TW202113973A - Planarization method for semiconductor structure having memory modules - Google Patents

Planarization method for semiconductor structure having memory modules Download PDF

Info

Publication number
TW202113973A
TW202113973A TW108134365A TW108134365A TW202113973A TW 202113973 A TW202113973 A TW 202113973A TW 108134365 A TW108134365 A TW 108134365A TW 108134365 A TW108134365 A TW 108134365A TW 202113973 A TW202113973 A TW 202113973A
Authority
TW
Taiwan
Prior art keywords
mask layer
layer
protrusions
dielectric layer
semiconductor structure
Prior art date
Application number
TW108134365A
Other languages
Chinese (zh)
Other versions
TWI830781B (en
Inventor
林仁傑
劉昕融
侯朝鐘
詹昂
李昆儒
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW108134365A priority Critical patent/TWI830781B/en
Publication of TW202113973A publication Critical patent/TW202113973A/en
Application granted granted Critical
Publication of TWI830781B publication Critical patent/TWI830781B/en

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Abstract

A planarization method for semiconductor structure having memory modules is provided. A dielectric layer is formed on a substrate structure having memory modules, and a contour surface of the dielectric layer has a plurality of protrusions respectively corresponding to the memory modules. A mask layer is conformally formed on the contour surface and the mask layer includes top portions that respectively cover the top surfaces of the protrusions, wherein the mask layer and the dielectric layer have a polishing selectivity. Then, the top portions of the mask layer are removed, so that a plurality of openings is formed on the mask layer to respectively expose the top surfaces of the protrusions. Then, the mask layer is used as a mask, to at least remove the protrusions exposed through the opening. Finally, the mask layer is removed and portion of the dielectric layer is polished, to make the dielectric layer has a substantially planar second surface, wherein a spacing is between the second surface and the memory modules. This planarization method has the advantage of reducing material costs.

Description

具記憶體模組之半導體結構的平坦化方法Method for planarizing semiconductor structure with memory module

本發明有關一種半導體製程,尤其是一種具記憶體模組之半導體結構的平坦化方法The present invention relates to a semiconductor manufacturing process, in particular to a method for planarizing a semiconductor structure with a memory module

許多現代的電子裝置具有電子記憶體,其中非揮發性記憶體能夠在電源中斷的情況下保留其儲存的數據,目前一種磁阻式隨機存取記憶體(Magnetoresistive random-access memory,MRAM)乃是一種近年來受歡迎的非揮發性隨機存取記憶體。舉例而言,MRAM包括使用磁性極化作用儲存資訊之磁穿隧接面(Magnetic tunnel junctions,MTJ)元件。舉例而言,MRAM裝置包括具有複數個磁性層之MTJ堆疊層。此等MTJ堆疊層大體上連接至層間介電層(ILD)中的互連件。Many modern electronic devices have electronic memory. Among them, non-volatile memory can retain its stored data in the event of power interruption. At present, a magnetoresistive random-access memory (MRAM) is A non-volatile random access memory that has become popular in recent years. For example, MRAM includes magnetic tunnel junctions (MTJ) devices that use magnetic polarization to store information. For example, MRAM devices include MTJ stacked layers with a plurality of magnetic layers. These MTJ stack layers are generally connected to interconnects in the interlayer dielectric layer (ILD).

然而,在包含MRAM之半導體器件的部分製程中,MRAM為突出於半導體器件,因此在對後續覆蓋MRAM之介電層進行平坦化研磨時,須研磨掉過多的介電層才能達到平坦化的要求,造成材料成本的增加。However, in part of the manufacturing process of semiconductor devices containing MRAM, MRAM protrudes from the semiconductor device. Therefore, when the subsequent dielectric layer covering MRAM is planarized and polished, too much dielectric layer must be polished to meet the requirements of planarization. , Resulting in an increase in material costs.

