TW202119644A - Thermoelectric power generating device and manufacturing method thereof - Google Patents

Thermoelectric power generating device and manufacturing method thereof Download PDF

Info

Publication number
TW202119644A
TW202119644A TW108141272A TW108141272A TW202119644A TW 202119644 A TW202119644 A TW 202119644A TW 108141272 A TW108141272 A TW 108141272A TW 108141272 A TW108141272 A TW 108141272A TW 202119644 A TW202119644 A TW 202119644A
Authority
TW
Taiwan
Prior art keywords
layer
aluminum
logic circuit
circuit
thermoelectric
Prior art date
Application number
TW108141272A
Other languages
Chinese (zh)
Other versions
TWI744717B (en
Inventor
李志峯
李志書
李華根
李華昌
陳秀玲
Original Assignee
銀河製版印刷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 銀河製版印刷有限公司 filed Critical 銀河製版印刷有限公司
Priority to TW108141272A priority Critical patent/TWI744717B/en
Publication of TW202119644A publication Critical patent/TW202119644A/en
Application granted granted Critical
Publication of TWI744717B publication Critical patent/TWI744717B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermoelectric power generating device includes a first aluminum alloy plate, a second aluminum alloy plate, an endothermic layer, a thermal radiating layer, a first logic metallic wiring layer, a second logic metallic wiring layer, a plurality of p-type semiconductors, and a plurality of n-type semiconductors. The endothermic layer is formed on the first aluminum alloy plate, and the thermal radiating layer is formed on the second aluminum alloy plate. The first logic metallic wiring layer is formed on the endothermic layer, and the second logic metallic wiring layer is formed on the thermal radiating layer. The p-type semiconductors and the n-type semiconductors are alternately arranged and fixed between the first logic metallic wiring layer and the second logic metallic wiring layer. A thermal conductivity of the thermal radiating layer is greater than a thermal conductivity of the endothermic layer to improve the power generation efficiency. In addition, a thermoelectric power generating device manufacturing method is also disclosed herein.

Description

熱電溫差發電裝置及其製造方法 Thermoelectric thermoelectric power generation device and manufacturing method thereof

本發明係一種溫差發電裝置及其製造方法,特別是有關於一種熱電溫差發電裝置及其製造方法。 The invention relates to a thermoelectric power generation device and a manufacturing method thereof, and particularly relates to a thermoelectric thermoelectric power generation device and a manufacturing method thereof.

現今社會是網際網路的時代,電腦、電視、家電等的發明,推動了現代文明,也加大了人們對於電力的需求。電力逐漸成為人們生活的必需品。電力的產生方式主要有:火力發電、太陽能發電、風力發電、核能發電、水利發電等。其中,熱電溫差發電裝置(thermoelectric conversion device)是一種具有熱與電兩種能量互相轉換特性之元件,由於其熱電轉換特性,因此具有致冷/加熱以及發電兩種應用領域。若對熱電溫差發電裝置通電,使元件兩端分別產成吸熱與放熱現象(稱為Peltier Effect),則可應用在致冷或加熱的技術領域。若使熱電溫差發電裝置兩端分別處於不同溫度,則能令熱電溫差發電裝置輸出直流電(稱為Seebeck Effect),因此可應用於發電技術領域。 Today's society is the age of the Internet. The invention of computers, televisions, and home appliances has promoted modern civilization and increased people's demand for electricity. Electricity has gradually become a necessity in people's lives. The main ways of generating electricity are: thermal power generation, solar power generation, wind power generation, nuclear power generation, hydropower generation, etc. Among them, a thermoelectric conversion device (thermoelectric conversion device) is a device with the characteristics of heat and electricity conversion between two kinds of energy. Because of its thermoelectric conversion characteristics, it has two application fields: refrigeration/heating and power generation. If the thermoelectric thermoelectric power generation device is energized so that the two ends of the element produce heat absorption and heat release (called Peltier Effect), it can be applied to the technical field of cooling or heating. If the two ends of the thermoelectric thermoelectric power generation device are at different temperatures, the thermoelectric thermoelectric power generation device can output direct current (referred to as Seebeck Effect), so it can be applied to the field of power generation technology.

然而,目前各種能源轉換設備所產生的電力只有利用到部分的原能量以轉換成電能,其餘大部分則以廢熱或廢能形式再次逸散到大氣中。如此大量的能量被無效的消耗循環也讓溫室效應加劇,其中工廠排熱應是最大宗的廢熱能來源。如能提升轉換效率,增加熱電溫差發電裝置的熱電轉換效率,將有助於回收大量的廢熱,減緩自然能源的消耗與環境的負擔。 However, the electricity generated by various energy conversion equipment currently only uses part of the original energy to be converted into electrical energy, and most of the rest escapes into the atmosphere again in the form of waste heat or waste energy. Such a large amount of energy is consumed in an ineffective cycle and aggravates the greenhouse effect, among which factory heat should be the largest source of waste heat energy. If the conversion efficiency can be improved, and the thermoelectric conversion efficiency of the thermoelectric thermoelectric power generation device can be increased, it will help to recover a large amount of waste heat and reduce the consumption of natural energy and the burden on the environment.

