TW202111085A - 有機化合物、發光器件、受光器件、發光裝置、發光模組、電子裝置及照明設備 - Google Patents

有機化合物、發光器件、受光器件、發光裝置、發光模組、電子裝置及照明設備 Download PDF

Info

Publication number
TW202111085A
TW202111085A TW109123169A TW109123169A TW202111085A TW 202111085 A TW202111085 A TW 202111085A TW 109123169 A TW109123169 A TW 109123169A TW 109123169 A TW109123169 A TW 109123169A TW 202111085 A TW202111085 A TW 202111085A
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting device
abbreviation
organic compound
Prior art date
Application number
TW109123169A
Other languages
English (en)
Inventor
夛田杏奈
川上祥子
奥山拓夢
鈴木恒徳
瀬尾哲史
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202111085A publication Critical patent/TW202111085A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Indole Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

提供一種耐熱性高的有機化合物。提供一種發光效率及可靠性高的發光器件。提供一種由通式(G0)表示的有機化合物。在通式(G0)的R1 至R13 、R21 至R29 、R31 至R39 及R41 至R48 中,R1 至R5 中的任一個表示通式(A),其餘的分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基,R21 和R22 可以彼此鍵合而形成螺環。

Description

有機化合物、發光器件、受光器件、發光裝置、發光模組、電子裝置及照明設備
本發明的一個實施方式係關於一種有機化合物、發光器件、發光裝置、發光模組、電子裝置及照明設備。
此外,本發明的一個實施方式不侷限於上述技術領域。作為本發明的一個實施方式的技術領域的例子,可以舉出半導體裝置、顯示裝置、發光裝置、蓄電裝置、記憶體裝置、電子裝置、照明設備、輸入裝置(例如,觸控感測器等)、輸入輸出裝置(例如,觸控面板等)、這些裝置的驅動方法或這些裝置的製造方法。
對利用電致發光(EL:Electro Luminescence)現象的發光器件(也稱為有機EL器件、有機EL元件)的研究開發日益火熱。有機EL器件的基本結構是在一對電極之間夾有包含發光物質的層(以下,也記載為發光層)的結構。藉由將電壓施加到該有機EL器件,可以獲得來自發光物質的發光。
有機EL器件具有容易實現薄型輕量化、能夠高速地回應輸入信號以及能夠由直流低電壓電源驅動等的特徵,因此適合用於顯示裝置。
另外,因為有機EL器件可以被形成為膜狀,所以可以容易獲得面發光。因此,可以容易形成大面積的發光器件。當使用以LED(發光二極體)為典型的點光源或以螢光燈為典型的線光源時,很難獲得該特徵,因而,有機EL器件的作為能夠應用於照明設備等的面光源的利用價值很高。
在專利文獻1中,作為可用於發光器件的材料,公開了電洞傳輸性高的芳香胺化合物。
[專利文獻1]日本專利申請公開第2009-298779號公報
本發明的一個實施方式的目的之一是提供一種新穎有機化合物。另外,本發明的一個實施方式的目的之一是提供一種耐熱性高的有機化合物。另外,本發明的一個實施方式的目的之一是提供一種昇華性良好的有機化合物。另外,本發明的一個實施方式的目的之一是提供一種可用於發光器件的新穎有機化合物。另外,本發明的一個實施方式的目的之一是提供一種在發光器件中可被用作電洞傳輸性材料的新穎有機化合物。另外,本發明的一個實施方式的目的之一是提供一種在發光器件中可被用作分散發光物質的主體材料的新穎有機化合物。
另外,本發明的一個實施方式的目的之一是提供一種發光效率高的發光器件。另外,本發明的一個實施方式的目的之一是提供一種驅動電壓低的發光器件。另外,本發明的一個實施方式的目的之一是提供一種壽命長的發光器件。另外,本發明的一個實施方式的目的之一是提供一種耐熱性高的發光器件。
注意,上述目的的描述並不妨礙其他目的的存在。本發明的一個實施方式不一定需要實現所有上述目的。可以從說明書、圖式、申請專利範圍的記載中抽取上述目的以外的目的。
本發明的一個實施方式是一種由通式(G0)表示的有機化合物。
Figure 02_image001
在通式(G0)中,R1 至R5 中的任一個表示通式(A),其餘的分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基,R6 至R13 、R21 至R29 、R31 至R39 及R41 至R48 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基。R21 和R22 也可以彼此鍵合而形成螺環。
本發明的一個實施方式是一種由通式(G1)表示的有機化合物。
Figure 02_image003
在通式(G1)中,R2 至R13 、R21 至R29 、R31 至R39 及R41 至R48 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基。R21 和R22 也可以彼此鍵合而形成螺環。
在通式(G0)及通式(G1)中,R35 至R39 中的任一個較佳為表示取代或未取代的苯基或者取代或未取代的萘基。
在通式(G0)及通式(G1)中,較佳的是,R21 和R22 是同一的,並表示碳原子數為1以上且6以下的烷基或者取代或未取代的苯基。
在通式(G0)及通式(G1)中,較佳為R21 和R22 都表示甲基。另外,較佳為R21 和R22 都表示未取代的苯基。另外,R21 和R22 較佳為彼此鍵合而形成螺環。例如,較佳的是,R21 和R22 都是取代或未取代的苯基,該苯基彼此鍵合而形成螺二茀環。
在通式(G0)及通式(G1)中,較佳為R41 至R48 分別獨立地表示氫、甲基、三級丁基或者取代或未取代的苯基。
本發明的一個實施方式是一種包含具有上述結構中的任一個結構的有機化合物的發光器件、受光器件或受發光器件。
本發明的一個實施方式是一種發光器件、受光器件或受發光器件,該發光器件、受光器件或受發光器件在一對電極之間包括含有有機化合物的層,含有有機化合物的層包含具有上述結構中的任一個結構的有機化合物。
本發明的一個實施方式是一種發光器件,該發光器件在一對電極之間包括含有有機化合物的層,含有有機化合物的層包括發光層及電洞傳輸層,發光層和電洞傳輸層中的至少一個包含具有上述結構中的任一個結構的有機化合物。
本發明的一個實施方式是一種發光裝置,該發光裝置包括具有上述結構中的任一個結構的發光器件、以及電晶體和基板中的一者或兩者。
本發明的一個實施方式是一種包括上述發光裝置的發光模組,該發光模組安裝有軟性印刷電路板(Flexible printed circuit,以下記為FPC)或TCP(Tape Carrier Package:捲帶式封裝)等連接器或者利用COG (Chip On Glass:晶粒玻璃接合)方式或COF(Chip On Film:薄膜覆晶封裝)方式等安裝有積體電路(IC)。此外,本發明的一個實施方式的發光模組既可以只包括連接器和IC中的一方,也可以包括連接器和IC中的兩者。
本發明的一個實施方式是一種電子裝置,該電子裝置包括上述發光模組、以及天線、電池、外殼、照相機、揚聲器、麥克風和操作按鈕中的至少一個。
本發明的一個實施方式是一種照明設備,該照明設備包括具有上述發光器件中的任意發光器件、以及外殼、覆蓋物和支架中的至少一個。
根據本發明的一個實施方式,可以提供一種新穎有機化合物。根據本發明的一個實施方式,可以提供一種耐熱性高的有機化合物。根據本發明的一個實施方式,可以提供一種昇華性良好的有機化合物。根據本發明的一個實施方式,可以提供一種可用於發光器件的新穎有機化合物。根據本發明的一個實施方式,可以提供一種在發光器件中可被用作電洞傳輸性材料的新穎有機化合物。根據本發明的一個實施方式,可以提供一種在發光器件中可被用作分散發光物質的主體材料的新穎有機化合物。
根據本發明的一個實施方式,可以提供一種發光效率高的發光器件。根據本發明的一個實施方式,可以提供一種驅動電壓低的發光器件。根據本發明的一個實施方式,可以提供一種壽命長的發光器件。根據本發明的一個實施方式,可以提供一種耐熱性高的發光器件。
注意,上述效果的描述並不妨礙其他效果的存在。本發明的一個實施方式不一定需要具有所有上述效果。可以從說明書、圖式、申請專利範圍的描述中抽取上述效果外的效果。
參照圖式對實施方式進行詳細說明。注意,本發明不侷限於以下說明,而所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
注意,在下面說明的發明結構中,在不同的圖式中共同使用相同的符號來顯示相同的部分或具有相同功能的部分,而省略反復說明。此外,當顯示具有相同功能的部分時有時使用相同的陰影線,而不特別附加符號。
此外,為了便於理解,有時圖式中示出的各組件的位置、大小及範圍等並不顯示其實際的位置、大小及範圍等。因此,所公開的發明不一定侷限於圖式所公開的位置、大小、範圍等。
此外,根據情況或狀態,可以互相調換“膜”和“層”的詞語。例如,可以將“導電層”變換為“導電膜”。此外,可以將“絕緣膜”變換為“絕緣層”。
實施方式1 在本實施方式中,說明本發明的一個實施方式的有機化合物。
[本發明的一個實施方式的有機化合物的結構] 本發明的一個實施方式的有機化合物是三級胺,其中胺的氮鍵合有聯苯骨架的鄰位、茀骨架及亞三聯苯骨架,離該亞三聯苯骨架的胺的氮最遠的伸苯基與咔唑骨架鍵合。
