TWI668439B - Method of measuring surface topography - Google Patents

Method of measuring surface topography Download PDF

Info

Publication number
TWI668439B
TWI668439B TW107142016A TW107142016A TWI668439B TW I668439 B TWI668439 B TW I668439B TW 107142016 A TW107142016 A TW 107142016A TW 107142016 A TW107142016 A TW 107142016A TW I668439 B TWI668439 B TW I668439B
Authority
TW
Taiwan
Prior art keywords
surface topography
pixel
light
pixels
topography data
Prior art date
Application number
TW107142016A
Other languages
Chinese (zh)
Other versions
TW202020438A (en
Inventor
張群偉
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW107142016A priority Critical patent/TWI668439B/en
Application granted granted Critical
Publication of TWI668439B publication Critical patent/TWI668439B/en
Publication of TW202020438A publication Critical patent/TW202020438A/en

Links

Abstract

本發明提供一種表面形貌檢測方法,所述方法包含下列步驟。首先,提供測試光線,測試光線用以測量物件的表面形貌。於測試光線的光學路徑上,提供空間光調製器,空間光調製器具有多個像素。控制空間光調製器,於第一時間區間開啟所述多個像素中的第一像素群組,於第二時間區間開啟所述多個像素中的第二像素群組。其中第一像素群組與第二像素群組分別對應部分的所述多個像素,且第一像素群組與第二像素群組之間有第一重複像素。The present invention provides a surface topography detecting method, the method comprising the following steps. First, test light is provided, and the test light is used to measure the surface topography of the object. On the optical path of the test ray, a spatial light modulator is provided, the spatial light modulator having a plurality of pixels. Controlling the spatial light modulator, turning on the first pixel group of the plurality of pixels in a first time interval, and turning on the second pixel group in the plurality of pixels in a second time interval. The first pixel group and the second pixel group respectively correspond to the plurality of pixels, and the first pixel group and the second pixel group have a first repeating pixel.

Description

表面形貌檢測方法Surface topography detection method

本發明係關於一種表面形貌檢測方法,特別是關於一種能偵測與補償震動的表面形貌檢測方法。The invention relates to a surface topography detecting method, in particular to a surface topography detecting method capable of detecting and compensating for vibration.

在產品製造完成後,都會經過一定的測試程序,用來把關產品的品質。一般來說,會仰賴人力檢查產品的外觀是否缺損,或者藉由觀察產品的外觀來判斷功能是否正常。但有些產品的結構比較細緻,有時實在無法要求人員使用肉眼檢查出瑕疵。傳統上,可以例如使用攝影機來拍攝產品的外觀,藉由放大拍攝到的影像,便可以檢查產品特定區域的外觀。After the product is manufactured, it will go through certain test procedures to control the quality of the product. In general, it is necessary to check whether the appearance of the product is defective by manpower, or to judge whether the function is normal by observing the appearance of the product. However, some products have a more detailed structure, and sometimes it is impossible to ask people to use the naked eye to check the flaws. Conventionally, the appearance of a product can be photographed, for example, using a camera, and by enlarging the captured image, the appearance of a specific area of the product can be checked.

但是,如果要檢測晶片表面的結構時,由於結構的尺寸非常小,單純使用傳統的表面形貌檢測系統易受到外部干擾而嚴重影響判斷的準確度。舉例來說,拍攝時的輕微震動即很有可能造成誤判。因此,業界在檢測小尺寸物品時,需要一種新的表面形貌檢測方法,以提高表面形貌的測量準確度。However, if the structure of the wafer surface is to be detected, since the size of the structure is very small, the conventional surface topography detecting system is susceptible to external interference and seriously affects the accuracy of the judgment. For example, a slight vibration during shooting is likely to cause a false positive. Therefore, the industry needs a new surface topography detection method to detect small-sized objects to improve the measurement accuracy of surface topography.

本發明提供了一種表面形貌檢測方法,依序開啟空間光調製器中的多個像素群組,並於所述多個像素群組中設計有重複像素,藉此補償震動的干擾,以提高表面形貌的測量準確度。The invention provides a surface topography detecting method, which sequentially turns on a plurality of pixel groups in a spatial light modulator, and designs repeated pixels in the plurality of pixel groups, thereby compensating for interference of vibration to improve Measurement accuracy of surface topography.

本發明提供一種表面形貌檢測方法,所述方法包含下列步驟。首先,提供測試光線,測試光線用以測量物件的表面形貌。於測試光線的光學路徑上,提供空間光調製器,空間光調製器具有多個像素。控制空間光調製器,於第一時間區間開啟所述多個像素中的第一像素群組,於第二時間區間開啟所述多個像素中的第二像素群組。其中第一像素群組與第二像素群組分別對應部分的所述多個像素,且第一像素群組與第二像素群組之間有第一重複像素。The present invention provides a surface topography detecting method, the method comprising the following steps. First, test light is provided, and the test light is used to measure the surface topography of the object. On the optical path of the test ray, a spatial light modulator is provided, the spatial light modulator having a plurality of pixels. Controlling the spatial light modulator, turning on the first pixel group of the plurality of pixels in a first time interval, and turning on the second pixel group in the plurality of pixels in a second time interval. The first pixel group and the second pixel group respectively correspond to the plurality of pixels, and the first pixel group and the second pixel group have a first repeating pixel.

於一些實施例中,於第一時間區間中,物件反射測試光線而取得第一物件光線,於第二時間區間中,物件反射測試光線而取得第二物件光線。此外,更可以偵測第一物件光線,據以產生多個第一表面形貌資料,每一個第一表面形貌資料分別對應第一像素群組中的每一個像素。並且,偵測第二物件光線,據以產生多個第二表面形貌資料,每一個第二表面形貌資料分別對應第二像素群組中的每一個像素。接著,比對第一重複像素對應的第一表面形貌資料與第一重複像素對應的第二表面形貌資料,計算第一震動差值。最後,可以依據第一震動差值,補償第二表面形貌資料。In some embodiments, in the first time interval, the object reflects the test light to obtain the first object light, and in the second time interval, the object reflects the test light to obtain the second object light. In addition, the first object light can be detected, thereby generating a plurality of first surface topography data, each of the first surface topography data corresponding to each pixel in the first pixel group. And detecting the second object light, thereby generating a plurality of second surface topography data, each of the second surface topography data corresponding to each pixel in the second pixel group. Then, comparing the first surface topography data corresponding to the first repeated pixel with the second surface topography data corresponding to the first repeated pixel, the first vibration difference value is calculated. Finally, the second surface topography data can be compensated according to the first vibration difference value.

於一些實施例中,表面形貌檢測方法更包含下列步驟。控制空間光調製器,於第三時間區間開啟所述多個像素中的第三像素群組。其中第三像素群組對應部分的所述多個像素,且第二像素群組與第三像素群組之間有第二重複像素,且第一重複像素不同於第二重複像素。此外,於第三時間區間中,物件反射測試光線而取得第三物件光線。接著,偵測第三物件光線,據以產生多個第三表面形貌資料,每一個第三表面形貌資料分別對應第三像素群組中的每一個像素。並且,比對第二重複像素對應的第二表面形貌資料與第二重複像素對應的第三表面形貌資料,計算第二震動差值。最後,依據第一震動差值與第二震動差值,補償第三表面形貌資料。In some embodiments, the surface topography detection method further comprises the following steps. The spatial light modulator is controlled to turn on a third pixel group of the plurality of pixels in a third time interval. The third pixel group corresponds to the plurality of pixels, and the second pixel group and the third pixel group have a second repeating pixel, and the first repeating pixel is different from the second repeating pixel. In addition, in the third time interval, the object reflects the test light to obtain the third object light. Then, the third object light is detected, thereby generating a plurality of third surface topography data, and each of the third surface topography data respectively corresponds to each pixel in the third pixel group. And calculating a second vibration difference value by comparing the second surface topography data corresponding to the second repeated pixel with the third surface topography data corresponding to the second repeated pixel. Finally, the third surface topography data is compensated according to the first vibration difference value and the second vibration difference value.