本發明提供一種具記憶體模組之半導體結構的平坦化方法,可不需研磨掉過多的介電層,即可達到平坦化的要求,具有降低材料成本的優點。The present invention provides a method for planarizing a semiconductor structure with a memory module, which can achieve the requirements of planarization without grinding off excessive dielectric layers, and has the advantage of reducing material costs.

本發明所提供的具記憶體模組之半導體結構的平坦化方法,包含:提供半導體器件,半導體器件包含基板結構及多個記憶體模組,基板結構具有第一表面,記憶體模組分別至少包含多層材料柱體凸出於第一表面;形成介電層於基板結構上,且覆蓋多層材料柱體,其中介電層具有輪廓面,輪廓面具有多個凸起部分別對應於多個多層材料柱體,凸起部分別具有頂面及側壁;形成遮罩層,遮罩層共形地覆蓋於具有凸起部的輪廓面上,其中遮罩層包含多個高頂部分別覆蓋於凸起部的頂面,遮罩層與介電層之間具有研磨選擇比;移除遮罩層的高頂部,以於遮罩層形成多個開口分別露出凸起部的頂面;以遮罩層作為遮罩,至少移除經由開口顯露的凸起部;移除遮罩層;以及研磨部分介電層,使介電層具有實質平坦的第二表面,其中,第二表面與多層材料柱體之間保留間距。The planarization method of a semiconductor structure with a memory module provided by the present invention includes: providing a semiconductor device. The semiconductor device includes a substrate structure and a plurality of memory modules, the substrate structure has a first surface, and the memory modules are at least Containing multilayer material pillars protruding from the first surface; forming a dielectric layer on the substrate structure and covering the multilayer material pillars, wherein the dielectric layer has a contour surface, and the contour surface has a plurality of protrusions corresponding to the plurality of multilayers, respectively Material column, the protrusions respectively have a top surface and side walls; a mask layer is formed, and the mask layer conformally covers the contour surface with the protrusions, wherein the mask layer includes a plurality of high tops respectively covering the protrusions The top surface of the mask layer has a polishing selection ratio between the mask layer and the dielectric layer; the high top part of the mask layer is removed to form a plurality of openings in the mask layer to respectively expose the top surface of the protrusion; with the mask layer As a mask, at least the protrusions exposed through the opening are removed; the mask layer is removed; and a part of the dielectric layer is polished so that the dielectric layer has a substantially flat second surface, wherein the second surface and the multilayer material column Leave space between them.

在本發明的一實施例中,上述之研磨選擇比大於20。在本發明的一實施例中,上述之介電層的材料為超低介電材料(ULK)。In an embodiment of the present invention, the aforementioned polishing selection ratio is greater than 20. In an embodiment of the present invention, the material of the above-mentioned dielectric layer is an ultra-low dielectric material (ULK).

在本發明的一實施例中,上述之遮罩層包含金屬層。於一實施例中,金屬層的材質為鎢、銅或鋁。In an embodiment of the present invention, the above-mentioned mask layer includes a metal layer. In one embodiment, the material of the metal layer is tungsten, copper or aluminum.

在本發明的一實施例中,上述之記憶體模組為磁阻式隨機存取記憶體(MRAM)。In an embodiment of the present invention, the above-mentioned memory module is a magnetoresistive random access memory (MRAM).

在本發明的一實施例中,以第一化學機械研磨製程移除遮罩層的高頂部,以第二化學機械研磨製程移除遮罩層。In an embodiment of the present invention, the high top of the mask layer is removed by the first chemical mechanical polishing process, and the mask layer is removed by the second chemical mechanical polishing process.

在本發明的一實施例中,以回蝕刻製程移除凸起部直至凸起部去除且輪廓面形成多個淺凹部,淺凹部的底部低於遮罩層。In an embodiment of the present invention, the protrusions are removed by an etch-back process until the protrusions are removed and a plurality of shallow recesses are formed on the contour surface, and the bottom of the shallow recesses is lower than the mask layer.

