning mark in the image cmd: control command S50~S58: Step flow

圖1係繪示依據本發明一實施例之光學量測系統的示意圖。FIG. 1 is a schematic diagram of an optical measurement system according to an embodiment of the present invention.

圖2A係繪示依據本發明一實施例之物件表面的示意圖。2A is a schematic diagram showing the surface of an object according to an embodiment of the invention.

圖2B係繪示依據本發明一實施例之空間光調製器的示意圖。FIG. 2B is a schematic diagram of a spatial light modulator according to an embodiment of the invention.

圖3A係繪示依據本發明一實施例之第一表面影像的示意圖。FIG. 3A is a schematic diagram of a first surface image according to an embodiment of the invention.

圖3B係繪示依據本發明一實施例之第二表面影像的示意圖。FIG. 3B is a schematic diagram of a second surface image according to an embodiment of the invention.

圖4係繪示依據本發明一實施例之定位標記偏移的示意圖。FIG. 4 is a schematic diagram showing the offset of the positioning mark according to an embodiment of the present invention.

圖5係繪示依據本發明一實施例之光學量測方法的步驟流程圖。FIG. 5 is a flowchart showing the steps of an optical measurement method according to an embodiment of the present invention.

S50~S58:步驟流程S50~S58: Step flow

Claims (8)

一種光學量測方法,用以量測一物件的一表面,該光學量測方法包含: 提供一輸入光線; 於該輸入光線的一光學路徑上,提供一空間光調製器,該空間光調製器具有多個像素,該些像素用以選擇性地調變該輸入光線為一測試光線; 控制該空間光調製器,使該些像素中的一第一像素群組不調變該輸入光線,該第一像素群組對應該表面的一定位標記的位置; 分別於一第一時間與一第二時間取得該表面的一第一表面影像與一第二表面影像;以及 依據該第一表面影像與該第二表面影像中的該定位標記,對準該第一表面影像與該第二表面影像。An optical measurement method for measuring a surface of an object. The optical measurement method includes: Provide an input light; On an optical path of the input light, a spatial light modulator is provided, the spatial light modulator has a plurality of pixels, and the pixels are used for selectively modulating the input light into a test light; Controlling the spatial light modulator so that a first pixel group of the pixels does not modulate the input light, and the first pixel group corresponds to the position of a positioning mark on the surface; Acquiring a first surface image and a second surface image of the surface at a first time and a second time respectively; and Aligning the first surface image and the second surface image according to the positioning mark in the first surface image and the second surface image. 如請求項1所述之光學量測方法,其中於依據該第一表面影像與該第二表面影像中的該定位標記,對準該第一表面影像與該第二表面影像的步驟中,包含: 定位該第一表面影像中的該定位標記,據以產生一第一座標; 定位該第二表面影像中的該定位標記,據以產生一第二座標; 比對該第一座標與該第二座標,計算一第一偏移值;以及 依據該第一偏移值,補償該第二表面影像,使該第二表面影像對準該第一表面影像。The optical measurement method according to claim 1, wherein the step of aligning the first surface image and the second surface image according to the positioning mark in the first surface image and the second surface image includes : Positioning the positioning mark in the first surface image to generate a first coordinate accordingly; Positioning the positioning mark in the second surface image to generate a second coordinate accordingly; Compare the first coordinate with the second coordinate to calculate a first offset value; and According to the first offset value, the second surface image is compensated so that the second surface image is aligned with the first surface image. 如請求項1所述之光學量測方法,其中該第一表面影像對應該表面的一第一取像範圍,該第二表面影像對應該表面的一第二取像範圍,該第一取像範圍不等於該第二取像範圍。The optical measurement method according to claim 1, wherein the first surface image corresponds to a first image capturing range of the surface, the second surface image corresponds to a second image capturing range of the surface, and the first image capturing The range is not equal to the second imaging range. 如請求項3所述之光學量測方法,其中於對準該第一表面影像與該第二表面影像的步驟中,更包含: 設定該第一取像範圍與該第二取像範圍於該表面重疊的區域為一交集取像範圍;以及 移除該第一表面影像與該第二表面影像於該交集取像範圍以外的資料。The optical measurement method according to claim 3, wherein the step of aligning the first surface image and the second surface image further comprises: Setting the area where the first imaging range and the second imaging range overlap on the surface as an intersection imaging range; and Remove the data of the first surface image and the second surface image outside the intersection image capturing range. 如請求項1所述之光學量測方法,更包含: 預先取得該表面的一初始表面影像; 計算該定位標記於該初始表面影像中的位置,據以產生一計算結果;以及 依據該計算結果,自該些像素中選擇該第一像素群組,使該第一像素群組對應該初始表面影像中的該定位標記的位置。The optical measurement method described in claim 1, further including: Obtaining an initial surface image of the surface in advance; Calculate the position of the positioning mark in the initial surface image to generate a calculation result; and According to the calculation result, the first pixel group is selected from the pixels so that the first pixel group corresponds to the position of the positioning mark in the initial surface image. 如請求項5所述之光學量測方法,其中該第一像素群組係對應該表面上的一不投影範圍,該不投影範圍的面積大於該定位標記的面積。The optical measurement method according to claim 5, wherein the first pixel group corresponds to a non-projection range on the surface, and the area of the non-projection range is larger than the area of the positioning mark. 如請求項6所述之光學量測方法,其中該不投影範圍的中心位置大致上等於該定位標記的中心位置。The optical measurement method according to claim 6, wherein the center position of the non-projection range is substantially equal to the center position of the positioning mark. 如請求項1所述之光學量測方法,其中該空間光調製器的該些像素於該第一時間對應一第一圖樣,該空間光調製器的該些像素於該第二時間對應一第二圖樣。The optical measurement method according to claim 1, wherein the pixels of the spatial light modulator correspond to a first pattern at the first time, and the pixels of the spatial light modulator correspond to a first pattern at the second time. Two patterns.
TW108142800A 2019-11-25 2019-11-25 Optical measuring method TWI749409B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108142800A TWI749409B (en) 2019-11-25 2019-11-25 Optical measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108142800A TWI749409B (en) 2019-11-25 2019-11-25 Optical measuring method

