TW202115262A - Kit and method for multiplex detection of chikungunya virus and zika virus - Google Patents
Kit and method for multiplex detection of chikungunya virus and zika virus Download PDFInfo
- Publication number
- TW202115262A TW202115262A TW109120487A TW109120487A TW202115262A TW 202115262 A TW202115262 A TW 202115262A TW 109120487 A TW109120487 A TW 109120487A TW 109120487 A TW109120487 A TW 109120487A TW 202115262 A TW202115262 A TW 202115262A
- Authority
- TW
- Taiwan
- Prior art keywords
- seq
- nucleotide sequence
- probe
- virus
- multiple detection
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本案係關於屈公病毒及茲卡病毒的多重檢測,尤指用於屈公病毒及茲卡病毒多重檢測的套組及方法。This case is related to the multiple detection of Tragong virus and Zika virus, especially the kit and method for multiple detection of Tragong virus and Zika virus.
屈公病毒(Chikungunya virus,CHIKV)是一種蟲媒病毒,分類學上屬於阿爾發病毒(Alphavirus)屬、披衣病毒(Togaviridae)科。此病毒經由攜帶病毒的斑蚊(Aedes mosquitoes)的叮咬而在人與人之間傳播。此病毒於1953年首次從血清和斑蚊中分離出來。Chikungunya virus (CHIKV) is an arbovirus, which belongs to the family of Alphavirus and Togaviridae in taxonomy. The virus is spread from person to person through the bite of the virus-carrying mosquito (Aedes mosquitoes). This virus was first isolated from serum and mosquitoes in 1953.
屈公病通常發生在非洲及亞洲,然由於氣候變化及全球化現象,在歐洲及美洲也爆發了疫情。此疾病的症狀從無症狀到極度病態。屈公病通常始於高達40°C的急性發熱期,且持續數天至一周,接著是長期的關節疾病,會影響四肢的關節,且由關節的屈公病毒感染引起的疼痛會持續數週或數月。據信「屈公」一詞源自非洲當地方言(馬康德語「彎曲」),描述患者因此病遭受極度關節痛而扭曲的姿勢。其他非特異性症狀可能包括頭痛、結膜炎、消化系統不適、和輕微的畏光。Qu Gong's disease usually occurs in Africa and Asia, but due to climate change and globalization, epidemics have also broken out in Europe and the Americas. The symptoms of this disease range from asymptomatic to extremely sick. Quercus disease usually starts in an acute fever period of up to 40°C and lasts for several days to a week, followed by long-term joint disease, which affects the joints of the extremities, and the pain caused by the infection of the joints of the flexor joints can last for several weeks. Or months. It is believed that the term "qugong" is derived from the local African dialect (Makan German "bend"), which describes the patient's distorted posture due to extreme joint pain. Other non-specific symptoms may include headache, conjunctivitis, digestive discomfort, and mild photophobia.
茲卡病毒是一種經由蚊子傳播的黃病毒,於1947年在烏干達首次於猴子中發現,之後於1952年在烏干達和坦桑尼亞聯合共和國於人類中發現。此病毒經由攜帶病毒的斑蚊(Aedes mosquitoes)的叮咬而在人與人之間傳播。Zika virus is a flavivirus transmitted by mosquitoes. It was first discovered in monkeys in Uganda in 1947 and then in humans in Uganda and the United Republic of Tanzania in 1952. The virus is spread from person to person through the bite of the virus-carrying mosquito (Aedes mosquitoes).
在2015年之前,茲卡病毒爆發通常發生在非洲,東南亞及太平洋島嶼。然而,由於全球化現象,2015年3月發生了最嚴重的疫情,從巴西開始爆發,不久便蔓延到了美洲、非洲、亞洲和歐洲。此疾病的症狀從無症狀到輕度症狀,例如發燒、皮疹、頭痛、關節痛、以及結膜炎和肌肉痛。通常,輕度症狀會持續幾天到一周,且感染者甚至可能沒有意識到自己已被感染。然而,根據最近的發現,茲卡病毒感染可引起神經系統疾病,例如格林-巴利症候群(Guillain-Barré syndrome),以及稱為先天性茲卡症候群(congenital Zika syndrome)的嚴重先天性缺陷,其在感染母親的新生兒中,最明顯的症狀就是會有嚴重的小頭畸形。Before 2015, Zika virus outbreaks usually occurred in Africa, Southeast Asia and Pacific Islands. However, due to the phenomenon of globalization, the most serious epidemic occurred in March 2015. It started in Brazil and soon spread to the Americas, Africa, Asia and Europe. The symptoms of this disease range from asymptomatic to mild symptoms, such as fever, rash, headache, joint pain, and conjunctivitis and muscle pain. Usually, mild symptoms last from a few days to a week, and the infected person may not even realize that they are infected. However, according to recent findings, Zika virus infection can cause neurological diseases, such as Guillain-Barré syndrome and serious congenital defects called congenital Zika syndrome. The most obvious symptom in newborns of infected mothers is severe microcephaly.
目前常用於這些病毒診斷的三種技術為病毒分離(針對茲卡病毒)、血清學檢測、和即時逆轉錄聚合酶鏈鎖反應(real-time reverse transcription polymerase chain reaction, real-time RT-PCR),這些技術分別透過病毒檢測、對病毒具專一性的抗體檢測、以及病毒RNA檢測來確認病毒的感染。病毒分離須在細胞培養中使用活病毒,且觀察由病毒引起的細胞病變效應(cytopathic effect,CPE),再利用對屈公病毒具專一性的抗血清來中和CPE,以確認CPE。此診斷方法的主要缺點是必須在3級生物安全實驗室中進行,且需要1-2週才能完成檢測。血清學檢測雖然可以在15分鐘到2-3天內提供確定結果,但此方法涉及檢測病人血清中的IgM及IgG抗體,而這些抗體僅在臨床症狀(例如發燒)發生幾天後才出現。另外,由於會有其他蟲媒病毒與IgM發生交叉反應而產生假陽性的可能性,特別是如果病人先前有其他黃病毒的感染史,使得血清學檢測的專一性仍受到質疑。即時逆轉錄聚合酶鏈鎖反應是一種較新的診斷法,可解決上述方法的缺點。由於具有較高的靈敏度,即時逆轉錄聚合酶鏈鎖反應可以更快速地檢測屈公病毒基因體及茲卡病毒基因體,即使在感染初期也是如此,且由於具有較高的專一性,假陽性的可能性也較低。The three technologies commonly used for the diagnosis of these viruses are virus isolation (for Zika virus), serological testing, and real-time reverse transcription polymerase chain reaction (real-time RT-PCR). These technologies use virus detection, virus-specific antibody detection, and viral RNA detection to confirm virus infection. For virus isolation, live virus must be used in cell culture, and the cytopathic effect (CPE) caused by the virus must be observed, and then antiserum specific to Tragonia virus should be used to neutralize CPE to confirm CPE. The main disadvantage of this diagnostic method is that it must be performed in a
儘管近年來屈公病毒及茲卡病毒檢測的靈敏度和專一性已經提高了,但是現行的即時逆轉錄聚合酶鏈鎖反應檢測所提供的速度仍然不足,因為典型的逆轉錄聚合酶鏈鎖反應處理時間幾乎為一個半小時。因此,目前仍迫切需要提供一種即時就地照護(Point-of-Care,POC)診斷方法,以靈敏且專一地檢測屈公病毒及茲卡病毒,且提供較快的處理時間。Although the sensitivity and specificity of the detection of Tragong virus and Zika virus have been improved in recent years, the speed provided by the current real-time reverse transcription polymerase chain reaction detection is still insufficient because of the typical reverse transcription polymerase chain reaction process. The time is almost an hour and a half. Therefore, there is still an urgent need to provide a Point-of-Care (POC) diagnostic method for sensitive and specific detection of Trigonitis and Zika virus, and to provide a faster processing time.
本案實施例的目的在於提供一種屈公病毒及茲卡病毒的多重檢測,其具高靈敏度、高專一性、以及縮短的反應時間。The purpose of the embodiment of the present case is to provide a multiple detection of Tragonia virus and Zika virus, which has high sensitivity, high specificity, and shortened reaction time.
本案實施例的另一目的在於提供一種屈公病毒及茲卡病毒的多重檢測,以在同一反應中同時檢測屈公病毒及茲卡病毒。Another purpose of the embodiment of this case is to provide a multiple detection of Tragonivirus and Zika virus, so as to simultaneously detect Tragonivirus and Zika virus in the same reaction.