本發明之一目的,在於提供一種熱電溫差發電裝置,以提升熱電轉換效率。 One objective of the present invention is to provide a thermoelectric thermoelectric power generation device to improve the thermoelectric conversion efficiency.

為了達成上述之目的,本發明係為一種熱電溫差發電裝置,具有一第一鋁合金板、一第二鋁合金板、一吸熱層、一散熱層、一第一金屬邏輯線路層、一第二金屬邏輯線路層以及交互排列的複數個P型半導體及複數個N型半導體。吸熱層形成在第一鋁合金板上,而散熱層形成在第二鋁合金板上。第一金屬邏輯線路層形成在吸熱層上,而第二金屬邏輯線路層形成在散熱層上。交互排列的複數個P型半導體及複數個N型半導體,固定於第一金屬邏輯線路層與第二金屬邏輯線路層之間,其中,散熱層的熱傳導係數大於吸熱層的熱傳導係數。 In order to achieve the above object, the present invention is a thermoelectric thermoelectric power generation device, which has a first aluminum alloy plate, a second aluminum alloy plate, a heat absorption layer, a heat dissipation layer, a first metal logic circuit layer, and a second aluminum alloy plate. A metal logic circuit layer and a plurality of P-type semiconductors and a plurality of N-type semiconductors arranged alternately. The heat absorption layer is formed on the first aluminum alloy plate, and the heat dissipation layer is formed on the second aluminum alloy plate. The first metal logic circuit layer is formed on the heat absorption layer, and the second metal logic circuit layer is formed on the heat dissipation layer. A plurality of P-type semiconductors and a plurality of N-type semiconductors arranged alternately are fixed between the first metal logic circuit layer and the second metal logic circuit layer, wherein the thermal conductivity coefficient of the heat dissipation layer is greater than the thermal conductivity coefficient of the heat absorption layer.

根據本發明之另一實施方式,一種熱電溫差發電裝置製造方法包含有,提供一第一鋁合金板及一第二鋁合金板,在第一鋁合金板上形成一吸熱層,另在第二鋁合金板 上形成一散熱層,在吸熱層上形成一第一金屬邏輯線路層,並在該熱層上形成一第二金屬邏輯線路層,以及提供交互排列複數個P型半導體及複數個N型半導體,並固定在第一金屬邏輯線路層及第二金屬邏輯線路層之間。 According to another embodiment of the present invention, a method for manufacturing a thermoelectric thermoelectric power generation device includes providing a first aluminum alloy plate and a second aluminum alloy plate, forming a heat absorption layer on the first aluminum alloy plate, and forming a heat absorption layer on the second aluminum alloy plate. Aluminum alloy plate A heat dissipation layer is formed on the heat absorption layer, a first metal logic circuit layer is formed on the heat absorption layer, and a second metal logic circuit layer is formed on the thermal layer, and a plurality of P-type semiconductors and a plurality of N-type semiconductors are alternately arranged, And fixed between the first metal logic circuit layer and the second metal logic circuit layer.

在一些實施例中,吸熱層係三氧化二鋁吸熱層,而散熱層係氮化鋁散熱層或石墨烯散熱層。 In some embodiments, the heat absorption layer is an aluminum oxide heat absorption layer, and the heat dissipation layer is an aluminum nitride heat dissipation layer or a graphene heat dissipation layer.

在一些實施例中,吸熱層的熱傳導係數約1至1200W/mK,而散熱層的熱傳導係數約2至5300W/mK。 In some embodiments, the thermal conductivity of the heat absorption layer is about 1 to 1200 W/mK, and the thermal conductivity of the heat dissipation layer is about 2 to 5300 W/mK.

在一些實施例中,第一金屬邏輯線路層包含有複數個第一金屬導體。第二金屬邏輯線路層包含有複數個第二金屬導體與第一金屬邏輯線路層之第一金屬導體交錯設置,以串聯P型半導體與N型半導體,一陰極焊墊連接於P型半導體其中之一,以及一陽極焊墊連接於N型半導體其中之一。 In some embodiments, the first metal logic circuit layer includes a plurality of first metal conductors. The second metal logic circuit layer includes a plurality of second metal conductors and the first metal conductors of the first metal logic circuit layer alternately arranged to connect the P-type semiconductor and the N-type semiconductor in series, and a cathode pad is connected to one of the P-type semiconductors. One, and an anode pad is connected to one of the N-type semiconductors.