綜上所述,本發明提供的表面形貌檢測方法,依序開啟空間光調製器中的多個像素群組,並於所述多個像素群組中設計有重複像素。藉由比對重複像素於兩次測量取得的數值,可以補償震動的干擾,以提高表面形貌的測量準確度。In summary, the surface topography detecting method provided by the present invention sequentially turns on a plurality of pixel groups in the spatial light modulator, and designs repeated pixels in the plurality of pixel groups. By comparing the values obtained by repeating the pixels in two measurements, the interference of the vibration can be compensated to improve the measurement accuracy of the surface topography.

下文將進一步揭露本發明之特徵、目的及功能。然而,以下所述者,僅為本發明之實施例,當不能以之限制本發明之範圍,即但凡依本發明申請專利範圍所作之均等變化及修飾,仍將不失為本發明之要意所在,亦不脫離本發明之精神和範圍,故應將視為本發明的進一步實施態樣。The features, objects and functions of the present invention are further disclosed below. However, the following is only an embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention will remain the subject of the present invention. Further departures from the spirit and scope of the invention are intended to be regarded as a further embodiment of the invention.

請參閱圖1A,圖1A係繪示依據本發明一實施例之表面形貌檢測系統的示意圖。如圖1A所示,本發明所揭露的表面形貌檢測方法可以應用於表面形貌檢測系統1,而表面形貌檢測系統1可以用來檢測物件DUT。在此,物件DUT可以是晶片、晶粒(die)、晶圓(wafer)、面板、電路或具有微結構的表面。前述例子並非用以限制物件DUT的類型與尺寸,實務上物件DUT也可以是任意的物體,於所屬技術領域具有通常知識者可以自由選擇。圖1A繪示的表面形貌檢測系統1可以具有光源10、透鏡11、分光單元12、參考鏡13、空間光調製器(spatial light modulator)14、透鏡15以及影像擷取設備16,以下說明表面形貌檢測系統1的光學架構。Please refer to FIG. 1A. FIG. 1A is a schematic diagram of a surface topography detecting system according to an embodiment of the invention. As shown in FIG. 1A, the surface topography detecting method disclosed in the present invention can be applied to the surface topography detecting system 1, and the surface topography detecting system 1 can be used to detect the object DUT. Here, the object DUT may be a wafer, a die, a wafer, a panel, a circuit, or a surface having a microstructure. The foregoing examples are not intended to limit the type and size of the object DUT. In practice, the object DUT can also be any object, which is generally available to those skilled in the art. The surface topography detecting system 1 illustrated in FIG. 1A may have a light source 10, a lens 11, a beam splitting unit 12, a reference mirror 13, a spatial light modulator 14, a lens 15, and an image capturing device 16, which are described below. The optical architecture of the topography detection system 1.

光源10係用來提供輸入光線,雖然圖1A繪示了光源10是點光源,但本實施例不加以限制,例如光源10也可以是面光源。此外,光源10可以是白光光源或者是非同調光源,從而輸入光線可以是白光光線或者是一種非同調光光線。在此,光源10提供的輸入光線會進入透鏡11,透鏡11的功能是將來自點光源的輸入光線轉換成平行光。於所屬技術領域具有通常知識者應該明白,光源10大致上會在透鏡11的焦點位置,從而經過透鏡11的輸入光線,大致上可被視為一個平面光。當然,如果光源10原本就是平行面光源,實務上也可以不需要透鏡11。The light source 10 is used to provide input light. Although the light source 10 is a point light source, the present embodiment is not limited. For example, the light source 10 may be a surface light source. In addition, the light source 10 can be a white light source or a non-coherent light source, such that the input light can be white light or a non-coordinated light. Here, the input light provided by the light source 10 enters the lens 11, and the function of the lens 11 is to convert the input light from the point source into parallel light. It will be understood by those of ordinary skill in the art that the light source 10 will generally be at the focal position of the lens 11 such that the input light passing through the lens 11 can be considered substantially as a planar light. Of course, if the light source 10 is originally a parallel surface light source, the lens 11 may not be required in practice.

分光單元12係位於輸入光線的光學路徑上,用以將輸入光線分為參考光線與測試光線,其中參考光線射向參考鏡13,而測試光線射向空間光調製器14。實務上,分光單元12可以是一種光學分光鏡,可以將輸入光線分割成兩道相同的光線。於一個例子中,輸入光線與測試光線可以是同一方向,而參考光線可以朝向垂直輸入光線的方向。當然,本實施例不限制參考光線與測試光線的方向,例如也有可能輸入光線與參考光線是同一方向,而測試光線朝向垂直輸入光線的方向。此外,分光單元12到參考鏡13的距離可以大致等於分光單元12到物件DUT的距離,本實施例也不以此為限。The beam splitting unit 12 is located on the optical path of the input light for dividing the input light into reference light and test light, wherein the reference light is directed to the reference mirror 13 and the test light is directed to the spatial light modulator 14. In practice, the beam splitting unit 12 can be an optical beam splitter that splits the input light into two identical rays. In one example, the input ray and the test ray can be in the same direction, and the reference ray can be oriented in the direction of the vertical input ray. Of course, this embodiment does not limit the direction of the reference light and the test light. For example, it is also possible that the input light is in the same direction as the reference light, and the test light is directed in the direction of the vertical input light. In addition, the distance from the beam splitting unit 12 to the reference mirror 13 may be substantially equal to the distance from the light splitting unit 12 to the object DUT, and the embodiment is not limited thereto.

空間光調製器14可以具有多個像素,且所述多個像素可以排列成陣列形式。在此所稱的每一個「像素」可以由液晶組成,所述多個像素能選擇透光與不透光狀態,從而可以決定光線能否通過。換句話說,空間光調製器14可以依據控制指令cmd來決定哪些像素被開啟,那些像素被關閉。在此,本實施例提供的空間光調製器14至少可以分為兩個像素群組,分別在不同的時間區間被開啟,且至少有一個像素被同時歸類在所述兩個像素群組中。在此,被同時歸類在所述兩個像素群組中的像素,本實施例稱之為重複像素。舉例來說,圖1A中的空間光調製器14可以具有一種穿透式的像素陣列,所述穿透式的像素陣列可以具有一液晶層(圖未示),藉由控制所述液晶層中的液晶旋轉方向,決定是否讓光線通過特定像素。The spatial light modulator 14 can have a plurality of pixels, and the plurality of pixels can be arranged in an array. Each of the "pixels" referred to herein may be composed of liquid crystals, and the plurality of pixels can select a light-transmitting and opaque state, thereby determining whether light can pass. In other words, the spatial light modulator 14 can determine which pixels are turned on based on the control command cmd, and those pixels are turned off. Here, the spatial light modulator 14 provided in this embodiment can be divided into at least two pixel groups, which are respectively turned on in different time intervals, and at least one pixel is simultaneously classified in the two pixel groups. . Here, the pixels that are simultaneously classified in the two pixel groups are referred to as repeated pixels in this embodiment. For example, the spatial light modulator 14 of FIG. 1A may have a transmissive pixel array, and the transmissive pixel array may have a liquid crystal layer (not shown) by controlling the liquid crystal layer. The direction of rotation of the liquid crystal determines whether light is allowed to pass through a particular pixel.

