TWI690988B - Method for forming semiconductor structure - Google Patents

Method for forming semiconductor structure Download PDF

Info

Publication number
TWI690988B
TWI690988B TW106129949A TW106129949A TWI690988B TW I690988 B TWI690988 B TW I690988B TW 106129949 A TW106129949 A TW 106129949A TW 106129949 A TW106129949 A TW 106129949A TW I690988 B TWI690988 B TW I690988B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
item
patent application
layer
semiconductor manufacturing
Prior art date
Application number
TW106129949A
Other languages
Chinese (zh)
Other versions
TW201913785A (en
Inventor
施宇隆
李昆儒
黃任鵬
劉昕融
薛琮翰
侯朝鐘
蔡傅守
陸俊岑
劉書巖
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW106129949A priority Critical patent/TWI690988B/en
Publication of TW201913785A publication Critical patent/TW201913785A/en
Application granted granted Critical
Publication of TWI690988B publication Critical patent/TWI690988B/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The present invention provides a semiconductor process, the process including: firstly, a substrate comprising a plurality of gate structures is provided, followed by forming a first dielectric layer on the substrate, and each of the gate structures being located on the substrate in a first dielectric layer, and then sequentially forming a second dielectric layer and a third dielectric layer on the first dielectric layer, and the third dielectric layer having a non-planar top surface. A planarization process is then performed, to remove a portion of the third dielectric layer, a portion of the second dielectric layer, a portion of the first dielectric layer, and part of the gate structure.

Description

半導體製程方法 Semiconductor manufacturing method

本發明係有關於半導體製程領域,尤其是一種減少半導體平坦化製程中產生凹陷(dishing)狀況的方法。 The present invention relates to the field of semiconductor manufacturing processes, and in particular to a method for reducing the occurrence of dishing during semiconductor planarization processes.

半導體製程中,平坦化步驟,例如化學機械研磨(CMP)是相當常見的步驟。當一基底上不同區域(例如元件區與周邊區)的半導體元件密度不同時,容易影響平坦化步驟的速率。尤其是在元件密度較低的區域中,由於平坦化步驟的速率較快,因此容易產生凹陷(dishing)現象。這種情形也經常發生在一基底上包含有不同高度的元件。在一些情況中,基底上的同一層介電層中包含有高度不同的元件,每一個元件頂部都設置有停止層,但平坦化的表面會停留在最高的元件頂部。因為平坦化移除介電層的速率遠快於移除停止層的速率,因此仍可能會移除部分周圍的介電層等材料,並對半導體元件的良率產生影響。 In semiconductor manufacturing processes, planarization steps, such as chemical mechanical polishing (CMP), are quite common steps. When the density of semiconductor devices in different regions (such as device regions and peripheral regions) on a substrate is different, it is easy to affect the rate of the planarization step. Especially in a region with a low element density, because the rate of the planarization step is relatively fast, a phenomenon of dishing is likely to occur. This situation also often occurs when a substrate contains components of different heights. In some cases, the same dielectric layer on the substrate contains elements with different heights, and a stop layer is provided on the top of each element, but the planarized surface will stay on top of the highest element. Because the rate of planarizing the removal of the dielectric layer is much faster than the rate of removing the stop layer, it may still remove some of the surrounding dielectric layer and other materials and affect the yield of the semiconductor device.

本發明提供一種半導體製程,包含以下步驟:首先,提供一基底,該基底上包含有複數個閘極結構,接著形成一第一介電層,位於該基底上,且各該閘極結構位於該第一介電層中,然後依序形成一第二介電層以及一第三介電層於該第一介電層上,且該第三介電層具有一非平坦頂面,之後進行一平坦 化步驟,移除部分該第三介電層與該第二介電層,以及進行一蝕刻步驟,移除部分該第三介電層、部分該第二介電層、部分該第一介電層以及部分各該閘極結構。 The present invention provides a semiconductor manufacturing process including the following steps: First, a substrate is provided, which includes a plurality of gate structures, and then a first dielectric layer is formed on the substrate, and each of the gate structures is located on the substrate In the first dielectric layer, a second dielectric layer and a third dielectric layer are sequentially formed on the first dielectric layer, and the third dielectric layer has an uneven top surface, and then a flat Step, remove part of the third dielectric layer and the second dielectric layer, and perform an etching step to remove part of the third dielectric layer, part of the second dielectric layer, part of the first dielectric The gate structure of each layer and part.