為達上述目的,本案之一實施例提供一種屈公病毒及茲卡病毒的多重檢測套組,包括對屈公病毒具專一性的第一引子組及對茲卡病毒具專一性的第二引子組的至少其中之一。第一引子組選自:(a)具有SEQ ID NO: 1之核苷酸序列的一順向引子及具有SEQ ID NO: 2之核苷酸序列的一逆向引子;以及(b)具有與SEQ ID NO: 1有至少90%一致性之核苷酸序列的一順向引子及具有與SEQ ID NO: 2有至少90%一致性之核苷酸序列的一逆向引子。第二引子組選自:(a)具有SEQ ID NO: 4之核苷酸序列的一順向引子及具有SEQ ID NO: 6之核苷酸序列的一逆向引子;(b)具有SEQ ID NO: 5之核苷酸序列的一順向引子及具有SEQ ID NO: 6之核苷酸序列的一逆向引子;(c)具有SEQ ID NO: 4之核苷酸序列的一第一順向引子、具有SEQ ID NO: 5之核苷酸序列的一第二順向引子、及具有SEQ ID NO: 6之核苷酸序列的一逆向引子;以及(d)具有與選自SEQ ID NO: 4及SEQ ID NO: 5之序列有至少90%一致性之核苷酸序列的至少一順向引子及具有與SEQ ID NO: 6有至少90%一致性之核苷酸序列的一逆向引子。In order to achieve the above purpose, one embodiment of this case provides a multiple detection kit for Trigonitis virus and Zika virus, including a first primer set specific for Trigonitis virus and a second primer specific for Zika virus At least one of the group. The first primer set is selected from: (a) a forward primer having the nucleotide sequence of SEQ ID NO: 1 and a reverse primer having the nucleotide sequence of SEQ ID NO: 2; and (b) having the same nucleotide sequence as SEQ ID NO: 2; ID NO: 1 has a forward primer with a nucleotide sequence of at least 90% identity and a reverse primer with a nucleotide sequence of at least 90% identity with SEQ ID NO: 2. The second primer set is selected from: (a) a forward primer having the nucleotide sequence of SEQ ID NO: 4 and a reverse primer having the nucleotide sequence of SEQ ID NO: 6; (b) having SEQ ID NO : A forward primer of the nucleotide sequence of 5 and a reverse primer of the nucleotide sequence of SEQ ID NO: 6; (c) a first forward primer of the nucleotide sequence of SEQ ID NO: 4 , A second forward primer having the nucleotide sequence of SEQ ID NO: 5, and a reverse primer having the nucleotide sequence of SEQ ID NO: 6; and (d) having and being selected from SEQ ID NO: 4 At least one forward primer with a nucleotide sequence that has at least 90% identity with the sequence of SEQ ID NO: 5 and a reverse primer with a nucleotide sequence that has at least 90% identity with the sequence of SEQ ID NO: 6.
在一實施例中,多重檢測套組更包括對屈公病毒具專一性的一探針,其中該探針具有選自下列群組的核苷酸序列:(a) SEQ ID NO: 3之核苷酸序列;(b) 與SEQ ID NO: 3互補之核苷酸序列;以及(c) 與SEQ ID NO: 3或其互補序列有至少90%一致性之核苷酸序列。探針的5’端接上報導染劑,且3’端接上淬滅劑。In one embodiment, the multiple detection kit further includes a probe specific for Tragong virus, wherein the probe has a nucleotide sequence selected from the following group: (a) the nucleus of SEQ ID NO: 3 A nucleotide sequence; (b) a nucleotide sequence complementary to SEQ ID NO: 3; and (c) a nucleotide sequence that has at least 90% identity with SEQ ID NO: 3 or its complementary sequence. A reporter dye is connected to the 5'end of the probe, and a quencher is connected to the 3'end.
在一實施例中,多重檢測套組更包括對茲卡病毒具專一性的一探針,其中該探針具有選自下列群組的核苷酸序列:(a) SEQ ID NO: 7之核苷酸序列;(b) 與SEQ ID NO: 7互補之核苷酸序列;以及(c) 與SEQ ID NO: 7或其互補序列有至少90%一致性之核苷酸序列。探針的5’端接上報導染劑,且3’端接上淬滅劑。In one embodiment, the multiple detection kit further includes a probe specific to Zika virus, wherein the probe has a nucleotide sequence selected from the following group: (a) the nucleus of SEQ ID NO: 7 A nucleotide sequence; (b) a nucleotide sequence complementary to SEQ ID NO: 7; and (c) a nucleotide sequence that has at least 90% identity with SEQ ID NO: 7 or its complementary sequence. A reporter dye is connected to the 5'end of the probe, and a quencher is connected to the 3'end.
在一實施例中,多重檢測套組更包括一內部控制模板,其為由軟腐細菌(Pectobacterium carotovorum )之proA基因體外轉錄所得之RNA。In one embodiment, the multiple detection kit further includes an internal control template, which is an RNA derived from in vitro transcription of the proA gene of Pectobacterium carotovorum (Pectobacterium carotovorum).
在一實施例中,多重檢測套組更包括對proA基因具專一性的一控制引子組,其中該控制引子組選自:(a) 具有SEQ ID NO: 8之核苷酸序列的一順向引子及具有SEQ ID NO: 9之核苷酸序列的一逆向引子;以及(b) 具有與SEQ ID NO: 8有至少90%一致性之核苷酸序列的一順向引子及具有與SEQ ID NO: 9有至少90%一致性之核苷酸序列的一逆向引子。In one embodiment, the multiple detection kit further includes a control primer set specific to the proA gene, wherein the control primer set is selected from: (a) a forward direction having the nucleotide sequence of SEQ ID NO: 8 Primer and a reverse primer having the nucleotide sequence of SEQ ID NO: 9; and (b) a forward primer having a nucleotide sequence that is at least 90% identical to SEQ ID NO: 8 and having the same nucleotide sequence as SEQ ID NO: 8 NO: 9 A reverse primer with at least 90% identical nucleotide sequence.
在一實施例中,多重檢測套組更包括對proA基因具專一性的一探針,其中該探針具有選自下列群組的核苷酸序列:(a) SEQ ID NO: 10之核苷酸序列;(b) 與SEQ ID NO: 10互補之核苷酸序列;以及(c) 與SEQ ID NO: 10或其互補序列有至少90%一致性之核苷酸序列。探針的5’端接上報導染劑,且3’端接上淬滅劑。In one embodiment, the multiple detection kit further includes a probe specific to the proA gene, wherein the probe has a nucleotide sequence selected from the following group: (a) a nucleoside of SEQ ID NO: 10 Acid sequence; (b) a nucleotide sequence complementary to SEQ ID NO: 10; and (c) a nucleotide sequence that has at least 90% identity with SEQ ID NO: 10 or its complementary sequence. A reporter dye is connected to the 5'end of the probe, and a quencher is connected to the 3'end.
為達上述目的,本案之另一實施例為提供屈公病毒及茲卡病毒的多重檢測方法,包括步驟:(a) 將生物樣本與前述多重檢測套組接觸;(b) 從生物樣本中擴增屈公病毒及/或茲卡病毒的核酸;以及(c) 檢測屈公病毒及/或茲卡病毒之擴增核酸的存在。In order to achieve the above purpose, another embodiment of this case is to provide a multiple detection method for Drokon virus and Zika virus, including the steps: (a) contacting the biological sample with the aforementioned multiple detection kit; (b) expanding from the biological sample Enhance the nucleic acid of Tragonivirus and/or Zika virus; and (c) detect the presence of the amplified nucleic acid of Tragonivirus and/or Zika virus.
在一實施例中,此方法於步驟(a)之前更包括從生物樣本萃取核酸的步驟。In one embodiment, the method further includes a step of extracting nucleic acid from the biological sample before step (a).
在一實施例中,此方法之步驟(b)包括子步驟:(b1) 將病毒基因體RNA逆轉錄成互補DNA;以及(b2) 利用即時聚合酶鏈鎖反應擴增互補DNA。In one embodiment, step (b) of this method includes the sub-steps: (b1) reverse transcription of viral genomic RNA into complementary DNA; and (b2) use real-time polymerase chain reaction to amplify complementary DNA.
當用語「一」在申請專利範圍及/或說明書中與用語「包括/包含」結合使用時,可能表示「一」,但也與「一或更多」、「至少一」、及「一或大於一」的含義一致。When the term "one" is used in conjunction with the term "including/including" in the scope of patent application and/or specification, it may mean "one", but it can also mean "one or more", "at least one", and "one or The meaning of "greater than one" is the same.
在申請專利範圍中的用語「或」意指「及/或」,除非明確指出僅指替代方案或替代方案是互斥的,即使揭露內容支持僅指替代方案與「及/或」的定義。The term "or" in the scope of the patent application means "and/or" unless it is clearly stated that only alternatives or alternatives are mutually exclusive, even if the disclosure supports only the definition of alternatives and "and/or".
藉由以下詳細說明,本發明的其他目的、特徵及優點將變得顯而易見。然應理解的是,儘管詳細說明及特定範例指出本發明的特定實施例,但這些特定實施僅為說明例示之用,因為通過此詳細說明,在本發明的精神和範圍內的各種變化及修飾對於熟悉本技藝人士而言是顯而易見的。The other objects, features, and advantages of the present invention will become apparent from the following detailed description. However, it should be understood that although the detailed description and specific examples indicate specific embodiments of the present invention, these specific embodiments are for illustrative purposes only, because through this detailed description, various changes and modifications within the spirit and scope of the present invention It is obvious to those who are familiar with the art.
體現本案特徵與優點的一些實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上為說明之用,而非用以限制本案。Some embodiments embodying the features and advantages of this case will be described in detail in the following description. It should be understood that this case can have various changes in different aspects, which do not depart from the scope of this case, and the description and drawings therein are essentially for illustrative purposes, rather than limiting the case.