於一些例子中,空間光調製器14可以有不同的設計,請參閱圖1B,圖1B係繪示依據本發明另一實施例之表面形貌檢測系統的示意圖。圖1A與圖1B中相同的是,光源10、透鏡11、分光單元12、參考鏡13、透鏡15以及影像擷取設備16可以為相同的設計。圖1A與圖1B中不同的是,圖1B中的空間光調製器14’可以具有反射式的像素陣列。所述反射式的像素陣列也可以具有液晶層(圖未示),並在所述液晶層後增加一個反射鏡(圖未示),從而可以藉由控制像素中的液晶旋轉方向,決定是否讓光線通過並反射到物件DUT。於一個例子中,空間光調製器14’也可以沒有液晶層而僅具有多個反射鏡,例如每一個「像素」可以就是一面小反射鏡,控制指令cmd可以決定哪些像素被反射到物件DUT,而其他沒有被選上的像素可以將光線反射到其他任意的、不產生干擾的位置。In some examples, the spatial light modulator 14 can have a different design. Referring to FIG. 1B, FIG. 1B is a schematic diagram of a surface topography detecting system according to another embodiment of the present invention. 1A is the same as FIG. 1B, the light source 10, the lens 11, the beam splitting unit 12, the reference mirror 13, the lens 15, and the image capturing device 16 may be of the same design. 1A is different from FIG. 1B in that the spatial light modulator 14' of FIG. 1B can have a reflective pixel array. The reflective pixel array may also have a liquid crystal layer (not shown), and a mirror (not shown) is added after the liquid crystal layer, so that by controlling the rotation direction of the liquid crystal in the pixel, it is determined whether to let Light passes through and is reflected to the object DUT. In one example, the spatial light modulator 14' may also have no multiple liquid crystal layers and only a plurality of mirrors. For example, each "pixel" may be a small mirror, and the control command cmd may determine which pixels are reflected to the object DUT. Other pixels that are not selected can reflect light to other arbitrary, non-interfering locations.

此外,具有液晶層的穿透式的像素陣列或反射式的像素陣列之空間光調製器14通常會與偏振片搭配使用,不過由於偏振片的功能及用途係所屬技術領域中具有通常知識者皆能理解,再加上其並非本發明之重點,在此不予贅述。In addition, a transmissive pixel array having a liquid crystal layer or a spatial light modulator 14 of a reflective pixel array is generally used in combination with a polarizing plate, but since the function and use of the polarizing plate are generally known in the art. It can be understood that, in addition, it is not the focus of the present invention and will not be described herein.

為了說明空間光調製器14的操作方式,請一併參閱圖1A、圖2A到圖2C,圖2A係繪示依據本發明一實施例之空間光調製器於第一時間區間的控制示意圖,圖2B係繪示依據本發明一實施例之空間光調製器於第二時間區間的控制示意圖,圖2C係繪示依據本發明一實施例之空間光調製器於第三時間區間的控制示意圖。如圖所示,空間光調製器14可以具有多個像素140a~140o,不同的像素可以對應到物件DUT表面的不同位置,且空間光調製器14可以依據外部的控制指令cmd調整開啟的像素。於圖2A的例子示範了在第一時間區間內開啟第一像素群組,其餘像素是在關閉狀態,第一像素群組可例如被定義為像素140a、像素140c、像素140i以及像素140k。也就是說,在第一時間區間內,射向空間光調製器14的測試光線只能從像素140a、像素140c、像素140i以及像素140k穿透過去,射向其他像素的測試光線皆被遮蔽。To illustrate the operation mode of the spatial light modulator 14, please refer to FIG. 1A and FIG. 2A to FIG. 2C. FIG. 2A is a schematic diagram of the control of the spatial light modulator in the first time interval according to an embodiment of the invention. 2B is a schematic diagram showing control of a spatial light modulator according to an embodiment of the present invention in a second time interval, and FIG. 2C is a schematic diagram showing control of a spatial light modulator in a third time interval according to an embodiment of the invention. As shown, the spatial light modulator 14 can have a plurality of pixels 140a-140o, different pixels can correspond to different locations on the surface of the object DUT, and the spatial light modulator 14 can adjust the turned-on pixels according to an external control command cmd. The example of FIG. 2A demonstrates that the first group of pixels is turned on in the first time interval, and the remaining pixels are in the off state, and the first group of pixels can be defined, for example, as the pixel 140a, the pixel 140c, the pixel 140i, and the pixel 140k. That is to say, in the first time interval, the test light that is directed to the spatial light modulator 14 can only pass through the pixels 140a, 140c, 140i, and 140k, and the test rays that are directed toward the other pixels are shielded.

從而,穿過這4個像素的測試光線在經過空間光調製器14後,可以被透鏡15聚焦照射到物件DUT表面上的4個位置(分別對應像素140a、像素140c、像素140i以及像素140k)。值得一提的是,雖然本實施例以一個像素群組對應4個像素為例,其目的僅在於方便說明,實際上像素群組不限制可以對應幾個像素。此外,本實施例定義第一時間區間內從物件DUT取得的光線為第一物件光線,例如測試光線經過像素140a、像素140c、像素140i以及像素140k射向物件DUT表面上4個位置,因此第一時間區間內可以取得4個對應的第一物件光線。Therefore, the test light passing through the four pixels can be focused by the lens 15 to the four positions on the surface of the object DUT after passing through the spatial light modulator 14 (corresponding to the pixel 140a, the pixel 140c, the pixel 140i, and the pixel 140k, respectively). . It is worth mentioning that although the present embodiment takes four pixel groups corresponding to one pixel group as an example, the purpose is only for convenience of description. In fact, the pixel group is not limited to correspond to several pixels. In addition, the embodiment defines that the light taken from the object DUT in the first time interval is the first object light, for example, the test light passes through the pixel 140a, the pixel 140c, the pixel 140i, and the pixel 140k to the four positions on the surface of the object DUT, so Four corresponding first object rays can be obtained in one time interval.