本發明的其中一特徵在於,先以高密度電漿化學氣相沉積(HDP CVD)的方式形成第二介電層,並且放大原先凹凸表面的陡峭程度,先形成明顯的最高點,接下來在最高點上覆蓋較不容易被移除的第三介電層(例如氮化矽),並產生新的最高點。接下來,平坦化步驟首先會接觸並移除第三介電層的最高點。在此過程中位於最高點的第三介電層會首先被移除,但也同時降低了其他部份產生凹陷的可能性,產生一個相對較為平坦的頂面,幫助後續的回蝕刻步驟可以均勻地移除剩餘的部分半導體元件,提高製程良率。 One of the features of the present invention is that the second dielectric layer is formed by high-density plasma chemical vapor deposition (HDP CVD), and the steepness of the original uneven surface is amplified to form a clear highest point first, followed by The highest point is covered with a third dielectric layer (such as silicon nitride) that is less likely to be removed, and a new highest point is generated. Next, the planarization step first contacts and removes the highest point of the third dielectric layer. In this process, the third dielectric layer at the highest point will be removed first, but at the same time, the possibility of depressions in other parts is reduced, resulting in a relatively flat top surface, which helps the subsequent etch back steps to be uniform Remove the remaining part of the semiconductor device to improve the process yield.

10:基底 10: base

12:閘極結構 12: Gate structure

12A:閘極介電層 12A: Gate dielectric layer

12B:閘極導電層 12B: Gate conductive layer

12C:遮罩層 12C: Mask layer

112:閘極結構 112: Gate structure

212:閘極結構 212: Gate structure

14:側壁子 14: Side wall

16:接觸蝕刻停止層 16: Contact etching stop layer

20:第一介電層 20: the first dielectric layer

20a:頂面 20a: top surface

22:第二介電層 22: Second dielectric layer

22a:頂面 22a: top surface

22b:最高點 22b: highest point

22c:頂面 22c: top surface

24:第三介電層 24: third dielectric layer

24b:最高點 24b: highest point

30:磨盤 30: Grinding disc

P1:平坦化步驟 P1: Flattening step

P2:回蝕刻步驟 P2: Back etching step

W1:寬度 W1: width

第1圖至第7圖繪示本發明半導體製程的結構示意圖。 1 to 7 are schematic structural diagrams of the semiconductor manufacturing process of the present invention.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 In order to enable those of ordinary skill in the art of the present invention to further understand the present invention, the preferred embodiments of the present invention are specifically enumerated below, and in conjunction with the accompanying drawings, the composition of the present invention and the desired effects are described in detail .

為了方便說明,本發明之各圖式僅為示意以更容易了解本發明,其詳細的比例可依照設計的需求進行調整。在文中所描述對於圖形中相對元件之上下關係,在本領域之人皆應能理解其係指物件之相對位置而言,因此皆可以 翻轉而呈現相同之構件,此皆應同屬本說明書所揭露之範圍,在此容先敘明。 For the convenience of description, the drawings of the present invention are only schematic diagrams to make it easier to understand the present invention, and the detailed proportions thereof can be adjusted according to design requirements. As described in the text, the relative relationship between the relative elements in the figure should be understood by those skilled in the art in terms of the relative position of the objects, so they can be Turning over and presenting the same components, all of which should belong to the scope disclosed in this manual, and will be described here first.