本案提供屈公病毒及茲卡病毒的多重檢測,以同時檢測屈公病毒及茲卡病毒,且具高靈敏度、高專一性、以及縮短的反應時間。本案實施例係利用即時逆轉錄聚合酶鏈鎖反應(real-time reverse transcription polymerase chain reaction,簡稱real-time RT-PCR),又稱定量逆轉錄聚合酶鏈鎖反應(quantitative reverse transcription polymerase chain reaction,簡稱qRT-PCR),配合探針偵測系統(probe-based detection)來對人類的屈公病毒及茲卡病毒感染進行快速、靈敏及專一的診斷。即時逆轉錄聚合酶鏈鎖反應(real-time RT-PCR)主要包括兩個步驟,第一個步驟乃將屈公病毒或茲卡病毒的病毒基因體RNA (genomic RNA,簡稱gRNA)逆轉錄成互補DNA(complementary DNA,cDNA),接著於第二個步驟利用即時聚合酶鏈鎖反應(real-time polymerase chain reaction,real-time PCR)配合對屈公病毒或茲卡病毒具專一性的引子對來將cDNA進行擴增。特別是,在即時聚合酶鏈鎖反應(real-time PCR)中,具有專一性的順向引子、逆向引子及探針會雜合到屈公病毒或茲卡病毒的cDNA目標上,其中探針的5’端接上報導染劑(reporter dye),3’端接上淬滅劑(quencher)。在PCR擴增反應過程中,探針會被切割,使得報導染劑與淬滅劑分離,即可偵測到報導染劑所發出的螢光。This case provides multiple detections of trichotillovirus and Zika virus to simultaneously detect trichotillovirus and Zika virus, with high sensitivity, high specificity, and shortened response time. The example of this case utilizes real-time reverse transcription polymerase chain reaction (real-time RT-PCR), also known as quantitative reverse transcription polymerase chain reaction (quantitative reverse transcription polymerase chain reaction, (Referred to as qRT-PCR), with a probe-based detection system (probe-based detection) for rapid, sensitive and specific diagnosis of human Tragonivirus and Zika virus infection. The real-time RT-PCR mainly consists of two steps. The first step is to reverse transcribe the viral genomic RNA (gRNA) of Trakonosaurus or Zika virus into Complementary DNA (cDNA), and then use real-time polymerase chain reaction (real-time PCR) in the second step with a primer pair specific to Trakong virus or Zika virus To amplify the cDNA. In particular, in real-time PCR, specific forward primers, reverse primers, and probes will hybridize to the cDNA target of Tragong virus or Zika virus. The 5'end is connected with a reporter dye, and the 3'end is connected with a quencher. During the PCR amplification reaction, the probe is cleaved to separate the reporter dye from the quencher, and the fluorescence emitted by the reporter dye can be detected.
本案實施例提供了屈公病毒檢測套組及茲卡病毒檢測套組,這兩個套組可單獨使用以分別檢測屈公病毒及茲卡病毒,也可以合併使用為可同時檢測屈公病毒及茲卡病毒的多重檢測套組。以下將詳細說明這些套組中所採用的引子及探針的設計。The example of this case provides a test kit for the virus and Zika virus. These two kits can be used separately to detect the virus and the Zika virus respectively, or they can be used in combination to simultaneously detect the virus and the Zika virus. Multiple detection kits for Zika virus. The design of primers and probes used in these sets will be described in detail below.
屈公病毒為單股RNA病毒,具有11826個鹼基(S27病毒株;NCBI參考序列資料庫NC_004162.2)。在本案實施例中,屈公病毒的非結構蛋白1基因(nonstructural protein 1 (nsP1) gene)係被選為檢測目標。屈公病毒檢測套組包括一順向引子及一逆向引子,且可額外包括一探針。Tragong virus is a single-stranded RNA virus with 11826 bases (S27 virus strain; NCBI reference sequence database NC_004162.2). In the example of this case, the nonstructural protein 1 (nsP1) gene of Tragong virus was selected as the detection target. The Tragong virus detection kit includes a forward primer and a reverse primer, and may additionally include a probe.
第1圖顯示屈公病毒之非結構蛋白1基因的部分cDNA序列(以SEQ ID NO: 11標示,對應NC_004162.2基因序列第1051至1225個位置),以及順向引子、逆向引子及探針於非結構蛋白1基因序列上的黏合位置。順向引子具有SEQ ID NO: 1的核苷酸序列(5’-GCGACCATTTGTGATCAAATGACC-3’),起始於基因序列第1082個位置,大小為24-mer。逆向引子具有SEQ ID NO: 2的核苷酸序列(5’-GTTCTGCCGTTAACCACTATTCTCTG-3’),起始於基因序列第1191個位置,大小為26-mer。探針為逆向探針,具有SEQ ID NO: 3的核苷酸序列(5’-AGCTTCTGTGCATCCTCCGGCGTGAC-3’),起始於基因序列第1149個位置,大小為26-mer。利用前述順向引子及逆向引子將可擴增產生大小為110-bp的擴增子(amplicon)。Figure 1 shows the partial cDNA sequence of the
茲卡病毒為單股RNA病毒,具有10675個鹼基(PRVABC59病毒株;NCBI參考序列資料庫KU501215.1)。在本案實施例中,茲卡病毒的套膜基因(envelope (E) gene)係被選為檢測目標。茲卡病毒檢測套組包括至少一順向引子及一逆向引子,且可額外包括一探針。Zika virus is a single-stranded RNA virus with 10675 bases (PRVABC59 virus strain; NCBI reference sequence database KU501215.1). In this example, the envelope (E) gene of Zika virus was selected as the detection target. The Zika virus detection kit includes at least one forward primer and one reverse primer, and may additionally include a probe.
第2圖顯示茲卡病毒之套膜基因的部分cDNA序列(以SEQ ID NO: 12標示,對應KU501215.1基因序列第2101至2275個位置),以及順向引子、逆向引子及探針於套膜基因序列上的黏合位置。第一順向引子具有SEQ ID NO: 4的核苷酸序列(5’-GGAGTGGCAGCACCATTG-3’),起始於基因序列第2181個位置,大小為18-mer。第二順向引子具有SEQ ID NO: 5的核苷酸序列(5’-GGAGTGGCAGTACCATTG-3’),同樣起始於基因序列第2181個位置,大小為18-mer。逆向引子具有SEQ ID NO: 6的核苷酸序列(5’-CAGGCTGTGTCTCCCAAGA-3’),起始於基因序列第2262個位置,大小為19-mer。探針為逆向探針,具有SEQ ID NO: 7的核苷酸序列(5’-TTCTCTTGGCACCTCTCACAGTGGCTTCAA-3’),起始於基因序列第2237個位置,大小為30-mer。利用前述順向引子(具有SEQ ID NO: 4或SEQ ID NO: 5之序列)及逆向引子將可擴增產生大小為82-bp的擴增子。Figure 2 shows the partial cDNA sequence of the mantle gene of Zika virus (identified as SEQ ID NO: 12, corresponding to positions 2101 to 2275 of the KU501215.1 gene sequence), as well as forward primers, reverse primers and probes in the jacket The position of adhesion on the membrane gene sequence. The first forward primer has the nucleotide sequence of SEQ ID NO: 4 (5'-GGAGTGGCAGCACCATTG-3'), starts at the 2181th position of the gene sequence, and is 18-mer in size. The second forward primer has the nucleotide sequence of SEQ ID NO: 5 (5'-GGAGTGGCAGTACCATTG-3'), also starts at the 2181th position of the gene sequence, and is 18-mer in size. The reverse primer has the nucleotide sequence of SEQ ID NO: 6 (5'-CAGGCTGTGTCTCCCAAGA-3'), starts at position 2262 of the gene sequence, and is 19-mer in size. The probe is a reverse probe with the nucleotide sequence of SEQ ID NO: 7 (5'-TTCTCTTGGCACCTCTCACAGTGGCTTCAA-3'), which starts at the 2237th position in the gene sequence and is 30-mer in size. Using the aforementioned forward primer (with the sequence of SEQ ID NO: 4 or SEQ ID NO: 5) and the reverse primer, an amplicon with a size of 82-bp can be amplified.
具有SEQ ID NO: 5之序列的第二順向引子相較於具有SEQ ID NO: 4之序列的第一順向引子只有一個核苷酸的改變,且第一順向引子及第二順向引子可能可用於檢測不同的茲卡病毒株。在一實施例中,茲卡病毒檢測套組包括具有SEQ ID NO: 4之序列的第一順向引子、以及具有SEQ ID NO: 6之序列的逆向引子。在另一實施例中,茲卡病毒檢測套組包括具有SEQ ID NO: 5之序列的第二順向引子、以及具有SEQ ID NO: 6之序列的逆向引子。或在另一實施例中,茲卡病毒檢測套組包括具有SEQ ID NO: 4之序列的第一順向引子、具有SEQ ID NO: 5之序列的第二順向引子,以及具有SEQ ID NO: 6之序列的逆向引子。The second forward primer with the sequence of SEQ ID NO: 5 has only one nucleotide change compared to the first forward primer with the sequence of SEQ ID NO: 4, and the first and second forward primers The primers may be used to detect different Zika virus strains. In one embodiment, the Zika virus detection kit includes a first forward primer having the sequence of SEQ ID NO: 4 and a reverse primer having the sequence of SEQ ID NO: 6. In another embodiment, the Zika virus detection kit includes a second forward primer having the sequence of SEQ ID NO: 5 and a reverse primer having the sequence of SEQ ID NO: 6. Or in another embodiment, the Zika virus detection kit includes a first forward primer having the sequence of SEQ ID NO: 4, a second forward primer having the sequence of SEQ ID NO: 5, and a second forward primer having the sequence of SEQ ID NO: : The reverse primer of the 6 sequence.
