TW202113379A - Method of performance detection of photovoltaic device - Google Patents

Method of performance detection of photovoltaic device Download PDF

Info

Publication number
TW202113379A
TW202113379A TW108135220A TW108135220A TW202113379A TW 202113379 A TW202113379 A TW 202113379A TW 108135220 A TW108135220 A TW 108135220A TW 108135220 A TW108135220 A TW 108135220A TW 202113379 A TW202113379 A TW 202113379A
Authority
TW
Taiwan
Prior art keywords
solar cell
data
electrical data
battery
battery electrical
Prior art date
Application number
TW108135220A
Other languages
Chinese (zh)
Other versions
TWI709758B (en
Inventor
施圳豪
黃厚穎
陳俊亦
李岳穆
楊凱翔
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW108135220A priority Critical patent/TWI709758B/en
Application granted granted Critical
Publication of TWI709758B publication Critical patent/TWI709758B/en
Publication of TW202113379A publication Critical patent/TW202113379A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention is a method for performance detecting of a photovoltaic device. When a first photovoltaic device and a second photovoltaic device start to obtain a first photovoltaic electrical data, and a data recording device transmit to the data server. Perform a first short circuit and a second short circuit obtain a second photovoltaic electrical data and a third photovoltaic electrical data. Using the first photovoltaic electrical data and the second photovoltaic electrical data, the third photovoltaic electrical data difference calculation, obtaining a fourth photovoltaic electrical data and a fifth photovoltaic electrical data, Perform a photovoltaic electrical average data to respectively calculate the difference between the fourth photovoltaic electrical data and the fifth photovoltaic electrical data, obtaining a sixth photovoltaic electrical data and a seventh photovoltaic electrical data. Comparing the photovoltaic reference values of one of the data servers

Description

太陽能電池效能偵測之方法Method for detecting solar cell performance

本發明係關於一種偵測方法,特別是一種太陽能電池效能偵測之方法。The present invention relates to a detection method, especially a method for solar cell performance detection.

台灣為太陽能電池模組的生產大國,並結合政府的非核家園政策,在國內具有龐大的內需市場,在加上多年的技術開發與海內外市場的拓展經驗,因此,不論在太陽能電池模組的生產、發電系統的建置以及發電場域之運轉皆具有世界一流的水準,故整體太陽能產業的發展十分的完整。Taiwan is a major producer of solar cell modules, and combined with the government’s non-nuclear homes policy, it has a huge domestic demand market in the country, coupled with years of technology development and experience in expanding domestic and overseas markets. Therefore, whether it is in solar cell modules The construction of production and power generation systems and the operation of power generation fields are of world-class standards, so the development of the overall solar energy industry is very complete.

上述之太陽能電池(亦稱太陽能晶片或光電池)是一種將太陽光通過光生伏打效應轉成電能的裝置。太陽能電池事實上並不是電池,這是翻譯後的名詞,原本的意思為太陽能單元。The aforementioned solar cell (also known as solar wafer or photovoltaic cell) is a device that converts sunlight into electrical energy through the photovoltaic effect. Solar cells are not actually batteries. This is a translated term, which originally meant solar cells.

在常見的半導體太陽能電池中,透過適當的能階設計,便可有效的吸收太陽所發出的光,並產生電壓與電流。這種現象又被稱為太陽能光伏。In common semiconductor solar cells, through proper energy level design, the light emitted by the sun can be effectively absorbed, and voltage and current can be generated. This phenomenon is also called solar photovoltaic.

太陽能發電是一種可再生的環保發電方式,其發電過程中不會產生二氧化碳等溫室氣體,因此不會對環境造成污染;但太陽能電池板的生產過程會產生大量有毒廢水,需另行處置。另外棄置的太陽能電池也是問題,若沒有妥善的回收機制,會對環境造成污染。Solar power generation is a renewable and environmentally friendly power generation method. It does not produce carbon dioxide and other greenhouse gases during the power generation process, so it will not pollute the environment; however, the production process of solar panels generates a large amount of toxic waste water, which needs to be disposed of separately. In addition, discarded solar cells are also a problem. If there is no proper recycling mechanism, it will pollute the environment.

按照製作材料分為矽基半導體電池、CdTe薄膜電池、CIGS薄膜電池、染料敏化薄膜電池、有機材料電池等。其中矽電池又分為單晶矽電池、多晶矽電池和無定形體矽薄膜電池等。對於太陽能電池來說最重要的參數是轉換效率,目前在實驗室所研發的矽基太陽能電池中(並非矽空氣電池),單晶矽電池效率為25.0%,多晶矽電池效率為20.4%,CIGS薄膜電池效率達19.8%,CdTe薄膜電池效率達19.6%,非晶矽(無定形矽)薄膜電池的效率為10.1%。According to the production materials, it is divided into silicon-based semiconductor batteries, CdTe thin-film batteries, CIGS thin-film batteries, dye-sensitized thin-film batteries, organic materials batteries, etc. Among them, silicon batteries are further divided into single crystal silicon batteries, polycrystalline silicon batteries and amorphous silicon thin film batteries. The most important parameter for solar cells is the conversion efficiency. Among the silicon-based solar cells currently developed in the laboratory (not silicon air cells), the efficiency of monocrystalline silicon cells is 25.0%, the efficiency of polycrystalline silicon cells is 20.4%, and CIGS thin film The cell efficiency is 19.8%, the CdTe thin-film cell efficiency is 19.6%, and the amorphous silicon (amorphous silicon) thin-film cell efficiency is 10.1%.

然而雖然我國在製造太陽能電池的技術非常成熟,但是在太陽能電池的系統維護端卻是近幾年才開始大力發展,隨著太陽能電池的裝設比例增高,也使的太陽能電池的壽命以及太陽能電池面板的檢測精準度受到了重視,因為太陽能電池會因為天氣、溫度、及空氣和紫外線的原因而受損,相對的在依靠太陽能發電的電廠就得付出較多的花費在進行太陽能電池的檢測及維修。However, although my country’s technology for manufacturing solar cells is very mature, the system maintenance side of solar cells has only begun to vigorously develop in recent years. As the proportion of solar cells increases, the life of solar cells and solar cells The detection accuracy of the panel has been valued, because solar cells will be damaged due to weather, temperature, air and ultraviolet rays. In contrast, power plants that rely on solar power will have to pay more for solar cell detection and testing. service.

太陽能電池系統的電力配置為單一逆變器串接一整個序列太陽能電池模組,而序列模組大部分也是以串連方式連接,發電的資料又只能從逆變器端觀測,因此可從伺服器端判斷發電系統異常的最小單位通常為「一整個串連之太陽能電池模組序列」,最後還是需要派維修人員前往現場進行人工查驗,才能確定出失效的模組,不僅費時又費力。The power configuration of the solar battery system is that a single inverter is connected in series with a whole series of solar battery modules, and most of the series modules are connected in series. The power generation data can only be observed from the inverter side, so it can be viewed from The smallest unit for the server to determine the abnormality of the power generation system is usually "a whole series of solar cell module sequences." Finally, maintenance personnel need to be sent to the site for manual inspection to determine the failed modules, which is time-consuming and labor-intensive.

雖然有廠商運用無人機的空拍技術來進行太陽能電池的巡檢工作,希望可以藉由無人機的技術來降低維修成本,但無人機的檢測方式只可做為一種快速篩檢的作用,用熱感攝影機來檢查太陽能電池溫度是否過高,若要做為準確偵測太陽能電池的運作效率以及健康狀況,此種檢測方法是不夠完整。Although some manufacturers use drone aerial photography technology to conduct inspections of solar cells, hoping to reduce maintenance costs by using drone technology, the inspection method of drones can only be used as a quick screening function. A thermal camera is used to check whether the temperature of the solar cell is too high. If it is to accurately detect the operating efficiency and health of the solar cell, this detection method is not complete.