車載用途等在高溫環境下使用的發光器件被要求具有高耐熱性。另外,在使用玻璃粉的密封製程等製造產品的製程中施加高溫的情況下,發光器件還被要求具有高耐熱性。因此,用於發光器件的材料有時被要求具有100℃以上甚至為120℃以上的玻璃轉移溫度(Tg)。在本發明的一個實施方式中,可以實現100℃以上甚至為120℃以上的有機化合物的Tg,所以可以提供一種適合於被要求具有高耐熱性的發光器件的材料。另一方面,在很多情況下,藉由進行真空蒸鍍製造發光器件。在此情況下,用於發光器件的材料必須兼具高耐熱性和良好的昇華性,昇華溫度較佳為500℃以下,更佳為400℃以下。在本發明的一個實施方式中,可以提供不但具有高耐熱性而且具有良好的昇華性的材料,因此可以提供從器件製造的觀點來看生產率高的材料。
本發明的一個實施方式的有機化合物具有高電洞傳輸性及高電子阻擋性。在發光器件中,可以將本發明的一個實施方式的有機化合物用作電洞傳輸性材料。另外,在發光器件中,可以將本發明的一個實施方式的有機化合物用作分散發光物質的主體材料。藉由使用本發明的一個實施方式的有機化合物,可以提高發光器件的發光效率及可靠性。
另外,在有機光電二極體等受光器件或具有發光和受光功能的受發光器件中,也可以將本發明的一個實施方式的有機化合物用作載子傳輸性材料(電洞傳輸性材料)。
明確而言,本發明的一個實施方式是一種由通式(G0)表示的有機化合物。注意,除了具有由以下的通式表示的結構的有機化合物以外,具有該結構的發光器件用材料、受光器件用材料也都是本發明的一個實施方式。
Figure 02_image005
在通式(G0)中,R1 至R5 中的任一個表示通式(A),其餘的分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基,R6 至R13 、R21 至R29 、R31 至R39 及R41 至R48 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基,R21 和R22 也可以彼此鍵合而形成螺環。
在由通式(G0)表示的有機化合物中,由通式(G1)表示的有機化合物是更佳的。藉由具有咔唑基鍵合到亞三聯苯骨架的對位的分子結構,與咔唑基鍵合到亞三聯苯骨架的鄰位或間位的分子結構相比,可以提高有機化合物的耐熱性。
Figure 02_image007
在通式(G1)中,R2 至R13 、R21 至R29 、R31 至R39 及R41 至R48 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基,R21 和R22 也可以彼此鍵合而形成螺環。
R35 至R39 中的任一個較佳為表示取代或未取代的苯基或者取代或未取代的萘基。由此可以提高有機化合物的耐熱性。
當茀基的9位是氫時,該氫的酸度變高,發光器件的可靠性有可能降低,因此,為茀基的9位的R21 和R22 較佳為表示取代基而不表示氫。當考慮由通式(G1)表示的有機化合物的耐熱性和昇華性時,較佳的是,R21 和R22 分別獨立地表示碳原子數為1以上且6以下的烷基或者取代或未取代的苯基。或者,較佳的是,R21 和R22 是同一的,並表示碳原子數為1以上且6以下的烷基或者取代或未取代的苯基。
另外,從合成成本的觀點來看,R21 和R22 較佳為同一的。
較佳為R21 和R22 都表示甲基。由此可以提高有機化合物的昇華性。或者,較佳為R21 和R22 都表示未取代的苯基。由此可以提高有機化合物的耐熱性。
或者,為了具有高耐熱性或高可靠性,R21 和R22 較佳為彼此鍵合而形成螺環。例如,較佳的是,R21 和R22 都是取代或未取代的苯基,該苯基彼此鍵合而形成螺二茀環。
為了具有高耐熱性或高可靠性,R41 至R48 較佳為分別獨立地表示氫、甲基、三級丁基或者取代或未取代的苯基。
作為通式(G0)及通式(G1)中的碳原子數為1以上且6以下的烷基,可以舉出甲基、乙基、丙基、異丙基、丁基、二級丁基、異丁基、三級丁基、戊基、異戊基、二級戊基、三級戊基、新戊基、己基、異己基、3-甲基戊基、2-甲基戊基、2-乙基丁基、1,2-二甲基丁基、2,3-二甲基丁基、正庚基等。
作為通式(G0)及通式(G1)中的碳原子數為3以上且6以下的環烷基,可以舉出環丙基、環丁基、環戊基、環己基等。
作為通式(G0)及通式(G1)中的取代或未取代的碳原子數為6以上且13以下的芳基,可以舉出苯基、鄰甲苯基、間甲苯基、對甲苯基、均三甲苯基、鄰聯苯基、間聯苯基、對聯苯基、1-萘基、2-萘基、9H-茀基、9,9-二甲基-9H-茀基、9,9’-螺二[9H-茀]-基等。
在通式(G0)及通式(G1)的“取代或未取代的X”(X是各種環、骨架、基團等)中,在X具有取代基的情況下,作為該取代基,可以舉出甲基、乙基、丙基、異丙基、丁基、異丁基、二級丁基、三級丁基、戊基、己基等碳原子數為1以上且6以下的烷基、環丙基、環丁基、環戊基、環己基等碳原子數為3以上且6以下的環烷基以及苯基、萘基、聯苯基等碳原子數為6以上且13以下的芳基等。
作為本發明的一個實施方式的有機化合物的具體例子,可以舉出由結構式(100)至結構式(246)表示的有機化合物。但是,本發明不侷限於此。
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
Figure 02_image031
Figure 02_image033
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
Figure 02_image043
Figure 02_image045
Figure 02_image047
Figure 02_image049
Figure 02_image051
Figure 02_image053
Figure 02_image055
Figure 02_image057
[本發明的一個實施方式的有機化合物的合成方法] 作為本發明的一個實施方式的有機化合物的合成方法,可以使用各種反應。以下,例示出由通式(G0)表示的有機化合物的合成方法。以下,說明由通式(G1)表示的有機化合物的合成方法的一個例子。
Figure 02_image059
在通式(G1)以及以下的各合成方案中,R2 至R13 、R21 至R29 、R31 至R39 及R41 至R48 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基或者取代或未取代的碳原子數為6以上且13以下的芳基。R21 和R22 也可以彼此鍵合而形成螺環。
<<由通式(G1)表示的有機化合物的合成方法1>> 可以利用合成方案(a-1)或合成方案(a-2)和合成方案(a-3)合成由通式(G1)表示的有機化合物。
首先,如合成方案(a-1)所示,藉由使9-聯苯-9H-咔唑化合物(化合物1)與二鹵化苯(化合物2)偶合,得到鹵化的9-三聯苯-9H-咔唑化合物(化合物3)。
Figure 02_image061
在合成方案(a-1)中,X1 至X3 分別獨立地表示鹵素、硼酸基、有機硼基、三氟甲基磺醯基、有機錫基、有機鋅基或者鹵化鎂基。
在合成方案(a-1)中,在進行使用鈀催化劑的鈴木-宮浦偶合反應的情況下,X1 表示鹵素,X2 和X3 中的一個表示硼酸基或有機硼基,另一個表示鹵素或三氟甲磺酸酯基。鹵素較佳為碘、溴或氯。
在該反應中,可以使用雙(二亞苄基丙酮)鈀(0)、醋酸鈀(II)、[1,1-雙(二苯基膦基)二茂鐵]二氯化鈀(II)、四(三苯基膦)鈀(0)等鈀化合物、三(三級丁基)膦、三(正己基)膦、三環己基膦、二(1-金剛烷基)-正丁基膦、2-二環己基膦基-2’,6’-二甲氧基聯苯、三(鄰-甲苯基)膦等配體。在該反應中,可以使用有機鹼諸如三級丁醇鈉等、無機鹼諸如碳酸鉀、碳酸銫、碳酸鈉等。
在該反應中,作為溶劑,可以使用甲苯、二甲苯、苯、四氫呋喃、二氧六環、乙醇、甲醇、水、二乙二醇二甲醚、乙二醇單甲醚等。在該反應中可以使用的試劑類不侷限於上述試劑類。
在合成方案(a-1)中,可以進行使用有機錫化合物的右田-小杉-Stille偶合反應、使用格林納試劑的熊田-玉尾-Corriu偶合反應、使用有機鋅化合物的根岸偶合反應、使用銅或銅化合物的烏爾曼反應等。
當採用右田-小杉-Stille偶合反應時,X2 和X3 中的一個表示有機錫基,另一個表示鹵素。就是說,化合物1和化合物2中的一個是有機錫化合物,另一個是鹵化物。
當採用熊田-玉尾-Corriu偶合反應時,X2 和X3 中的一個表示鹵化鎂基,另一個表示鹵素。就是說,化合物1和化合物2中的一個是格林納試劑,另一個是鹵化物。
當採用根岸偶合反應時,X2 和X3 中的一個表示有機鋅基,另一個表示鹵素。就是說,化合物1和化合物2中的一個是有機鋅化合物,另一個是鹵化物。
或者,如合成方案(a-2)所示,藉由使9-苯基-9H-咔唑化合物(化合物4)和聯苯化合物(化合物5)偶合,得到鹵化的9-三聯苯-9H-咔唑化合物(化合物3)。
Figure 02_image063
在合成方案(a-2)中,X1 、X4 及X5 分別獨立地表示鹵素、硼酸基、有機硼基、三氟甲基磺醯基、有機錫基、有機鋅基或者鹵化鎂基。鹵素較佳為碘、溴或氯。
在合成方案(a-2)中,可以進行使用鈀催化劑的鈴木-宮浦偶合反應、使用有機錫化合物的右田-小杉-Stille偶合反應、使用格林納試劑的熊田-玉尾-Corriu偶合反應、使用有機鋅化合物的根岸偶合反應、使用銅或銅化合物的烏爾曼反應等。關於採用這些反應的情況的詳細內容,可以參照合成方案(a-1)中的說明。
化合物3可以藉由與各種二芳基胺化合物組合而用於偶合反應,可以說是一種對材料開發的簡化以及發展做出很大的貢獻的有效化合物。另外,因為化合物3具有鹵素,所以除了該胺化反應以外,還可以用作鈴木-宮浦偶合反應、右田-小杉-Stille偶合反應、熊田-玉尾-Corriu偶合反應、根岸偶合反應、烏爾曼反應等的原料,廣泛地用於用來形成碳-碳鍵合的偶合反應,可以說化合物3是一種又有效又有用的化合物。
接著,如合成方案(a-3)所示,藉由使在合成方案(a-1)或合成方案(a-2)中得到的化合物3與二芳基胺化合物(化合物6)偶合,可以得到由通式(G1)表示的有機化合物。
Figure 02_image065
在合成方案(a-3)中,X1 表示鹵素。鹵素較佳為碘、溴或氯。
合成方案(a-3)可以藉由使用鈀催化劑的布赫瓦爾德-哈特維希胺化反應進行。當進行該反應時,作為鈀催化劑可以使用雙(二亞苄基丙酮)鈀(0)、醋酸鈀(II)、[1,1-雙(二苯基膦基)二茂鐵]二氯化鈀(II)、四(三苯基膦)鈀(0)、氯化烯丙基鈀(II)二聚物等鈀化合物。另外,作為配體,可以使用三(三級丁基)膦、三(正己基)膦、三環己基膦、二(1-金剛烷基)-正丁基膦、2-二環己基膦基-2’,6’-二甲氧基聯苯、三(鄰-甲苯基)膦、二-三級丁基(1-甲基-2,2-二苯基環丙基)膦(簡稱:cBRIDP(註冊商標))等。在該反應中,可以使用有機鹼諸如三級丁醇鈉等、無機鹼諸如碳酸鉀、碳酸銫、碳酸鈉等。在該反應中,作為溶劑,可以使用甲苯、二甲苯、苯、四氫呋喃、二氧六環等。此外,在該反應中可以使用的試劑類不侷限於此。