在本發明的一實施例中,上述之研磨部分介電層的步驟持續到淺凹部消除且介電層具有實質平坦的第二表面。In an embodiment of the present invention, the above-mentioned step of grinding a part of the dielectric layer continues until the shallow recesses are eliminated and the dielectric layer has a substantially flat second surface.

在本發明的一實施例中,上述之遮罩層的厚度介於10奈米至20奈米之間。In an embodiment of the present invention, the thickness of the aforementioned mask layer is between 10 nanometers and 20 nanometers.

本發明先在介電層之具有凸起部的輪廓面上共形地覆蓋有遮罩層,且遮罩層與介電層之間具有研磨選擇比,並於遮罩層形成開口以對應於凸起部,經由開口以回蝕刻製程將凸起部去除,之後將遮罩層移除且對介電層進行化學機械研磨的平坦化製程。由於介電層的凸起部已先被移除,因此不需研磨掉過多的介電層,即可達到平坦化的要求,具有降低材料成本的優點。In the present invention, a mask layer is conformally covered on the contour surface of the dielectric layer with protrusions, and there is a polishing selection ratio between the mask layer and the dielectric layer, and an opening is formed in the mask layer to correspond to For the protrusions, the protrusions are removed by an etch-back process through the opening, and then the mask layer is removed and the dielectric layer is subjected to a planarization process of chemical mechanical polishing. Since the protrusions of the dielectric layer have been removed first, there is no need to grind off too much dielectric layer to meet the requirements of planarization, which has the advantage of reducing material costs.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, the following specific examples are given in conjunction with the accompanying drawings, which are described in detail as follows.

圖1A至圖1G是本發明一實施例具記憶體模組之半導體結構的平坦化方法之流程的剖面結構示意圖。如圖1A所示,提供一半導體器件10,半導體器件10包含基板結構12及多個記憶體模組14。基板結構12具有第一表面121,多個記憶體模組14凸出設置於第一表面121,於一實施例中,記憶體模組14例如為磁阻式隨機存取記憶體(MRAM),記憶體模組14至少包含多層材料柱體16,多層材料柱體16例如包括上電極層18、磁穿隧接面堆疊層20及下電極層22,於一實施例中,多層材料柱體16凸出第一表面121的高度H1例如為175奈米,相鄰兩多層材料柱體16的間距D1例如為110奈米。於一實施中,半導體器件10更包含有邏輯電路模組(圖中未示)設置於基板結構12。1A to 1G are schematic cross-sectional structure diagrams of the process of a planarization method of a semiconductor structure with a memory module according to an embodiment of the present invention. As shown in FIG. 1A, a semiconductor device 10 is provided. The semiconductor device 10 includes a substrate structure 12 and a plurality of memory modules 14. The substrate structure 12 has a first surface 121, and a plurality of memory modules 14 are protrudingly disposed on the first surface 121. In one embodiment, the memory modules 14 are, for example, magnetoresistive random access memory (MRAM). The memory module 14 at least includes a multi-layer material column 16 which includes, for example, an upper electrode layer 18, a magnetic tunnel junction stack layer 20, and a lower electrode layer 22. In one embodiment, the multi-layer material column 16 The height H1 of the protruding first surface 121 is, for example, 175 nm, and the distance D1 between two adjacent multilayer material pillars 16 is, for example, 110 nm. In one implementation, the semiconductor device 10 further includes a logic circuit module (not shown in the figure) disposed on the substrate structure 12.