另外有開發出太陽能電池模組可用之電性監測裝置,可以隨時監測太陽能電池模組的發電資訊,並且依據發現資料進行診斷與處置,然而此種監測裝置結構複雜,且在每個太陽能電池模組中都要裝配電性監測模組,設置的成本較為高昂,因此目前太陽能電池較少看到此類產品。In addition, electrical monitoring devices for solar cell modules have been developed, which can monitor the power generation information of solar cell modules at any time, and perform diagnosis and treatment based on the found data. However, such monitoring devices have a complex structure and are installed in each solar cell module. Electrical monitoring modules must be installed in the group, and the installation cost is relatively high, so such products are rarely seen in solar cells at present.

因此,為了讓太陽能電池系統的維護方式更具經濟性以及時效性,勢必要對現在的維護方式進行改良,透過自動化診斷技術減少人力維護成本以及模組失效等待維修物料時的發電功率損失。Therefore, in order to make the maintenance method of the solar cell system more economical and time-efficient, it is necessary to improve the current maintenance method, and reduce the cost of manpower maintenance and the loss of power generation when the module fails and waits for repair materials through automatic diagnosis technology.

依據上述內容可以知道,本發明為提供一種太陽能電池的效能偵測方式,透過遠端方式定時監控太陽能電池發電系統模組的電特性,而及早診斷出太陽能電池衰退的跡象,進而提早進行物料的準備以及人員的安排,有效減少發電系統之運轉與維護成本。Based on the above content, it can be known that the present invention provides a method for detecting the performance of solar cells. It monitors the electrical characteristics of solar cell power generation system modules in a remote manner, and diagnoses the signs of solar cell degradation early, and then performs materials early. Preparation and personnel arrangements effectively reduce the operation and maintenance costs of the power generation system.

本發明之一目的,在於提供一種太陽能電池的效能偵測方法,建立太陽能發電系統的自動化偵測機制,定期追蹤個別太陽能電池的電性特徵,可提早判斷出模組失效的行為,並可及早進行替換品的備份準備,以維持太陽能電池發電系統的發電穩定性。One purpose of the present invention is to provide a method for detecting the performance of solar cells, which establishes an automatic detection mechanism for solar power generation systems, and regularly tracks the electrical characteristics of individual solar cells, so that module failure behaviors can be determined early, and the behavior of module failures can be determined early. Make backup preparations for replacement products to maintain the power generation stability of the solar cell power generation system.

針對上述之目的,本發明提供一種太陽能電池效能偵測之方法,其步驟包含:啟動一第一太陽能電池及一第二太陽能電池,透過一逆變器取得一第一電池電性資料,並將該第一電池電性資料透過一資料記錄裝置傳輸至一資料伺服器;執行一第一短路程序於該第一太陽能電池之電路迴路,經由該逆變器取得一第二電池電性資料;執行一第二短路程序於該第二太陽能電池之電路迴路,經由該逆變器取得一第三電池電性資料;該第一電池電性資料分別與該第二電池電性資料及該第三電池電性資料進行差值運算後,分別獲得一第四電池電性資料及一第五電池電性資料;以及取第四電池電性資料及第五電池電性資料進行均值運算後獲得一電池電性平均資料,再將該電池電性平均資料分別與該第四電池電性資料及該第五電池電性資料進行差值運算,獲得一第六電池電性資料及一第七電池電性資料後,比對該資料伺服器內所設定之一電池參考值。In view of the above-mentioned objective, the present invention provides a method for detecting the performance of solar cells, the steps of which include: activating a first solar cell and a second solar cell, obtaining a first battery electrical data through an inverter, and The first battery electrical data is transmitted to a data server through a data recording device; a first short-circuit procedure is executed on the circuit loop of the first solar battery, and a second battery electrical data is obtained through the inverter; execute A second short-circuit procedure is in the circuit loop of the second solar battery, and a third battery electrical data is obtained through the inverter; the first battery electrical data is respectively the same as the second battery electrical data and the third battery After performing the difference calculation on the electrical data, a fourth battery electrical data and a fifth battery electrical data are obtained respectively; and the fourth battery electrical data and the fifth battery electrical data are averaged to obtain a battery electrical data And then perform the difference calculation between the battery electrical average data and the fourth battery electrical data and the fifth battery electrical data to obtain a sixth battery electrical data and a seventh battery electrical data Then, compare a battery reference value set in the data server.

本發明提供一實施例,其中該第一太陽能電池與該第二太陽能電池串聯。The present invention provides an embodiment, wherein the first solar cell is connected in series with the second solar cell.

本發明提供一實施例,其中該資料記錄裝置係透過有線或無線方式進行傳輸。The present invention provides an embodiment, wherein the data recording device is transmitted in a wired or wireless manner.

本發明提供一實施例,其中於啟動一第一太陽能電池及一第二太陽能電池,透過一逆變器取得一第一電池電性資料之步驟前,包含步驟:透過該資料伺服器傳送一切換訊號至一電力開關裝置,開路該逆變器之一交流電端之電路迴路。The present invention provides an embodiment, in which, before starting a first solar cell and a second solar cell, and obtaining a first battery electrical data through an inverter, it includes the step of: sending a switch through the data server The signal is sent to a power switch device to open the circuit loop of an AC terminal of the inverter.

本發明提供一實施例,其中該電池參考值係根據不同的太陽能電池設定之電流、電壓或最大功率值。The present invention provides an embodiment, wherein the battery reference value is set according to the current, voltage or maximum power value of different solar cells.

本發明提供一實施例,其中於該第一太陽能電池執行一第一短路程序之步驟前,包含步驟:將一第一開關元件電性連接一控制裝置以及該第一太陽能電池,再利用該控制裝置上接收該資料伺服器傳送之一第一啟動訊息並啟動該第一開關元件。The present invention provides an embodiment, wherein before the step of performing a first short-circuit procedure on the first solar cell, the method includes the step of electrically connecting a first switching element to a control device and the first solar cell, and then using the control The device receives a first activation message sent by the data server and activates the first switch element.

本發明提供一實施例,其中該第一短路程序步驟包含該控制裝置將該第一啟動訊息轉化為一第一控制訊號傳輸至一第一開關元件,並且控制該第一開關元件導通。The present invention provides an embodiment, wherein the first short-circuit procedure step includes the control device transforming the first activation message into a first control signal and transmitting it to a first switching element, and controlling the first switching element to be turned on.

本發明提供一實施例,其中經由該逆變器取得一第二電池電性資料之步驟後,包含步驟該資料伺服器透過一無線傳輸模組傳送一第一關閉訊息至該控制裝置關閉該第一開關元件。The present invention provides an embodiment, wherein after the step of obtaining a second battery electrical data through the inverter, the data server transmits a first shutdown message through a wireless transmission module to the control device to shut down the second battery. A switching element.

本發明提供一實施例,其中於使該第二太陽能電池執行一第二短路程序之步驟前,包含步驟將一第二開關元件電性連接該控制裝置以及該第二太陽能電池,再接收該資料伺服器傳送之一第二啟動訊息並啟動該第二開關元件。The present invention provides an embodiment, wherein before the step of causing the second solar cell to perform a second short-circuit procedure, the step includes the step of electrically connecting a second switching element to the control device and the second solar cell, and then receiving the data The server sends a second activation message and activates the second switch element.

本發明提供一實施例,其中該第二短路程序步驟包含該控制裝置將該第二啟動訊息轉化為一第二控制訊號傳輸至該第二開關元件,並且控制該第二開關元件導通。The present invention provides an embodiment, wherein the second short-circuit procedure step includes the control device transforming the second activation message into a second control signal, transmitting to the second switching element, and controlling the second switching element to be turned on.