另外,當藉由烏爾曼反應進行合成方案(a-3)時,作為可以使用的試劑,可以舉出銅或銅化合物,作為鹼可以舉出碳酸鉀等無機鹼。另外,作為在該反應中可以使用的溶劑,可以舉出1,3-二甲基-3,4,5,6-四氫化-2(1H)嘧啶酮(DMPU)、甲苯、二甲苯、苯等。在烏爾曼反應中,當反應溫度為100℃以上時,可以以更短的時間且以更高的產率得到目的物,所以較佳為使用沸點高的DMPU或二甲苯。另外,反應溫度更佳為150℃以上的高溫度,所以更佳為使用DMPU。在該反應中可以使用的試劑類不侷限於此。
<<由通式(G1)表示的有機化合物的合成方法2>> 可以利用合成方案(b-1)合成由通式(G1)表示的有機化合物。
如合成方案(b-1)所示,藉由使9-聯苯-9H-咔唑化合物(化合物7)和三芳基胺化合物(化合物8)偶合,可以得到由通式(G1)表示的有機化合物。
Figure 02_image067
在合成方案(b-1)中,X6 及X7 分別獨立地表示鹵素、硼酸基、有機硼基、三氟甲基磺醯基、有機錫基、有機鋅基或者鹵化鎂基。鹵素較佳為氯、溴或碘,在考慮反應性時更佳的是溴或碘,在考慮成本時更佳的是氯或溴。
在合成方案(b-1)中,可以進行使用鈀催化劑的鈴木-宮浦偶合反應、使用有機錫化合物的右田-小杉-Stille偶合反應、使用格林納試劑的熊田-玉尾-Corriu偶合反應、使用有機鋅化合物的根岸偶合反應、使用銅或銅化合物的反應等。關於採用這些反應的情況的詳細內容,可以參照合成方案(a-1)中的說明。
<<由通式(G1)表示的有機化合物的合成方法3>> 可以利用合成方案(c-1)合成由通式(G1)表示的有機化合物。
如合成方案(c-1)所示,藉由使9-苯基-9H-咔唑化合物(化合物9)和三芳基胺化合物(化合物10)偶合,得到由通式(G1)表示的有機化合物。
Figure 02_image069
在合成方案(c-1)中,X8 及X9 分別獨立地表示鹵素、硼酸基、有機硼基、三氟甲基磺醯基、有機錫基、有機鋅基或者鹵化鎂基。鹵素較佳為氯、溴或碘,在考慮反應性時更佳的是溴或碘,在考慮成本時更佳的是氯或溴。
在合成方案(c-1)中,可以進行使用鈀催化劑的鈴木-宮浦偶合反應、使用有機錫化合物的右田-小杉-Stille偶合反應、使用格林納試劑的熊田-玉尾-Corriu偶合反應、使用有機鋅化合物的根岸偶合反應、使用銅或銅化合物的反應等。關於採用這些反應的情況的詳細內容,可以參照合成方案(a-1)中的說明。
<<由通式(G1)表示的有機化合物的合成方法4>> 可以利用合成方案(d-1)合成由通式(G1)表示的有機化合物。
如合成方案(d-1)所示,可以藉由使9-三聯苯-9H-咔唑化合物(化合物11)與聯苯化合物(化合物12)偶合來得到二芳基胺化合物(化合物13),接著可以藉由使茀化合物(化合物14)和化合物13偶合來得到由通式(G1)表示的有機化合物。
Figure 02_image071
在合成方案(d-1)中,X10 和X11 中的一個表示胺基,另一個表示鹵素或三氟甲磺酸酯基。X12 表示鹵素或三氟甲磺酸酯基。鹵素較佳為氯、溴或碘,在考慮反應性時更佳的是溴或碘,在考慮成本時更佳的是氯或溴。
在合成方案(d-1)中,可以進行使用鈀催化劑的布赫瓦爾德-哈特維希胺化反應、使用銅或銅化合物的烏爾曼反應等。關於採用這些反應的情況的詳細內容,可以參照合成方案(a-3)中的說明。
<<由通式(G1)表示的有機化合物的合成方法5>> 可以利用合成方案(e-1)合成由通式(G1)表示的有機化合物。
如合成方案(e-1)所示,可以藉由使9-三聯苯-9H-咔唑化合物(化合物15)和茀化合物(化合物16)偶合得到二芳基胺化合物(化合物17),接著可以藉由使聯苯化合物(化合物18)和二芳基胺化合物(化合物17)偶合得到由通式(G1)表示的有機化合物。
Figure 02_image073
在合成方案(e-1)中,X13 和X14 中的一個表示胺基,另一個表示鹵素或三氟甲磺酸酯基。X15 表示鹵素或三氟甲磺酸酯基。鹵素較佳為氯、溴或碘,在考慮反應性時更佳的是溴或碘,在考慮成本時更佳的是氯或溴。
在合成方案(e-1)中,可以進行使用鈀催化劑的布赫瓦爾德-哈特維希胺化反應、使用銅或銅化合物的烏爾曼反應等。關於採用這些反應的情況的詳細內容,可以參照合成方案(a-3)中的說明。
以上,說明本發明的一個實施方式的有機化合物的合成方法,但是本發明不侷限於此,也可以藉由其他的合成方法進行合成。
本發明的一個實施方式的有機化合物具有高耐熱性及良好的昇華性,所以適合用作發光器件用材料或受光器件用材料。本發明的一個實施方式的有機化合物具有高電洞傳輸性及高電子阻擋性,所以適合用作發光器件中的主體材料或電洞傳輸性材料。藉由使用本發明的一個實施方式的有機化合物,可以提高發光器件的發光效率。藉由使用本發明的一個實施方式的有機化合物,可以提高發光器件的可靠性。
本實施方式可以與其他實施方式適當地組合。此外,在本說明書中,在一個實施方式中示出多個結構例子的情況下,可以適當地組合該結構例子。
實施方式2 在本實施方式中,使用圖1A至圖1D說明本發明的一個實施方式的發光器件。在本實施方式中,說明具有發射可見光或近紅外光的功能的發光器件。
[發光器件的結構例子] <<發光器件的基本結構>> 圖1A至圖1D示出在一對電極之間包括EL層的發光器件的例子。
圖1A所示的發光器件具有EL層103夾在第一電極101與第二電極102之間的結構(單層結構)。EL層103至少包括發光層。
圖1B示出EL層103的疊層結構的例子。在本實施方式中,以第一電極101被用作陽極且第二電極102被用作陰極的情況為例進行說明。EL層103具有在第一電極101上依次層疊有電洞注入層111、電洞傳輸層112、發光層113、電子傳輸層114、電子注入層115的結構。電洞注入層111、電洞傳輸層112、發光層113、電子傳輸層114及電子注入層115各自既可以具有單層結構又可以具有疊層結構。在第一電極101為陰極且第二電極102為陽極的情況下,疊層順序相反。
發光器件也可以在一對電極之間包括多個EL層。例如,較佳為發光器件包括n個(n是2以上的整數)EL層,並在第(n-1)個EL層和第n個EL層之間包括電荷產生層104。
圖1C示出一對電極之間包括兩個EL層(EL層103a、103b)的串聯結構的發光器件。另外,圖1D示出包括三個EL層(EL層103a、103b、103c)的串聯結構的發光器件。
EL層103a、103b、103c各自至少包括發光層。即使是如圖1C、圖1D所示的串聯結構那樣的包括多個EL層的情況,也可以將與圖1B所示的EL層103同樣的疊層結構用於各EL層。EL層103a、103b、103c各自可以包括電洞注入層111、電洞傳輸層112、電子傳輸層114和電子注入層115中的一種或多種層。
圖1C所示的電荷產生層104具有如下功能:在對第一電極101及第二電極102施加電壓時,對EL層103a和EL層103b中的一個注入電子並對另一個注入電洞的功能。由此,在圖1C中,當以使第一電極101的電位比第二電極102高的方式施加電壓時,電荷產生層104將電子注入到EL層103a中並將電洞注入到EL層103b中。
另外,從光提取效率的觀點來看,電荷產生層104較佳為使可見光或近紅外光透過(明確而言,電荷產生層104的可見光或近紅外光穿透率為40%以上)。另外,即使電荷產生層104的電導率比第一電極101或第二電極102低也能夠發揮功能。
注意,藉由以彼此接觸的方式設置EL層,在它們之間形成有與電荷產生層104相同的結構時,可以不夾著電荷產生層,以彼此接觸的方式設置EL層。例如,當在EL層的一個面上形成有電荷產生區域的情況下,可以以與該面接觸的方式設置EL層。
與具有單層結構的發光器件相比,具有串聯結構的發光器件的電流效率更高,在同一亮度發光時需要的電流更少。因此,發光器件的壽命長,而能夠提高發光裝置或電子裝置的可靠性。
發光層113適當地組合發光物質及多個物質而能夠獲得所希望的波長的螢光發光及磷光發光。另外,發光層113也可以具有發光波長不同的疊層結構。在此情況下,作為用於層疊的各發光層的發光物質或其他物質使用不同材料即可。另外,也可以採用圖1C和圖1D所示的EL層103a、103b、103c發射其波長互不相同的光的結構。在此情況下,作為用於各發光層的發光物質或其他物質使用不同材料即可。例如,在圖1C中,在EL層103a具有發射紅色光和綠色光的結構且EL層103b具有發射藍色光的結構時,可以獲得在整個發光器件中進行白色發光的發光器件。另外,一個發光器件也可以包括呈現相同顏色的多個發光層或多個EL層。例如,在圖1D中,在EL層103a具有發射第一藍色光的結構,EL層103b具有發射黃色光、黃綠色光或綠色光和紅色光的結構,EL層103c具有發射第二藍色光的結構時,可以獲得在整個發光器件中進行白色發光的發光器件。
另外,在本發明的一個實施方式的發光器件中,可以採用使在EL層中獲得的光在一對電極之間發生諧振,從而增強所獲得的光的結構。例如,在圖1B中,藉由使第一電極101為反射電極且使第二電極102為半透射-半反射電極,形成光學微腔諧振器(微腔)結構,從而可以增強從EL層103獲得的光。
藉由將微腔結構用於發光器件,即使包括相同的EL層也可以提取不同波長的光(單色光)。由此,為了獲得不同的發光顏色不需要按像素形成不同的功能層(所謂的分別塗佈)。由此,可以容易實現高解析度。另外,可以與彩色層(濾色片)組合。並且,可以增強具有特定波長的正面方向上的發光強度,從而可以實現低功耗化。
在發光器件的第一電極101為由對可見光或近紅外光具有反射性的導電膜和對可見光或近紅外光具有透過性的導電膜的疊層結構構成的反射電極的情況下,可以藉由控制該具有透過性的導電膜的厚度來進行光學調整。明確而言,較佳為以如下方式進行調整:在從發光層113獲得的光的波長為λ時,第一電極101與第二電極102的電極間距離為mλ/2(注意,m為自然數)左右。
另外,為了使從發光層113獲得的所希望的光(波長:λ)放大,較佳為調整為如下:從第一電極101到發光層113中的能夠獲得所希望的光的區域(發光區域)的光學距離及從第二電極102到發光層113中的能夠獲得所希望的光的區域(發光區域)的光學距離都成為(2m’+1)λ/4(注意,m’為自然數)左右。注意,在此說明的“發光區域”是指發光層113中的電洞與電子的再結合區域。