在一些實施例中,第一鋁合金板及第二鋁合金板的材料係鋁碳銅合金、鋁錳合金、鋁鎂合金、鋁鎂矽合金、鋁銅合金或鋁鋅合金,而第一金屬邏輯線路層及該第二金屬邏輯線路層係銅鎳金共晶線路、銅鎳錫共晶線路、銅銀錫共晶線路、鎳金共晶線路、鎳銀共晶線路、銀膠線路、碳膠線路、銅膠線路、石墨烯線路或銅線路所形成。 In some embodiments, the material of the first aluminum alloy plate and the second aluminum alloy plate is aluminum carbon copper alloy, aluminum manganese alloy, aluminum magnesium alloy, aluminum magnesium silicon alloy, aluminum copper alloy or aluminum zinc alloy, and the first metal The logic circuit layer and the second metal logic circuit layer are copper-nickel-gold eutectic circuit, copper-nickel-tin eutectic circuit, copper-silver-tin eutectic circuit, nickel-gold eutectic circuit, nickel-silver eutectic circuit, silver glue circuit, carbon It is formed by glue circuit, copper glue circuit, graphene circuit or copper circuit.

綜上所述,熱電溫差發電裝置可以藉由散熱層的熱傳導係數大於吸熱層的熱傳導係數,使熱電溫差發電裝置可以提供更佳的熱電轉換效率,不僅可以提升廢熱發電的能力,更能減少自然資源的消耗,降低地球環境的污染,提 供人類所需的潔淨電源。 In summary, the thermoelectric thermoelectric power generation device can provide better thermoelectric conversion efficiency by using the thermal conductivity coefficient of the heat dissipation layer to be greater than that of the heat absorption layer, which not only improves the capacity of waste heat power generation, but also reduces natural Consumption of resources, reduce pollution of the global environment, and improve A clean power source for human needs.

100‧‧‧熱電溫差發電裝置 100‧‧‧Thermoelectric thermoelectric power generation device

110‧‧‧第一鋁合金板 110‧‧‧The first aluminum alloy plate

120‧‧‧第二鋁合金板 120‧‧‧Second Aluminum Alloy Plate

130‧‧‧吸熱層 130‧‧‧Heat absorption layer

140‧‧‧散熱層 140‧‧‧Heat Dissipation Layer

150‧‧‧第一金屬邏輯線路層 150‧‧‧The first metal logic circuit layer

156‧‧‧第一金屬導體 156‧‧‧The first metal conductor

160‧‧‧第二金屬邏輯線路層 160‧‧‧Second metal logic circuit layer

162‧‧‧陽極焊墊 162‧‧‧Anode pad

164‧‧‧陰極焊墊 164‧‧‧Cathode pad

166‧‧‧第二金屬導體 166‧‧‧Second Metal Conductor

170‧‧‧P型半導體 170‧‧‧P type semiconductor

180‧‧‧N型半導體 180‧‧‧N-type semiconductor

200‧‧‧熱電溫差發電裝置製造方法 200‧‧‧Thermoelectric thermoelectric power generation device manufacturing method

210~240‧‧‧步驟 210~240‧‧‧Step

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: In order to make the above and other objectives, features, advantages and embodiments of the present disclosure more obvious and understandable, the description of the accompanying drawings is as follows:

第1圖係根據本發明之一實施方式所繪示的一種熱電溫差發電裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a thermoelectric thermoelectric power generation device according to an embodiment of the present invention.

第2圖係根據本發明之另一實施方式所繪示的一種熱電溫差發電裝置的製造方法流程示意圖。 FIG. 2 is a schematic flow chart of a manufacturing method of a thermoelectric thermoelectric power generation device according to another embodiment of the present invention.

下文係舉實施例配合所附圖式進行詳細說明,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。另外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件或相似元件將以相同之符號標示來說明。 The following is a detailed description of the embodiments with the accompanying drawings, but the provided embodiments are not used to limit the scope of the disclosure, and the description of the structure operation is not used to limit the order of its execution, any recombination of components The structure and the devices with equal effects are all within the scope of this disclosure. In addition, the drawings are for illustrative purposes only, and are not drawn in accordance with the original dimensions. To facilitate understanding, the same elements or similar elements in the following description will be described with the same symbols.

另外,在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。 In addition, the terms (terms) used in the entire specification and the scope of the patent application, unless otherwise specified, usually have the usual meaning of each term used in this field, in the content disclosed here, and in the special content . Some terms used to describe the present disclosure will be discussed below or elsewhere in this specification to provide those skilled in the art with additional guidance on the description of the present disclosure.

於實施方式與申請專利範圍中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或複數個。而步驟中所使用之編號僅係用來標示步驟以便於說明,而非用來限制前後順序及實施方式。 In the implementation mode and the scope of the patent application, unless the article is specifically limited in the context, "一" and "the" can generally refer to a single or plural. The numbers used in the steps are only used to mark the steps for ease of description, and are not used to limit the sequence and implementation.

其次,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指包含但不限於。 Secondly, the terms "include", "include", "have", "contain", etc. used in this article are all open terms, meaning including but not limited to.