如圖1B所示,形成介電層24於基板結構12上,介電層24覆蓋第一表面121及多層材料柱體16,介電層24的材料例如為超低介電材料,其介電常數例如小於約2.5,介電層24遠離第一表面121的一側具有輪廓面241,輪廓面241具有多個凸起部26,多個凸起部26分別對應於多個多層材料柱體16,於一實施例中,凸起部26具有頂面261及側壁262,側壁262連接頂面261及輪廓面241。其中,不具凸起部26之部分輪廓面241與第一表面121的間距D2(即介電層的一般厚度)例如為215奈米。As shown in FIG. 1B, a dielectric layer 24 is formed on the substrate structure 12. The dielectric layer 24 covers the first surface 121 and the multi-layer material column 16. The material of the dielectric layer 24 is, for example, an ultra-low dielectric material. For example, the constant is less than about 2.5. The side of the dielectric layer 24 away from the first surface 121 has a contour surface 241, and the contour surface 241 has a plurality of protrusions 26 corresponding to the plurality of multilayer material pillars 16 respectively. In one embodiment, the protrusion 26 has a top surface 261 and a side wall 262, and the side wall 262 connects the top surface 261 and the contour surface 241. Wherein, the distance D2 (that is, the general thickness of the dielectric layer) between the partial contour surface 241 without the protrusion 26 and the first surface 121 is, for example, 215 nm.

接著,如1C所示,形成遮罩層28,遮罩層28共形地覆蓋於具有凸起部26的輪廓面241上,其中,由於遮罩層28的共形覆蓋於輪廓面241,遮罩層28包含多個高頂部281,覆蓋於凸起部26的頂面261,於一實施例中,遮罩層28的厚度介於10奈米至20奈米之間。遮罩層28與介電層24之間具有研磨選擇比,於一實施例中,遮罩層28包含有氮化矽、氮碳化矽、氮氧化矽、金屬、金屬氮化物、金屬氧化物、或其組合,金屬的材質可為鎢、銅、鈦、鉭、鉿、鋅、鋯或鋁,於一實施例中,遮罩層28與介電層24之間具有的研磨選擇比大於20,其中介電層24的研磨速率大於遮罩層28的研磨速率。於一實施例中,遮罩層28為氮化鈦與鎢的雙層結構。Next, as shown in 1C, a mask layer 28 is formed, and the mask layer 28 conformally covers the contour surface 241 with the protrusions 26, wherein, since the mask layer 28 conformally covers the contour surface 241, the mask layer 28 covers the contour surface 241 conformally. The cover layer 28 includes a plurality of high tops 281 covering the top surface 261 of the protrusion 26. In one embodiment, the thickness of the cover layer 28 is between 10 nanometers and 20 nanometers. There is a polishing selection ratio between the mask layer 28 and the dielectric layer 24. In one embodiment, the mask layer 28 includes silicon nitride, silicon carbide nitride, silicon oxynitride, metal, metal nitride, metal oxide, Or a combination thereof, the metal material can be tungsten, copper, titanium, tantalum, hafnium, zinc, zirconium or aluminum. In one embodiment, the polishing selection ratio between the mask layer 28 and the dielectric layer 24 is greater than 20. The polishing rate of the dielectric layer 24 is greater than the polishing rate of the mask layer 28. In one embodiment, the mask layer 28 is a double-layer structure of titanium nitride and tungsten.

之後,如圖1D所示,移除遮罩層28的高頂部281,以於遮罩層28形成多個開口282,且經由開口282分別露出凸起部26的頂面261。於一實施例中,高頂部281(標示於圖1C)的移除方式例如為化學機械研磨製程。接著,以具有開口282的遮罩層28作為遮罩,如圖1E所示,至少移除經由遮罩層28的開口282所顯露的凸起部26。於一實施例中,經由回蝕刻製程移除凸起部26,持續至凸起部26被去除且在輪廓面241上形成多個淺凹部30,其中,淺凹部30的底部301低於遮罩層28。After that, as shown in FIG. 1D, the high top 281 of the mask layer 28 is removed to form a plurality of openings 282 in the mask layer 28, and the top surfaces 261 of the protrusions 26 are respectively exposed through the openings 282. In one embodiment, the removal method of the high top 281 (marked in FIG. 1C) is, for example, a chemical mechanical polishing process. Next, using the mask layer 28 with the opening 282 as a mask, as shown in FIG. 1E, at least the protrusions 26 exposed through the opening 282 of the mask layer 28 are removed. In one embodiment, the protrusion 26 is removed through an etch-back process until the protrusion 26 is removed and a plurality of shallow recesses 30 are formed on the contour surface 241, wherein the bottom 301 of the shallow recess 30 is lower than the mask Layer 28.