Publications (2)

Publication Number Publication Date
TW202120913A true TW202120913A (en) 2021-06-01
TWI749409B TWI749409B (en) 2021-12-11

Family

ID=77516669

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142800A TWI749409B (en) 2019-11-25 2019-11-25 Optical measuring method

Country Status (1)

Country Link
TW (1) TWI749409B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460424B (en) * 2012-01-02 2014-11-11 Shen Jwu Su Method and system of material torsion testing
TW201518711A (en) * 2013-11-07 2015-05-16 Ind Tech Res Inst Image positioning method and apparatus
JP6637980B2 (en) * 2014-12-09 2020-01-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Optical detector
TWI668439B (en) * 2018-11-26 2019-08-11 致茂電子股份有限公司 Method of measuring surface topography

Also Published As

Publication number Publication date
TWI749409B (en) 2021-12-11

Similar Documents

Publication Publication Date Title
US7372062B2 (en) Defect inspection device and substrate manufacturing system using the same
TWI484283B (en) Image measurement method, image measurement apparatus and image inspection apparatus
JP2009031150A (en) Three-dimensional shape measuring device, three-dimensional shape measurement method, three-dimensional shape measurement program, and record medium
TW201740484A (en) Vision inspection device
US7197176B2 (en) Mark position detecting apparatus and mark position detecting method
US20030048436A1 (en) Lens-evaluating method and lens-evaluating apparatus
US10444162B2 (en) Method of testing an object and apparatus for performing the same
TW201921093A (en) Inspection method and inspection apparatus
WO2021135044A1 (en) Defect inspection apparatus and method
US8223328B2 (en) Surface inspecting apparatus and surface inspecting method
TW200300287A (en) Mark position inspection device
JP2020088371A (en) Laser processing device and imaging apparatus
TWI749409B (en) Optical measuring method
CN112838018B (en) Optical measuring method
KR20080088946A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same
JP2006343143A (en) Inspection system for imaging device
JP4552202B2 (en) Surface inspection device
TW202217239A (en) Image based metrology of surface deformations
JPH08181053A (en) Position detecting method
KR101817667B1 (en) Method for aligning optical axis of optical interferometer
TWI805969B (en) Surface topography measuring system
JPH01194322A (en) Semiconductor printer
KR20080089314A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same
JP3888245B2 (en) LCD panel inspection equipment
JP2007250578A (en) Superposition measuring device