舉例來說,當測試光線經過像素140a後,經過透鏡15照射到物件DUT表面上的特定位置,再由物件DUT反射出第一物件光線。所述第一物件光線可以再次經過透鏡15與像素140a,到達分光單元12,並且由分光單元12導引至影像擷取設備16。於一個例子中,影像擷取設備16可以設置在分光單元12的一側,用來接收從參考鏡13反射回來的參考光線,以及接收從物件DUT表面上的特定位置反射回來的第一物件光線。實務上,參考鏡13可以被設計成能夠前後移動的鏡面,當參考鏡13被移動某一距離,影像擷取設備16接收到反射回來的參考光線和第一物件光線的總和亮度最高時,可以視為參考光線和第一物件光線恰好是建設性(constructive)干涉。以物理的意義來說,此時反射回來的參考光線和測試光線為零光程差。由於對應像素140a的第一物件光線到影像擷取設備16是固定的,因此可以藉由找出讓參考光線和測試光線為零光程差的參考鏡13位置,推知參考鏡13被移動的距離,從而算出物件DUT特定位置(對應像素140a)的表面形貌。For example, when the test light passes through the pixel 140a, it is irradiated to a specific position on the surface of the object DUT through the lens 15, and then the first object light is reflected by the object DUT. The first object light may pass through the lens 15 and the pixel 140a again, reach the beam splitting unit 12, and be guided by the beam splitting unit 12 to the image capturing device 16. In one example, the image capturing device 16 can be disposed on one side of the beam splitting unit 12 for receiving reference light reflected from the reference mirror 13 and receiving the first object light reflected from a specific position on the surface of the object DUT. . In practice, the reference mirror 13 can be designed as a mirror surface that can move back and forth. When the reference mirror 13 is moved a certain distance, the image capturing device 16 can receive the highest sum of the reflected reference light and the first object light. It is considered that the reference ray and the first object ray are just constructive interference. In a physical sense, the reference light and the test light reflected back at this time are zero optical path difference. Since the first object light of the corresponding pixel 140a is fixed to the image capturing device 16, the distance of the reference mirror 13 can be inferred by finding the position of the reference mirror 13 which makes the reference light and the test light have a zero optical path difference. Thereby, the surface topography of the specific position (corresponding to the pixel 140a) of the object DUT is calculated.

詳細來說,影像擷取設備16在第一時間區間內可以連續拍攝多張影像,每一張影像可以對應參考鏡13的一個位置,且每一張影像可以同時接收到參考光線以及對應像素140a的第一物件光線。也就是說,參考鏡13可以在第一時間區間內移動一個範圍,而影像擷取設備16記錄了在參考鏡13移動的過程中,每一個參考鏡13位置對應的參考光線和第一物件光線的總和亮度。實務上,所述總和亮度可以用灰階值表現,也就是說在第一時間區間內,影像擷取設備16可以記錄一連串的灰階值。例如,當參考鏡13移動了第一距離時,影像擷取設備16記錄到的灰階值最大(總和亮度最高),即可使用所述第一距離推算出物件DUT的表面形貌。舉例來說,如果像素140a對應到物件DUT特定位置的表面形貌為凸起,則參考鏡13有可能較靠近分光單元12,如果像素140a對應到物件DUT特定位置的表面形貌為凹陷,則參考鏡13有可能較靠遠離分光單元12。本實施例在此不限制由所述第一距離推算表面形貌的方式,於所屬技術領域具有通常知識者可以依據實際光路架構調整。In detail, the image capturing device 16 can continuously capture multiple images in a first time interval, and each image can correspond to a position of the reference mirror 13 , and each image can simultaneously receive the reference light and the corresponding pixel 140 a The first object of light. That is to say, the reference mirror 13 can move a range in the first time interval, and the image capturing device 16 records the reference light and the first object light corresponding to the position of each of the reference mirrors 13 during the movement of the reference mirror 13. The sum of the brightness. In practice, the sum brightness can be represented by a gray scale value, that is, the image capturing device 16 can record a series of gray scale values in the first time interval. For example, when the reference mirror 13 moves by the first distance, the image capturing device 16 records the maximum grayscale value (the sum of the luminances is the highest), and the first surface can be used to estimate the surface topography of the object DUT. For example, if the surface topography of the pixel 140a corresponding to the specific position of the object DUT is a convex, the reference mirror 13 may be closer to the light splitting unit 12, and if the surface topography of the pixel 140a corresponding to the specific position of the object DUT is concave, It is possible that the reference mirror 13 is farther away from the spectroscopic unit 12. This embodiment does not limit the manner in which the surface topography is estimated from the first distance. Those skilled in the art can adjust according to the actual optical path architecture.

本實施例並不限制如何表示物件DUT特定位置的表面形貌,於一個例子中,被記錄下來的物件DUT表面形貌資料可以用相對值表現,例如相對於一個基準面,從而只記錄比所述基準面高或低幾個單位。為了方面說明,本實施例示範整理一個第一時間區間內測得的物件DUT表面形貌資料(第一表面形貌資料)如下表1,表中用不同的像素表示對應到物件DUT表面上不同的位置。然而以下數值只是例示,並不用以限制實際上的數值表示方式或計算方式。 像素 第一表面形貌資料 140a +1 140c +2 140i -1 140k +3 表1 This embodiment does not limit how to represent the surface topography of a specific position of the object DUT. In one example, the surface topography data of the recorded object DUT can be expressed by relative values, for example, relative to a reference plane, thereby recording only the ratio. The reference plane is several units high or low. For the purpose of illustration, the present embodiment exemplifies the surface topography data (first surface topography data) of the object DUT measured in a first time interval as shown in Table 1. The different pixel representations in the table correspond to different surfaces on the object DUT. s position. However, the following numerical values are merely illustrative and are not intended to limit the actual numerical representation or calculation.   Pixel First surface topography 140a +1 140c +2 140i -1 140k +3 Table 1  

於圖2B的例子示範了在第二時間區間內開啟第二像素群組,其餘像素是在關閉狀態,第二像素群組可例如被定義為像素140a、像素140d、像素140j以及像素140l。也就是說,在第二時間區間內,射向空間光調製器14的測試光線只能從像素140a、像素140d、像素140j以及像素140l穿透過去,射向其他像素的測試光線皆被遮蔽。從而,穿過這4個像素的測試光線在經過空間光調製器14後,可以被透鏡15聚焦照射到物件DUT表面上的4個位置。所述物件DUT表面上的4個位置中,除了物件DUT表面上對應於像素140a的位置已測量過之外,還有3個新的位置,分別對應像素140d、像素140j以及像素140l。本實施例定義第二時間區間內從物件DUT取得的光線為第二物件光線,例如測試光線經過像素140a、像素140d、像素140j以及像素140l射向物件DUT表面上的4個位置,因此第二時間區間內可以取得4個對應的第二物件光線。The example of FIG. 2B exemplifies that the second pixel group is turned on in the second time interval, and the remaining pixels are in the off state, and the second pixel group can be defined, for example, as the pixel 140a, the pixel 140d, the pixel 140j, and the pixel 1401. That is to say, in the second time interval, the test light that is directed to the spatial light modulator 14 can only pass through the pixels 140a, 140d, 140j, and 140l, and the test rays that are directed to the other pixels are shielded. Thus, the test ray passing through the four pixels can be focused by the lens 15 to the four positions on the surface of the object DUT after passing through the spatial light modulator 14. Among the four positions on the surface of the object DUT, in addition to the position corresponding to the pixel 140a on the surface of the object DUT, there are three new positions corresponding to the pixel 140d, the pixel 140j, and the pixel 140l. The embodiment defines that the light taken from the object DUT in the second time interval is the second object light, for example, the test light passes through the pixel 140a, the pixel 140d, the pixel 140j, and the pixel 1401 to the four positions on the surface of the object DUT, so the second Four corresponding second object rays can be obtained in the time interval.