本發明提供一實施例,其中經由該逆變器取得一第三電池電性資料之步驟後,包含步驟該資料伺服器傳送一第二關閉訊息至該控制裝置關閉該第二開關元件。The present invention provides an embodiment, wherein after the step of obtaining a third battery electrical data through the inverter, the step includes the step of the data server sending a second closing message to the control device to close the second switching element.

本發明提供一實施例,其中該資料記錄裝置電性連接至一逆變器,且該逆變器分別電性連接至該第一太陽能電池以及該第二太陽能電池。The present invention provides an embodiment, wherein the data recording device is electrically connected to an inverter, and the inverter is electrically connected to the first solar cell and the second solar cell, respectively.

本發明提供一實施例,其中該第一電池電性資料為該第一太陽能電池及該第二太陽能電池之電壓總合。The present invention provides an embodiment, wherein the electrical data of the first battery is the sum of the voltages of the first solar battery and the second solar battery.

為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:In order to enable your reviewer to have a better understanding and understanding of the features of the present invention and the effects achieved, the preferred embodiments and detailed descriptions are provided here. The description is as follows:

習知的太陽能電池在安裝完成後的維護與維修,需要透過人力親自到場一個一個進行檢測,十分耗時耗力,且在檢測到需要維修得太陽能電池時,再進行採購維修物料,在等待物料到來的時間,太陽能的耗損依然持續的進行,這對發電效率造成一定的損耗。The maintenance and repair of conventional solar cells after the installation is completed requires manpower to be inspected one by one in person, which is time-consuming and labor-intensive, and when the solar cells need to be repaired are detected, the repair materials will be purchased and waited. At the time of material arrival, the loss of solar energy continues, which causes a certain loss of power generation efficiency.

本發明之優點在於,不需要人力親自到場檢測即可瞭解太陽能電池的耗損率,且也可以藉由檢測的過程,本發明改良提供一種太陽能電池的效能偵測方式,可提早診斷出太陽能電池衰退的跡象,進而提早進行物料的準備以及人員的安排,有效減少發電系統之運轉與維護成本。The advantage of the present invention is that it does not require manpower to be on-site to check the wear rate of the solar cell, and the detection process can also be used. The improvement of the present invention provides a solar cell performance detection method, which can diagnose the solar cell early. Signs of decline, and then prepare materials and arrange personnel early, effectively reducing the operation and maintenance costs of the power generation system.

在下文中,將藉由圖式來說明本發明之各種實施例來詳細描述本發明。然而本發明之概念可能以許多不同型式來體現,且不應解釋為限於本文中所闡述之例式性實施例。Hereinafter, various embodiments of the present invention will be described in detail through the use of drawings. However, the concept of the present invention may be embodied in many different forms, and should not be construed as being limited to the exemplary embodiments described herein.

首先,請參閱第1A圖,其為本發明之一實施例之方法流程圖,如圖所示,本發明之第一實施例之步驟流程包含:First of all, please refer to Figure 1A, which is a flowchart of a method according to an embodiment of the present invention. As shown in the figure, the flow of steps of the first embodiment of the present invention includes:

步驟S10:啟動第一太陽能電池及第二太陽能電池,透過逆變器取得第一電池電性資料,並將第一電池電性資料透過資料記錄裝置傳輸至資料伺服器;Step S10: Start the first solar cell and the second solar cell, obtain the electrical data of the first battery through the inverter, and transmit the electrical data of the first battery to the data server through the data recording device;

步驟S20:執行第一短路程序於第一太陽能電池之電路迴路,經由逆變器取得第二電池電性資料;Step S20: Execute the first short-circuit procedure on the circuit loop of the first solar battery, and obtain the electrical data of the second battery through the inverter;

步驟S30:執行第二短路程序於第二太陽能電池之電路迴路,經由逆變器取得第三電池電性資料;Step S30: Execute the second short-circuit procedure on the circuit loop of the second solar battery, and obtain the electrical data of the third battery through the inverter;

步驟S40:第一電池電性資料分別與第二電池電性資料及第三電池電性資料進行差值運算後,分別獲得第四電池電性資料及第五電池電性資料;以及Step S40: After performing difference calculations on the first battery electrical data and the second battery electrical data and the third battery electrical data, respectively, the fourth battery electrical data and the fifth battery electrical data are obtained; and

步驟S50:取第四電池電性資料及第五電池電性資料進行均值運算後獲得電池電性平均資料,再將電池電性平均資料分別與第四電池電性資料及第五電池電性資料進行差值運算,獲得第六電池電性資料一第七電池電性資料後,比對資料伺服器內所設定之電池參考值。Step S50: Take the fourth battery electrical data and the fifth battery electrical data and perform average calculation to obtain the battery electrical average data, and then separate the battery electrical average data with the fourth battery electrical data and the fifth battery electrical data Perform a difference calculation to obtain the sixth battery electrical data-the seventh battery electrical data, and compare the battery reference value set in the data server.

首先,於步驟S10之前,包含步驟:First, before step S10, it includes the following steps:

步驟S12:透過資料伺服器傳送一切換訊號至電力開關裝置開路逆變器之交流電端之電路迴路。Step S12: Send a switching signal to the circuit loop of the AC terminal of the open-circuit inverter of the power switch device through the data server.

透過一資料伺服器40傳送一切換訊號M0至一電力開關裝置70開路一逆變器50之一交流電端AC之電路迴路,再透過步驟S10,啟動一第一太陽能電池10及一第二太陽能電池20,透過該逆變器50取得一第一電池電性資料41,並將該第一電池電性資料41透過一資料記錄裝置60之一無線通訊模組62,通訊傳輸至該資料伺服器40。Send a switching signal M0 to a power switch device 70 through a data server 40 to open a circuit loop of an AC terminal AC of an inverter 50, and then start a first solar cell 10 and a second solar cell through step S10 20. Obtain a first battery electrical data 41 through the inverter 50, and transmit the first battery electrical data 41 to the data server 40 through a wireless communication module 62 of a data recording device 60 .

其中,本實施例中該第一太陽能電池10及該第二太陽能電池20為串聯的方式,且該逆變器50與該第一太陽能電池10與該第二太陽能電池20電性連接,該逆變器50電性連接該資料記錄裝置60,該逆變器50與該交流電端AC有該電力開關裝置70 連接。Wherein, in this embodiment, the first solar cell 10 and the second solar cell 20 are connected in series, and the inverter 50 is electrically connected to the first solar cell 10 and the second solar cell 20. The converter 50 is electrically connected to the data recording device 60, and the inverter 50 is connected to the alternating current terminal AC with the power switch device 70.

接續上述說明本實施例,當該第一太陽能電池10及該第二太陽能電池20運作時,會產生該第一電池電性資料41,該逆變器50接收到該第一電池電性資料41時,透過該資料記錄裝置60內之該無線通訊模組62,將該第一電池電性資料41傳送至該資料伺服器40儲存,其中,上述之該資料記錄裝置60與該資料伺服器40之間可透過無線傳輸方式或以有線網路傳輸方式進行傳輸,本實施例係以該無線通訊模組62進行說明,但不以此為限。Following the above description in this embodiment, when the first solar cell 10 and the second solar cell 20 are operating, the first battery electrical data 41 is generated, and the inverter 50 receives the first battery electrical data 41 At this time, the first battery electrical data 41 is transmitted to the data server 40 for storage through the wireless communication module 62 in the data recording device 60, wherein the data recording device 60 and the data server 40 are described above. The transmission can be carried out through wireless transmission or wired network transmission. This embodiment uses the wireless communication module 62 for description, but is not limited to this.

接著,於步驟S20中包含步驟:Then, step S20 includes steps:

步驟S22:將第一開關元件電性連接控制裝置以及第一太陽能電池;以及Step S22: electrically connect the first switching element to the control device and the first solar cell; and

步驟S24:利用控制裝置上接收資料伺服器傳送之第一啟動訊息並啟動第一開關元件。Step S24: Use the control device to receive the first activation message sent by the data server and activate the first switch element.