藉由進行上述光學調整,可以使能夠從發光層113獲得的光的光譜變窄,由此獲得色純度良好的發光。
另外,在上述情況下,嚴格地說,第一電極101和第二電極102之間的光學距離可以說是從第一電極101中的反射區域到第二電極102中的反射區域的總厚度。但是,因為難以準確地決定第一電極101或第二電極102中的反射區域的位置,所以藉由假定第一電極101及第二電極102中的任意的位置為反射區域可以充分得到上述效果。另外,嚴格地說,第一電極101和可以獲得所希望的光的發光層之間的光學距離可以說是第一電極101中的反射區域和可以獲得所希望的光的發光層中的發光區域之間的光學距離。但是,因為難以準確地決定第一電極101中的反射區域或可以獲得所希望的光的發光層中的發光區域的位置,所以藉由假定第一電極101中的任意的位置為反射區域且可以獲得所希望的光的發光層的任意的位置為發光區域,可以充分得到上述效果。
第一電極101和第二電極102中的至少一個為對可見光或近紅外光具有透過性的電極。對可見光或近紅外光具有透過性的電極的可見光或近紅外光穿透率為40%以上。另外,在該對可見光或近紅外光具有透過性的電極為上述半透射-半反射電極的情況下,該電極的可見光或近紅外光反射率為20%以上且80%以下,較佳為40%以上且70%以下。另外,這些電極的電阻率較佳為1×10-2 Ωcm以下。
在第一電極101或第二電極102為對可見光或近紅外光具有反射性的電極(反射電極)的情況下,反射電極的可見光或近紅外光反射率為40%以上且100%以下,較佳為70%以上且100%以下。另外,該電極的電阻率較佳為1×10-2 Ωcm以下。
<<發光器件的具體結構>> 接著,說明發光器件的具體結構。在此,使用具有圖1B所示的單層結構的發光器件進行說明。
<第一電極及第二電極> 作為形成第一電極101及第二電極102的材料,如果可以滿足上述兩個電極的功能則可以適當地組合下述材料。例如,可以適當地使用金屬、合金、導電化合物以及它們的混合物等。明確而言,可以舉出In-Sn氧化物(也稱為ITO)、In-Si-Sn氧化物(也稱為ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,還可以舉出鋁(Al)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鉬(Mo)、鉭(Ta)、鎢(W)、鈀(Pd)、金(Au)、鉑(Pt)、銀(Ag)、釔(Y)、釹(Nd)等金屬以及適當地組合它們的合金。除了上述以外,可以使用屬於元素週期表中第1族或第2族的元素(例如,鋰(Li)、銫(Cs)、鈣(Ca)、鍶(Sr))、銪(Eu)、鐿(Yb)等稀土金屬、適當地組合它們的合金以及石墨烯等。
在製造具有微腔結構的發光器件的情況下,例如,作為第一電極101形成反射電極,作為第二電極102形成半透射-半反射電極。因此,可以單獨使用所希望的導電材料或者使用多個所希望的導電材料以單層或疊層形成上述電極。另外,第二電極102在形成EL層103之後,與上述同樣地選擇材料而形成。另外,上述電極可以利用濺射法或真空蒸鍍法形成。
<電洞注入層及電洞傳輸層> 電洞注入層111是將電洞從為陽極的第一電極101注入到EL層103的層,包含電洞注入性高的材料。
作為電洞注入性高的材料,可以使用鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等過渡金屬氧化物、酞青(簡稱:H2 Pc)、銅酞青(簡稱:CuPc)等酞青類化合物等。
作為電洞注入性高的材料,可以使用芳香胺化合物,諸如4,4’,4”-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、4,4’-雙(N-{4-[N’-(3-甲基苯基)-N’-苯基胺基]苯基}-N-苯基胺基)聯苯(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基胺基苯基)-N-苯基胺基]苯(簡稱:DPA3B)、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)等。
作為電洞注入性高的材料,可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等。或者,還可以使用添加有酸的高分子化合物,諸如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(簡稱:PEDOT/PSS)或聚苯胺/聚(苯乙烯磺酸)(PAni/PSS)等。
作為電洞注入性高的材料,也可以使用包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料。在此情況下,由受體材料從電洞傳輸性材料抽出電子而在電洞注入層111中產生電洞,電洞藉由電洞傳輸層112注入到發光層113中。另外,電洞注入層111可以採用由包含電洞傳輸性材料及受體材料的複合材料構成的單層,也可以採用分別使用電洞傳輸性材料及受體材料形成的層的疊層。
電洞傳輸層112是將從第一電極101由電洞注入層111注入的電洞傳輸到發光層113中的層。電洞傳輸層112是包含電洞傳輸性材料的層。作為用於電洞傳輸層112的電洞傳輸性材料,特別較佳為使用具有與電洞注入層111的最高佔據分子軌域能階(HOMO能階)相同或相近的HOMO能階的材料。
作為用於電洞注入層111的受體材料,可以使用屬於元素週期表中的第4族至第8族的金屬的氧化物。明確而言,可以舉出氧化鉬、氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鎢、氧化錳、氧化錸。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。除了上述以外,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。作為上述具有拉電子基團(鹵基或氰基)的化合物,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4 -TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(簡稱:F6-TCNNQ)等。尤其是,HAT-CN這樣的具有多個雜原子的稠合芳香環與拉電子基團鍵合的化合物具有熱穩定性,所以是較佳的。另外,包括拉電子基團(尤其是如氟基等鹵基、氰基)的[3]軸烯衍生物的電子接收性非常高所以是較佳的。明確而言,可以舉出:α,α’,α”-1,2,3-環丙烷三亞基三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-環丙烷三亞基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-環丙烷三亞基三[2,3,4,5,6-五氟苯乙腈]等。
作為用於電洞注入層111及電洞傳輸層112的電洞傳輸性材料,較佳為具有10-6 cm2 /Vs以上的電洞移動率的物質。另外,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述以外的物質。
在本發明的一個實施方式的發光器件中,作為用於電洞注入層111和電洞傳輸層112中的一者或兩者的電洞傳輸性材料較佳為包含本發明的一個實施方式的有機化合物。另外,因為本發明的一個實施方式的有機化合物具有高電子阻擋性,所以藉由將其用於電洞傳輸層112,可以提高發光器件的發光效率。
電洞傳輸性材料較佳為富π電子型雜芳族化合物(例如,咔唑衍生物、噻吩衍生物及呋喃衍生物等)、芳香胺(具有芳香胺骨架的化合物)等電洞傳輸性高的材料。
作為咔唑衍生物(具有咔唑骨架的化合物),可以舉出聯咔唑衍生物(例如,3,3’-聯咔唑衍生物)、具有咔唑基的芳香胺等。
作為聯咔唑衍生物(例如,3,3’-聯咔唑衍生物),明確而言,可以舉出3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、9,9’-雙(1,1’-聯苯-4-基)-3,3’-聯-9H-咔唑、9,9’-雙(1,1’-聯苯-3-基)-3,3’-聯-9H-咔唑、9-(1,1’-聯苯-3-基)-9’-(1,1’-聯苯-4-基)-9H,9’H-3,3’-聯咔唑(簡稱:mBPCCBP)、9-(2-萘基)-9’-苯基-9H,9’H-3,3’-聯咔唑(簡稱:βNCCP)等。
作為具有咔唑基的芳香胺,明確而言,可以舉出4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、N,N’-雙(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(簡稱:PCA2B)、N,N’,N”-三苯基-N,N’,N”-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-二茀-2-胺(簡稱:PCBASF)、PCzPCA1、PCzPCA2、PCzPCN1、3-[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA2)、3,6-雙[N-(4-二苯基胺基苯基)-N-(1-萘基)胺基]-9-苯基咔唑(簡稱:PCzTPN2)、2-[N-(9-苯基咔唑-3-基)-N-苯基胺基]螺-9,9’-二茀(簡稱:PCASF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、N,N’-雙[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)等。
作為咔唑衍生物,除了上述以外,還可以舉出3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等。
作為噻吩衍生物(具有噻吩骨架的化合物)及呋喃衍生物(具有呋喃骨架的化合物),明確而言,可以舉出4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物、以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等。