接著,移除遮罩層28,於一實施例中,以化學機械研磨製程或蝕刻製程移除遮罩層28,如圖1F所示,隨著遮罩層28的移除,介電層24的輪廓面241上殘留有多個淺凹部30,但已不具有高低落差大的凸起部26。最後,再次以化學機械研磨製程研磨部分介電層24,如圖1G所示,使介電層24具有實質平坦的第二表面242,其中研磨部分介電層24的步驟持續到淺凹部30消除且介電層24之實質平坦的第二表面242與多層材料柱體16之間保留有間距D3。Next, the mask layer 28 is removed. In one embodiment, the mask layer 28 is removed by a chemical mechanical polishing process or an etching process. As shown in FIG. 1F, as the mask layer 28 is removed, the dielectric layer 24 There are a number of shallow recesses 30 remaining on the contour surface 241, but there is no protrusion 26 with a large height difference anymore. Finally, a chemical mechanical polishing process is used to polish part of the dielectric layer 24 again, as shown in FIG. 1G, so that the dielectric layer 24 has a substantially flat second surface 242, wherein the step of polishing part of the dielectric layer 24 continues until the shallow recesses 30 are eliminated In addition, a distance D3 is reserved between the substantially flat second surface 242 of the dielectric layer 24 and the multilayer material pillar 16.

根據上述,在本發明實施例具記憶體模組之半導體結構的平坦化方法中,先使用遮罩層共形地覆蓋於介電層之具有凸起部的輪廓面,其中遮罩層與介電層之間具有研磨選擇比,並於遮罩層形成開口以對應於凸起部,經由開口以回蝕刻製程將凸起部去除後,再將遮罩層移除,最後對介電層進行化學機械研磨的平坦化製程。此種經由具有研磨選擇比之遮罩層的開口先將介電層的凸起部移除的設計,有助於最後進行平坦化研磨時,不需研磨掉過多的介電層,即可達到平坦化的要求,具有降低材料成本的優點。According to the above, in the planarization method of the semiconductor structure with the memory module of the embodiment of the present invention, a mask layer is used to conformally cover the contour surface of the dielectric layer with the protrusions, wherein the mask layer and the dielectric layer There is a polishing selection ratio between the electrical layers, and openings are formed in the mask layer to correspond to the protrusions. After the protrusions are removed by an etch-back process through the openings, the mask layer is removed, and finally the dielectric layer is processed The planarization process of chemical mechanical polishing. This design of removing the protrusions of the dielectric layer first through the openings of the mask layer with the polishing selection ratio helps to achieve the final planarization polishing without the need to grind off the excessive dielectric layer. The requirement of planarization has the advantage of reducing material costs.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field of the present invention can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to those defined by the attached patent scope.

10:半導體器件 12:基板結構 121:第一表面 14:記憶體模組 16:多層材料柱體 18:上電極層 20:磁穿隧接面堆疊層 22:下電極層 H1:高度 D1、D2、D3:間距 24:介電層 241:輪廓面 242:第二表面 26:凸起部 261:頂面 262:側壁 28:遮罩層 281:高頂部 282:開口 30:淺凹部 301:底部10: Semiconductor devices 12: Substrate structure 121: first surface 14: Memory module 16: Multi-layer material cylinder 18: Upper electrode layer 20: Magnetic tunnel junction stacking layer 22: Lower electrode layer H1: height D1, D2, D3: spacing 24: Dielectric layer 241: Contour surface 242: second surface 26: raised part 261: top surface 262: Sidewall 28: Mask layer 281: high top 282: open 30: shallow recess 301: bottom

圖1A至圖1G是本發明一實施例具記憶體模組之半導體結構的平坦化方法之流程的剖面結構示意圖。1A to 1G are schematic cross-sectional structure diagrams of the process of a planarization method of a semiconductor structure with a memory module according to an embodiment of the present invention.