接著,與前述例子相同的是,參考鏡13同樣可以在第二時間區間內移動一個範圍,而影像擷取設備16記錄了在參考鏡13移動的過程中,每一個參考鏡13位置對應的參考光線和第二物件光線的總和亮度,並且可以推算出物件DUT表面上的4個位置的表面形貌。為了方面說明,本實施例示範整理第二時間區間內測得的物件DUT表面形貌資料(第二表面形貌資料)如下表2,並且整合了表1的資訊。 像素 第一表面形貌資料 第二表面形貌資料 140a +1 +3 140c +2 140d +1 140i -1 140j +2 140k +3 140l -1 表2 Next, as in the foregoing example, the reference mirror 13 can also move a range in the second time interval, and the image capturing device 16 records the reference corresponding to the position of each reference mirror 13 during the movement of the reference mirror 13. The sum of the brightness of the light and the second object, and the surface topography at four locations on the surface of the object DUT can be derived. For illustrative purposes, the present embodiment exemplifies the surface topography data (second surface topography data) of the object DUT measured in the second time interval as shown in Table 2 below, and integrates the information of Table 1.   Pixel First surface topography data Second surface topography data 140a +1 +3 140c +2 140d +1 140i -1 140j +2 140k +3 140l -1 Table 2  

由表2可以看出本實施例在第一像素群組與第二像素群組之間設有重複的像素140a(第一重複像素)。因為像素140a掃描物件DUT表面上的位置固定,從而可以計算出在第二時間區間受到的震動干擾程度。例如,表2示範了像素140a對應到物件DUT表面上的位置,在第一時間區間的表面形貌資料為+1,而在第二時間區間的表面形貌資料為+3,可以推知震動差值(第一震動差值)為+2。換句話說,在第二時間區間測量到的所有第二表面形貌資料都受到第一震動差值的干擾,而補償/扣除第一震動差值之後的第二表面形貌資料才能與第一表面形貌資料有相同的基準。為了方面說明,本實施例示範校正後的第二表面形貌資料如下表3,並且整合了表1的資訊。 像素 第一表面形貌資料 第二表面形貌資料 補償後的第二表面形貌資料 140a +1 +3 +1 140c +2 140d +1 -1 140i -1 140j +2 +0 140k +3 140l -1 -3 表3 It can be seen from Table 2 that the present embodiment is provided with a repeating pixel 140a (first repeating pixel) between the first pixel group and the second pixel group. Since the pixel 140a scans the position on the surface of the object DUT is fixed, it is possible to calculate the degree of vibration interference received in the second time interval. For example, Table 2 exemplifies the position of the pixel 140a corresponding to the surface of the object DUT, the surface topography data in the first time interval is +1, and the surface topography data in the second time interval is +3, which can infer the vibration difference. The value (first vibration difference) is +2. In other words, all the second surface topography data measured in the second time interval are interfered by the first vibration difference value, and the second surface topography data after compensating/deducting the first vibration difference value can be compared with the first The surface topography data has the same benchmark. For the sake of explanation, the corrected second surface topography data in this embodiment is shown in Table 3 below, and the information of Table 1 is integrated.   Pixel first surface topography data second surface topography data compensated second surface topography data 140a +1 +3 +1 140c +2 140d +1 -1 140i -1 140j +2 +0 140k +3 140l - 1 -3 Table 3  

於圖2C的例子示範了在第三時間區間內開啟第三像素群組,其餘像素是在關閉狀態,第三像素群組可例如被定義為像素140b、像素140d、像素140m以及像素140o。也就是說,在第三時間區間內,射向空間光調製器14的測試光線只能從像素140b、像素140d、像素140m以及像素140o穿透過去,射向其他像素的測試光線皆被遮蔽。從而,穿過這4個像素的測試光線在經過空間光調製器14後,可以被透鏡15聚焦照射到物件DUT表面上的4個位置。所述物件DUT表面上的4個位置中,除了物件DUT表面上對應於像素140d的位置已測量過之外,還有3個新的位置,分別對應像素140b、像素140m以及像素140o。本實施例定義第三時間區間內從物件DUT取得的光線為第三物件光線,例如測試光線經過像素140b、像素140d、像素140m以及像素140o射向物件DUT表面上4個位置,因此第三時間區間內可以取得4個對應的第三物件光線。The example of FIG. 2C demonstrates that the third pixel group is turned on in the third time interval, and the remaining pixels are in the off state, and the third pixel group can be defined, for example, as the pixel 140b, the pixel 140d, the pixel 140m, and the pixel 140o. That is to say, in the third time interval, the test light that is directed to the spatial light modulator 14 can only pass through the pixels 140b, the pixels 140d, the pixels 140m, and the pixels 140o, and the test rays that are directed to the other pixels are shielded. Thus, the test ray passing through the four pixels can be focused by the lens 15 to the four positions on the surface of the object DUT after passing through the spatial light modulator 14. Among the four positions on the surface of the object DUT, in addition to the position corresponding to the pixel 140d on the surface of the object DUT, there are three new positions corresponding to the pixel 140b, the pixel 140m, and the pixel 140o. This embodiment defines that the light taken from the object DUT in the third time interval is the third object light. For example, the test light passes through the pixel 140b, the pixel 140d, the pixel 140m, and the pixel 140o to the four positions on the surface of the object DUT, so the third time Four corresponding third object rays can be obtained in the interval.

接著,與前述例子相同的是,參考鏡13同樣可以在第三時間區間內移動一個範圍,而影像擷取設備16記錄了在參考鏡13移動的過程中,每一個參考鏡13位置對應的參考光線和第三物件光線的總和亮度,並且可以推算出物件DUT表面上的4個位置的表面形貌。為了方面說明,本實施例示範整理第三時間區間內測得的物件DUT表面形貌資料(第三表面形貌資料)如下表4,並且整合了表2的資訊。 像素 第二表面形貌資料 第三表面形貌資料 140a +3 140b +3 140d +1 +2 140j +2 140l -1 140m +4 140o +2 表4 Next, as in the foregoing example, the reference mirror 13 can also move a range in the third time interval, and the image capturing device 16 records the reference corresponding to the position of each reference mirror 13 during the movement of the reference mirror 13. The sum of the brightness of the light and the third object, and the surface topography at four locations on the surface of the object DUT can be derived. For illustrative purposes, the present embodiment exemplifies the surface topography data (third surface topography data) of the object DUT measured in the third time interval as shown in Table 4 below, and integrates the information of Table 2.   Pixel Second surface topography data Third surface topography 140a +3 140b +3 140d +1 +2 140j +2 140l -1 140m +4 140o +2 Table 4  

由表4可以看出本實施例在第二像素群組與第三像素群組之間設有重複的像素140d(第二重複像素)。因為像素140d掃描物件DUT表面上的位置固定,從而可以計算出在第三時間區間受到的震動干擾程度。值得一提的是,雖然圖2C中繪示的第三像素群組並不包含像素140a,但並不表示第三像素群組不能選擇像素140a(第一重複像素)。舉例來說,實務上也可以選擇像素140a、像素140b、像素140m以及像素140o做為第三像素群組,從而第二像素群組與第三像素群組之間的重複像素,可以和第一像素群組與第二像素群組之間的重複像素相同。It can be seen from Table 4 that the present embodiment provides a repeating pixel 140d (second repeating pixel) between the second pixel group and the third pixel group. Since the position of the pixel 140d on the surface of the scanned object DUT is fixed, the degree of vibration interference received in the third time interval can be calculated. It is worth mentioning that although the third pixel group illustrated in FIG. 2C does not include the pixel 140a, it does not mean that the third pixel group cannot select the pixel 140a (the first repeated pixel). For example, in practice, the pixel 140a, the pixel 140b, the pixel 140m, and the pixel 140o may be selected as the third pixel group, so that the repeated pixel between the second pixel group and the third pixel group may be the first The repeating pixels between the pixel group and the second pixel group are the same.