作為芳香胺,明確而言,可以舉出4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、N-(9,9-二甲基-9H-茀-2-基)-N-{9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-茀-2-基)胺基]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、N-(9,9-二甲基-2-二苯基胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、2-[N-(4-二苯基胺基苯基)-N-苯基胺基]螺-9,9’-二茀(簡稱:DPASF)、2,7-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]螺-9,9’-二茀(簡稱:DPA2SF)、4,4’,4”-三[N-(1-萘基)-N-苯基胺基]三苯胺(簡稱:1-TNATA)、TDATA、m-MTDATA、N,N’-二(對甲苯基)-N,N’-二苯基-對苯二胺(簡稱:DTDPPA)、DPAB、DNTPD、DPA3B等。
作為電洞傳輸性材料,還可以使用PVK、PVTPA、PTPDMA、Poly-TPD等高分子化合物。
電洞傳輸性材料不侷限於上述材料,可以將已知的各種材料中的一種或多種的組合用於電洞注入層111及電洞傳輸層112。
<發光層> 發光層113是包含發光物質的層。發光層113可以包含一種或多種發光物質。作為發光物質,適當地使用呈現藍色、紫色、藍紫色、綠色、黃綠色、黃色、橙色、紅色等發光顏色的物質。此外,作為發光物質,也可以使用發射近紅外光的物質。另外,藉由在多個發光層中分別使用不同的發光物質,可以呈現不同的發光顏色(例如,可以組合處於補色關係的發光顏色獲得白色光)。再者,一個發光層也可以包含不同的發光物質。
另外,發光層113除了發光物質(客體材料)以外較佳為還包含一種或多種有機化合物(主體材料、輔助材料等)。作為一種或多種有機化合物,可以使用在本實施方式中說明的電洞傳輸性材料和電子傳輸性材料中的一者或兩者。此外,作為一種或多種有機化合物,也可以使用雙極性材料。
當將電洞傳輸性材料用於發光層113時,作為該電洞傳輸性材料較佳為使用本發明的一個實施方式的有機化合物。
對可用於發光層113的發光物質沒有特別的限制,可以使用將單重激發能量轉換為可見光區域或近紅外光區域的光的發光物質或者將三重激發能量轉換為可見光區域或近紅外光區域的光的發光物質。
作為將單重激發能量轉換成發光的發光物質,可以舉出發射螢光的物質(螢光材料),例如可以舉出芘衍生物、蒽衍生物、聯伸三苯衍生物、茀衍生物、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、二苯并喹㗁啉衍生物、喹㗁啉衍生物、吡啶衍生物、嘧啶衍生物、菲衍生物、萘衍生物等。尤其是芘衍生物的發光量子產率高,所以是較佳的。作為芘衍生物的具體例子,可以舉出N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FrAPrn)、N,N’-雙(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6ThAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-6-胺](簡稱:1,6BnfAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-02)、N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)等。
除了上述以外,可以使用5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、4-[4-(10-苯基-9-蒽基)苯基]-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPBA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、N,N”-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)等。
作為將三重激發能量轉換為發光的發光物質,例如可以舉出發射磷光的物質(磷光材料)或呈現熱活化延遲螢光的熱活化延遲螢光(Thermally Activated Delayed Fluorescence:TADF)材料。
作為磷光材料,可以舉出有機金屬錯合物、金屬錯合物(鉑錯合物)、稀土金屬錯合物等。這種物質分別呈現不同的發光顏色(發光峰),因此根據需要適當地選擇而使用。
作為呈現藍色或綠色且其發射光譜的峰值波長為450nm以上且570nm以下的磷光材料,可以舉出如下物質。
例如,可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2 ]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3 ])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:[Ir(Mptz)3 ])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPrptz-3b)3 ])、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPr5btz)3 ])等具有4H-三唑骨架的有機金屬錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:[Ir(Mptz1-mp)3 ])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:[Ir(Prptz1-Me)3 ])等具有1H-三唑骨架的有機金屬錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi)3 ])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me)3 ])等具有咪唑骨架的有機金屬錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’ }銥(III)吡啶甲酸鹽(簡稱:[Ir(CF3 ppy)2 (pic)])、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬錯合物等。
作為呈現綠色或黃色且其發射光譜的峰值波長為495nm以上且590nm以下的磷光材料,可以舉出如下物質。
例如,可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)3 ])、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)3 ])、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)2 (acac)])、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)2 (acac)])、(乙醯丙酮根)雙[6-(2-降莰基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(nbppm)2 (acac)])、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(mpmppm)2 (acac)])、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN3 ]苯基-κC}銥(III)(簡稱:[Ir(dmppm-dmp)2 (acac)])、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:[Ir(dppm)2 (acac)])等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-Me)2 (acac)])、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-iPr)2 (acac)])等具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶根-N,C2’ )銥(III)(簡稱:[Ir(ppy)3 ])、雙(2-苯基吡啶根-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(ppy)2 (acac)])、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:[Ir(bzq)2 (acac)])、三(苯并[h]喹啉)銥(III)(簡稱:[Ir(bzq)3 ])、三(2-苯基喹啉-N,C2’ )銥(III)(簡稱:[Ir(pq)3 ])、雙(2-苯基喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(pq)2 (acac)])、[2-(4-苯基-2-吡啶基-κN)苯基-κC]雙[2-(2-吡啶基-κN)苯基-κC]銥(III)(簡稱:[Ir(ppy)2 (4dppy)])、雙[2-(2-吡啶基-κN)苯基-κC][2-(4-甲基-5-苯基-2-吡啶基-κN)苯基-κC]等具有吡啶骨架的有機金屬銥錯合物;雙(2,4-二苯基-1,3-㗁唑-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(dpo)2 (acac)])、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C2’ }銥(III)乙醯丙酮(簡稱:[Ir(p-PF-ph)2 (acac)])、雙(2-苯基苯并噻唑-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(bt)2 (acac)])等有機金屬錯合物、三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:[Tb(acac)3 (Phen)])等稀土金屬錯合物。