為確認所採用的引子及探針對屈公病毒具有專一性,每一個引子及探針(SEQ ID NO: 1至3)皆利用NCBI BLAST系統對人類基因體加轉錄(human genomic plus transcript)及核苷酸收集(nucleotide collection)等兩個資料庫進行比對,且比對結果顯示沒有其他相近的物種具有與本案設計的引子及探針完全相同的序列片段。此結果顯示本案設計的引子及探針對屈公病毒的專一性非常高,且可用於擴增及檢測屈公病毒的非結構蛋白1基因。在本案之一實施例中,前述引子及探針僅可用於擴增及檢測屈公病毒的非結構蛋白1基因。In order to confirm that the primers and probes used are specific to Tragong virus, each primer and probe (SEQ ID NO: 1 to 3) uses the NCBI BLAST system to add transcription (human genomic plus transcript) and nuclear Nucleotide collection and other two databases were compared, and the comparison results showed that no other similar species had exactly the same sequence fragments as the primers and probes designed in this case. This result shows that the primers and probes designed in this case have very high specificity for the Tragong virus, and can be used to amplify and detect the
為確認所採用的引子及探針對茲卡病毒具有專一性,每一個引子及探針(SEQ ID NO: 4至7)皆利用NCBI BLAST系統對人類基因體加轉錄(human genomic plus transcript)及核苷酸收集(nucleotide collection)等兩個資料庫進行比對,且比對結果顯示沒有其他相近的物種具有與本案設計的SEQ ID NO: 4、SEQ ID NO: 5、及SEQ ID NO: 7完全相同的序列片段,然而,SEQ ID NO: 6則與登革熱病毒第三血清型(Dengue serotype 3)具有100%相似度。由於引子和探針係成組進行檢測,故即使逆向引子(SEQ ID NO: 6)可與登革熱病毒第三血清型的基因體材料結合,順向引子(SEQ ID NO: 4或5)和逆向探針(SEQ ID NO: 7)也不會與登革熱病毒第三血清型的基因體材料結合。亦即,本案實施例的引子及探針組合不會對登革熱病毒第三血清型產生假陽性檢測結果,並仍可專一地檢測茲卡病毒的套膜基因。換句話說,本案設計的引子及探針對茲卡病毒的專一性非常高,且可用於擴增及檢測茲卡病毒的套膜基因。在本案之一實施例中,前述引子及探針僅可用於擴增及檢測茲卡病毒的套膜基因。To confirm that the primers and probes used are specific to Zika virus, each primer and probe (SEQ ID NO: 4 to 7) uses the NCBI BLAST system to add transcription (human genomic plus transcript) and nuclear Nucleotide collection (nucleotide collection) and other two databases were compared, and the comparison results showed that no other similar species have the same SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 7 designed in this case. The same sequence fragment, however, SEQ ID NO: 6 has 100% similarity with Dengue serotype 3 (Dengue serotype 3). Since the primers and probes are grouped for detection, even if the reverse primer (SEQ ID NO: 6) can be combined with the genomic material of the third serotype of dengue virus, the forward primer (SEQ ID NO: 4 or 5) and the reverse The probe (SEQ ID NO: 7) will also not bind to the genomic material of the third serotype of dengue virus. That is, the primer and probe combination of the embodiment of this case will not produce a false positive detection result for the third serotype of dengue fever virus, and can still detect the mantle gene of Zika virus specifically. In other words, the primers and probes designed in this case are very specific to Zika virus, and can be used to amplify and detect the mantle gene of Zika virus. In an embodiment of this case, the aforementioned primers and probes can only be used to amplify and detect the mantle gene of Zika virus.
此外,本案實施例更提供了用於檢測內部控制模板(internal control template)的套組,此模板係由軟腐細菌(Pectobacterium carotovorum SCRI121菌株; NCBI參考序列資料庫HM157163.1)之proA基因體外轉錄所得之RNA (in vitro transcribed RNA,簡稱IVT-RNA)。proA內部控制檢測套組包括一順向引子及一逆向引子,且可額外包括一探針。In addition, the example of this case also provides a kit for detecting internal control template, which is derived from in vitro transcription of proA gene of soft rot bacteria (Pectobacterium carotovorum SCRI121 strain; NCBI reference sequence database HM157163.1) The RNA (in vitro transcribed RNA, referred to as IVT-RNA). The proA internal control detection kit includes a forward primer and a reverse primer, and can additionally include a probe.
第3圖顯示proA基因的部分cDNA序列(以SEQ ID NO: 13標示,對應HM157163.1基因序列第291至490個位置),以及順向引子、逆向引子及探針於proA基因序列上的黏合位置。順向引子具有SEQ ID NO: 8的核苷酸序列(5’-CTGCTGGTCAATCAACGTATCG-3’),起始於基因序列第301個位置,大小為22-mer。逆向引子具有SEQ ID NO: 9的核苷酸序列(5’-GGTCGTTAGAAAGCCATTCATCG-3’),起始於基因序列第478個位置,大小為23-mer。探針為順向探針,具有SEQ ID NO: 10的核苷酸序列(5’-TCCATGCCAGTCCTTCAGCGATGCCTTA-3’),起始於基因序列第377個位置,大小為28-mer。利用前述順向引子及逆向引子將可擴增產生大小為178-bp的擴增子。Figure 3 shows the partial cDNA sequence of the proA gene (denoted by SEQ ID NO: 13, corresponding to positions 291 to 490 of the HM157163.1 gene sequence), and the adhesion of forward primers, reverse primers and probes to the proA gene sequence position. The forward primer has the nucleotide sequence of SEQ ID NO: 8 (5'-CTGCTGGTCAATCAACGTATCG-3'), starts at the 301st position of the gene sequence, and is 22-mer in size. The reverse primer has the nucleotide sequence of SEQ ID NO: 9 (5'-GGTCGTTAGAAAGCCATTCATCG-3'), starts at the 478th position of the gene sequence, and is 23-mer in size. The probe is a forward probe with the nucleotide sequence of SEQ ID NO: 10 (5'-TCCATGCCAGTCCTTCAGCGATGCCTTA-3'), starting at the 377th position of the gene sequence, and 28-mer in size. Using the aforementioned forward primer and reverse primer, amplicons with a size of 178-bp can be amplified.
在一實施例中,屈公病毒及茲卡病毒的多重檢測套組包括屈公病毒檢測套組、茲卡病毒檢測套組、以及proA內部控制檢測套組。在此多重檢測套組中所採用的引子及探針列示於表1。
表1
在一些實施例中,本案之引子及探針不限於與SEQ ID NO: 1至10有完全相同序列者。值得注意的是,進行雜合的序列並不需要完美的互補性才能提供穩定的雜合體,在很多情況下,當鹼基不匹配的比例小於10%時,仍能形成穩定的雜合體。此外,特定的屈公病毒株或茲卡病毒株也可能存在基因變異。因此,具有與SEQ ID NO: 1至10有至少90%一致性的序列的引子及探針可能具有與原本序列相似的專一性,因此也可用於屈公病毒及茲卡病毒的多重檢測。In some embodiments, the primers and probes in this case are not limited to those with the same sequence as SEQ ID NO: 1-10. It is worth noting that the hybrid sequence does not require perfect complementarity to provide a stable hybrid. In many cases, when the base mismatch ratio is less than 10%, a stable hybrid can still be formed. In addition, there may also be genetic mutations in specific Tragong virus strains or Zika virus strains. Therefore, primers and probes with sequences that have at least 90% identity with SEQ ID NO: 1 to 10 may have similar specificity to the original sequence, and therefore can also be used for multiplex detection of Tragonia virus and Zika virus.
在一些實施例中,由於由對應的順向引子及逆向引子所組成的引子對可專一地檢測屈公病毒(SEQ ID NO: 1及2)、茲卡病毒(SEQ ID NO: 4至6)、或proA內部控制(SEQ ID NO: 8及9),故只要是位於對應的順向引子及逆向引子位置之間的序列,皆可設計為探針序列,因此,探針序列不受限於前述探針序列(SEQ ID NO: 3、7及10)。此外,由於探針可選擇雜合至DNA的任一股上,故相同位置的互補序列皆可做為探針序列,因此,與前述探針序列(SEQ ID NO: 3、7及10)互補的序列亦可分別做為檢測屈公病毒、茲卡病毒、及proA內部控制的探針序列。In some embodiments, since the primer pair composed of the corresponding forward primer and the reverse primer can specifically detect Tragonia virus (SEQ ID NO: 1 and 2) and Zika virus (SEQ ID NO: 4 to 6) , Or proA internal control (SEQ ID NO: 8 and 9), so as long as it is a sequence located between the corresponding forward primer and reverse primer positions, it can be designed as a probe sequence. Therefore, the probe sequence is not limited The aforementioned probe sequence (SEQ ID NO: 3, 7 and 10). In addition, since the probe can be hybridized to any strand of DNA, the complementary sequence at the same position can be used as the probe sequence. Therefore, it is complementary to the aforementioned probe sequence (SEQ ID NO: 3, 7 and 10). The sequences can also be used as probe sequences for the detection of Tragong virus, Zika virus, and proA internal control, respectively.