請參考第1圖,首先,本發明提供一基底10,基底10上可能包含有鰭狀結構(圖未示),基底10上有複數個閘極結構12,其中該些閘極結構12中至少包含有兩個不同高度的閘極結構(例如第1圖中高度較低的閘極結構112與高度較高的閘極結構212),各閘極結構12包含有閘極介電層12A與閘極導電層12B以及一遮罩層12C。其中閘極介電層12A的材料可以包括氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON),或包含介電常數大於4的介電材料,例如係選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)、鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)、或其組合所組成之群組。閘極導電層12B的材料可以包括未摻雜的多晶矽、重摻雜的多晶矽、或是單層或多層金屬層,金屬層例如功函數金屬層,阻擋層和低電阻金屬層等。遮罩層12C可包括單層結構或多層的介電材料,例如氧化矽(SiO)、氮化矽(SiN)、碳化矽(SiC)、碳氮化矽(SiCN),氮氧化矽(SiON)或者其組合。 Please refer to FIG. 1. First, the present invention provides a substrate 10. The substrate 10 may include a fin structure (not shown). The substrate 10 has a plurality of gate structures 12, wherein at least the gate structures 12 It includes two gate structures with different heights (for example, the gate structure 112 with a lower height and the gate structure 212 with a higher height in FIG. 1), and each gate structure 12 includes a gate dielectric layer 12A and a gate The polar conductive layer 12B and a mask layer 12C. The material of the gate dielectric layer 12A may include silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), or a dielectric material containing a dielectric constant greater than 4, for example, selected from hafnium oxide ( hafnium oxide, HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), alumina (aluminum oxide, Al 2 O 3 ), lanthanum oxide ( lanthanum oxide, La 2 O 3 ), tantalum oxide (tantalum oxide, Ta 2 O 5 ), yttrium oxide (Yttrium oxide, Y 2 O 3 ), zirconium oxide (zirconium oxide, ZrO 2 ), strontium titanate oxide , SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrconium oxide, HfZrO 4 ), strontium bismuth tantalate (Strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT) , Lead zirconate titanate (lead zirconate titanate, PbZrxTi 1 -xO 3 , PZT), barium strontium titanate (barium strontium titanate, BaxSr 1 -xTiO 3 , BST), or a combination thereof. The material of the gate conductive layer 12B may include undoped polysilicon, heavily doped polysilicon, or a single layer or multiple layers of metal layers, such as work function metal layers, barrier layers, and low resistance metal layers. The mask layer 12C may include a single-layer structure or multiple layers of dielectric materials, such as silicon oxide (SiO), silicon nitride (SiN), silicon carbide (SiC), silicon carbon nitride (SiCN), silicon oxynitride (SiON) Or a combination.

另外,此半導體結構中可能更包含有側壁子14位於各閘極結構12的兩側,以及接觸蝕刻停止層16覆蓋於閘極結構12與側壁子14。關於上述閘極結構12、側壁子14與接觸蝕刻停止層16等元件特性,屬於本領域的習知技術,在 此不多加贅述。 In addition, the semiconductor structure may further include side walls 14 located on both sides of each gate structure 12, and a contact etch stop layer 16 covering the gate structure 12 and the side walls 14. The characteristics of the above-mentioned gate structure 12, the side wall 14 and the contact etch stop layer 16, etc., belong to the conventional technology in the art, This will not go into details.

接下來,形成一第一介電層20於基底10上,本實施例中,第一介電層20材質例如為一氧化矽層,以流動化學氣相沉積(flowable chemical vapor deposition,FCVD)的方式形成於基底10上,並且完整地覆蓋各閘極結構12(包含閘極結構112與閘極結構212)、側壁子14以及接觸蝕刻停止層16。值得注意的是,以流動化學氣相沉積的方式所形成的第一介電層20,其具有材質較軟、具有一定的黏性與可流動的特性。因此當形成於凹凸不平的表面時,將會使得第一介電層20的頂面20a也呈現凹凸不平的表面。尤其是位於較高閘極結構212的上方,第一介電層20的表面20a會較其周圍的其他表面更為凸出。 Next, a first dielectric layer 20 is formed on the substrate 10. In this embodiment, the material of the first dielectric layer 20 is, for example, a silicon oxide layer, which is formed by flowable chemical vapor deposition (FCVD). Is formed on the substrate 10 and completely covers each gate structure 12 (including the gate structure 112 and the gate structure 212), the sidewall 14 and the contact etch stop layer 16. It is worth noting that the first dielectric layer 20 formed by the method of flow chemical vapor deposition has the characteristics of softer material, certain viscosity and flowability. Therefore, when it is formed on an uneven surface, the top surface 20a of the first dielectric layer 20 will also exhibit an uneven surface. Especially above the higher gate structure 212, the surface 20a of the first dielectric layer 20 will be more protruding than other surfaces around it.