參閱第1圖及第2圖,第1圖係繪示熱電溫差發電裝置的剖面示意圖,而第2圖係繪示熱電溫差發電裝置的製造方法流程示意圖。 Referring to Figures 1 and 2, Figure 1 is a schematic cross-sectional view of a thermoelectric thermoelectric power generation device, and Figure 2 is a schematic diagram of a manufacturing method of the thermoelectric thermoelectric power generation device.

如第1圖所示,熱電溫差發電裝置100包括一第一鋁合金板110及一第二鋁合金板120、一吸熱層130及一散熱層140、一第一金屬邏輯線路層150及一第二金屬邏輯線路層160。其中,P型半導體170及N型半導體180可以利用焊錫固定於第一金屬邏輯線路層150及第二金屬邏輯線路層160之間,然本發明並不限定於此。 As shown in Figure 1, the thermoelectric thermoelectric power generation device 100 includes a first aluminum alloy plate 110 and a second aluminum alloy plate 120, a heat absorption layer 130 and a heat dissipation layer 140, a first metal logic circuit layer 150, and a second aluminum alloy plate. Two metal logic circuit layer 160. The P-type semiconductor 170 and the N-type semiconductor 180 can be fixed between the first metal logic circuit layer 150 and the second metal logic circuit layer 160 by soldering, but the present invention is not limited thereto.

第1圖的熱電溫差發電裝置100兩端面分別處於不同溫度,其中第一鋁合金板110為吸熱端,第二鋁合金板120為散熱端,利用吸熱端與散熱端的溫度差異,可以輸出直流電。因此,熱電溫差發電裝置100可以使用於發電技術領域,且適合使用在低於100℃的廢熱的能量回收系統中。 The two ends of the thermoelectric thermoelectric power generation device 100 in Fig. 1 are at different temperatures. The first aluminum alloy plate 110 is the heat sink and the second aluminum alloy plate 120 is the heat sink. The temperature difference between the heat sink and the heat sink can be used to output direct current. Therefore, the thermoelectric thermoelectric power generation device 100 can be used in the field of power generation technology, and is suitable for use in a waste heat energy recovery system below 100°C.

在一些實施例中,吸熱層130是一絕緣材料所形成,舉例而言,導熱但不導電的材料所形成,例如是三氧化二鋁所形成。 In some embodiments, the heat absorption layer 130 is formed of an insulating material, for example, a thermally conductive but non-conductive material, such as aluminum oxide.

在一些實施例中,散熱層140是一絕緣材料所形成,舉例而言,導熱但不導電的材料所形成,例如是氮化鋁或石墨烯散熱層所形成。 In some embodiments, the heat dissipation layer 140 is formed of an insulating material, for example, a thermally conductive but non-conductive material, such as aluminum nitride or a graphene heat dissipation layer.

在一些實施例中,吸熱層130,相較於散熱層140,具有較低的熱傳導係數,例如是約1~1200W/mK。而散熱層140具有較高的熱傳導係數,例如是約2~5300W/mK。 In some embodiments, the heat absorption layer 130 has a lower thermal conductivity than the heat dissipation layer 140, for example, about 1 to 1200 W/mK. The heat dissipation layer 140 has a relatively high thermal conductivity, for example, about 2-5300 W/mK.

熱阻(Thermal Resistance)係指電子封裝散熱領域中,用來決定電子元件散熱能力的評量標準。其代表熱量通過物體時,阻止熱流通過物體的能力,使得物體產生溫度差,所以不同材料與結構,均會影響熱阻的變化。 Thermal Resistance (Thermal Resistance) refers to the evaluation standard used to determine the heat dissipation capability of electronic components in the field of heat dissipation of electronic packaging. It represents the ability of preventing heat flow through the object when heat passes through the object, causing the object to produce a temperature difference, so different materials and structures will affect the change of thermal resistance.

因此熱阻值的大小可以判斷及預測出電子元件的發熱狀況,當熱阻值越大,表示熱不容易傳遞,元件所產生的溫度高,散熱能力就差;反之,熱阻值越小,則散熱能力越好。 Therefore, the thermal resistance value can judge and predict the heating condition of the electronic component. When the thermal resistance value is larger, it means that the heat is not easily transferred. The higher the temperature generated by the component, the poorer the heat dissipation ability; on the contrary, the smaller the thermal resistance value, The better the heat dissipation capacity.