且請參考第2B圖,其為本發明之一實施例之開關元件啟動示意圖,如圖所示,步驟S20、步驟S22及步驟S24係利用一控制裝置30上之一無線傳輸模組32,接收該資料伺服器40傳送之一第一啟動訊息M1並啟動一第一開關元件12,使該第一太陽能電池10執行一第一短路程序,再經由該逆變器50取得一第二電池電性資料43,並將該第二電池電性資料43透過該無線通訊模組62通訊傳輸至該資料伺服器40留存,上述該控制裝置30與該資料伺服器40之間可透過無線傳輸方式或以有線網路傳輸方式進行傳輸,本實施例係以該無線傳輸模組32或無線通訊模組62進行說明,但不以此為限,其中,該控制裝置30係分別電性連接至該第一開關元件12,更進一步,該第一開關元件12電性連接至該第一太陽能電池10,並且該步驟S20中所包含之該第一短路程序之步驟:Please also refer to Figure 2B, which is a schematic diagram of the activation of a switching element in an embodiment of the present invention. As shown in the figure, step S20, step S22, and step S24 use a wireless transmission module 32 on a control device 30 to receive The data server 40 transmits a first activation message M1 and activates a first switching element 12, so that the first solar cell 10 executes a first short-circuit procedure, and then obtains a second battery electrical property through the inverter 50 The data 43 and the second battery electrical data 43 are communicated to the data server 40 through the wireless communication module 62 for storage. The control device 30 and the data server 40 can be transmitted wirelessly or by The wireless transmission module 32 or the wireless communication module 62 is used for description in this embodiment, but not limited to this. The control device 30 is electrically connected to the first The switching element 12, furthermore, the first switching element 12 is electrically connected to the first solar cell 10, and the steps of the first short-circuit procedure included in the step S20:

步驟S26:控制裝置將第一啟動訊息轉化為第一控制訊號傳輸至第一開關元件,並且控制第一開關元件導通。Step S26: The control device converts the first activation message into a first control signal and transmits it to the first switching element, and controls the first switching element to be turned on.

其中,步驟26中利用該控制裝置30將該資料伺服器40發送之該第一啟動訊息M1轉化為一第一控制訊號M2,控制該第一開關元件12導通,使該第一太陽能電池10由開路轉為閉路,形成該第一短路程序。Wherein, in step 26, the control device 30 is used to convert the first activation message M1 sent by the data server 40 into a first control signal M2 to control the first switching element 12 to be turned on, so that the first solar cell 10 is switched on The open circuit turns into a closed circuit, forming the first short-circuit procedure.

上述之該控制裝置30為一種控制電路,其係包含中央處理器、記憶體、定時器(或計數器)、輸入埠以及輸出埠,透過控制電路上的中央處理器,可將接收來的該第一啟動訊息M1轉化為該第一控制訊號M2,再傳輸至該第一開關元件12,控制該第一開關元件12導通(Turn On),使其由開路轉為閉路,促使該第一太陽能電池10短路而不輸出任何電力。The above-mentioned control device 30 is a control circuit, which includes a central processing unit, a memory, a timer (or counter), an input port, and an output port. Through the central processing unit on the control circuit, the received second A start message M1 is converted into the first control signal M2, and then transmitted to the first switching element 12 to control the first switching element 12 to be turned on (Turn On) to turn it from an open circuit to a closed circuit, thereby prompting the first solar cell 10 short circuit without outputting any power.

當該第一開關元件12由開路轉為閉路時,該第一開關元件12所並聯之該第一太陽能電池10,將該第一開關元件12為短路狀態而被旁路化,且該逆變器50與該交流電端AC之電路迴路為開路,此時由該逆變器50所獲得之太陽能模組序列之該第二電池電性資料43,將不包含被旁路化之該第一開關元件12所並聯之該第一太陽能電池10之電池電性資料。When the first switching element 12 turns from an open circuit to a closed circuit, the first solar cell 10 connected in parallel with the first switching element 12 turns the first switching element 12 into a short-circuit state and is bypassed, and the inverter The circuit loop between the inverter 50 and the AC terminal AC is open. At this time, the second battery electrical data 43 of the solar module sequence obtained by the inverter 50 will not include the bypassed first switch The battery electrical data of the first solar cell 10 connected in parallel with the element 12.

當透過步驟S20獲得該第二電池電性資料43後,繼續步驟:After obtaining the second battery electrical data 43 through step S20, continue with the steps:

步驟S28:取得第二電池資料傳輸至資料伺服器後,資料伺服器透過無線傳輸模組傳送第一關閉訊息至控制裝置而截止第一開關元件。Step S28: After obtaining the second battery data and transmitting it to the data server, the data server transmits the first closing message to the control device through the wireless transmission module to turn off the first switch element.

獲得該第二電池電性資料43後,該資料伺服器40傳送一第一關閉訊息M3截止(Turn Off)該第一開關元件12,使該第一太陽能電池10回歸正常供電狀態,且於獲得該第二電池電性資料43後,於步驟S30中包含步驟:After obtaining the second battery electrical data 43, the data server 40 sends a first turn-off message M3 to turn off the first switching element 12, so that the first solar cell 10 returns to the normal power supply state, and after obtaining After the second battery electrical data 43, step S30 includes the steps:

步驟S32:將第二開關元件電性連接控制裝置以及第二太陽能電池;以及Step S32: electrically connect the second switching element to the control device and the second solar cell; and

步驟S34:接收資料伺服器傳送之第二啟動訊息並啟動第二開關元件。Step S34: Receive the second activation message sent by the data server and activate the second switch element.

接著,於步驟S30中,請參考第2C圖,其為本發明之一實施例之開關元件啟動示意圖,利用該控制裝置30上之該無線傳輸模組32,接收該資料伺服器40傳送之一第二啟動訊息M4並啟動一第二開關元件22,使該第二太陽能電池20執行一第二短路程序,再經由該逆變器50取得一第三電池電性資料45,並將該第三電池電性資料45透過該無線通訊模組62通訊傳輸至該資料伺服器40留存,其中,該控制裝置30係分別電性連接至該第二開關元件22,更進一步,該第二開關元件22電性連接至該第二太陽能電池20,並且該步驟S30中所包含之該第二短路程序之步驟:Next, in step S30, please refer to FIG. 2C, which is a schematic diagram of the switch element activation of an embodiment of the present invention. The wireless transmission module 32 on the control device 30 is used to receive one of the transmissions from the data server 40 The second activation message M4 activates a second switching element 22 to cause the second solar cell 20 to perform a second short-circuit procedure, and then obtain a third battery electrical data 45 through the inverter 50, and transfer the third The battery electrical data 45 is transmitted to the data server 40 through the wireless communication module 62 for storage. The control device 30 is electrically connected to the second switch element 22, and further, the second switch element 22 Electrically connected to the second solar cell 20, and the steps of the second short-circuit procedure included in the step S30:

步驟36:控制裝置將第二啟動訊息轉化為第二控制訊號傳輸至第二開關元件,並且控制第二開關元件導通。Step 36: The control device converts the second activation message into a second control signal and transmits it to the second switching element, and controls the second switching element to be turned on.

其中,步驟32中利用該控制裝置30將該資料伺服器40發送之該第二啟動訊息M4轉化為一第二控制訊號M5,控制該第二開關元件22導通(Turn On),使該第二太陽能電池20由開路轉為閉路,形成該第二短路程序,促使該第二太陽能電池20短路而不輸出任何電力,上述之該控制裝置30為一種控制電路,已於前段進行說明,在此不再贅述。Wherein, in step 32, the control device 30 is used to convert the second activation message M4 sent by the data server 40 into a second control signal M5, and the second switch element 22 is controlled to be turned on (Turn On) to make the second The solar cell 20 turns from an open circuit to a closed circuit, forming the second short-circuit procedure, prompting the second solar cell 20 to be short-circuited without outputting any power. The above-mentioned control device 30 is a control circuit, which has been explained in the previous paragraph. Go into details again.