回到圖2C繪示的例子,表4示範了像素140d對應到物件DUT表面上的位置,在第二時間區間的表面形貌資料為+1,而在第三時間區間的表面形貌資料為+2,可以推知震動差值(第二震動差值)為+1。然而,又因為為了第二表面形貌資料受到第一震動差值的干擾,可知在第三時間區間測量到的所有第三表面形貌資料受到第一震動差值與第二震動差值的影響,補償/扣除第一震動差值(+2)和第二震動差值(+1)之後的第三表面形貌資料才能與第一表面形貌資料有相同的基準。本實施例示範補償後的與第三表面形貌資料如下表5。 像素 第一表面形貌資料 補償後的第二表面形貌資料 補償後的第三表面形貌資料 140a +1 +1 140b +0 140c +2 140d -1 -1 140i -1 140j +0 140k +3 140l -3 140m +1 140o -1 表5 Returning to the example illustrated in FIG. 2C, Table 4 demonstrates that the pixel 140d corresponds to the position on the surface of the object DUT, the surface topography data in the second time interval is +1, and the surface topography data in the third time interval is +2, it can be inferred that the vibration difference (second vibration difference) is +1. However, because the second surface topography data is interfered by the first vibration difference, it can be known that all the third surface topography data measured in the third time interval are affected by the first vibration difference value and the second vibration difference value. The third surface topography data after compensating/deducting the first shock difference value (+2) and the second vibration difference value (+1) can have the same reference as the first surface topography data. The deformed and third surface topography materials in this embodiment are shown in Table 5 below.   The third surface topography data after compensation of the second surface topography data compensated by the first surface topography data of the pixel 140a +1 +1 140b +0 140c +2 140d -1 -1 140i -1 140j +0 140k +3 140l -3 140m +1 140o -1 Table 5  

由表5可知,可知原始的第二表面形貌資料和第三表面形貌資料都有震動造成的影響,從而如果拿沒有震動補償的表面形貌資料,將無法真實反映出物件DUT的表面形貌。應用了本發明所揭露的表面形貌檢測方法的表面形貌檢測系統1,可以在依序開啟空間光調製器14上不同的像素群組後,藉由物件DUT表面上不同位置的反射光線,判斷每個位置的表面形貌,從而達到完整掃描物件DUT指定區域表面形貌的目的。並且,在經過震動補償後,不同的像素群組對應到的表面形貌資料可以被整合在一起,從而可以取得一份完整且正確的物件DUT指定區域的表面形貌。It can be seen from Table 5 that the original second surface topography data and the third surface topography data have the influence of vibration, so if the surface topography data without vibration compensation is taken, the surface shape of the object DUT cannot be truly reflected. appearance. The surface topography detecting system 1 to which the surface topography detecting method disclosed in the present invention is applied can sequentially reflect light at different positions on the surface of the object DUT after sequentially opening different pixel groups on the spatial light modulator 14. The surface topography of each position is judged to achieve the purpose of completely scanning the surface topography of the designated area of the object DUT. Moreover, after the vibration compensation, the surface topography data corresponding to different pixel groups can be integrated, so that a complete and correct surface topography of the designated area of the object DUT can be obtained.

為了再次說明本發明的表面形貌檢測方法的步驟,請一併參考圖1A、圖2A到圖2C以及圖3,圖3係繪示依據本發明一實施例之表面形貌檢測方法的步驟流程圖。於步驟S30中,分光單元12可以將輸入光線分光為參考光線與測試光線,測試光線可以用來掃描物件DUT的表面形貌。於步驟S32中,於測試光線行進的光學路徑上設置空間光調製器14,空間光調製器14中具有多個像素140a~140o。於步驟S34中,可利用外部的電腦工作站或伺服器發出控制指令cmd,並利用控制指令cmd控制空間光調製器14,於第一時間區間開啟所述多個像素中的第一像素群組(例如像素140a、像素140c、像素140i以及像素140k),於第二時間區間開啟所述多個像素中的第二像素群組(例如像素140a、像素140d、像素140j以及像素140l)。其中,第一像素群組與第二像素群組對應到的像素中,有至少一個重複像素(例如像素140a)。本發明表面形貌檢測方法的其他步驟細節,已於前述實施例詳細說明,在此不予贅述。In order to illustrate the steps of the surface topography detecting method of the present invention, please refer to FIG. 1A, FIG. 2A to FIG. 2C and FIG. 3 together. FIG. 3 illustrates the flow of steps of the surface topography detecting method according to an embodiment of the present invention. Figure. In step S30, the beam splitting unit 12 can split the input light into reference light and test light, and the test light can be used to scan the surface topography of the object DUT. In step S32, a spatial light modulator 14 is disposed on the optical path through which the test ray travels, and the spatial light modulator 14 has a plurality of pixels 140a-140o. In step S34, an external computer workstation or server may be used to issue a control command cmd, and the spatial light modulator 14 may be controlled by the control command cmd to open a first pixel group of the plurality of pixels in a first time interval ( For example, the pixel 140a, the pixel 140c, the pixel 140i, and the pixel 140k) turn on the second pixel group (for example, the pixel 140a, the pixel 140d, the pixel 140j, and the pixel 140l) of the plurality of pixels in the second time interval. The pixel corresponding to the first pixel group and the second pixel group has at least one repeated pixel (for example, the pixel 140a). The details of other steps of the surface topography detecting method of the present invention have been described in detail in the foregoing embodiments, and are not described herein.

當然,本發明不限制表面形貌檢測系統1只能使用圖1A繪示的光學架構。請一併參閱圖1A與圖4,圖4係繪示依據本發明另一實施例之表面形貌檢測系統的示意圖。同樣地,本發明所揭露的表面形貌檢測方法也可以應用於表面形貌檢測系統4。與圖1A相同的是,表面形貌檢測系統4同樣具有光源40、透鏡41、空間光調製器(spatial light modulator)42、透鏡43以及影像擷取設備44。其中光源40、透鏡41、透鏡43以及影像擷取設備44的功能與前述實施例非常類似,在此不予贅述。與前一實施例不同的是,本實施例的表面形貌檢測系統4使用共焦的光學架構,且空間光調製器42可以將物件DUT反射的物件光線導引到影像擷取設備44,使得表面形貌檢測系統4同樣也可以用來檢測物件DUT。Of course, the present invention does not limit the surface topography detecting system 1 to only use the optical architecture illustrated in FIG. 1A. Please refer to FIG. 1A and FIG. 4 together. FIG. 4 is a schematic diagram of a surface topography detecting system according to another embodiment of the present invention. Similarly, the surface topography detecting method disclosed in the present invention can also be applied to the surface topography detecting system 4. Similar to FIG. 1A, the surface topography detecting system 4 also has a light source 40, a lens 41, a spatial light modulator 42, a lens 43, and an image capturing device 44. The functions of the light source 40, the lens 41, the lens 43, and the image capturing device 44 are very similar to those of the foregoing embodiment, and are not described herein. Different from the previous embodiment, the surface topography detecting system 4 of the present embodiment uses a confocal optical structure, and the spatial light modulator 42 can guide the object light reflected by the object DUT to the image capturing device 44, so that The surface topography detection system 4 can also be used to detect the object DUT.