熱阻公式 Thermal resistance formula

Rth=△T/Q 公式(1) Rth=△T/Q formula (1)

其中,Rth:熱阻(K/W) Among them, Rth: thermal resistance (K/W)

Q:熱傳率(W) Q: Heat transfer rate (W)

△T:溫度差(K) △T: temperature difference (K)

將熱傳導之公式Q=kA(△T/△n),其中,△n是空間變數(距離L),代入熱阻公式中,可以得到一維熱傳導之熱阻, Substituting the heat conduction formula Q=kA(△T/△n), where △n is the spatial variable (distance L), and substituting it into the thermal resistance formula, the thermal resistance of one-dimensional heat conduction can be obtained,

Rth=L/k * A 公式(2) Rth=L/k * A formula (2)

其中,Rth:熱阻(K/W) Among them, Rth: thermal resistance (K/W)

L:正向距離(m) L: Forward distance (m)

k:熱傳導係數(W/m-K) k: Thermal conductivity (W/m-K)

A:熱傳導穿透之面積(m2) A: The penetration area of heat conduction (m 2 )

因此,在傳遞熱功時於同等的厚度下,換言之在等距離的情況下,改變對等兩面,亦即吸熱層130與散熱層140,使用不對等的熱傳導係數材料,將使對等兩面產生溫度差,因此P-N半導體在SEEBACK效應下,就會有電子遷移現象,進而產生了所需的電流與電壓。 Therefore, when transferring heat work with the same thickness, in other words, in the case of equal distance, changing the opposite sides, that is, the heat absorption layer 130 and the heat dissipation layer 140, and the use of materials with unequal thermal conductivity will cause the opposite sides to produce The temperature difference, so under the SEEBACK effect, the PN semiconductor will have the phenomenon of electron migration, and then generate the required current and voltage.

在一些實施例中,散熱層140的散熱係數大於吸熱層130的散熱係數。 In some embodiments, the heat dissipation coefficient of the heat dissipation layer 140 is greater than the heat dissipation coefficient of the heat absorption layer 130.

在一些實施例中,吸熱層130上的第二金屬邏輯線路層160,更形成有一陰極焊墊164,連接於P型半導體170的至少其中之一,以及一陽極焊墊162,連接於N型半導體180的至少其中之一,以提供外部電子裝置所需的電源。其中,陽極焊墊162與陰極焊墊164一般形成於第二金屬邏輯線路層160的外側位置,亦即形成於第二金屬邏輯線路層160的第二金屬導體166的外側。 In some embodiments, the second metal logic circuit layer 160 on the heat absorption layer 130 further forms a cathode pad 164 connected to at least one of the P-type semiconductors 170 and an anode pad 162 connected to the N-type At least one of the semiconductors 180 is used to provide power required by external electronic devices. Among them, the anode pad 162 and the cathode pad 164 are generally formed on the outer side of the second metal logic circuit layer 160, that is, on the outer side of the second metal conductor 166 of the second metal logic circuit layer 160.

再同時參閱第1圖與第2圖,一種熱電溫差發電裝置製造方法200,當製作熱電溫差發電裝置100時,首先,步驟210,提供一第一鋁合金板110及一第二鋁合金板120。第一鋁合金板110及第二鋁合金板120可以是鋁碳矽合金、鋁鎂合金、鋁鎂矽合金、鋁銅合金或鋁鋅合金,其導熱係數大約在180-260W/mK,故相較於一般陶瓷具備有較高的傳熱 能力。 Referring to Figures 1 and 2 at the same time, a method 200 for manufacturing a thermoelectric thermoelectric power generation device. When the thermoelectric thermoelectric power generation device 100 is manufactured, first, in step 210, a first aluminum alloy plate 110 and a second aluminum alloy plate 120 are provided . The first aluminum alloy plate 110 and the second aluminum alloy plate 120 can be aluminum carbon-silicon alloy, aluminum-magnesium alloy, aluminum-magnesium-silicon alloy, aluminum-copper alloy or aluminum-zinc alloy, and their thermal conductivity is about 180-260W/mK, so Has higher heat transfer than general ceramics ability.

接著,步驟220,在第一鋁合金板110上形成一吸熱層130,另在第二鋁合金板120上形成一散熱層140,吸熱層130和散熱層140可以是導熱但不導電的絕緣層,其中,散熱層140的熱傳導係數大於吸熱層130的熱傳導係數。 Next, in step 220, a heat absorption layer 130 is formed on the first aluminum alloy plate 110, and a heat dissipation layer 140 is formed on the second aluminum alloy plate 120. The heat absorption layer 130 and the heat dissipation layer 140 may be thermally conductive but non-conductive insulating layers. , Wherein the thermal conductivity coefficient of the heat dissipation layer 140 is greater than the thermal conductivity coefficient of the heat absorption layer 130.

然後,步驟230,在吸熱層130上形成第一金屬邏輯線路層150,另在散熱層140上形成第二金屬邏輯線路層160。第一金屬邏輯線路層150包含複數個間隔排列的第一金屬導體156,第二金屬邏輯線路層160則包含複數個間隔排列的第二金屬導體166,其中,第一金屬導體156及第二金屬導體166係呈交錯設置,以串聯P型半導體170以及N型半導體180。 Then, in step 230, a first metal logic circuit layer 150 is formed on the heat absorption layer 130, and a second metal logic circuit layer 160 is formed on the heat dissipation layer 140. The first metal logic circuit layer 150 includes a plurality of first metal conductors 156 arranged at intervals, and the second metal logic circuit layer 160 includes a plurality of second metal conductors 166 arranged at intervals. The first metal conductor 156 and the second metal The conductors 166 are arranged in a staggered manner to connect the P-type semiconductor 170 and the N-type semiconductor 180 in series.