當該第二開關元件22由開路轉為閉路時,該第二開關元件22所並聯之該第二太陽能電池20,將該第二開關元件22為短路狀態而被旁路化,且該逆變器50與交流電端AC之電路迴路為開路,此時由該逆變器50所獲得之太陽能模組序列之該第三電池電性資料45,將不包含被旁路化之該第二開關元件22所並聯之該第二太陽能電池20之電池電性資料。When the second switching element 22 turns from an open circuit to a closed circuit, the second solar cell 20 connected in parallel with the second switching element 22 turns the second switching element 22 into a short-circuit state and is bypassed, and the inverter The circuit loop between the inverter 50 and the AC terminal AC is open. At this time, the third battery electrical data 45 of the solar module sequence obtained by the inverter 50 will not include the bypassed second switching element 22. Battery electrical data of the second solar cell 20 connected in parallel.

當透過步驟S30獲得該第三電池電性資料45後,繼續步驟:After obtaining the third battery electrical data 45 through step S30, proceed to steps:

步驟S38:取得第三電池資料傳輸至資料伺服器後,資料伺服器傳送第二關閉訊息至控制裝置而截止第二開關元件。Step S38: After obtaining the third battery data and transmitting it to the data server, the data server sends a second off message to the control device to turn off the second switch element.

當該資料伺服器40取得該第三電池電性資料45後,透過該無線傳輸模組32傳送一第二關閉訊息M6至該控制裝置30截止(Turn Off)該第二開關元件22,使該第二太陽能電池20回歸正常供電狀態。After the data server 40 obtains the third battery electrical data 45, it sends a second off message M6 to the control device 30 through the wireless transmission module 32 to turn off the second switch element 22, so that the The second solar cell 20 returns to the normal power supply state.

當該資料伺服器40取得該第二電池電性資料43及該第三電池電性資料45後,如步驟S40至步驟S50所述,該資料伺服器40將該第一電池電性資料41分別與該第二電池電性資料43及該第三電池電性資料45進行運算後,分別獲得一第四電池電性資料47及一第五電池電性資料49,取該第四電池電性資料47及該第五電池電性資料49進行均值運算後獲得一電池電性平均資料44,再將該電池電性平均資料44分別與該第四電池電性資料47及該第五電池電性資料49進行差值運算,獲得一第六電池電性資料46及一第七電池電性資料48後,比對該資料伺服器40內所設定之一電池參考值42。After the data server 40 obtains the second battery electrical data 43 and the third battery electrical data 45, as described in steps S40 to S50, the data server 40 separates the first battery electrical data 41 After calculating with the second battery electrical data 43 and the third battery electrical data 45, a fourth battery electrical data 47 and a fifth battery electrical data 49 are obtained respectively, and the fourth battery electrical data is obtained 47 and the fifth battery electrical data 49 are averaged to obtain a battery electrical average data 44, and then the battery electrical average data 44 is respectively compared with the fourth battery electrical data 47 and the fifth battery electrical data 49 performs a difference operation to obtain a sixth battery electrical data 46 and a seventh battery electrical data 48, and compare a battery reference value 42 set in the data server 40.

其中,該第一電池電性資料41與該第二電池電性資料43進行運算後,獲得該第四電池電性資料47,該第四電池電性資料47係為該第一太陽能電池10之電池電性資料,同理可得知,該第五電池電性資料49係為該第二太陽能電池20之電池電性資料。Wherein, the first battery electrical data 41 and the second battery electrical data 43 are calculated to obtain the fourth battery electrical data 47, and the fourth battery electrical data 47 is the first solar cell 10 In the same way, it can be known that the fifth battery electrical data 49 is the battery electrical data of the second solar cell 20.

再利用該第四電池電性資料47及該第五電池電性資料49經過均值運算所獲得的該電池電性平均資料44,與該第四電池電性資料47進行差值運算後獲得該第六電池電性資料46,該第六電池電性資料46為該第一太陽能電池10與該電池電性平均資料44之差值,同理該第七電池電性資料48為該第二太陽能電池20與該電池電性平均資料44之差值。Then use the fourth battery electrical data 47 and the fifth battery electrical data 49 to obtain the battery electrical average data 44 obtained by averaging, and perform the difference calculation with the fourth battery electrical data 47 to obtain the first battery electrical data. Six battery electrical data 46. The sixth battery electrical data 46 is the difference between the first solar cell 10 and the battery electrical average data 44. Similarly, the seventh battery electrical data 48 is the second solar cell The difference between 20 and the battery electrical average data 44.

因此,比對該第六電池電性資料46與該電池參考值42後,若該第六電池電性資料46小於該電池參考值42,則該資料伺服器40會將該第一太陽能電池10判斷為需進行人工維護,因此發送訊息至一維修單位(未圖示),使該維修單位可進行該第一太陽能電池10的維護時間的安排,且具有較充足的時間可以準備維修時所需之材料,其中,該電池參考值42係為根據不同的太陽能電池設定之電流、電壓或最大功率值,本發明所使用之太陽能電池係為矽基半導體電池、CdTe薄膜電池、CIGS薄膜電池、染料敏化薄膜電池、有機材料電池、聚光型III-V族多接面太陽電池之其中之一或其上述任意選擇之一。Therefore, after comparing the sixth battery electrical data 46 with the battery reference value 42, if the sixth battery electrical data 46 is less than the battery reference value 42, the data server 40 will perform the first solar cell 10 It is judged that manual maintenance is required, so a message is sent to a maintenance organization (not shown) so that the maintenance organization can arrange the maintenance time of the first solar cell 10, and has sufficient time to prepare for maintenance. The battery reference value 42 is the current, voltage or maximum power value set according to different solar cells. The solar cells used in the present invention are silicon-based semiconductor cells, CdTe thin-film cells, CIGS thin-film cells, and dyes. One of sensitized thin film batteries, organic material batteries, concentrating III-V group multi-junction solar cells, or any of the foregoing.

因此,由上述內容得知,本發明之太陽能電池的效能偵測方式,是使用在一個串聯序列的太陽電池模組中,且每次僅僅短路一個太陽電池模組,此一方式是為了避免電壓過低而造成逆變器停止運作,進一步造成資料記錄裝置無法取得任何電池電性資料,而非將太陽電池模組其它電池模組皆短路,僅保留待測電池模組不短路的方式來取得電池模組的電性資料,因此,本發明之太陽能電池的效能偵測方式,係使用於兩個或兩個以上的串聯太陽能電池模組,本發明之一實施例中係以該第一太陽能電池10及該第二太陽能電池20說明,但不以此為限。Therefore, it is known from the above content that the solar cell performance detection method of the present invention is used in a series of solar cell modules, and only one solar cell module is short-circuited at a time. This method is to avoid voltage If it is too low, the inverter will stop working, and the data recording device will not be able to obtain any battery electrical data, instead of short-circuiting the solar battery module and other battery modules, only the battery module to be tested is not short-circuited to obtain it. The electrical data of the battery module. Therefore, the performance detection method of the solar cell of the present invention is used for two or more solar cell modules connected in series. In one embodiment of the present invention, the first solar cell is used. The battery 10 and the second solar cell 20 are illustrated, but not limited to this.

由習知資訊可得知,太陽能電池是運用P型及N型半導體接合而成,這種結構通常都稱為PN接面,在P型與N型的半導體接合的地方,因為有效載子濃度不同而造成擴散,產生由N型指向P型的內建電場,當光子被吸收時,所產生的電子就會受到內建電場的作用移動到N型半導體,電洞就會移動到P型半導體,這樣一來就可以在兩側累積電荷,透過導線連接的話就能夠產生電流,太陽能電池就是蒐集複合前的電子與電洞。According to conventional information, solar cells are formed by joining P-type and N-type semiconductors. This structure is usually called PN junction, where the P-type and N-type semiconductors are joined because of the effective carrier concentration. Diffusion is caused by the difference, and a built-in electric field is generated from the N-type to the P-type. When the photon is absorbed, the generated electron will be moved to the N-type semiconductor by the built-in electric field, and the hole will move to the P-type semiconductor. In this way, charges can be accumulated on both sides, and current can be generated when connected through wires. Solar cells collect electrons and holes before recombination.