此外,空間光調製器42中每個像素的控制方式與前一實施例相同,同樣可以將多個像素分為多個像素群組,且兩個像素群組之間具有重複像素。藉此,表面形貌檢測系統4也可以在依序開啟空間光調製器42上不同的像素群組後,掃描物件DUT指定區域的表面形貌。並且,在經過震動補償後,不同的像素群組對應到的表面形貌資料可以被整合在一起,從而可以取得一份完整且正確的物件DUT指定區域的表面形貌。In addition, the control mode of each pixel in the spatial light modulator 42 is the same as that of the previous embodiment. Similarly, a plurality of pixels can be divided into a plurality of pixel groups, and there are repeated pixels between the two pixel groups. Thereby, the surface topography detecting system 4 can also scan the surface topography of the designated area of the object DUT after sequentially opening different pixel groups on the spatial light modulator 42. Moreover, after the vibration compensation, the surface topography data corresponding to different pixel groups can be integrated, so that a complete and correct surface topography of the designated area of the object DUT can be obtained.

綜上所述,本發明提供的表面形貌檢測方法,依序開啟空間光調製器中的多個像素群組,並於所述多個像素群組中設計有重複像素。藉由比對重複像素於兩次測量取得的數值,可以補償震動的干擾,以提高表面形貌的測量準確度。In summary, the surface topography detecting method provided by the present invention sequentially turns on a plurality of pixel groups in the spatial light modulator, and designs repeated pixels in the plurality of pixel groups. By comparing the values obtained by repeating the pixels in two measurements, the interference of the vibration can be compensated to improve the measurement accuracy of the surface topography.

1‧‧‧表面形貌檢測系統1‧‧‧Surface topography detection system

10‧‧‧光源 10‧‧‧Light source

11‧‧‧透鏡 11‧‧‧ lens

12‧‧‧分光單元 12‧‧‧Distribution unit

13‧‧‧參考鏡 13‧‧‧Reference mirror

14‧‧‧空間光調製器 14‧‧‧Spatial Light Modulator

140a~140o‧‧‧像素 140a~140o‧‧‧ pixels

15‧‧‧透鏡 15‧‧‧ lens

16‧‧‧影像擷取設備 16‧‧‧Image capture equipment

4‧‧‧表面形貌檢測系統 4‧‧‧Surface topography detection system

40‧‧‧光源 40‧‧‧Light source

41‧‧‧透鏡 41‧‧‧ lens

42‧‧‧空間光調製器 42‧‧‧Spatial Light Modulator

43‧‧‧透鏡 43‧‧‧ lens

44‧‧‧影像擷取設備 44‧‧‧Image capture equipment

S30~S34‧‧‧步驟流程 S30~S34‧‧‧Step procedure

cmd‧‧‧控制指令 Cmd‧‧‧Control Instructions

圖1A係繪示依據本發明一實施例之表面形貌檢測系統的示意圖。1A is a schematic diagram of a surface topography detecting system in accordance with an embodiment of the present invention.

圖1B係繪示依據本發明另一實施例之表面形貌檢測系統的示意圖。1B is a schematic view showing a surface topography detecting system according to another embodiment of the present invention.

圖2A係繪示依據本發明一實施例之空間光調製器於第一時間區間的控制示意圖。2A is a schematic diagram of control of a spatial light modulator in a first time interval according to an embodiment of the invention.

圖2B係繪示依據本發明一實施例之空間光調製器於第二時間區間的控制示意圖。2B is a schematic diagram showing control of a spatial light modulator in a second time interval according to an embodiment of the invention.

圖2C係繪示依據本發明一實施例之空間光調製器於第三時間區間的控制示意圖。2C is a schematic diagram showing control of a spatial light modulator in a third time interval according to an embodiment of the invention.

圖3係繪示依據本發明一實施例之表面形貌檢測方法的步驟流程圖。3 is a flow chart showing the steps of a surface topography detecting method according to an embodiment of the invention.

圖4係繪示依據本發明另一實施例之表面形貌檢測系統的示意圖。4 is a schematic view showing a surface topography detecting system according to another embodiment of the present invention.

Claims (11)

一種表面形貌檢測方法,包含: 提供一測試光線,該測試光線用以測量一物件的表面形貌; 於該測試光線的一光學路徑上,提供一空間光調製器,該空間光調製器具有多個像素;以及 控制該空間光調製器,於一第一時間區間開啟該些像素中的一第一像素群組,於一第二時間區間開啟該些像素中的一第二像素群組; 其中該第一像素群組與該第二像素群組分別對應部分的該些像素,且該第一像素群組與該第二像素群組之間有一第一重複像素。A surface topography detecting method comprising: providing a test light for measuring a surface topography of an object; and providing a spatial light modulator on an optical path of the test light, the spatial light modulator having a plurality of pixels; and controlling the spatial light modulator to turn on a first pixel group of the pixels in a first time interval, and to activate a second pixel group of the pixels in a second time interval; The first pixel group and the second pixel group respectively correspond to the pixels, and the first pixel group and the second pixel group have a first repeating pixel. 如請求項1所述之表面形貌檢測方法,其中於該第一時間區間中,該物件反射該測試光線而取得一第一物件光線,於該第二時間區間中,該物件反射該測試光線而取得一第二物件光線。The surface topography detecting method of claim 1, wherein in the first time interval, the object reflects the test light to obtain a first object light, and in the second time interval, the object reflects the test light And to obtain a second object light. 如請求項2所述之表面形貌檢測方法,更包含: 偵測該第一物件光線,據以產生多個第一表面形貌資料,每一該第一表面形貌資料分別對應該第一像素群組中的每一該像素; 偵測該第二物件光線,據以產生多個第二表面形貌資料,每一該第二表面形貌資料分別對應該第二像素群組中的每一該像素;以及 比對該第一重複像素對應的該第一表面形貌資料與該第一重複像素對應的該第二表面形貌資料,計算一第一震動差值。The method for detecting a surface topography according to claim 2, further comprising: detecting the light of the first object, thereby generating a plurality of first surface topography data, each of the first surface topography data respectively corresponding to the first Each of the pixels in the pixel group; detecting the second object light to generate a plurality of second surface topography data, each of the second surface topography data respectively corresponding to each of the second pixel groups a first pixel; and a first surface difference value calculated by comparing the first surface topography data corresponding to the first repeated pixel with the second surface topography data corresponding to the first repeated pixel. 如請求項3所述之表面形貌測方法,更包含: 依據該第一震動差值,補償該些第二表面形貌資料。The method for measuring a surface topography according to claim 3, further comprising: compensating the second surface topography data according to the first vibration difference value. 如請求項4所述之表面形貌檢測方法,更包含: 組合該些第一表面形貌資料與補償後的該些第二表面形貌資料。The surface topography detecting method of claim 4, further comprising: combining the first surface topography data and the compensated second surface topography data. 如請求項3所述之表面形貌檢測方法,更包含: 提供一分光單元,用以將一輸入光線分為一參考光線與該測試光線; 比對該第一物件光線與該參考光線,以產生該些第一表面形貌資料;以及 比對該第二物件光線與該參考光線,以產生該些第二表面形貌資料。The surface topography detecting method of claim 3, further comprising: providing a beam splitting unit for dividing an input light into a reference light and the test light; comparing the first object light with the reference light Generating the first surface topography data; and comparing the second object light to the reference light to generate the second surface topography data. 如請求項1所述之表面形貌檢測方法,更包含: 控制該空間光調製器,於一第三時間區間開啟該些像素中的一第三像素群組; 其中該第三像素群組對應部分的該些像素,且該第二像素群組與該第三像素群組之間有一第二重複像素。The method for detecting a surface topography according to claim 1, further comprising: controlling the spatial light modulator to enable a third pixel group of the pixels in a third time interval; wherein the third pixel group corresponds to a portion of the pixels, and a second repeating pixel between the second group of pixels and the third group of pixels. 如請求項7所述之表面形貌檢測方法,其中該第一重複像素不同於該第二重複像素。The surface topography detecting method of claim 7, wherein the first repeating pixel is different from the second repeating pixel. 如請求項7所述之表面形貌檢測方法,其中於該第三時間區間中,該物件反射該測試光線而取得一第三物件光線。The surface topography detecting method of claim 7, wherein in the third time interval, the object reflects the test light to obtain a third object light. 如請求項9所述之表面形貌檢測方法,更包含: 偵測該第三物件光線,據以產生多個第三表面形貌資料,每一該第三表面形貌資料分別對應該第三像素群組中的每一該像素;以及 比對該第二重複像素對應的該第二表面形貌資料與該第二重複像素對應的該第三表面形貌資料,計算一第二震動差值。The method for detecting a surface topography according to claim 9, further comprising: detecting the light of the third object, thereby generating a plurality of third surface topography data, each of the third surface topography data respectively corresponding to the third surface topography data Calculating a second vibration difference value for each of the pixels in the pixel group; and the third surface topography data corresponding to the second surface topography data corresponding to the second repeated pixel and the second surface topography data . 如請求項10所述之表面形貌檢測方法,更包含: 依據該第一震動差值與該第二震動差值,補償該些第三表面形貌資料。The surface topography detecting method of claim 10, further comprising: compensating the third surface topography data according to the first vibration difference value and the second vibration difference value.
TW107142016A 2018-11-26 2018-11-26 Method of measuring surface topography TWI668439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107142016A TWI668439B (en) 2018-11-26 2018-11-26 Method of measuring surface topography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142016A TWI668439B (en) 2018-11-26 2018-11-26 Method of measuring surface topography