作為呈現黃色或紅色且其發射光譜的峰值波長為570nm以上且750nm以下的磷光材料,可以舉出如下物質。
例如,可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:[Ir(5mdppm)2 (dibm)])、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:[Ir(5mdppm)2 (dpm)])、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:[Ir(d1npm)2 (dpm)])、三(4-三級丁基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)3 ])等具有嘧啶骨架的有機金屬錯合物;(乙醯丙酮)雙(2,3,5-三苯基吡嗪)銥(III)(簡稱:[Ir(tppr)2 (acac)])、雙(2,3,5-三苯基吡嗪)(二新戊醯甲烷)銥(III)(簡稱:[Ir(tppr)2 (dpm)])、雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(dmdppr-P)2 (dibm)])、雙{4,6-二甲基-2-[5-(4-氰-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(dmdppr-dmCP)2 (dpm)])、(乙醯丙酮)雙[2-甲基-3-苯基喹㗁啉合(phenylquinoxalinato)-N,C2’ ]銥(III)(簡稱:[Ir(mpq)2 (acac)])、(乙醯丙酮)雙(2,3-二苯基喹㗁啉合(diphenylquinoxalinato)-N,C2’ ]銥(III)(簡稱:[Ir(dpq)2 (acac)])、(乙醯丙酮)雙[2,3-雙(4-氟苯基)喹㗁啉合(quinoxalinato)]銥(III)(簡稱:[Ir(Fdpq)2 (acac)])、雙{4,6-二甲基-2-[5-(5-氰基-2-甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(dmdppr-m5CP)2 (dpm)])等具有吡嗪骨架的有機金屬錯合物;三(1-苯基異喹啉-N,C2’ )銥(III)(簡稱:[Ir(piq)3 ])、雙(1-苯基異喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(piq)2 (acac)])、雙[4,6-二甲基-2-(2-喹啉-κN)苯基-κC](2,4-戊二酮根-κ2 O,O’)銥(III)等具有吡啶骨架的有機金屬錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:[PtOEP])等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:[Eu(DBM)3 (Phen)])、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:[Eu(TTA)3 (Phen)])等稀土金屬錯合物。
作為用於發光層113的有機化合物(主體材料、輔助材料等),可以選擇一種或多種其能隙比發光物質大的物質而使用。
在用於發光層113的發光物質是螢光材料的情況下,作為與發光物質組合而使用的有機化合物,較佳為使用其單重激發態的能階大且其三重激發態的能階小的有機化合物。
雖然一部分與上述具體例子重複,但是,從與發光物質(螢光材料、磷光材料)的較佳為組合的觀點來看,以下示出有機化合物的具體例子。
在發光物質是螢光材料的情況下,作為可以與發光物質組合而使用的有機化合物,可以舉出蒽衍生物、稠四苯衍生物、菲衍生物、芘衍生物、䓛(chrysene)衍生物、二苯并[g,p]䓛衍生物等稠合多環芳香化合物。
作為與螢光材料組合而使用的有機化合物(主體材料)的具體例子,可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、PCPN、9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、6,12-二甲氧基-5,11-二苯基䓛、N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯并[g,p]䓛-2,7,10,15-四胺(簡稱:DBC1)、CzPA、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)-聯苯-4’-基}-蒽(簡稱:FLPPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9’-聯蒽(簡稱:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(簡稱:DPNS)、9,9’-(二苯乙烯-4,4’-二基)二菲(簡稱:DPNS2)、1,3,5-三(1-芘)苯(簡稱:TPB3)、5,12-二苯基稠四苯、5,12-雙(聯苯-2-基)稠四苯等。
在發光物質是磷光材料的情況下,作為與發光物質組合而使用的有機化合物,選擇其三重激發能量大於發光物質的三重激發能量(基態和三重激發態的能量差)的有機化合物即可。
當為了形成激態錯合物,組合而使用多個有機化合物(例如,第一主體材料及第二主體材料(或輔助材料)等)與發光物質時,較佳為與磷光材料(尤其是有機金屬錯合物)混合而使用這些多個有機化合物。
藉由採用這樣的結構,可以高效地得到利用從激態錯合物到發光物質的能量轉移的ExTET(Exciplex-Triplet Energy Transfer:激態錯合物-三重態能量轉移)的發光。作為多個有機化合物的組合,較佳為使用容易形成激態錯合物的組合,特別較佳為組合容易接收電洞的化合物(電洞傳輸性材料)與容易接收電子的化合物(電子傳輸性材料)。另外,實施方式1所示的本發明的一個實施方式的有機化合物適合於容易接收電洞的化合物。作為電洞傳輸性材料及電子傳輸性材料的具體例子,可以使用本實施方式所示的材料。由於該結構而能夠同時實現發光器件的高效率、低電壓驅動及長壽命。
作為在發光物質是磷光材料時可以與發光物質組合而使用的有機化合物,可以舉出芳香胺、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、鋅類金屬錯合物或鋁類金屬錯合物、㗁二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、嘧啶衍生物、三嗪衍生物、吡啶衍生物、聯吡啶衍生物、啡啉衍生物等。
此外,作為上述中的電洞傳輸性高的有機化合物的芳香胺(具有芳香胺骨架的化合物)、咔唑衍生物、二苯并噻吩衍生物(噻吩衍生物)、二苯并呋喃衍生物(呋喃衍生物)的具體例子,可以舉出與上述電洞傳輸性材料的具體例子相同的材料。
作為電子傳輸性高的有機化合物的鋅類金屬錯合物、鋁類金屬錯合物的具體例子,可以舉出:三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3 )、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等具有喹啉骨架或苯并喹啉骨架的金屬錯合物等。
除此之外,還可以使用如雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等具有㗁唑基類配體、噻唑類配體的金屬錯合物等。
此外,作為電子傳輸性高的有機化合物的㗁二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、啡啉衍生物的具體例子,可以舉出2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、3-(4-三級丁基苯基)-4-(4-乙基苯基)-5-(4-聯苯基)-1,2,4-三唑(簡稱:p-EtTAZ)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)、4,4’-雙(5-甲基苯并㗁唑-2-基)二苯乙烯(簡稱:BzOs)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBPhen)、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:7mDBTPDBq-II)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:6mDBTPDBq-II)等。
作為電子傳輸性高的有機化合物的具有二嗪骨架的雜環化合物、具有三嗪骨架的雜環化合物、具有吡啶骨架的雜環化合物的具體例子,可以舉出4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-聯-9H-咔唑(簡稱:mPCCzPTzn-02)、2-[3’-(9,9-二甲基-9H-茀-2-基)-1,1’-聯苯-3-基]-4,6-二苯基-1,3,5-三嗪(簡稱:mFBPTzn)、2-[(1,1’-聯苯)-4-基]-4-苯基-6-[9,9’-螺二(9H-茀)-2-基]-1,3,5-三嗪(簡稱:BP-SFTzn)、2-{3-[3-(苯并[b]萘并[1,2-d]呋喃-8-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:mBnfBPTzn)、2-{3-[3-(苯并[b]萘并[1,2-d]呋喃-6-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:mBnfBPTzn-02)、3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶)苯基]苯(簡稱:TmPyPB)等。
作為電子傳輸性高的有機化合物,還可以使用聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)等高分子化合物。
TADF材料是指能夠利用微小的熱能量將三重激發態上轉換(up-convert)為單重激發態(逆系間竄越)並高效地發射來自單重激發態的發光(螢光)的材料。可以高效地獲得熱活化延遲螢光的條件為如下:三重激發能階和單重激發能階之間的能量差為0eV以上且0.2eV以下,較佳為0eV以上且0.1eV以下。TADF材料所發射的延遲螢光是指具有與一般的螢光同樣的光譜但壽命非常長的發光。其壽命為10-6 秒以上,較佳為10-3 秒以上。