根據上述,本案實施例提供一種屈公病毒及茲卡病毒的多重檢測套組,包括對屈公病毒具專一性的第一引子組及對茲卡病毒具專一性的第二引子組的至少其中之一。第一引子組選自:(a)具有SEQ ID NO: 1之核苷酸序列的一順向引子及具有SEQ ID NO: 2之核苷酸序列的一逆向引子;以及(b)具有與SEQ ID NO: 1有至少90%一致性之核苷酸序列的一順向引子及具有與SEQ ID NO: 2有至少90%一致性之核苷酸序列的一逆向引子。第二引子組選自:(a)具有SEQ ID NO: 4之核苷酸序列的一順向引子及具有SEQ ID NO: 6之核苷酸序列的一逆向引子;(b)具有SEQ ID NO: 5之核苷酸序列的一順向引子及具有SEQ ID NO: 6之核苷酸序列的一逆向引子;(c)具有SEQ ID NO: 4之核苷酸序列的一第一順向引子、具有SEQ ID NO: 5之核苷酸序列的一第二順向引子、及具有SEQ ID NO: 6之核苷酸序列的一逆向引子;以及(d)具有與選自SEQ ID NO: 4及SEQ ID NO: 5之序列有至少90%一致性之核苷酸序列的至少一順向引子及具有與SEQ ID NO: 6有至少90%一致性之核苷酸序列的一逆向引子。Based on the above, the embodiment of the present case provides a multiple detection kit for tricot virus and Zika virus, which includes at least one of the first primer set specific for trigonitis virus and the second primer set specific for Zika virus one. The first primer set is selected from: (a) a forward primer having the nucleotide sequence of SEQ ID NO: 1 and a reverse primer having the nucleotide sequence of SEQ ID NO: 2; and (b) having the same nucleotide sequence as SEQ ID NO: 2; ID NO: 1 has a forward primer with a nucleotide sequence of at least 90% identity and a reverse primer with a nucleotide sequence of at least 90% identity with SEQ ID NO: 2. The second primer set is selected from: (a) a forward primer having the nucleotide sequence of SEQ ID NO: 4 and a reverse primer having the nucleotide sequence of SEQ ID NO: 6; (b) having SEQ ID NO : A forward primer of the nucleotide sequence of 5 and a reverse primer of the nucleotide sequence of SEQ ID NO: 6; (c) a first forward primer of the nucleotide sequence of SEQ ID NO: 4 , A second forward primer having the nucleotide sequence of SEQ ID NO: 5, and a reverse primer having the nucleotide sequence of SEQ ID NO: 6; and (d) having and being selected from SEQ ID NO: 4 At least one forward primer with a nucleotide sequence that has at least 90% identity with the sequence of SEQ ID NO: 5 and a reverse primer with a nucleotide sequence that has at least 90% identity with the sequence of SEQ ID NO: 6.
在一實施例中,屈公病毒及茲卡病毒的多重檢測套組更包括對屈公病毒具專一性的一探針,其中該探針具有選自下列群組的核苷酸序列:(a) SEQ ID NO: 3之核苷酸序列;(b) 與SEQ ID NO: 3互補之核苷酸序列;以及(c) 與SEQ ID NO: 3或其互補序列有至少90%一致性之核苷酸序列。In one embodiment, the multiple detection kit of Tragonivirus and Zika virus further includes a probe specific for Tragonivirus, wherein the probe has a nucleotide sequence selected from the following groups: (a ) The nucleotide sequence of SEQ ID NO: 3; (b) the nucleotide sequence complementary to SEQ ID NO: 3; and (c) the nucleus that has at least 90% identity with SEQ ID NO: 3 or its complementary sequence Nucleotide sequence.
在一實施例中,屈公病毒及茲卡病毒的多重檢測套組更包括對茲卡病毒具專一性的一探針,其中該探針具有選自下列群組的核苷酸序列:(a) SEQ ID NO: 7之核苷酸序列;(b) 與SEQ ID NO: 7互補之核苷酸序列;以及(c) 與SEQ ID NO: 7或其互補序列有至少90%一致性之核苷酸序列。In one embodiment, the multiplex detection kit for Tragonivirus and Zika virus further includes a probe specific to Zika virus, wherein the probe has a nucleotide sequence selected from the following groups: (a ) The nucleotide sequence of SEQ ID NO: 7; (b) the nucleotide sequence complementary to SEQ ID NO: 7; and (c) the nucleus having at least 90% identity with SEQ ID NO: 7 or its complementary sequence Nucleotide sequence.
在一實施例中,屈公病毒及茲卡病毒的多重檢測套組更包括一內部控制模板,其為由軟腐細菌(Pectobacterium carotovorum )之proA基因體外轉錄所得之RNA。據此,屈公病毒及茲卡病毒的多重檢測套組更包括對proA基因具專一性的一控制引子組,其中該控制引子組選自:(a) 具有SEQ ID NO: 8之核苷酸序列的一順向引子及具有SEQ ID NO: 9之核苷酸序列的一逆向引子;以及(b) 具有與SEQ ID NO: 8有至少90%一致性之核苷酸序列的一順向引子及具有與SEQ ID NO: 9有至少90%一致性之核苷酸序列的一逆向引子。又,屈公病毒及茲卡病毒的多重檢測套組更包括對proA基因具專一性的一探針,其中該探針具有選自下列群組的核苷酸序列:(a) SEQ ID NO: 10之核苷酸序列;(b) 與SEQ ID NO: 10互補之核苷酸序列;以及(c) 與SEQ ID NO: 10或其互補序列有至少90%一致性之核苷酸序列。 In one embodiment, the multiple detection kits for Tragonia virus and Zika virus further include an internal control template, which is an RNA derived from in vitro transcription of the proA gene of Pectobacterium carotovorum (Pectobacterium carotovorum). Accordingly, the multiple detection kits for Tragong virus and Zika virus further include a control primer set specific to the proA gene, wherein the control primer set is selected from: (a) nucleotides having SEQ ID NO: 8 A forward primer of the sequence and a reverse primer having the nucleotide sequence of SEQ ID NO: 9; and (b) a forward primer having a nucleotide sequence that is at least 90% identical to SEQ ID NO: 8 And a reverse primer with a nucleotide sequence that is at least 90% identical to SEQ ID NO: 9. In addition, the multiple detection kits for Tragong virus and Zika virus further include a probe specific to the proA gene, wherein the probe has a nucleotide sequence selected from the following groups: (a) SEQ ID NO: A nucleotide sequence of 10; (b) a nucleotide sequence complementary to SEQ ID NO: 10; and (c) a nucleotide sequence that has at least 90% identity with SEQ ID NO: 10 or its complementary sequence.
前述特定的引子及探針係設計來雜合及擴增目標基因。因此,本案也提供了屈公病毒及茲卡病毒的多重檢測方法,此方法包括步驟:(a) 將生物樣本與前述多重檢測套組接觸;(b) 從生物樣本中擴增屈公病毒及/或茲卡病毒的核酸;以及(c) 檢測屈公病毒及/或茲卡病毒之擴增核酸的存在。The aforementioned specific primers and probes are designed to hybridize and amplify target genes. Therefore, this case also provides a multiplex detection method for Tragonivirus and Zika virus. This method includes the steps: (a) Contacting the biological sample with the aforementioned multiplex detection kit; (b) Amplifying Tragonivirus and Zika virus from the biological sample / Or the nucleic acid of Zika virus; and (c) detecting the presence of the amplified nucleic acid of Trakong virus and/or Zika virus.
在一實施例中,此方法於步驟(a)之前更包括從生物樣本萃取核酸的步驟。In one embodiment, the method further includes a step of extracting nucleic acid from the biological sample before step (a).
在一實施例中,此方法之步驟(b)包括子步驟:(b1) 將病毒基因體RNA逆轉錄成互補DNA;以及(b2) 利用即時聚合酶鏈鎖反應擴增互補DNA。In one embodiment, step (b) of this method includes the sub-steps: (b1) reverse transcription of viral genomic RNA into complementary DNA; and (b2) use real-time polymerase chain reaction to amplify complementary DNA.
用於即時聚合酶鏈鎖反應的探針係於5’端接上報導染劑,且3’端接上淬滅劑。在PCR擴增反應過程中,探針會被切割,使得報導染劑與淬滅劑分離,即可偵測到報導染劑所發出的螢光。在不同目標基因的多重檢測中,用來檢測屈公病毒、茲卡病毒、及proA內部控制的不同探針可由具有可區別之螢光顏色的不同報導染劑標記,以利於觀察檢測結果。在一實施例中,報導染劑可分別選自ROX、FAM、HEX、Cy5、TET、及Texas Red等螢光染劑,但不以此為限。在一實施例中,淬滅劑為暗淬滅劑(dark quencher),例如Iowa black FQ淬滅劑或 Black Hole淬滅劑,但不以此為限。The probe used for the real-time polymerase chain reaction is connected to the reporter dye at the 5'end and the quencher at the 3'end. During the PCR amplification reaction, the probe is cleaved to separate the reporter dye from the quencher, and the fluorescence emitted by the reporter dye can be detected. In the multiple detection of different target genes, the different probes used to detect Trakong virus, Zika virus, and the internal control of proA can be labeled with different reporter dyes with distinguishable fluorescent colors to facilitate the observation of the detection results. In one embodiment, the reporter dye can be selected from fluorescent dyes such as ROX, FAM, HEX, Cy5, TET, and Texas Red, but is not limited to this. In one embodiment, the quencher is a dark quencher, such as Iowa black FQ quencher or Black Hole quencher, but not limited thereto.