接下來,如第2圖所示,在第一介電層20上方,以高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDP CVD)的方式形成一第二介電層22覆蓋於其上。其中第二介電層22的材質例如為氧化矽層。值得注意的是,雖然第一介電層20與第二介電層22材質都可包含例如氧化矽層,但是由於其形成的方式不同,因此也會一定程度上改變材料的特性。舉例來說,申請人發現以高密度電漿化學氣相沉積的方式形成第二介電層22,其材質具有較硬的特性,而且若形成於凹凸不平的表面時,不但會順著該凹凸不平的表面生成,且會加大凹凸表面的粗糙度。換句話說,若原先的凹凸表面有較為突出的部分,則以高密度電漿化學氣相沉積的方式形成第二介電層22後,該突出的部分會更為明顯。從第2圖來看,第二介電層22具有一頂面22a,頂面22a與頂面20a形狀不同。其中該頂面22a又包含有一最高點22b位於閘極結構212上方。也就是說,從最高點22b到下方第一介電層20的頂面20a的垂直距離,將會大於頂面22a的其他區域至下方第一介電層20的頂面20a的垂直距離。此外,最高點22b到下方基 底10表面的垂直距離,也會大於頂面22a的其他區域至下方基底10表面的垂直距離。 Next, as shown in FIG. 2, a second dielectric layer 22 is formed over the first dielectric layer 20 by means of high density plasma chemical vapor deposition (HDP CVD) On it. The material of the second dielectric layer 22 is, for example, a silicon oxide layer. It is worth noting that although the materials of the first dielectric layer 20 and the second dielectric layer 22 may include, for example, a silicon oxide layer, due to their different formation methods, the characteristics of the material will also be changed to a certain extent. For example, the applicant found that the second dielectric layer 22 is formed by high-density plasma chemical vapor deposition. The material of the second dielectric layer 22 has a harder characteristic, and if it is formed on an uneven surface, it will not only follow the unevenness Uneven surfaces are generated and will increase the roughness of the uneven surface. In other words, if the original uneven surface has a more protruding part, the protruding part will be more obvious after the second dielectric layer 22 is formed by high density plasma chemical vapor deposition. As seen from FIG. 2, the second dielectric layer 22 has a top surface 22a, and the top surface 22a and the top surface 20a have different shapes. The top surface 22a includes a highest point 22b above the gate structure 212. That is, the vertical distance from the highest point 22b to the top surface 20a of the lower first dielectric layer 20 will be greater than the vertical distance from other areas of the top surface 22a to the top surface 20a of the lower first dielectric layer 20. In addition, the highest point 22b to the base below The vertical distance of the surface of the bottom 10 will also be greater than the vertical distance from other areas of the top surface 22a to the surface of the base 10 below.

接著如第3圖所示,另外形成一第三介電層24於第二介電層22上,其中第三介電層24例如為一氮化矽層,厚度較佳介於30至60埃,但不限於此。相較於第二介電層22,第三介電層24的厚度較薄(其中第二介電層22的厚度約為500埃以上),因此第三介電層24將會共形地覆蓋在第二介電層22的頂面22a上,也包括覆蓋於最高點22b上,並且形成新的最高點24b。 Next, as shown in FIG. 3, a third dielectric layer 24 is further formed on the second dielectric layer 22, wherein the third dielectric layer 24 is, for example, a silicon nitride layer, and the thickness is preferably between 30 and 60 angstroms. But it is not limited to this. Compared with the second dielectric layer 22, the thickness of the third dielectric layer 24 is thinner (the thickness of the second dielectric layer 22 is about 500 angstroms or more), so the third dielectric layer 24 will cover conformally On the top surface 22a of the second dielectric layer 22, the uppermost point 22b is also covered, and a new highest point 24b is formed.