作為TADF材料,例如可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、伊紅等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為含金屬卟啉,例如,也可以舉出原卟啉-氟化錫錯合物(簡稱:SnF2 (Proto IX))、中卟啉-氟化錫錯合物(簡稱:SnF2 (Meso IX))、血卟啉-氟化錫錯合物(簡稱:SnF2 (Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(簡稱:SnF2 (Copro III-4Me))、八乙基卟啉-氟化錫錯合物(簡稱:SnF2 (OEP))、初卟啉-氟化錫錯合物(簡稱:SnF2 (Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl2 OEP)等。
除了上述以外,可以使用2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、PCCzPTzn、2-[4-(10H-啡㗁𠯤-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡𠯤-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)等具有富π電子型雜芳環及缺π電子型雜芳環的雜環化合物。另外,在富π電子型雜芳環和缺π電子型雜芳環直接鍵合的物質中,富π電子型雜芳環的施體性和缺π電子型雜芳環的受體性都強,單重激發態與三重激發態之間的能量差變小,所以是尤其較佳的。
另外,在使用TADF材料的情況下,可以與其他有機化合物組合。尤其TADF材料可以與上述主體材料、電洞傳輸性材料及電子傳輸性材料組合。
此外,藉由與低分子材料或高分子材料組合,可以將上述材料用於發光層113的形成。在沉積中,可以適當地使用已知的方法(蒸鍍法、塗佈法、印刷法等)。
<電子傳輸層> 電子傳輸層114是將從第二電極102由電子注入層115注入的電子傳輸到發光層113中的層。另外,電子傳輸層114是包含電子傳輸性材料的層。作為用於電子傳輸層114的電子傳輸性材料,較佳為具有1×10-6 cm2 /Vs以上的電子移動率的物質。另外,只要是電子傳輸性高於電洞傳輸性的物質,就可以使用上述以外的物質。
作為電子傳輸性材料,可以使用具有喹啉骨架的金屬錯合物、具有苯并喹啉骨架的金屬錯合物、具有㗁唑骨架的金屬錯合物、具有噻唑骨架的金屬錯合物等,還可以使用㗁二唑衍生物、三唑衍生物、咪唑衍生物、㗁唑衍生物、噻唑衍生物、啡啉衍生物、具有喹啉配體的喹啉衍生物、苯并喹啉衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、吡啶衍生物、聯吡啶衍生物、嘧啶衍生物、含氮雜芳族化合物等缺π電子型雜芳族化合物等電子傳輸性高的材料。
作為電子傳輸性材料的具體例子,可以使用上述材料。
<電子注入層> 電子注入層115是包含電子注入性高的材料的層。作為電子注入層115,可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2 )及鋰氧化物(LiOx )等鹼金屬、鹼土金屬或這些金屬的化合物。此外,可以使用氟化鉺(ErF3 )等稀土金屬化合物。此外,也可以將電子鹽用於電子注入層115。作為電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以使用如上所述的構成電子傳輸層114的物質。
此外,也可以將包含電子傳輸性材料和施體性材料(電子給予性材料)的複合材料用於電子注入層115。這種複合材料因為藉由電子施體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用用於如上所述的電子傳輸層114的電子傳輸性材料(金屬錯合物、雜芳族化合物等)。作為電子施體,只要是對有機化合物呈現電子給予性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
<電荷產生層> 在圖1C所示的發光器件中,電荷產生層104具有如下功能:當第一電極101(陽極)和第二電極102(陰極)之間被施加電壓時,對EL層103a注入電子且對EL層103b注入電洞的功能。
電荷產生層104既可以具有包含電洞傳輸性材料和受體性材料(電子接收性材料)的結構,也可以具有包含電子傳輸性材料和施體性材料的結構。藉由形成這種結構的電荷產生層104,可以抑制在層疊EL層時的驅動電壓的增大。
作為電洞傳輸性材料、受體性材料、電子傳輸性材料及施體性材料,可以使用上述材料。
另外,當製造本實施方式所示的發光器件時,可以利用蒸鍍法等真空製程或旋塗法、噴墨法等溶液製程。在利用蒸鍍法時,可以利用濺射法、離子鍍法、離子束蒸鍍法、分子束蒸鍍法、真空蒸鍍法等物理蒸鍍法(PVD法)或化學氣相沉積法(CVD法)等。尤其是,可以利用蒸鍍法(真空蒸鍍法)、塗佈法(浸塗法、染料塗佈法、棒式塗佈法、旋塗法、噴塗法等)、印刷法(噴墨法、網版印刷(孔版印刷)法、平板印刷(平版印刷)法、柔版印刷(凸版印刷)法、照相凹版印刷法、微接觸印刷法等)等方法形成包括在EL層中的功能層(電洞注入層、電洞傳輸層、發光層、電子傳輸層、電子注入層)以及電荷產生層。
構成EL層103的功能層及電荷產生層的材料不侷限於上述材料。例如,作為功能層的材料,可以使用高分子化合物(低聚物、樹枝狀聚合物、聚合物等)、中分子化合物(介於低分子與高分子之間的化合物:分子量為400至4000)、無機化合物(量子點材料等)等。作為量子點材料,可以使用膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。
本實施方式可以與其他實施方式適當地組合。
實施方式3 在本實施方式中,參照圖2A至圖5C說明本發明的一個實施方式的發光裝置。
[發光裝置的結構例子1] 圖2A示出發光裝置的俯視圖,圖2B、圖2C示出沿著圖2A的點劃線X1-Y1及X2-Y2的剖面圖。可以將圖2A至圖2C所示的發光裝置例如用於照明設備。發光裝置也可以具有底部發射結構、頂部發射結構或雙面發射結構。
圖2B所示的發光裝置包括基板490a、基板490b、導電層406、導電層416、絕緣層405、有機EL器件450(第一電極401、EL層402及第二電極403)及黏合層407。可以將有機EL器件450稱為發光元件、有機EL元件、發光器件等。EL層402較佳為包含實施方式1所示的本發明的一個實施方式的有機化合物。例如,較佳為作為電洞注入層的材料、電洞傳輸層的材料和發光層的主體材料中的至少一個包含該有機化合物。
有機EL器件450包括基板490a上的第一電極401、第一電極401上的EL層402、EL層402上的第二電極403。由基板490a、黏合層407及基板490b密封有機EL器件450。
第一電極401、導電層406及導電層416的端部由絕緣層405覆蓋。導電層406與第一電極401電連接,導電層416與第二電極403電連接。隔著第一電極401由絕緣層405覆蓋的導電層406被用作輔助佈線,並與第一電極401電連接。當包括與有機EL器件450的電極電連接的輔助佈線時,能夠抑制起因於電極的電阻的電壓下降,所以是較佳的。導電層406也可以設置在第一電極401上。另外,也可以在絕緣層405上等包括與第二電極403電連接的輔助佈線。
基板490a及基板490b可以使用玻璃、石英、陶瓷、藍寶石以及有機樹脂等。藉由將具有撓性的材料用於基板490a及基板490b,可以提高顯示裝置的撓性。
發光裝置的發光面也可以配置有用來提高光提取效率的光提取結構、抑制塵埃的附著的抗靜電膜、不容易被弄髒的具有拒水性的膜、抑制使用時的損傷的硬塗膜、衝擊吸收層等。
作為可用於絕緣層405的絕緣材料,例如可以舉出丙烯酸樹脂或環氧樹脂等樹脂、無機絕緣材料如氧化矽、氧氮化矽、氮氧化矽、氮化矽或氧化鋁等。
作為黏合層407,可以使用紫外線硬化型黏合劑等光硬化型黏合劑、反應硬化型黏合劑、熱固性黏合劑、厭氧黏合劑等各種硬化型黏合劑。作為這些黏合劑,可以舉出環氧樹脂、丙烯酸樹脂、矽酮樹脂、酚醛樹脂、聚醯亞胺樹脂、醯亞胺樹脂、PVC(聚氯乙烯)樹脂、PVB(聚乙烯醇縮丁醛)樹脂、EVA(乙烯-醋酸乙烯酯)樹脂等。尤其是,較佳為使用環氧樹脂等透濕性低的材料。此外,也可以使用兩液混合型樹脂。此外,也可以使用黏合薄片等。
圖2C所示的發光裝置包括障壁層490c、導電層406、導電層416、絕緣層405、有機EL器件450、黏合層407、障壁層423及基板490b。
圖2C所示的障壁層490c包括基板420、黏合層422及阻擋性高的絕緣層424。
在圖2C所示的發光裝置中,阻擋性高的絕緣層424與障壁層423之間配置有有機EL器件450。因此,即使將防水性較低的樹脂薄膜等用於基板420及基板490b,也可以抑制水等雜質進入有機EL器件而導致壽命降低。
作為基板420及基板490b,例如可以使用如下材料:聚對苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)等聚酯樹脂、聚丙烯腈樹脂、丙烯酸樹脂、聚醯亞胺樹脂、聚甲基丙烯酸甲酯樹脂、聚碳酸酯(PC)樹脂、聚醚碸(PES)樹脂、聚醯胺樹脂(尼龍、芳香族聚醯胺等)、聚矽氧烷樹脂、環烯烴樹脂、聚苯乙烯樹脂、聚醯胺-醯亞胺樹脂、聚氨酯樹脂、聚氯乙烯樹脂、聚偏二氯乙烯樹脂、聚丙烯樹脂、聚四氟乙烯(PTFE)樹脂、ABS樹脂以及纖維素奈米纖維等。基板420及基板490b也可以使用其厚度為具有撓性程度的玻璃。
作為阻擋性高的絕緣層424較佳為使用無機絕緣膜。作為無機絕緣膜,例如可以使用氮化矽膜、氧氮化矽膜、氧化矽膜、氮氧化矽膜、氧化鋁膜、氮化鋁膜等。此外,也可以使用氧化鉿膜、氧化釔膜、氧化鋯膜、氧化鎵膜、氧化鉭膜、氧化鎂膜、氧化鑭膜、氧化鈰膜及氧化釹膜等。此外,也可以層疊上述絕緣膜中的兩個以上。
障壁層423較佳為包括至少一個無機膜。例如,障壁層423可以採用無機膜的單層結構或者無機膜和有機膜的疊層結構。作為無機膜,上述無機絕緣膜是較佳的。作為該疊層結構,例如,可以舉出依次形成氧氮化矽膜、氧化矽膜、有機膜、氧化矽膜、氮化矽膜的結構等。藉由作為障壁層採用無機膜和有機膜的疊層結構,可以適當地抑制有可能進入有機EL器件450的雜質(典型的是,氫、水等)。