太陽能電池的功率轉換效率η可定義為公式 (1),其中,Pout 為電池輸出功率、Pin 為入射光之光功率、VOC 為開路電壓、ISC 為短路電流。

Figure 02_image001
(1)Solar power conversion efficiency η can be defined as Equation (1), wherein, P out is the cell output, P in is the power of the incident light, V OC is an open circuit voltage, I SC is a short-circuit current.
Figure 02_image001
(1)

FF稱為填充因子(Fill factor),其定義為太陽能電池在最大電功率輸出時,請參考第3圖,其為本發明之太陽能電池之電流電壓曲線示意圖,如圖所示,最大輸出功率Pmax 與開路電壓值𝑉𝑂𝐶 和短路電流𝐼𝑆𝐶 乘積之比值,也就是電流-電壓特性曲線中最大功率矩形(灰色面積)對𝑉𝑂𝐶 x𝐼𝑆𝐶 矩形的比例。FF is called Fill factor, which is defined as the solar cell when the maximum electric power output, please refer to Figure 3, which is a schematic diagram of the current and voltage curve of the solar cell of the present invention, as shown in the figure, the maximum output power P max 𝑉 𝑂𝐶 the open circuit voltage and short circuit current value 𝐼 𝑆𝐶 ratio of the product, i.e. the current - voltage characteristic curve the maximum power rectangle (gray area) ratio of 𝑉 𝑂𝐶 x𝐼 rectangular 𝑆𝐶.

實際上在太陽能電池衰退過程之電輸出性特表現中,主要之核心因子為串聯電阻𝑅𝑆 與並聯電阻𝑅𝑆𝐻 ,而串聯電阻𝑅𝑆 與並聯電阻𝑅𝑆𝐻 的計算方式,分別透過下列的公式:

Figure 02_image003
(2)
Figure 02_image005
(3)In fact, in the electrical output characteristics of the solar cell decay process, the main core factors are series resistance 𝑅 𝑆 and parallel resistance 𝑅 𝑆𝐻 , and series resistance 𝑅 𝑆 and parallel resistance 𝑅 𝑆𝐻 are calculated by the following formulas:
Figure 02_image003
(2)
Figure 02_image005
(3)

請參考第4圖,其為太陽能電池之等效電路示意圖,如圖所示,二極體D跨接於電流源的正負兩極,𝑅𝑆 H 值原本接近無限大,在等效電路中可視為開路,然而當太陽能電池開始衰退時,𝑅𝑆𝐻 值變小,在電壓端為開路下,電流源產生電流有部分電流流經𝑅𝑆𝐻 造成電壓損耗,所以最後電池的開路電壓值將變小,因此可藉由電池的開路電壓值反推𝑅𝑆𝐻 的變化。Please refer to FIG. 4, which is a schematic diagram of an equivalent circuit of the solar cell, as shown in FIG diode D is connected across the positive and negative poles of a current source, 𝑅 𝑆 H values originally approaches infinity, the equivalent circuit can be regarded as Open circuit, however, when the solar cell begins to decline, the value of 𝑅 𝑆𝐻 becomes smaller. When the voltage end is open, part of the current generated by the current source flows through 𝑅 𝑆𝐻 causing voltage loss, so the final open circuit voltage value of the battery will become smaller, so The change in 𝑅 𝑆𝐻 can be reversed by the open circuit voltage value of the battery.

另外因為電池的開路電壓本身亦會受到環境因素變化影響造成電壓値下降,進一步造成𝑅𝑆𝐻 變化誤判,因此本實施例採用相對比較法的方式進行𝑅𝑆𝐻 變化判斷,透過同一序列之太陽電池模組於相同環境與同一時段下之資料收集,再以收集到之電池電性資料進行交互運算,即可排除環境因素造成的電池電性資料數據失真。因此,本發明之一實施例中,請參考表1,透過本發明之方法進行太陽能電池之電性偵測,計算△Voc 值來確認太陽能電池是否開始衰退。 表1 實驗測試結果表 Irradiance (W/m2 ) VOC (V) ISC (A) Pm (W) Vm (V) Im (A) Eff.(%) FF 1-8 850 24.617 1.413 26.10 20.63 1.265 26.65 0.745 Short-1st 850 21.584 1.412 22.77 18.12 1.256 23.25 0.747 Short-2nd 850 21.585 1.415 22.65 18.12 1.250 23.13 0.741 Short-3rd 850 21.614 1.415 22.61 18.13 1.247 23.09 0.739 Short-4th 850 21.695 1.416 22.81 18.13 1.257 23.30 0.742 Short-5th 850 21.579 1.414 22.76 18.12 1.256 23.25 0.746 Short-6th 850 21.610 1.383 22.62 17.65 1.281 23.10 0.757 Short-7th 850 21.661 1.417 22.87 18.13 1.261 23.36 0.745 Short-8th 850 21.610 1.409 22.91 18.13 1.263 23.40 0.753 In addition, because the open circuit voltage of the battery itself will also be affected by changes in environmental factors, the voltage value will drop, which will further cause misjudgment of changes in 𝑅 𝑆𝐻 . Therefore, this embodiment uses the relative comparison method to determine the changes in 𝑅 𝑆𝐻 through the same sequence of solar cell modules. Collect data in the same environment and at the same time period, and then use the collected battery electrical data to perform interactive calculations to eliminate the distortion of battery electrical data caused by environmental factors. Therefore, in an embodiment of the present invention, please refer to Table 1. The electrical detection of solar cells is performed through the method of the present invention, and the ΔV oc value is calculated to confirm whether the solar cells begin to decline. Table 1 Experimental test results table Irradiance (W/m 2 ) V OC (V) I SC (A) P m (W) V m (V) I m (A) Eff.(%) FF 1-8 850 24.617 1.413 26.10 20.63 1.265 26.65 0.745 Short-1st 850 21.584 1.412 22.77 18.12 1.256 23.25 0.747 Short-2nd 850 21.585 1.415 22.65 18.12 1.250 23.13 0.741 Short-3rd 850 21.614 1.415 22.61 18.13 1.247 23.09 0.739 Short-4th 850 21.695 1.416 22.81 18.13 1.257 23.30 0.742 Short-5th 850 21.579 1.414 22.76 18.12 1.256 23.25 0.746 Short-6th 850 21.610 1.383 22.62 17.65 1.281 23.10 0.757 Short-7th 850 21.661 1.417 22.87 18.13 1.261 23.36 0.745 Short-8th 850 21.610 1.409 22.91 18.13 1.263 23.40 0.753

在表2中1st cell的VOC 值計算方式可參考公式(4),而2nd cell~8th cell之VOC 值計算可以此類推。

Figure 02_image007
(4) 表2 各組太陽能電池之Voc值 Voc 4th cell 3rd cell 2nd cell 1st cell 2.921 3.003 3.031 3.033 5th cell 6th cell 7th cell 8th cell 3.037 3.006 2.956 3.006 In Table 2, the calculation method of V OC value of 1 st cell can refer to formula (4), and the calculation of V OC value of 2 nd cell~8 th cell can be deduced by analogy.
Figure 02_image007
(4) Table 2 Voc value of each group of solar cells V oc 4 th cell 3 rd cell 2 nd cell 1 st cell 2.921 3.003 3.031 3.033 5 th cell 6 th cell 7 th cell 8 th cell 3.037 3.006 2.956 3.006