Publications (2)

Publication Number Publication Date
TWI668439B true TWI668439B (en) 2019-08-11
TW202020438A TW202020438A (en) 2020-06-01

Family

ID=68316537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142016A TWI668439B (en) 2018-11-26 2018-11-26 Method of measuring surface topography

Country Status (1)

Country Link
TW (1) TWI668439B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838018A (en) * 2019-11-25 2021-05-25 致茂电子(苏州)有限公司 Optical measurement method
TWI749409B (en) * 2019-11-25 2021-12-11 致茂電子股份有限公司 Optical measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805969B (en) * 2020-11-30 2023-06-21 致茂電子股份有限公司 Surface topography measuring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413789A (en) * 2007-10-18 2009-04-22 鸿富锦精密工业(深圳)有限公司 Method and apparatus for detecting surface profile
TWI329188B (en) * 2007-10-26 2010-08-21 Hon Hai Prec Ind Co Ltd Device and method for measuring surface profile
CN102466471A (en) * 2010-11-18 2012-05-23 三星电机株式会社 Surface shape measuring apparatus
CN103292739A (en) * 2013-06-28 2013-09-11 湖南长重机器股份有限公司 Actuator-free surface shape accurate measurement device and method
CN105637320A (en) * 2013-08-19 2016-06-01 巴斯夫欧洲公司 Optical detector
CN106323163A (en) * 2015-07-10 2017-01-11 上海微电子装备有限公司 Surface 3D detection device and detection method thereof
CN107036552A (en) * 2017-04-17 2017-08-11 湖北工业大学 A kind of cross-scale surface topography measurement device and method based on optical phase shift

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413789A (en) * 2007-10-18 2009-04-22 鸿富锦精密工业(深圳)有限公司 Method and apparatus for detecting surface profile
TWI329188B (en) * 2007-10-26 2010-08-21 Hon Hai Prec Ind Co Ltd Device and method for measuring surface profile
CN102466471A (en) * 2010-11-18 2012-05-23 三星电机株式会社 Surface shape measuring apparatus
CN103292739A (en) * 2013-06-28 2013-09-11 湖南长重机器股份有限公司 Actuator-free surface shape accurate measurement device and method
CN105637320A (en) * 2013-08-19 2016-06-01 巴斯夫欧洲公司 Optical detector
CN106323163A (en) * 2015-07-10 2017-01-11 上海微电子装备有限公司 Surface 3D detection device and detection method thereof
CN107036552A (en) * 2017-04-17 2017-08-11 湖北工业大学 A kind of cross-scale surface topography measurement device and method based on optical phase shift

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838018A (en) * 2019-11-25 2021-05-25 致茂电子(苏州)有限公司 Optical measurement method
TWI749409B (en) * 2019-11-25 2021-12-11 致茂電子股份有限公司 Optical measuring method
CN112838018B (en) * 2019-11-25 2023-09-15 致茂电子(苏州)有限公司 Optical measuring method

Also Published As

Publication number Publication date
TW202020438A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI668439B (en) Method of measuring surface topography
US6750974B2 (en) Method and system for 3D imaging of target regions
US6366357B1 (en) Method and system for high speed measuring of microscopic targets
JP6542356B2 (en) Optical evaluation of lenses and lens molds
US8947673B2 (en) Estimating thickness based on number of peaks between two peaks in scanning white light interferometry
TW201423085A (en) Detecting defects on a wafer using defect-specific information
US20170061209A1 (en) Object processing method, reference image generating method, reference image generating apparatus, object processing apparatus, and recording medium
JP2008051810A (en) Device and method for determining topography of surface characteristic
US11293877B2 (en) Defect detecting device and defect detecting method
JP2015108582A (en) Three-dimensional measurement method and device
US10598604B1 (en) Normal incidence phase-shifted deflectometry sensor, system, and method for inspecting a surface of a specimen
CN111220087B (en) Surface topography detection method
JP2019049520A (en) Multi-mode system and method
JP5758367B2 (en) Method and apparatus for inspecting surfaces containing effect pigments
CN101101200A (en) Asymmetric detecting device and method thereof, image displaying device and method thereof
JP2017075848A (en) Coating inspection device and coating inspection method
US20130322735A1 (en) Defect inspection device, defect inspection method, and defect inspection program
TWI805969B (en) Surface topography measuring system
JP5325481B2 (en) Measuring method of optical element and manufacturing method of optical element
CN114577136A (en) Surface topography detection system
Isasi-Andrieu et al. Deflectometry setup definition for automatic chrome surface inspection
CN110873639B (en) Optical detection device
TWI761651B (en) Optical inspection system and method with high information
CN112838018B (en) Optical measuring method
JP4496149B2 (en) Dimensional measuring device