本案實施例所提供之引子及探針係優化用於透過即時逆轉錄聚合酶鏈鎖反應來快速檢測屈公病毒及茲卡病毒,且此即時逆轉錄聚合酶鏈鎖反應係以快速循環模式(fast cycling mode)進行。表2顯示快速循環模式下即時逆轉錄聚合酶鏈鎖反應的溫度曲線。在一實施例中,快速循環模式係指即時逆轉錄聚合酶鏈鎖反應的溫度曲線架構如下:(1) 42o
C 5分鐘的逆轉錄保持階段;接著 (2) 95o
C 10秒的酶活化保持階段;再接著45個循環的 (3) PCR階段,此階段係於95o
C變性5秒,及60o
C黏合/延伸18秒。因此,本案實施例之即時逆轉錄聚合酶鏈鎖反應的總反應時間為23分鐘。然而在市售競爭產品中,其逆轉錄需時20分鐘,酶活化需時2分鐘,再加上45個循環的PCR階段,此階段係於變性需時15秒,黏合需時45秒,延伸需時15秒,故總反應時間約為77分鐘。
表2
在本案實施例之快速循環模式下,以下四個方面可節省大量時間。首先,黏合/延伸時間縮短為18秒而節省了時間,反觀市售競爭產品通常需要60秒。第二,變性時間縮短為5秒而節省了時間,反觀市售競爭產品通常需要15秒。第三,反轉錄時間縮短為5分鐘,反觀市售競爭產品通常需要20分鐘。第四,酶活化時間縮短為10秒,反觀市售競爭產品通常需要2分鐘。In the fast cycle mode of the embodiment of this case, the following four aspects can save a lot of time. First, the bonding/extending time is shortened to 18 seconds, which saves time. On the contrary, it usually takes 60 seconds for commercially available competitive products. Second, the denaturation time is shortened to 5 seconds, which saves time. In contrast, commercially available competitive products usually take 15 seconds. Third, the reverse transcription time is shortened to 5 minutes, compared to 20 minutes for commercially available competitive products. Fourth, the enzyme activation time is shortened to 10 seconds, compared to 2 minutes for commercially available competitive products.
因此,在相同類型的熱循環儀上,採用本案實施例的引子及探針的快速循環模式所節省的時間,使得總反應時間相較於標準逆轉錄聚合酶鏈鎖反應縮短至少70%,故本案實施例能夠在不到30分鐘的時間內完成屈公病毒及茲卡病毒的檢測。換句話說,透過優化設計減少每個循環的變性/黏合/延伸時間,減少逆轉錄時間以及減少酶活化時間,造成總反應時間縮短至少70%,使得本案實施例的引子及探針可藉由即時逆轉錄聚合酶鏈鎖反應達成屈公病毒及茲卡病毒的快速多重檢測,且這些都是在不影響屈公病毒及茲卡病毒檢測的靈敏度和專一性的前提下實現的。Therefore, on the same type of thermal cycler, the time saved by adopting the rapid cycling mode of the primers and probes of the examples in this case reduces the total reaction time by at least 70% compared with the standard reverse transcription polymerase chain reaction. The embodiment of this case can complete the detection of Tragon virus and Zika virus in less than 30 minutes. In other words, by optimizing the design to reduce the denaturation/adhesion/extension time of each cycle, reduce the reverse transcription time and reduce the enzyme activation time, the total reaction time is shortened by at least 70%, so that the primers and probes of the examples in this case can be used by The real-time reverse transcription polymerase chain reaction achieves rapid multiple detection of Tragonivirus and Zika virus, and these are achieved under the premise of not affecting the sensitivity and specificity of the detection of Tragonivirus and Zika virus.
以下將說明本案實施例之屈公病毒及茲卡病毒的多重檢測實例,其中反應混合物如表3所示。即時逆轉錄聚合酶鏈鎖反應利用上述的快速循環模式來進行,且反應混合物包括購自Takara的One Step PrimeScriptTM
RT-PCR套組(Perfect Real Time; #RR064A)、500 nM的順向引子(SEQ ID NO: 1)、500 nM的逆向引子(SEQ ID NO: 2)、200 nM的探針(SEQ ID NO: 3)、500 nM的順向引子(SEQ ID NO: 4)、500 nM的順向引子(SEQ ID NO: 5)、500 nM的逆向引子(SEQ ID NO: 6)、200 nM的探針(SEQ ID NO: 7)、250 nM的順向引子(SEQ ID NO: 8)、250 nM的逆向引子(SEQ ID NO: 9)、100 nM的探針(SEQ ID NO: 10)、1000拷貝的proA內部控制IVT-RNA、及適量的RNA萃取樣本,且總體積為20 µL。 然而,反應混合物並不限於上述的酶和緩衝系統。
表3
為了進一步以實驗確認在多重檢測中引子及探針對屈公病毒及茲卡病毒的專一性,本案檢驗了引子及探針與幾種常見的蚊媒病毒的交叉反應性,包括登革熱病毒第一至第四血清型(Dengue virus serotypes 1 to 4),且此實驗是在大量基因體RNA (約介於106 至107 拷貝的gRNA)存在的情況下進行。第4圖及第5圖分別顯示屈公病毒及茲卡病毒專一性分析的結果,其中CHIK、DEN1至DEN4、以及ZIKA表示分別來自屈公病毒、登革熱病毒第一至第四血清型、以及茲卡病毒的基因體RNA樣本,而NTC表示無模板對照組。在屈公病毒檢測螢光通道中,如第4圖所示,除了屈公基因體RNA樣本有擴增反應外,其他組皆未觀察到擴增反應。同樣地,在茲卡病毒檢測螢光通道中,如第5圖所示,除了茲卡基因體RNA樣本有擴增反應外,其他組皆未觀察到擴增反應。換言之,此實驗中沒有交叉反應發生,因此證實了本案引子及探針在多重檢測中的專一性。In order to further experimentally confirm the specificity of the primers and probes to Tragonia virus and Zika virus in the multiplex detection, the cross-reactivity of the primers and probes with several common mosquito-borne viruses, including dengue virus first to The fourth serotype (Dengue virus serotypes 1 to 4), and this experiment is carried out in the presence of a large amount of genomic RNA (approximately 10 6 to 10 7 copies of gRNA). Figures 4 and 5 respectively show the results of the specificity analysis of Tragonivirus and Zika virus, in which CHIK, DEN1 to DEN4, and ZIKA represent the serotypes from Tragonivirus, Dengue virus first to fourth serotypes, and Zika virus, respectively. Genome RNA sample of card virus, and NTC means no template control group. In the fluorescence channel for the detection of tragonivirus, as shown in Figure 4, except for the amplification reaction of the tragoniform RNA sample, no amplification reaction was observed in the other groups. Similarly, in the Zika virus detection fluorescence channel, as shown in Figure 5, except for the amplification reaction of the Zika gene body RNA sample, no amplification reaction was observed in the other groups. In other words, no cross-reaction occurred in this experiment, thus confirming the specificity of the primers and probes in this case in multiple detection.
本案實施例能夠在不到30分鐘的時間內,在多重檢測中檢測到每個反應僅有數個拷貝的屈公基因體RNA。每個反應中含有1、3、5、8、10及15個拷貝的屈公基因體RNA的反應分別進行6重複分析,且陽性檢測的臨界值設定為Ct值38。結果顯示,每個反應中含有1、3、5、8、10及15個拷貝的反應的陽性檢出率分別為3/6、5/6、5/6、6/6、6/6及6/6。換言之,在每個反應中含有8、10及15個拷貝的反應中,6重複皆檢測到屈公病毒。因此,在多重檢測中屈公病毒的檢測底線(limit for detection,簡稱LoD)可預測約為8至10個拷貝,顯示出相當高的靈敏度。此外,檢測底線的確認係進一步以每個反應中含有10個拷貝屈公基因體RNA的反應來進行20重複分析,結果20重複全部得到陽性檢測結果,因此確認檢測底線為每反應10個拷貝(基於20/20的陽性檢測率有大於95%的可信度)。The example of this case can detect only a few copies of the tragopanic genomic RNA in each reaction in the multiplex detection in less than 30 minutes. Reactions containing 1, 3, 5, 8, 10, and 15 copies of Tragodon gene RNA in each reaction were analyzed in 6 replicates respectively, and the cutoff value of positive detection was set to a Ct value of 38. The results showed that the positive detection rates of reactions containing 1, 3, 5, 8, 10 and 15 copies in each reaction were 3/6, 5/6, 5/6, 6/6, 6/6 and 6/6. In other words, in the reactions containing 8, 10, and 15 copies in each reaction, Tragonivirus was detected in all 6 replicates. Therefore, the limit for detection (LoD) of Tragon virus in multiple detection can be predicted to be about 8 to 10 copies, showing a fairly high sensitivity. In addition, the bottom line of the test is to confirm that each reaction contains 10 copies of tragopanic gene RNA for 20 replicate analyses. As a result, all the 20 replicates get a positive test result. Therefore, the bottom line of the test is confirmed to be 10 copies per reaction ( The positive detection rate based on 20/20 has greater than 95% confidence).