接著如第4圖所示,對半導體結構進行一平坦化步驟P1,例如為一化學機械研磨(CMP)製程。值得注意的是,化學機械研磨過程中所使用的磨盤(或拋光墊)30是一平坦面,因此當磨盤30由上方逐漸接近半導體結構時,首先會接觸到最高點24b。由於第三介電層24的材質例如為氮化矽,平坦化步驟P1的速率將會減緩。具體來說,平坦化步驟P1中移除第三介電層24的速率將會遠小於移除第二介電層22的速率(舉例來說,移除第二介電層22的速率將會是移除第三介電層24速率的20倍以上)。此時,平坦化步驟P1僅會移除最高點24b以及其周圍的一小部分區域,而暫時不會移除第三介電層24其他表面較低的區域。此外,化學機械研磨過程中所使用的磨盤30可選擇硬度較高的磨盤,可進一步確保平坦化步驟P1僅會移除最高點24b以及其周圍的一小部分區域,而暫時不會移除第三介電層24其他表面較低的區域。 Next, as shown in FIG. 4, a planarization step P1 is performed on the semiconductor structure, for example, a chemical mechanical polishing (CMP) process. It is worth noting that the grinding disc (or polishing pad) 30 used in the chemical mechanical polishing process is a flat surface, so when the grinding disc 30 gradually approaches the semiconductor structure from above, it first contacts the highest point 24b. Since the material of the third dielectric layer 24 is, for example, silicon nitride, the rate of the planarization step P1 will slow down. Specifically, the rate of removing the third dielectric layer 24 in the planarization step P1 will be much smaller than the rate of removing the second dielectric layer 22 (for example, the rate of removing the second dielectric layer 22 will be It is more than 20 times the rate of removing the third dielectric layer 24). At this time, the planarization step P1 only removes the highest point 24b and a small part of the surrounding area, and temporarily does not remove the other areas of the third dielectric layer 24 having lower surfaces. In addition, the grinding disc 30 used in the chemical mechanical grinding process can select a grinding disc with higher hardness, which can further ensure that the flattening step P1 will only remove the highest point 24b and a small part of the surrounding area, and will not temporarily remove the first The other areas of the lower surface of the third dielectric layer 24 are.

如第5圖所示,隨著平坦化步驟P1的進行,最高點24b的第三介電層24將會被移除而曝露出一部分下方的第二介電層22。然而,由於最高點24b原先呈現尖峰形狀,因此即使曝露出部分第二介電層22,所曝露出的第二介電層22 的範圍(例如寬度等)也相對較小。如第5圖所示,假設露出的第二介電層22寬度為W1,此時寬度W1僅佔整體半導體結構的面積不到十分之一。如前所述,平坦化步驟過程中產生的凹陷現象,通常發生在空曠、大面積且移除速率快的平坦化步驟過程中,由於第二介電層22所曝露出的部分較少,因此不滿足空曠、大面積的條件,可以有效避免凹陷現象的發生。 As shown in FIG. 5, as the planarization step P1 proceeds, the third dielectric layer 24 at the highest point 24b will be removed to expose a portion of the second dielectric layer 22 underneath. However, since the highest point 24b originally exhibits a peak shape, even if a part of the second dielectric layer 22 is exposed, the exposed second dielectric layer 22 The range (eg width, etc.) is also relatively small. As shown in FIG. 5, assuming that the width of the exposed second dielectric layer 22 is W1, the width W1 only occupies less than one-tenth of the area of the entire semiconductor structure. As mentioned above, the sag phenomenon generated during the planarization step usually occurs during an open, large-area planarization step with a fast removal rate. Since the second dielectric layer 22 is exposed to a small amount, therefore Failure to meet the conditions of open and large areas can effectively avoid the occurrence of depressions.