在表3中1st cell的△VOC 值計算方式可參考公式(6),而2nd cell~8th cell之△VOC 值計算可以此類推。

Figure 02_image009
(5)
Figure 02_image011
(6) 表3 各組太陽能電池之△Voc值 △Voc 4th cell 3rd cell 2nd cell 1st cell -0.078 0.003 0.032 0.033 5th cell 6th cell 7th cell 8th cell 0.038 0.007 -0.043 0.007 In Table 3, the 1 st cell △ V OC value may be calculated with reference to equation (6), the value of △ V OC 2 nd cell ~ 8 th cell and so the calculation may be.
Figure 02_image009
(5)
Figure 02_image011
(6) Table 3 The △Voc value of each group of solar cells △V oc 4 th cell 3 rd cell 2 nd cell 1 st cell -0.078 0.003 0.032 0.033 5 th cell 6 th cell 7 th cell 8 th cell 0.038 0.007 -0.043 0.007

由表3可得知第四組太陽能電池及第七組太陽能電池之△Voc 值較低,由上表可看到第四組太陽能電池△Voc 值約為-0.078,第七組太陽能電池△Voc 值約為-0.043,均低於其於太陽能電池,因此判斷第四組太陽能電池以及第七組太陽能電池需要進行電池維護。 It can be seen from Table 3 that the △V oc value of the fourth group of solar cells and the seventh group of solar cells is relatively low. From the table above, it can be seen that the △V oc value of the fourth group of solar cells is about -0.078, and the seventh group of solar cells is about -0.078. The △V oc value is about -0.043, which is lower than that of solar cells. Therefore, it is judged that the fourth group of solar cells and the seventh group of solar cells need battery maintenance.

以上所述之實施例,本發明之方法,其為一種太陽能電池的效能偵測方式,透過遠端方式定時監控太陽能電池發電系統模組的電特性,而及早診斷出太陽能電池衰退的跡象,進而提早進行物料的準備以及人員的安排,有效減少發電系統之運轉與維護成本。In the above-mentioned embodiment, the method of the present invention is a method for detecting the performance of solar cells. It regularly monitors the electrical characteristics of solar cell power generation system modules through a remote method, and diagnoses signs of solar cell degradation early, and then Early preparation of materials and personnel arrangements can effectively reduce the operation and maintenance costs of the power generation system.

故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈  鈞局早日賜准專利,至感為禱。Therefore, the present invention is really novel, progressive, and available for industrial use. It should meet the patent application requirements of my country's patent law. Undoubtedly, I filed an invention patent application in accordance with the law. I pray that the Bureau will grant the patent as soon as possible.

惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。However, the above are only the preferred embodiments of the present invention, and are not used to limit the scope of implementation of the present invention. For example, the shapes, structures, features and spirits described in the scope of the patent application of the present invention are equally changed and modified. , Should be included in the scope of patent application of the present invention.

10:第一太陽能電池 12:第一開關元件 20:第二太陽能電池 22:第二開關元件 30:控制裝置 32:無線傳輸模組 40:資料伺服器 41:第一電池電性資料 42:電池參考值 43:第二電池電性資料 44:電池電性平均資料 45:第三電池電性資料 46:第六電池電性資料 47:第四電池電性資料 48:第七電池電性資料 49:第五電池電性資料 50:逆變器 60:資料記錄裝置 62:無線通訊模組 70:電力開關裝置 M0:切換訊號 M1:第一啟動訊息 M2:第一控制訊號 M3:第一關閉訊息 M4:第二啟動訊息 M5:第二控制訊號 M6:第二關閉訊息 AC:交流電端 Pmax :電池輸出功率 Isc :短路電流 Voc :開路電壓 IL :負載電流 D:二極體 RS :串聯電阻 RSH :並聯電阻 V:電壓 I:電流 S10、S20、S30、S40、S50:步驟10: first solar cell 12: first switching element 20: second solar cell 22: second switching element 30: control device 32: wireless transmission module 40: data server 41: first battery electrical data 42: battery Reference value 43: second battery electrical data 44: battery electrical average data 45: third battery electrical data 46: sixth battery electrical data 47: fourth battery electrical data 48: seventh battery electrical data 49 : Fifth battery electrical data 50: Inverter 60: Data recording device 62: Wireless communication module 70: Power switch device M0: Switching signal M1: First activation message M2: First control signal M3: First shutdown message M4: second start message M5: second control signal M6: second close message AC: AC terminal P max : battery output power I sc : short circuit current V oc : open circuit voltage I L : load current D: diode R S : Series resistance R SH : Parallel resistance V: Voltage I: Current S10, S20, S30, S40, S50: Step

第1圖:其為本發明之一實施例之方法流程圖;以及 第2A圖:其為本發明之一實施例之方塊示意圖; 第2B圖:其為本發明之一實施例之開關元件啟動示意圖; 第2C圖:其為本發明之一實施例之開關元件啟動示意圖; 第3圖:其為本發明之太陽能電池之電流電壓曲線示意圖;以及 第4圖:其為太陽能電池之等效電路示意圖。Figure 1: It is a flowchart of a method according to an embodiment of the present invention; and Figure 2A: It is a block diagram of an embodiment of the present invention; Figure 2B: It is a schematic diagram of the activation of a switching element according to an embodiment of the present invention; Figure 2C: It is a schematic diagram of the activation of a switching element according to an embodiment of the present invention; Figure 3: It is a schematic diagram of the current-voltage curve of the solar cell of the present invention; and Figure 4: It is a schematic diagram of the equivalent circuit of a solar cell.

S10、S20、S30、S40、S50:步驟S10, S20, S30, S40, S50: steps

Claims (13)