24:介電層24: Dielectric layer

241:輪廓面241: Contour surface

28:遮罩層28: Mask layer

30:淺凹部30: shallow recess

301:底部301: bottom

Claims (10)

一種具記憶體模組之半導體結構的平坦化方法,包含: 提供一半導體器件,該半導體器件包含一基板結構及多個記憶體模組,該基板結構具有一第一表面,該些記憶體模組分別至少包含一多層材料柱體凸出於該第一表面; 形成一介電層於該基板結構上,且覆蓋該些多層材料柱體,其中該介電層具有一輪廓面,該輪廓面具有多個凸起部分別對應於該些多層材料柱體,該些凸起部分別具有一頂面及一側壁; 形成一遮罩層,該遮罩層共形地覆蓋於具有該些凸起部的該輪廓面上,其中該遮罩層包含多個高頂部分別覆蓋於該些凸起部的該頂面,該遮罩層與該介電層之間具有一研磨選擇比; 移除該遮罩層的該些高頂部,以於該遮罩層形成多個開口分別露出該些凸起部的該些頂面; 以該遮罩層作為遮罩,至少移除經由該些開口顯露的該些凸起部; 移除該遮罩層;以及 研磨部分該介電層,使該介電層具有實質平坦的一第二表面,其中,該第二表面與該些多層材料柱體之間保留一間距。A method for planarizing a semiconductor structure with a memory module includes: A semiconductor device is provided. The semiconductor device includes a substrate structure and a plurality of memory modules, the substrate structure has a first surface, and the memory modules respectively include at least a multilayer material pillar protruding from the first surface; A dielectric layer is formed on the substrate structure and covers the multilayer material pillars, wherein the dielectric layer has a contour surface, the contour surface has a plurality of protrusions corresponding to the multilayer material pillars, the The protrusions respectively have a top surface and a side wall; Forming a mask layer that conformally covers the contour surface with the protrusions, wherein the mask layer includes a plurality of high tops covering the top surfaces of the protrusions, respectively, There is a polishing selection ratio between the mask layer and the dielectric layer; Removing the high tops of the mask layer to form a plurality of openings in the mask layer to respectively expose the top surfaces of the protrusions; Using the mask layer as a mask to remove at least the protrusions exposed through the openings; Remove the mask layer; and Part of the dielectric layer is polished so that the dielectric layer has a second surface that is substantially flat, wherein a distance is maintained between the second surface and the multi-layer material pillars. 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,該研磨選擇比大於20。The method for planarizing a semiconductor structure with a memory module according to claim 1, wherein the polishing selection ratio is greater than 20. 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,該遮罩層包含一金屬層、金屬氮化物、金屬氧化物、氮化矽、氮碳化矽、氮氧化矽或其組合。The method for planarizing a semiconductor structure with a memory module according to claim 1, wherein the mask layer includes a metal layer, metal nitride, metal oxide, silicon nitride, silicon carbide nitride, silicon oxynitride Or a combination. 如請求項3所述之具記憶體模組之半導體結構的平坦化方法,其中,該金屬層的材質為鎢、銅、鈦、鉭、鉿、鋅、鋯或鋁。The method for planarizing a semiconductor structure with a memory module according to claim 3, wherein the material of the metal layer is tungsten, copper, titanium, tantalum, hafnium, zinc, zirconium or aluminum. 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,該介電層的材料為超低介電材料(ULK)。The method for planarizing a semiconductor structure with a memory module according to claim 1, wherein the material of the dielectric layer is an ultra-low dielectric material (ULK). 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,該些記憶體模組為磁阻式隨機存取記憶體(MRAM)。The method for planarizing a semiconductor structure with a memory module according to claim 1, wherein the memory modules are magnetoresistive random access memory (MRAM). 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,以一第一化學機械研磨製程移除該遮罩層的該些高頂部,以一第二化學機械研磨製程移除該遮罩層。The planarization method of a semiconductor structure with a memory module according to claim 1, wherein the high tops of the mask layer are removed by a first chemical mechanical polishing process, and a second chemical mechanical polishing process is used Remove the mask layer. 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,以回蝕刻製程移除該些凸起部直至該些凸起部去除且該輪廓面形成多個淺凹部,該些淺凹部的底部低於該遮罩層。The planarization method of a semiconductor structure with a memory module according to claim 1, wherein the protrusions are removed by an etch-back process until the protrusions are removed and the contour surface forms a plurality of shallow recesses, The bottom of the shallow recesses is lower than the mask layer. 如請求項8所述之具記憶體模組之半導體結構的平坦化方法,其中,研磨部分該介電層的步驟持續到該些淺凹部消除且該介電層具有實質平坦的該第二表面。The method for planarizing a semiconductor structure with a memory module according to claim 8, wherein the step of grinding a portion of the dielectric layer is continued until the shallow recesses are eliminated and the dielectric layer has the substantially flat second surface . 如請求項1所述之具記憶體模組之半導體結構的平坦化方法,其中,該遮罩層的厚度介於10奈米至20奈米之間。The method for planarizing a semiconductor structure with a memory module according to claim 1, wherein the thickness of the mask layer is between 10 nanometers and 20 nanometers.
TW108134365A 2019-09-24 2019-09-24 Planarization method for semiconductor structure having memory modules TWI830781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108134365A TWI830781B (en) 2019-09-24 2019-09-24 Planarization method for semiconductor structure having memory modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108134365A TWI830781B (en) 2019-09-24 2019-09-24 Planarization method for semiconductor structure having memory modules