在一些實施例中,第一金屬邏輯線路層150及第二金屬邏輯線路層160係銅鎳金共晶線路、銅鎳錫共晶線路、銅銀錫共晶線路、鎳金共晶線路、鎳銀共晶線路、銀膠線路、碳膠線路、銅膠線路、石墨烯線路或銅線路所形成。 In some embodiments, the first metal logic circuit layer 150 and the second metal logic circuit layer 160 are copper-nickel-gold eutectic circuits, copper-nickel-tin eutectic circuits, copper-silver-tin eutectic circuits, nickel-gold eutectic circuits, nickel It is formed by silver eutectic circuit, silver glue circuit, carbon glue circuit, copper glue circuit, graphene circuit or copper circuit.

步驟240,提供交互排列的複數個P型半導體170及複數個N型半導體180,串聯並固定於第一金屬邏輯線路層150及第二金屬邏輯線路層160之間,其可以利用焊錫或其他導電材料加以固定,其均不脫離本發明之精神與範圍。 Step 240, providing a plurality of P-type semiconductors 170 and a plurality of N-type semiconductors 180 arranged alternately, connected in series and fixed between the first metal logic circuit layer 150 and the second metal logic circuit layer 160, which can be soldered or other conductive materials The materials are fixed without departing from the spirit and scope of the present invention.

綜上所述,藉由散熱層的熱傳導係數大於吸熱層的熱傳導係數,熱電溫差發電裝置可以提供更佳的熱電轉換效率,不僅可以提升廢熱發電的能力,更能減少自然資源的消耗,減緩地球環境的污染,提供人類所需的潔淨電源。 In summary, with the heat transfer coefficient of the heat dissipation layer being greater than the heat transfer coefficient of the heat absorption layer, the thermoelectric thermoelectric power generation device can provide better thermoelectric conversion efficiency, not only can improve the capacity of waste heat power generation, but also reduce the consumption of natural resources and slow down the earth The pollution of the environment provides clean power needed by mankind.

雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何本領域具通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 Although this disclosure has been disclosed in the above implementation manner, it is not intended to limit this disclosure. Anyone with ordinary knowledge in the field can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, this disclosure The scope of protection shall be subject to the scope of the attached patent application.

100‧‧‧熱電溫差發電裝置 100‧‧‧Thermoelectric thermoelectric power generation device

110‧‧‧第一鋁合金板 110‧‧‧The first aluminum alloy plate

120‧‧‧第二鋁合金板 120‧‧‧Second Aluminum Alloy Plate

130‧‧‧吸熱層 130‧‧‧Heat absorption layer

140‧‧‧散熱層 140‧‧‧Heat Dissipation Layer

150‧‧‧第一金屬邏輯線路層 150‧‧‧The first metal logic circuit layer

156‧‧‧第一金屬導體 156‧‧‧The first metal conductor

160‧‧‧第二金屬邏輯線路層 160‧‧‧Second metal logic circuit layer

162‧‧‧陽極焊墊 162‧‧‧Anode pad

164‧‧‧陰極焊墊 164‧‧‧Cathode pad

166‧‧‧第二金屬導體 166‧‧‧Second Metal Conductor

170‧‧‧P型半導體 170‧‧‧P type semiconductor

180‧‧‧N型半導體 180‧‧‧N-type semiconductor

Claims (10)