另外,平坦化步驟P1的速率也受到壓力的影響。更明確地說,一開始僅有最高點24b接觸磨盤30,因此磨盤30所提供的向下壓力將會集中於最高點24b。隨著平坦化步驟P1繼續進行,第二介電層22被曝露的部分將會愈來愈多。但是此時第三介電層24的頂面也趨於平坦,也就是將會有更多的第三介電層24表面接觸到磨盤30,比起一開始僅有最高點24b接觸磨盤30,第三介電層24的每一個位置所承受的壓力將被分散而減小。因此整體平坦化步驟P1的速率也會減緩。因此雖然此時有較大面積的第二介電層被曝露,但平坦化步驟P1的速率減緩,也仍可避免移除介電層的速率過快,降低造成凹陷現象的可能性。 In addition, the rate of the flattening step P1 is also affected by the pressure. More specifically, at the beginning, only the highest point 24b contacts the grinding disc 30, so the downward pressure provided by the grinding disc 30 will be concentrated on the highest point 24b. As the planarization step P1 continues, the exposed portion of the second dielectric layer 22 will be more and more. However, at this time, the top surface of the third dielectric layer 24 also tends to be flat, that is, more surface of the third dielectric layer 24 will contact the grinding disc 30, and only the highest point 24b contacts the grinding disc 30 at the beginning. The pressure on each position of the third dielectric layer 24 will be dispersed and reduced. Therefore, the rate of the overall flattening step P1 will also slow down. Therefore, although a larger area of the second dielectric layer is exposed at this time, the rate of the planarization step P1 is slowed, and the rate of removing the dielectric layer is too fast, which reduces the possibility of causing a sag phenomenon.

如第6圖所示,將部分的第三介電層24移除後,曝露出第二介電層22,即停止平坦化步驟P1。此時,第二介電層22具有一相對較為平坦的頂面22c。另外,本發明的平坦化步驟P1並不會移除第一介電層20或是閘極結構12。如第7圖所示,接下來進行一回蝕刻步驟P2,回蝕刻步驟P2可能包含一次或多次的蝕刻步驟,以移除剩餘的第三介電層24、剩餘的第二介電層22、部分的第一介電層20、部分的接觸蝕刻停止層16、部分的側壁子14以及部分的閘極結構12。較佳而言,回蝕刻步驟P2進行後,各閘極結構12具有相同高度的頂面。 As shown in FIG. 6, after removing part of the third dielectric layer 24, the second dielectric layer 22 is exposed, that is, the planarization step P1 is stopped. At this time, the second dielectric layer 22 has a relatively flat top surface 22c. In addition, the planarization step P1 of the present invention does not remove the first dielectric layer 20 or the gate structure 12. As shown in FIG. 7, an etching step P2 is performed next. The etching back step P2 may include one or more etching steps to remove the remaining third dielectric layer 24 and the remaining second dielectric layer 22 , Part of the first dielectric layer 20, part of the contact etch stop layer 16, part of the side wall 14 and part of the gate structure 12. Preferably, after the etching back step P2 is performed, each gate structure 12 has a top surface with the same height.

本發明的其中一特徵在於,先以高密度電漿化學氣相沉積(HDP CVD) 的方式形成第二介電層22,並且增強或放大原先凹凸表面的陡峭程度,先形成明顯的最高點22b,接下來在最高點22b上覆蓋較不容易被移除的第三介電層24(例如氮化矽),並產生新的最高點24b。接下來,平坦化步驟P1首先會接觸並移除第三介電層24的最高點24b。在此過程中位於最高點24b的第三介電層24會首先被移除,但也同時降低了其他部份產生凹陷的可能性,產生一個相對較為平坦的頂面,幫助後續的回蝕刻步驟可以均勻地移除剩餘的部分半導體元件,提高製程良率。 One of the features of the present invention is that high density plasma chemical vapor deposition (HDP CVD) Form the second dielectric layer 22, and enhance or magnify the steepness of the original uneven surface, first form a clear highest point 22b, and then cover the highest point 22b with a third dielectric layer 24 that is less likely to be removed (Silicon nitride, for example), and create a new highest point 24b. Next, the planarization step P1 first contacts and removes the highest point 24b of the third dielectric layer 24. During this process, the third dielectric layer 24 at the highest point 24b will be removed first, but at the same time it reduces the possibility of depressions in other parts, resulting in a relatively flat top surface, which helps the subsequent etch-back step The remaining semiconductor elements can be removed uniformly, improving the process yield.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:基底 10: base