Publications (2)

Publication Number Publication Date
TW202113973A true TW202113973A (en) 2021-04-01
TWI830781B TWI830781B (en) 2024-02-01

Family

ID=76604274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134365A TWI830781B (en) 2019-09-24 2019-09-24 Planarization method for semiconductor structure having memory modules

Country Status (1)

Country Link
TW (1) TWI830781B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10510544B2 (en) * 2016-11-29 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Non-volatile memory semiconductor device and manufacturing method thereof
TWI690988B (en) * 2017-09-01 2020-04-11 聯華電子股份有限公司 Method for forming semiconductor structure

Also Published As

Publication number Publication date
TWI830781B (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US9985075B2 (en) Dummy bottom electrode in interconnect to reduce CMP dishing
CN107887393B (en) Memory device with single bottom electrode layer
US11367623B2 (en) Structure and method to expose memory cells with different sizes
TWI717516B (en) Embedded memory device between noncontigous interconnect metal layers
US10043705B2 (en) Memory device and method of forming thereof
KR102295994B1 (en) Via landing enhancement for memory device
TWI635578B (en) Methods of fabricating an f-ram
JP2019054272A (en) Manufacturing techniques and corresponding devices for magnetic tunnel junction devices
US9269720B1 (en) Methods of fabricating semiconductor devices
CN111261773A (en) Semiconductor memory element and manufacturing method thereof
US20220271090A1 (en) Vertical memory devices
TWI830781B (en) Planarization method for semiconductor structure having memory modules
TWI792236B (en) Mram device with enhanced etch control and method of manufacturing the same
US11398599B2 (en) Methods for forming memory devices, and associated devices and systems
JP2007095898A (en) Semiconductor storage device and method of manufacturing same
US20240155837A1 (en) Semiconductor devices
JP4876231B2 (en) Manufacturing method of semiconductor device
JP5755314B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2012015540A (en) Semiconductor device