一種熱電溫差發電裝置,包含: A thermoelectric thermoelectric power generation device, including: 一第一鋁合金板; A first aluminum alloy plate; 一第二鋁合金板; A second aluminum alloy plate; 一吸熱層,形成在該第一鋁合金板上; A heat absorption layer formed on the first aluminum alloy plate; 一散熱層,形成在該第二鋁合金板上; A heat dissipation layer formed on the second aluminum alloy plate; 一第一金屬邏輯線路層,形成在該吸熱層上; A first metal logic circuit layer formed on the heat absorption layer; 一第二金屬邏輯線路層,形成在該散熱層上;以及 A second metal logic circuit layer formed on the heat dissipation layer; and 交互排列的複數個P型半導體及複數個N型半導體,固定於該第一金屬邏輯線路層與該第二金屬邏輯線路層之間,其中,該散熱層的熱傳導係數大於該吸熱層的熱傳導係數。 A plurality of P-type semiconductors and a plurality of N-type semiconductors arranged alternately are fixed between the first metal logic circuit layer and the second metal logic circuit layer, wherein the thermal conductivity of the heat dissipation layer is greater than the thermal conductivity of the heat absorption layer . 如請求項1之熱電溫差發電裝置,其中該吸熱層係三氧化二鋁吸熱層,而該散熱層係氮化鋁散熱層或石墨烯散熱層。 Such as the thermoelectric thermoelectric power generation device of claim 1, wherein the heat absorption layer is an aluminum oxide heat absorption layer, and the heat dissipation layer is an aluminum nitride heat dissipation layer or a graphene heat dissipation layer. 如請求項1之熱電溫差發電裝置,其中該吸熱層的熱傳導係數約1至1200W/mK,而該散熱層的熱傳導係數約2至5300W/mK。 Such as the thermoelectric thermoelectric power generation device of claim 1, wherein the thermal conductivity of the heat absorption layer is about 1 to 1200 W/mK, and the thermal conductivity of the heat dissipation layer is about 2 to 5300 W/mK. 如請求項1之熱電溫差發電裝置,其中,該第一金屬邏輯線路層,包含,複數個第一金屬導體;以及 The thermoelectric thermoelectric power generation device of claim 1, wherein the first metal logic circuit layer includes a plurality of first metal conductors; and 該第二金屬邏輯線路層,包含: The second metal logic circuit layer includes: 複數個第二金屬導體,與該第一金屬邏輯線路層之該些第一金屬導體交錯設置,以串聯該些P型半導體與該些N型半導體, A plurality of second metal conductors are alternately arranged with the first metal conductors of the first metal logic circuit layer to connect the P-type semiconductors and the N-type semiconductors in series, 一陰極焊墊,連接於該些P型半導體其中之一,以及 A cathode pad connected to one of the P-type semiconductors, and 一陽極焊墊,連接於該些N型半導體其中之一。 An anode pad is connected to one of the N-type semiconductors. 如請求項1之熱電溫差發電裝置,其中該第一鋁合金板及該第二鋁合金板的材料係鋁碳銅合金、鋁錳合金、鋁鎂合金、鋁鎂矽合金、鋁銅合金或鋁鋅合金,而該第一金屬邏輯線路層及該第二金屬邏輯線路層係銅鎳金共晶線路、銅鎳錫共晶線路、銅銀錫共晶線路、鎳金共晶線路、鎳銀共晶線路、銀膠線路、碳膠線路、銅膠線路、石墨烯線路或銅線路所形成。 Such as the thermoelectric thermoelectric power generation device of claim 1, wherein the material of the first aluminum alloy plate and the second aluminum alloy plate is aluminum-carbon-copper alloy, aluminum-manganese alloy, aluminum-magnesium alloy, aluminum-magnesium-silicon alloy, aluminum-copper alloy or aluminum Zinc alloy, and the first metal logic circuit layer and the second metal logic circuit layer are copper-nickel-gold eutectic circuit, copper-nickel-tin eutectic circuit, copper-silver-tin eutectic circuit, nickel-gold eutectic circuit, nickel-silver eutectic circuit It is formed by crystal circuit, silver glue circuit, carbon glue circuit, copper glue circuit, graphene circuit or copper circuit. 一種熱電溫差發電裝置製造方法,包含: A method for manufacturing a thermoelectric thermoelectric power generation device, including: 提供一第一鋁合金板及一第二鋁合金板; Provide a first aluminum alloy plate and a second aluminum alloy plate; 在該第一鋁合金板上形成一吸熱層,另在該第二鋁合金板上形成一散熱層; Forming a heat absorption layer on the first aluminum alloy plate, and forming a heat dissipation layer on the second aluminum alloy plate; 在該吸熱層上形成一第一金屬邏輯線路層,並在該散熱層上形成一第二金屬邏輯線路層;以及 Forming a first metal logic circuit layer on the heat absorption layer, and forming a second metal logic circuit layer on the heat dissipation layer; and 提供交互排列複數個P型半導體及複數個N型半導體,並固定在該第一金屬邏輯線路層及該第二金屬邏輯線路層之間。 A plurality of P-type semiconductors and a plurality of N-type semiconductors are alternately arranged and fixed between the first metal logic circuit layer and the second metal logic circuit layer. 如請求項6之熱電溫差發電裝置製造方法, 其中該吸熱層係三氧化二鋁吸熱層,而該散熱層係氮化鋁散熱層或石墨烯散熱層。 Such as the manufacturing method of the thermoelectric thermoelectric power generation device of claim 6, The heat absorption layer is an aluminum oxide heat absorption layer, and the heat dissipation layer is an aluminum nitride heat dissipation layer or a graphene heat dissipation layer. 如請求項6之熱電溫差發電裝置製造方法,其中該吸熱層的熱傳導係數約1至1200W/mK,而該散熱層的熱傳導係數約2至5300W/mK。 For example, the method for manufacturing a thermoelectric thermoelectric power generation device of claim 6, wherein the thermal conductivity of the heat absorption layer is about 1 to 1200 W/mK, and the thermal conductivity of the heat dissipation layer is about 2 to 5300 W/mK. 如請求項6之熱電溫差發電裝置製造方法,其中,該第一金屬邏輯線路層,包含,複數個第一金屬導體;以及 The method for manufacturing a thermoelectric thermoelectric power generation device according to claim 6, wherein the first metal logic circuit layer includes a plurality of first metal conductors; and 該第二金屬邏輯線路層,包含: The second metal logic circuit layer includes: 複數個第二金屬導體,與該第一金屬邏輯線路層之該些第一金屬導體交錯設置,以串聯該些P型半導體與該些N型半導體, A plurality of second metal conductors are alternately arranged with the first metal conductors of the first metal logic circuit layer to connect the P-type semiconductors and the N-type semiconductors in series, 一陰極焊墊,連接於該些P型半導體其中之一,以及 A cathode pad connected to one of the P-type semiconductors, and 一陽極焊墊,連接於該些N型半導體其中之一。 An anode pad is connected to one of the N-type semiconductors. 如請求項6之熱電溫差發電裝置製造方法,其中該第一鋁合金板及該第二鋁合金板的材料係鋁碳銅合金、鋁錳合金、鋁鎂合金、鋁鎂矽合金、鋁銅合金或鋁鋅合金,而該第一金屬邏輯線路層及該第二金屬邏輯線路層係銅鎳金共晶線路、銅鎳錫共晶線路、銅銀錫共晶線路、鎳金共晶線路、鎳銀共晶線路、銀膠線路、碳膠線路、銅膠線路、石墨烯線路或銅線路所形成。 For example, the method for manufacturing a thermoelectric thermoelectric power generation device of claim 6, wherein the materials of the first aluminum alloy plate and the second aluminum alloy plate are aluminum-carbon-copper alloy, aluminum-manganese alloy, aluminum-magnesium alloy, aluminum-magnesium-silicon alloy, and aluminum-copper alloy Or aluminum-zinc alloy, and the first metal logic circuit layer and the second metal logic circuit layer are copper-nickel-gold eutectic circuit, copper-nickel-tin eutectic circuit, copper-silver-tin eutectic circuit, nickel-gold eutectic circuit, nickel It is formed by silver eutectic circuit, silver glue circuit, carbon glue circuit, copper glue circuit, graphene circuit or copper circuit.
TW108141272A 2019-11-13 2019-11-13 Thermoelectric power generating device and manufacturing method thereof TWI744717B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108141272A TWI744717B (en) 2019-11-13 2019-11-13 Thermoelectric power generating device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108141272A TWI744717B (en) 2019-11-13 2019-11-13 Thermoelectric power generating device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202119644A true TW202119644A (en) 2021-05-16
TWI744717B TWI744717B (en) 2021-11-01