本案實施例也能夠在不到30分鐘的時間內,在多重檢測中檢測到每個反應僅有數個拷貝的茲卡基因體RNA。每個反應中含有1、3、5、8、10及15個拷貝的茲卡基因體RNA的反應分別進行6重複分析,且陽性檢測的臨界值設定為Ct值38。結果顯示,每個反應中含有1、3、5、8、10及15個拷貝的反應的陽性檢出率分別為3/6、2/6、5/6、3/6、6/6及6/6。換言之,在每個反應中含有10及15個拷貝的反應中,6重複皆檢測到茲卡病毒。因此,在多重檢測中茲卡病毒的檢測底線(limit for detection,簡稱LoD)可預測約為10至15個拷貝,顯示出相當高的靈敏度。此外,檢測底線的確認係進一步以每個反應中含有10個拷貝茲卡基因體RNA的反應來進行20重複分析,結果20重複中有19個反應得到陽性檢測結果,因此確認檢測底線為每反應10個拷貝(基於19/20的陽性檢測率有95%的可信度)。The example of this case can also detect only a few copies of Zika gene body RNA in each reaction in the multiplex detection in less than 30 minutes. Each reaction containing 1, 3, 5, 8, 10, and 15 copies of Zika gene body RNA was analyzed in 6 replicates, and the cutoff value of positive detection was set to a Ct value of 38. The results showed that the positive detection rates of reactions containing 1, 3, 5, 8, 10 and 15 copies in each reaction were 3/6, 2/6, 5/6, 3/6, 6/6 and 6/6. In other words, in each reaction containing 10 and 15 copies, Zika virus was detected in all 6 replicates. Therefore, the limit for detection (LoD) of Zika virus in multiple detection can be predicted to be about 10 to 15 copies, showing a fairly high sensitivity. In addition, the confirmation of the bottom line of the test is to further analyze the reaction with 10 copies of Zika gene body RNA in each reaction to carry out 20 repeat analysis. As a result, 19 reactions out of the 20 repeats yielded a positive test result. Therefore, the bottom line of the test is confirmed as per reaction. 10 copies (95% confidence based on the positive detection rate of 19/20).
本案實施例可在同一個即時逆轉錄聚合酶鏈鎖反應中共同檢測屈公病毒及茲卡病毒。茲在多重檢測中分析兩個反應,其中一個反應具有100個拷貝的屈公基因體RNA及100個拷貝的茲卡基因體RNA,而另一個反應具有10個拷貝的屈公基因體RNA及10個拷貝的茲卡基因體RNA。第6A圖及第6B圖顯示屈公病毒及茲卡病毒共同檢測的結果。如第6A圖及第6B圖所示,當100個拷貝的屈公基因體RNA及100個拷貝的茲卡基因體RNA同時存在反應中時,多重檢測可同時檢測到屈公病毒及茲卡病毒。而當10個拷貝的屈公基因體RNA及10個拷貝的茲卡基因體RNA同時存在反應中時,多重檢測在2重複分析中皆檢測到屈公病毒,並在2重複分析中的其中之一檢測到茲卡病毒。因此,即使病毒RNA含量低,多重檢測也能夠同時檢測屈公病毒及茲卡病毒。The examples of this case can jointly detect Tragonivirus and Zika virus in the same real-time reverse transcription polymerase chain reaction. Two reactions are analyzed in a multiplex test. One reaction has 100 copies of Tragodon gene RNA and 100 copies of Zika gene RNA, and the other reaction has 10 copies of Tragodon gene RNA and 10 copies. Copies of Zika Genome RNA. Fig. 6A and Fig. 6B show the results of the joint detection of Tragong virus and Zika virus. As shown in Fig. 6A and Fig. 6B, when 100 copies of Tragonella gene RNA and 100 copies of Zika gene RNA are present in the reaction simultaneously, multiple detection can detect Tragonella virus and Zika virus at the same time. . And when 10 copies of Tragodonta genomic RNA and 10 copies of Zika genomic RNA are present in the reaction at the same time, the multiplex detection will detect Tragogonia virus in the two-repetition analysis, and one of the two-repetition analysis. One detected Zika virus. Therefore, even if the viral RNA content is low, multiple detection can simultaneously detect Trakong virus and Zika virus.
本案實施例能夠在不到30分鐘的時間內定量屈公基因體RNA。第7圖顯示從不同拷貝數的屈公基因體RNA所產生的擴增曲線。採用本案實施例的引子及探針,並對每反應具有連續稀釋拷貝數(107 至10個拷貝)的屈公基因體RNA樣本分別進行測試,以確定多重檢測中屈公檢測的線性度。第8圖顯示由第7圖結果產生的屈公分析標準曲線。根據所得的標準曲線,擴增效率為102%,R2 值為1.00。由於R2 值為最佳理論值1.0,故此多重檢測可以擴展為定量分析,以在POC檢測時估算屈公基因體RNA的數量。The example of this case can quantify the genomic RNA of tragopan in less than 30 minutes. Figure 7 shows the amplification curves generated from different copy numbers of Tragodon genomic RNA. Qugong Ji using primers and probes embodiment example of the case, and each copy number serially diluted with reaction (107 to 10 copies) of the body due to RNA samples were tested to determine the linearity of the multi-well flexion detection assay. Figure 8 shows the flexion analysis standard curve generated from the results in Figure 7. According to the obtained standard curve, the amplification efficiency is 102%, and the R 2 value is 1.00. Since the R 2 value is the best theoretical value of 1.0, this multiple detection can be extended to quantitative analysis to estimate the amount of tragopanic genomic RNA during POC detection.
本案實施例也能夠在不到30分鐘的時間內定量茲卡基因體RNA。第9圖顯示從不同拷貝數的茲卡病毒基因體RNA所產生的擴增曲線。採用本案實施例的引子及探針,並對每反應具有連續稀釋拷貝數(2x106 至20個拷貝)的茲卡基因體RNA樣本分別進行測試,以確定多重檢測中茲卡檢測的線性度。第10圖顯示由第9圖結果產生的茲卡分析標準曲線。根據所得的標準曲線,擴增效率為104%,R2 值為1.00。由於R2 值為最佳理論值1.0,故此多重檢測可以擴展為定量分析,以在POC檢測時估算茲卡基因體RNA的數量。The example of this case can also quantify Zika gene body RNA in less than 30 minutes. Figure 9 shows the amplification curves generated from different copy numbers of Zika virus genomic RNA. Using the primers and probes of the examples of this case, the Zika gene body RNA samples with serial dilution copies (2×10 6 to 20 copies) per reaction were tested respectively to determine the linearity of the Zika detection in the multiple detection. Figure 10 shows the Zika analysis standard curve generated from the results in Figure 9. According to the obtained standard curve, the amplification efficiency is 104%, and the R 2 value is 1.00. Since the R 2 value is the best theoretical value of 1.0, this multiple detection can be extended to quantitative analysis to estimate the amount of Zika gene body RNA during POC detection.
本案實施例之屈公病毒及茲卡病毒的多重檢測更進一步與兩市售屈公檢測套組或兩市售茲卡檢測套組進行比較。比較實驗是以少量病毒RNA來進行,例如每個反應10或100拷貝的基因體RNA。第11圖顯示本案多重檢測與兩市售屈公檢測套組的比較,第12圖則顯示本案多重檢測與兩市售茲卡檢測套組的比較。The multiple detections of tricot virus and Zika virus in the examples of this case are further compared with two commercially available tricot test kits or two commercially available Zika test kits. Comparative experiments are performed with a small amount of viral RNA, such as 10 or 100 copies of genomic RNA per reaction. Figure 11 shows the comparison between the multiple tests in this case and the two commercially available Trigonometry test kits, and Figure 12 shows the comparison between the multiple tests in this case and the two Zika test kits on the market.
如第11圖所示,當少量的屈公RNA添加於反應中時,針對100個拷貝基因體RNA的檢測,本案多重檢測、市售套組1、及市售套組2的平均Ct值分別為31.673、34.055、及33.196;而針對10個拷貝基因體RNA的檢測,本案多重檢測、市售套組1、及市售套組2的平均Ct值分別為34.415、37.617、及36.461。因此,本案多重檢測可以較早的Ct檢測到屈公病毒,故在檢測少量的屈公RNA時,本案多重檢測更優於兩市售套組。此外,本案多重檢測、市售套組1、及市售套組2的即時逆轉錄聚合酶鏈鎖反應的總反應時間分別為23分鐘、77分鐘、及62分鐘,故與市售套組相比,本案多重檢測花費了明顯較短的時間來完成即時逆轉錄聚合酶鏈鎖反應。As shown in Figure 11, when a small amount of Tragopan RNA is added to the reaction, the average Ct values of the multiple detection,
如第12圖所示,當少量的茲卡RNA添加於反應中時,針對100個拷貝基因體RNA的檢測,本案多重檢測、市售套組1、及市售套組2的平均Ct值分別為31.953、33.711、及32.101;而針對10個拷貝基因體RNA的檢測,本案多重檢測、市售套組1、及市售套組2的平均Ct值分別為35.983、36.304、及35.480。因此,本案多重檢測可以較早的Ct或不相上下的Ct檢測到茲卡病毒,故在檢測少量的茲卡RNA時,本案多重檢測更優於或可比擬兩市售套組。此外,本案多重檢測、市售套組1、及市售套組2的即時逆轉錄聚合酶鏈鎖反應的總反應時間分別為23分鐘、77分鐘、及62分鐘,故與市售套組相比,本案多重檢測花費了明顯較短的時間來完成即時逆轉錄聚合酶鏈鎖反應。As shown in Figure 12, when a small amount of Zika RNA is added to the reaction, for the detection of 100 copies of genomic RNA, the average Ct values of multiple detection,
綜上所述,本案實施例提供屈公病毒及茲卡病毒的多重檢測套組及方法,其係利用即時逆轉錄聚合酶鏈鎖反應及具有專一性的引子及探針來進行檢測。本案實施例之多重檢測套組及方法具有可以高靈敏度及高專一性同時檢測屈公病毒及茲卡病毒的優點。本案實施例之多重檢測套組及方法可檢測低拷貝數的屈公及茲卡RNA,且可用於定量檢測。本案實施例之多重檢測套組及方法更具有減少反應時間的優點,且是在不影響靈敏度和專一性的前提下實現的。因此,本案提供了快速、靈敏、專一且可同時檢測屈公病毒及茲卡病毒的多重檢測,可藉以有效治療感染並預防傳播。In summary, the embodiment of this case provides multiple detection kits and methods for Tragonivirus and Zika virus, which utilize real-time reverse transcription polymerase chain reaction and specific primers and probes for detection. The multiple detection kit and method of the embodiment of the present case have the advantages of being able to simultaneously detect Tragonivirus and Zika virus with high sensitivity and high specificity. The multiple detection kit and method of the embodiment of the present case can detect low-copy number drotong and Zika RNA, and can be used for quantitative detection. The multiple detection kit and method of the embodiment of the present case has the advantage of reducing the reaction time, and it is realized under the premise of not affecting the sensitivity and specificity. Therefore, this case provides rapid, sensitive, specific, and multiple tests that can simultaneously detect Tragonivirus and Zika virus, which can effectively treat infection and prevent transmission.