12:閘極結構 12: Gate structure

12A:閘極介電層 12A: Gate dielectric layer

12B:閘極導電層 12B: Gate conductive layer

12C:遮罩層 12C: Mask layer

112:閘極結構 112: Gate structure

212:閘極結構 212: Gate structure

14:側壁子 14: Side wall

16:接觸蝕刻停止層 16: Contact etching stop layer

20:第一介電層 20: the first dielectric layer

20a:頂面 20a: top surface

22:第二介電層 22: Second dielectric layer

22c:頂面 22c: top surface

24:第三介電層 24: third dielectric layer

30:磨盤 30: Grinding disc

W1:寬度 W1: width

Claims (10)

一種半導體製程,包含以下步驟:提供一基底,該基底上包含有複數個閘極結構;形成一第一介電層,位於該基底上,且各該閘極結構位於該第一介電層中;依序形成一第二介電層以及一第三介電層於該第一介電層上,且該第三介電層具有一非平坦頂面;進行一平坦化步驟,移除部分該第三介電層與該第二介電層,其中在該平坦化步驟過程中,移除該第二介電層的速率是移除該第三介電層的速率的20倍以上;以及進行一蝕刻步驟,移除部分該第三介電層、部分該第二介電層、部分該第一介電層以及部分各該閘極結構。 A semiconductor manufacturing process includes the following steps: providing a substrate with a plurality of gate structures on the substrate; forming a first dielectric layer on the substrate, and each of the gate structures in the first dielectric layer Forming a second dielectric layer and a third dielectric layer on the first dielectric layer in sequence, and the third dielectric layer has an uneven top surface; performing a planarization step to remove part of the A third dielectric layer and the second dielectric layer, wherein during the planarization step, the rate of removing the second dielectric layer is more than 20 times the rate of removing the third dielectric layer; and proceeding In an etching step, part of the third dielectric layer, part of the second dielectric layer, part of the first dielectric layer and part of each gate structure are removed. 如申請專利範圍第1項所述的半導體製程,其中該複數個閘極結構至少包含兩個高度不同的閘極結構。 The semiconductor manufacturing process as described in item 1 of the patent application scope, wherein the plurality of gate structures include at least two gate structures with different heights. 如申請專利範圍第1項所述的半導體製程,其中該第一介電層係一藉由流動化學氣相沉積(FCVD)步驟所形成的一氧化層。 The semiconductor process as described in item 1 of the patent application range, wherein the first dielectric layer is an oxide layer formed by a flow chemical vapor deposition (FCVD) step. 如申請專利範圍第1項所述的半導體製程,其中該第二介電層係一藉由高密度電漿化學氣相沉積(HDP CVD)步驟所形成的一氧化層。 The semiconductor process described in item 1 of the patent application scope, wherein the second dielectric layer is an oxide layer formed by a high density plasma chemical vapor deposition (HDP CVD) step. 如申請專利範圍第1項所述的半導體製程,其中該第三介電層為一氮化矽層。 The semiconductor manufacturing process as described in item 1 of the patent application scope, wherein the third dielectric layer is a silicon nitride layer. 如申請專利範圍第5項所述的半導體製程,其中該第三介電層的厚度介於30埃至60埃。 The semiconductor process as described in item 5 of the patent application range, wherein the thickness of the third dielectric layer is between 30 Angstroms and 60 Angstroms. 如申請專利範圍第1項所述的半導體製程,其中該非平坦頂面具有一最高點,且該平坦化步驟最先移除位於該最高點上的該第三介電層。 The semiconductor manufacturing process as described in item 1 of the patent scope, wherein the non-flat top mask has a highest point, and the planarization step first removes the third dielectric layer on the highest point. 如申請專利範圍第1項所述的半導體製程,其中在該平坦化步驟進行 前,該第一介電層與該第二介電層的頂面均為非平坦表面,且該第一介電層與該第二介電層的該非平坦表面具有不同的表面形狀。 The semiconductor process as described in item 1 of the patent application scope, in which the planarization step is performed Before, the top surfaces of the first dielectric layer and the second dielectric layer are both uneven surfaces, and the uneven surfaces of the first dielectric layer and the second dielectric layer have different surface shapes. 如申請專利範圍第1項所述的半導體製程,其中該蝕刻步驟進行後,各該閘極結構具有相同的高度。 The semiconductor manufacturing process as described in item 1 of the patent application scope, wherein after the etching step is performed, each gate structure has the same height. 如申請專利範圍第1項所述的半導體製程,其中該平坦化步驟不移除該第一介電層。 The semiconductor manufacturing process as described in item 1 of the patent application scope, wherein the planarization step does not remove the first dielectric layer.
TW106129949A 2017-09-01 2017-09-01 Method for forming semiconductor structure TWI690988B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106129949A TWI690988B (en) 2017-09-01 2017-09-01 Method for forming semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129949A TWI690988B (en) 2017-09-01 2017-09-01 Method for forming semiconductor structure