Family

ID=77020868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141272A TWI744717B (en) 2019-11-13 2019-11-13 Thermoelectric power generating device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI744717B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20080193A1 (en) * 2008-04-11 2009-10-12 Univ Milano Bicocca THERMO-ELECTRIC BIDIRECTIONAL CONVERSION DEVICE WITH EFFECT SEEBECK / PELTIER USING NANOFILES OF CONDUCTOR OR SEMICONDUCTOR MATERIAL.
TWI620354B (en) * 2017-03-01 2018-04-01 銀河製版印刷有限公司 Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module

Also Published As

Publication number Publication date
TWI744717B (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR102281065B1 (en) Cooling thermoelectric moudule and device using the same
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
US8143510B2 (en) Thermoelectric composite semiconductor
KR102111604B1 (en) Device using thermoelectric moudule
TWI620354B (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
CN105444461B (en) A kind of thermoelectric cooler
KR20120080820A (en) Thermoelectric module
KR102022429B1 (en) Cooling thermoelectric moudule and method of manufacturing method of the same
TWI443882B (en) Thermoelectric apparatus and method of fabricating the same
TWI744717B (en) Thermoelectric power generating device and manufacturing method thereof
CN110260556B (en) Thermoelectric refrigerating device and preparation method thereof
KR102304603B1 (en) Thermoelectric module
RU2628676C1 (en) Thermoelectric element
US10897001B2 (en) Thermoelectric conversion module
CN112802954A (en) Thermoelectric power generation device and manufacturing method thereof
TW201327951A (en) Thermoelectric generating apparatus and module
JPH0485973A (en) Thermoelectric generator
RU180604U1 (en) THERMOELECTRIC ELEMENT
RU2376681C1 (en) Thermoelectric cell
KR102673621B1 (en) Phonon-Glass Electron-Crystal for power generation
Ahmed Dynamic performance characteristics of a thermoelectric generator
JPS63110680A (en) Thermal power generating device
TWI544198B (en) Micro power generation temperature board
KR20170107273A (en) Thermoelectric module
RU2575614C2 (en) Thermoelectric generator with high gradient of temperatures between soldered joints