縱使本發明已由上述實施例詳細敘述而可由熟悉本技藝人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。Even though the present invention has been described in detail by the above-mentioned embodiments, it can be modified in many ways by those skilled in the art, but it does not deviate from the scope of the attached patent application.
無no
第1圖顯示屈公病毒之非結構蛋白1基因的部分cDNA序列,以及順向引子、逆向引子及探針於序列上的黏合位置。
第2圖顯示茲卡病毒之套膜基因的部分cDNA序列,以及順向引子、逆向引子及探針於序列上的黏合位置。
第3圖顯示軟腐細菌之proA基因的部分cDNA序列,以及順向引子、逆向引子及探針於序列上的黏合位置。
第4圖及第5圖分別顯示屈公病毒及茲卡病毒專一性分析的結果。
第6A圖及第6B圖顯示屈公病毒及茲卡病毒共同檢測的結果。
第7圖顯示從不同拷貝數的屈公基因體RNA所產生的擴增曲線。
第8圖顯示由第7圖結果產生的屈公檢測標準曲線。
第9圖顯示從不同拷貝數的茲卡基因體RNA所產生的擴增曲線。
第10圖顯示由第9圖結果產生的茲卡檢測標準曲線。
第11圖顯示本案多重檢測與兩市售屈公檢測套組的比較。
第12圖顯示本案多重檢測與兩市售茲卡檢測套組的比較。Figure 1 shows the partial cDNA sequence of Tragong virus
Claims (19)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG10201905639PA SG10201905639PA (en) | 2019-06-19 | 2019-06-19 | Primer pair, kit and method for detecting chikungunya virus |
SG10201905639P | 2019-06-19 | ||
SG10201905641Y | 2019-06-19 | ||
SG10201905641YA SG10201905641YA (en) | 2019-06-19 | 2019-06-19 | Primer pair, kit and method for detecting zika virus |
SG10202005575V | 2020-06-12 | ||
SG10202005575VA SG10202005575VA (en) | 2019-06-19 | 2020-06-12 | Kit and method for multiplex detection of chikungunya virus and zika virus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202115262A true TW202115262A (en) | 2021-04-16 |
TWI754967B TWI754967B (en) | 2022-02-11 |
Family
ID=73799512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109120487A TWI754967B (en) | 2019-06-19 | 2020-06-17 | Kit and method for multiplex detection of chikungunya virus and zika virus and kit and method for detection of zika virus |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112111599A (en) |
TW (1) | TWI754967B (en) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101935715B (en) * | 2010-09-08 | 2012-02-22 | 中国检验检疫科学研究院 | Method for detecting Chikungunya virus nucleic acid by real-time fluorescent quantitative PCR |
SG11201502511YA (en) * | 2012-09-04 | 2015-05-28 | Republic Polytechnic | Isolated oligonucleotides, methods and kits for detection, identification and/or quantitation of chikungunya and dengue viruses |
US11591660B2 (en) * | 2016-01-14 | 2023-02-28 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and reagents for detection of chikungunya virus or chikungunya virus and dengue virus |
JP6962927B2 (en) * | 2016-03-11 | 2021-11-05 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Compositions and methods for detecting Zika virus |
CN105838713A (en) * | 2016-05-20 | 2016-08-10 | 深圳市第三人民医院 | Method for detecting fluorogenic quantitative PCR of Zika virus, primers and kit |
CN106086242A (en) * | 2016-07-29 | 2016-11-09 | 广州市第八人民医院 | A kind of test kit detected for Flavivirus fast typing and virus load |
CN107723382A (en) * | 2016-08-09 | 2018-02-23 | 博奥生物集团有限公司 | Hereby block LAMP primer composition and its application of virus for detecting |
CN106244726A (en) * | 2016-08-19 | 2016-12-21 | 中检国研(北京)科技有限公司 | A kind of zika virus loop-mediated isothermal amplification detection kit and using method |
CN106521032B (en) * | 2016-11-30 | 2019-09-06 | 博奥生物集团有限公司 | A kind of nucleic acid amplification technologies and its application in carapuru virus detection |
CN106755571B (en) * | 2016-11-30 | 2020-08-07 | 博奥生物集团有限公司 | Kit for detecting Zika virus, dengue fever virus and chikungunya virus |
CN106755573A (en) * | 2016-12-07 | 2017-05-31 | 深圳澳东检验检测科技有限公司 | Zika virus, dengue fever virus, the RT PCR detection methods of chikungunya fever virus, primer and probe and kit |
CN108330210B (en) * | 2017-01-18 | 2021-07-30 | 广州市疾病预防控制中心 | Zika virus, dengue virus and chikungunya virus nucleic acid detection kit and application thereof |
WO2018169550A1 (en) * | 2017-03-17 | 2018-09-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Real-time rt-pcr assay for detection of dengue, chikungunya, and zika viruses |
KR20190002245A (en) * | 2017-06-29 | 2019-01-08 | 조용직 | Dual diagnostic kit and diagnostic method for zika virus |
CN109423526A (en) * | 2017-08-29 | 2019-03-05 | 湖北省疾病预防控制中心 | Mosquito matchmaker's infectious disease pathogens premix fluorescence PCR detection reagent and kit |
-
2020
- 2020-06-17 TW TW109120487A patent/TWI754967B/en active
- 2020-06-18 CN CN202010559238.3A patent/CN112111599A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN112111599A (en) | 2020-12-22 |
TWI754967B (en) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108330210B (en) | Zika virus, dengue virus and chikungunya virus nucleic acid detection kit and application thereof | |
US7595163B2 (en) | Method for detecting SARS coronavirus | |
RU2506317C2 (en) | Method for detection of intestinal viruses in clinical samples of real-time multiplex pcr and list of sequencies for implementing it | |
JPWO2018042598A1 (en) | Zika virus detection primer set | |
CN107619885A (en) | A kind of fluorescence RT RAA primers, probe and detection method for being used to detect dengue virus | |
TW201221650A (en) | Method for detection of enterovirus | |
CN116134157A (en) | PCR-based diagnostic kits, compositions and methods for amplification and detection of SARS-COV-2 | |
Callens et al. | Highly sensitive detection of swine vesicular disease virus based on a single tube RT-PCR system and DIG-ELISA detection | |
KR20190002245A (en) | Dual diagnostic kit and diagnostic method for zika virus | |
JP5754100B2 (en) | Detection method and detection reagent for enterovirus 71 RNA | |
US20210254186A1 (en) | Flavivirus diagnostic array | |
Ries et al. | BlueTYPE–A low density TaqMan-RT-qPCR array for the identification of all 24 classical Bluetongue virus serotypes | |
WO2023279042A2 (en) | Compositions and methods for detection of severe acute respiratory syndrome coronavirus 2 variants | |
Haegeman et al. | Characterisation of the discrepancy between PCR and virus isolation in relation to classical swine fever virus detection | |
TWI754967B (en) | Kit and method for multiplex detection of chikungunya virus and zika virus and kit and method for detection of zika virus | |
JP2007514440A (en) | Sensitive and specific test to detect SARS coronavirus | |
Álvarez-Díaz et al. | Novel pan-serotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction | |
TWI723675B (en) | Methods and kits for detecting dengue virus | |
TWI757768B (en) | Primer pair, kit and method for detecting zika virus | |
TWI754966B (en) | Primer pair, kit and method for detecting chikungunya virus | |
US9518303B2 (en) | Methods and compositions for identifying enterovirus | |
US6818397B1 (en) | Methods for detecting and differentiating enteroviruses and the primers and probes therefor | |
WO2019025776A1 (en) | Nairovirus diagnostic assay | |
KR102508610B1 (en) | Detection method for enterovirus capable of simultaneously detecting human enterovirus, enterovirus 71 or both | |
CN113073151B (en) | Primer probe composition for detecting adenovirus HAdV by using enzyme digestion probe report system and kit thereof |