Publications (2)

Publication Number Publication Date
TW201913785A TW201913785A (en) 2019-04-01
TWI690988B true TWI690988B (en) 2020-04-11

Family

ID=66992152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129949A TWI690988B (en) 2017-09-01 2017-09-01 Method for forming semiconductor structure

Country Status (1)

Country Link
TW (1) TWI690988B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI830781B (en) * 2019-09-24 2024-02-01 聯華電子股份有限公司 Planarization method for semiconductor structure having memory modules

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM485554U (en) * 2014-05-19 2014-09-01 Dan Chief Entpr Co Ltd Riveting device for riveting transmission line and substrate
US20160086966A1 (en) * 2014-09-24 2016-03-24 Macronix International Co., Ltd. Semiconductor memory array with air gaps between adjacent gate structures and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM485554U (en) * 2014-05-19 2014-09-01 Dan Chief Entpr Co Ltd Riveting device for riveting transmission line and substrate
US20160086966A1 (en) * 2014-09-24 2016-03-24 Macronix International Co., Ltd. Semiconductor memory array with air gaps between adjacent gate structures and method of manufacturing the same

Also Published As

Publication number Publication date
TW201913785A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US10178309B2 (en) Method for manufacturing the semiconductor structure
US9263540B1 (en) Metal gate structure
TWI601290B (en) Metal gate structure and manufacturing method thereof
TWI724315B (en) Device having work function metal stack and method of forming the same
US9799769B2 (en) Semiconductor device and method for fabricating the same
US9312365B2 (en) Manufacturing method of non-planar FET
TWI621266B (en) Semiconductor device and manufacturing method thereof
US9666471B2 (en) Semiconductor structure having gap within gate and cap and process thereof
US9748144B1 (en) Method of fabricating semiconductor device
TWI690988B (en) Method for forming semiconductor structure
US9870950B2 (en) Method of manufacturing semiconductor device
US20150214114A1 (en) Manufacturing method of semiconductor structure
TWI695477B (en) Semiconductor structure and manufacturing method thereof
CN212182324U (en) Semiconductor structure
US8470663B2 (en) Methods of manufacturing a semiconductor device
TWI533360B (en) Semiconductor device having metal gate and manufacturing method thereof
KR101959626B1 (en) Semiconductor arrangement and method of forming
TWI662599B (en) Semiconductor device and fabrication method thereof
TWI642184B (en) Non-planar transistor and method of forming the same
TW202004920A (en) Semiconductor structure having metal gate and forming method thereof
CN111696864B (en) Semiconductor device and method of forming the same
CN111769111B (en) Semiconductor structure
CN111599677B (en) Semiconductor structure and forming method thereof
US10559655B1 (en) Semiconductor device and method for manufacturing the same
US9443952B2 (en) Method of forming semiconductor device