一種太陽能電池效能偵測之方法,其步驟包含: 啟動一第一太陽能電池及一第二太陽能電池,透過一逆變器取得一第一電池電性資料,並將該第一電池電性資料透過一資料記錄裝置傳輸至一資料伺服器; 執行一第一短路程序於該第一太陽能電池之電路迴路,經由該逆變器取得一第二電池電性資料; 執行一第二短路程序於該第二太陽能電池之電路迴路,經由該逆變器取得一第三電池電性資料; 該第一電池電性資料分別與該第二電池電性資料及該第三電池電性資料進行差值運算後,分別獲得一第四電池電性資料及一第五電池電性資料;以及 取該第四電池電性資料及該第五電池電性資料進行均值運算後獲得一電池電性平均資料,再將該電池電性平均資料分別與該第四電池電性資料及該第五電池電性資料進行差值運算,獲得一第六電池電性資料及一第七電池電性資料後,比對該資料伺服器內所設定之一電池參考值。A method for detecting the performance of solar cells, the steps include: Start a first solar cell and a second solar cell, obtain a first battery electrical data through an inverter, and transmit the first battery electrical data to a data server through a data recording device; Execute a first short-circuit procedure on the circuit loop of the first solar battery, and obtain a second battery electrical data through the inverter; Perform a second short-circuit procedure on the circuit loop of the second solar battery, and obtain a third battery electrical data through the inverter; After performing difference calculations on the first battery electrical data, the second battery electrical data and the third battery electrical data, respectively, a fourth battery electrical data and a fifth battery electrical data are obtained; and Take the fourth battery electrical data and the fifth battery electrical data to perform an average calculation to obtain a battery electrical average data, and then the battery electrical average data is respectively compared with the fourth battery electrical data and the fifth battery After performing a difference operation on the electrical data, a sixth battery electrical data and a seventh battery electrical data are obtained, and then a battery reference value set in the data server is compared. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該第一太陽能電池與該第二太陽能電池串聯。The method for detecting the performance of a solar cell as described in item 1 of the application, wherein the first solar cell and the second solar cell are connected in series. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該資料記錄裝置係透過有線或無線方式進行傳輸。The method for detecting the performance of solar cells as described in item 1 of the application, wherein the data recording device is transmitted through wired or wireless means. 如申請項第1項所述之太陽能電池效能偵測之方法,其中於啟動一第一太陽能電池及一第二太陽能電池,透過一逆變器取得一第一電池電性資料之步驟前,包含步驟: 透過該資料伺服器傳送一切換訊號至一電力開關裝置,開路該逆變器之一交流電端之電路迴路。The method for detecting the performance of a solar cell as described in item 1 of the application, before starting a first solar cell and a second solar cell, and obtaining electrical data of a first battery through an inverter, it includes step: A switching signal is sent to a power switch device through the data server to open a circuit loop of an AC terminal of the inverter. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該電池參考值係根據不同的太陽能電池設定之電流、電壓或最大功率值。The method for detecting the performance of solar cells as described in item 1 of the application, wherein the battery reference value is the current, voltage or maximum power value set according to different solar cells. 如申請項第1項所述之太陽能電池效能偵測之方法,其中於該第一太陽能電池執行一第一短路程序之步驟前,包含步驟: 將一第一開關元件電性連接一控制裝置以及該第一太陽能電池;以及 利用該控制裝置上接收該資料伺服器傳送之一第一啟動訊息並啟動該第一開關元件。The method for detecting the performance of a solar cell as described in item 1 of the application, wherein before the first solar cell performs a first short-circuit procedure, the method includes the following steps: Electrically connecting a first switch element to a control device and the first solar cell; and Using the control device to receive a first activation message sent by the data server and activate the first switch element. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該第一短路程序步驟包含: 該控制裝置將該第一啟動訊息轉化為一第一控制訊號傳輸至一第一開關元件,並且控制該第一開關元件導通。The method for detecting solar cell performance as described in item 1 of the application item, wherein the first short-circuit procedure step includes: The control device converts the first activation message into a first control signal and transmits it to a first switching element, and controls the first switching element to be turned on. 如申請項第1項所述之太陽能電池效能偵測之方法,其中經由該逆變器取得一第二電池電性資料之步驟後,包含步驟:該資料伺服器透過一無線傳輸模組傳送一第一關閉訊息至該控制裝置而截止該第一開關元件。For the method of solar cell performance detection described in item 1 of the application, after the step of obtaining a second battery electrical data through the inverter, it includes the step of: the data server transmits a data through a wireless transmission module The first closing message is sent to the control device to turn off the first switch element. 如申請項第1項所述之太陽能電池效能偵測之方法,其中於使該第二太陽能電池執行一第二短路程序之步驟前,包含步驟: 將一第二開關元件電性連接該控制裝置以及該第二太陽能電池;以及 接收該資料伺服器傳送之一第二啟動訊息並啟動該第二開關元件。The method for detecting the performance of a solar cell as described in item 1 of the application item, wherein before the step of performing a second short-circuit procedure on the second solar cell, the method includes the following steps: Electrically connecting a second switch element to the control device and the second solar cell; and A second activation message sent by the data server is received and the second switch element is activated. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該第二短路程序步驟包含: 該控制裝置將該第二啟動訊息轉化為一第二控制訊號傳輸至一第二開關元件,並且控制該第二開關元件導通。The method for solar cell performance detection described in item 1 of the application item, wherein the second short-circuit procedure step includes: The control device converts the second activation message into a second control signal and transmits it to a second switch element, and controls the second switch element to be turned on. 如申請項第1項所述之太陽能電池效能偵測之方法,其中經由該逆變器取得一第三電池電性資料之步驟後,該資料伺服器傳送一第二關閉訊息至該控制裝置而截止該第二開關元件。Such as the method for solar cell performance detection described in item 1 of the application, wherein after the step of obtaining a third battery electrical data through the inverter, the data server sends a second shutdown message to the control device and Turn off the second switching element. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該資料記錄裝置電性連接至該逆變器,且該逆變器分別電性連接至該第一太陽能電池以及該第二太陽能電池。The method for detecting solar cell performance as described in item 1 of the application, wherein the data recording device is electrically connected to the inverter, and the inverter is electrically connected to the first solar cell and the second solar cell, respectively Solar battery. 如申請項第1項所述之太陽能電池效能偵測之方法,其中該第一 電池電性資料為該第一太陽能電池及該第二太陽能電池之電壓總合。The method for detecting solar cell performance as described in item 1 of the application item, wherein the first The battery electrical data is the sum of the voltages of the first solar cell and the second solar cell.
TW108135220A 2019-09-27 2019-09-27 Method of performance detection of photovoltaic device TWI709758B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108135220A TWI709758B (en) 2019-09-27 2019-09-27 Method of performance detection of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108135220A TWI709758B (en) 2019-09-27 2019-09-27 Method of performance detection of photovoltaic device

Publications (2)

Publication Number Publication Date
TWI709758B TWI709758B (en) 2020-11-11
TW202113379A true TW202113379A (en) 2021-04-01

Family

ID=74202324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108135220A TWI709758B (en) 2019-09-27 2019-09-27 Method of performance detection of photovoltaic device

Country Status (1)

Country Link
TW (1) TWI709758B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
CN1768273B (en) * 2003-04-04 2011-05-18 Bp北美公司 Performance monitor for a photovoltaic supply
US20120310427A1 (en) * 2011-05-31 2012-12-06 Williams B Jeffery Automatic Monitoring and Adjustment of a Solar Panel Array
US20140012520A1 (en) * 2012-07-03 2014-01-09 Mersen Usa Newburyport-Ma, Llc Photovoltaic string monitor
KR20180019657A (en) * 2015-06-18 2018-02-26 오로라 솔라 테크놀로지스 (캐나다) 인크. Specification of solar cell emitter characteristics using noncontact dopant concentration and minority carrier lifetime measurement

Also Published As

Publication number Publication date
TWI709758B (en) 2020-11-11

Similar Documents

Publication Publication Date Title
Niazi et al. Review of mismatch mitigation techniques for PV modules
CN102193027B (en) The power based on model of photovoltaic generating system is estimated
WO2011059067A1 (en) Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
WO2020029327A1 (en) Photovoltaic array fault diagnosis method based on improved random forest algorithm
Pearsall Introduction to photovoltaic system performance
JP6093465B1 (en) Power generation diagnosis method and power generation diagnosis apparatus for solar power generation system
KR101939156B1 (en) The diagnosis system with multi-channel pv dc arrays
TW201737614A (en) Power generation abnormality detection method and system for photovoltaic panels
Compaore et al. Analysis of the impact of faults in a photovoltaic generator
TWI709758B (en) Method of performance detection of photovoltaic device
CN108322186B (en) Photovoltaic system fault monitoring method and system
Fezzani et al. Modeling and analysis of the photovoltaic array faults
JP2011096968A (en) Solar generator for individually performing maximum power point tracking, and solar cell of the same
Katsioulis et al. Wireless monitoring and remote control of PV systems based on the ZigBee protocol
KR101386528B1 (en) Photovoltaic power generation system using multistage switches and driving method therefor
TWI747423B (en) Near open-circuit point power generation abnormality detection method and system for photovoltaic modules or module strings
TWI718779B (en) Adaptive low-duty-type power generation abnormality detection method and system for photovoltaic panels
KR101121622B1 (en) Display device of each window array for bipv and display method thereof
TWI727513B (en) Power generation abnormality detection method and system suitable for offline photovoltaic panels
Gupta et al. Design, simulation and verification of generalized photovoltaic cells model using first principles modeling
Ghosal et al. Performance of a micro-cell based transfer printed HCPV system in the South Eastern US
Liu et al. Mechanistic Insights to Degradation of PERC Minimodules with Differentiated Packaging Materials & Module Architectures
Umoh et al. Development Of A Smart Solar Energy Management System
KR20200100898A (en) Fault Diagnosis Method and system for Solar Panel
Yellampalli REMOTE IDENTIFICATION OF FAULTY SOLAR PANELS AT POWER PLANTS AND ISOLATION.