阻擋性高的絕緣層424及有機EL器件450可以直接形成在具有撓性的基板420上。此時,不需要黏合層422。另外,絕緣層424及有機EL器件450可以在隔著剝離層形成在剛性基板上之後轉置到基板420。例如,可以藉由對剝離層施加熱、力量以及雷射等,從剛性基板剝離絕緣層424及有機EL器件450,然後利用黏合層422貼合基板420,由此將絕緣層424及有機EL器件450轉置到基板420。作為剝離層,例如可以使用包括鎢膜及氧化矽膜等無機膜的疊層或者聚醯亞胺等有機樹脂膜等。當利用剛性基板時,與樹脂基板等相比,可以以更高的溫度形成絕緣層424,所以可以實現緻密且阻擋性極高的絕緣層424。
[發光裝置的結構例子2] 圖3A示出發光裝置的剖面圖。圖3A所示的發光裝置是電連接電晶體和發光器件而成的主動矩陣型的發光裝置。
圖3A所示的發光裝置包括基板201、電晶體210、發光器件203R、發光器件203G、發光器件203B、濾色片206R、濾色片206G、濾色片206B、基板205等。
在圖3A中,基板201上設置有電晶體210,電晶體210上設置有絕緣層202,絕緣層202上設置有發光器件203R、203G、203B。
電晶體210以及發光器件203R、203G、203B密封在由基板201、基板205及黏合層208圍繞的空間207中。空間207例如可以採用充滿了減壓氛圍、惰性氛圍或樹脂的結構。
圖3A所示的發光裝置具有一個像素包括紅色子像素(R)、綠色子像素(G)以及藍色子像素(B)的結構。
本發明的一個實施方式的發光裝置具有配置為矩陣狀的多個像素。一個像素包括一個以上的子像素。一個子像素包括一個發光器件。例如,像素可以採用包括三個子像素的結構(R、G、B的三種顏色或黃色(Y)、青色(C)及洋紅色(M)的三種顏色等)或包括四個子像素的結構(R、G、B、白色(W)的四種顏色或者R、G、B、Y的四種顏色等)。
圖3B示出發光器件203R、發光器件203G及發光器件203B的詳細結構。發光器件203R、203G、203B包括共同的EL層213,並具有根據各發光器件的發光顏色調節了各發光器件的電極間的光學距離的微腔結構。EL層213較佳為包含實施方式1所示的本發明的一個實施方式的有機化合物。例如,較佳為作為電洞注入層的材料、電洞傳輸層的材料和發光層的主體材料中的至少一個包含該有機化合物。
第一電極211被用作反射電極,第二電極215被用作半透過-半反射電極。
在發光器件203R中,將第一電極211和第二電極215之間的光學距離調節為光學距離220R,以便增強紅色光的強度。同樣地,在發光器件203G中,將第一電極211和第二電極215之間的光學距離調節為光學距離220G,以便增強綠色光的強度,在發光器件203B中,將第一電極211和第二電極215之間的光學距離調節為光學距離220B,以便增強藍色光的強度。
如圖3B所示,藉由在發光器件203R中在第一電極211上形成導電層212R且在發光器件203G中在第一電極211上形成導電層212G,可以進行光學調整。並且,在發光器件203B中,可以在第一電極211上形成其厚度與導電層212R及導電層212G不同的導電層來調節光學距離220B。此外,如圖3A所示,第一電極211、導電層212R及導電層212G的端部被絕緣層204覆蓋。
圖3A所示的發光裝置是從發光器件得到的光經過形成在基板205上的各顏色的濾色片而射出的頂發射型發光裝置。濾色片可以使可見光中的特定波長範圍的光透過並遮蔽特定波長範圍的可見光。
在紅色子像素(R)中,來自發光器件203R的光經過紅色濾色片206R射出。如圖3A所示,藉由在與發光器件203R重疊的位置上設置只使紅色波長範圍的光透過的濾色片206R,可以從發光器件203R得到紅色光。
同樣地,在綠色子像素(G)中,來自發光器件203G的光經過綠色濾色片206G射出,在藍色子像素(B)中,來自發光器件203B的光經過藍色濾色片206B射出。
此外,基板205也可以設置有黑矩陣209(也稱為黑色層)。此時,濾色片的端部較佳為與黑矩陣209重疊。並且,各顏色的濾色片及黑矩陣209也可以被使可見光透過的保護層覆蓋。
圖3C所示的發光裝置具有一個像素包括紅色子像素(R)、綠色子像素(G)、藍色子像素(B)以及白色子像素(W)的結構。在圖3C中,來自白色子像素(W)所包括的發光器件203W的光不經過濾色片而射出到發光裝置的外部。
此外,發光器件203W中的第一電極211和第二電極215之間的光學距離可以與發光器件203R、203G、203B中的任一個光學距離相同或者可以與發光器件203R、203G、203B的光學距離不同。
例如,在從發光器件203W發射的光是色溫較低的白色光的情況等想要增強藍色光的強度的情況下,如圖3C所示,較佳為使發光器件203W中的光學距離與發光器件203B中的光學距離220B相同。由此,可以使從發光器件203W得到的光接近所希望的色溫的白色光。
在圖3A中,各顏色的子像素所包括的發光器件共同使用EL層213的例子,但是,如圖4A所示,也可以在各顏色的子像素所包括的發光器件中使用互不相同的EL層。在圖4A中,也可以同樣地採用上述微腔結構。
圖4A示出一個例子,其中發光器件203R包括EL層213R,發光器件203G包括EL層213G,發光器件203B包括EL層213B。EL層213R、213G、213B也可以包括共同的層。例如,在EL層213R、213G、213B中,也可以發光層的結構互不相同而其他層是共同層。在圖4A中,發光器件203R、203G、203B所發射的光既可以經過濾色片被提取,又可以不經過濾色片被提取。
雖然在圖3A中示出頂發射型發光裝置,但是,如圖4B所示,具有將光提取到形成有電晶體210的基板201一側的結構(底發射型)的發光裝置也是本發明的一個實施方式。
在底發射型發光裝置中,較佳為在基板201和發光器件之間設置各顏色的濾色片。圖4B示出一個例子,其中在基板201上形成電晶體210,在電晶體210上形成絕緣層202a,在絕緣層202a上形成濾色片206R、206G、206B,在濾色片206R、206G、206B上形成絕緣層202b,在絕緣層202b上形成發光器件203R、203G、203B。
在頂發射型發光裝置中,作為基板201可以使用遮光性基板及透光性基板,作為基板205可以使用透光性基板。
在底發射型發光裝置中,作為基板205可以使用遮光性基板及透光性基板,作為基板201可以使用透光性基板。
[發光裝置的結構例子3] 本發明的一個實施方式的發光裝置也可以是被動矩陣型發光裝置或主動矩陣型發光裝置。使用圖5A至圖5C對主動矩陣型發光裝置進行說明。
圖5A示出發光裝置的俯視圖。圖5B示出圖5A所示的點劃線A-A’的剖面圖。
圖5A、圖5B所示的主動矩陣型發光裝置包括像素部302、電路部303、電路部304a及電路部304b。
電路部303、電路部304a及電路部304b可以被用作掃描線驅動電路(閘極驅動器)或信號線驅動電路(源極驅動器)的功能。或者,也可以是電連接外置的閘極驅動器或源極驅動器與像素部302的電路。
第一基板301上設置有引線配線307。引線配線307與作為外部輸入端子的FPC308電連接。FPC308對電路部303、電路部304a及電路部304b傳遞來自外部的信號(例如,視訊信號、時脈信號、啟動信號或重設信號等)或電位。此外,FPC308也可以安裝有印刷線路板(PWB)。可以將圖5A及圖5B所示的結構稱為包括發光器件(或發光裝置)及FPC的發光模組。
像素部302包括包含有機EL器件317、電晶體311及電晶體312的多個像素。電晶體312與有機EL器件317所包括的第一電極313電連接。電晶體311被用作開關用電晶體。電晶體312被用作電流控制用電晶體。注意,對各像素所包括的電晶體的個數沒有特別的限制,可以根據需要適當地設置。
電路部303包括電晶體309、電晶體310等多個電晶體。電路部303既可以由包含單極性(N型和P型中的任一個)電晶體的電路形成,也可以由包含N型電晶體及P型電晶體的CMOS電路形成。此外,也可以採用外部具有驅動電路的結構。
對本實施方式的發光裝置所包括的電晶體結構沒有特別的限制。例如,可以採用平面型電晶體、交錯型電晶體或反交錯型電晶體等。此外,電晶體可以具有頂閘極結構或底閘極結構。或者,也可以在形成通道的半導體層上下設置有閘極。
對用於電晶體的半導體材料的結晶性也沒有特別的限制,可以使用非晶半導體或具有結晶性的半導體(微晶半導體、多晶半導體、單晶半導體或其一部分具有結晶區域的半導體)。當使用具有結晶性的半導體時可以抑制電晶體的特性劣化,所以是較佳的。
電晶體的半導體層較佳為包含金屬氧化物(氧化物半導體)。或者,電晶體的半導體層也可以包含矽。作為矽,可以舉出非晶矽、結晶矽(低溫多晶矽、單晶矽等)等。
例如,半導體層較佳為包含銦、M(M為選自鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂中的一種或多種)和鋅。尤其是,M較佳為選自鋁、鎵、釔或錫中的一種或多種。
尤其是,作為半導體層,較佳為使用包含銦(In)、鎵(Ga)及鋅(Zn)的氧化物(也記為IGZO)。
當半導體層為In-M-Zn氧化物時,較佳為用來形成In-M-Zn氧化物的濺射靶材中的In的原子數比為M的原子數比以上。作為這種濺射靶材的金屬元素的原子數比,可以舉出In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等。
電路部303、電路部304a及電路部304b所包括的電晶體和像素部302所包括的電晶體既可以具有相同的結構,又可以具有不同的結構。電路部303、電路部304a及電路部304b所包括的多個電晶體既可以具有相同的結構,又可以具有兩種以上的不同結構。與此同樣,像素部302所包括的多個電晶體既可以具有相同的結構,又可以具有兩種以上的不同結構。
第一電極313的端部由絕緣層314覆蓋。絕緣層314可以使用負型感光樹脂或正型感光樹脂(丙烯酸樹脂)等有機化合物或者氧化矽、氧氮化矽、氮化矽等無機化合物。絕緣層314的上端部或下端部較佳為有具有曲率的曲面。由此,可以使形成在絕緣層314上的膜具有良好的覆蓋性。
第一電極313上層疊有EL層315,EL層315上設置有第二電極316。EL層315包括發光層、電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等。EL層315較佳為包含實施方式1所示的本發明的一個實施方式的有機化合物。例如,較佳為作為電洞注入層的材料、電洞傳輸層的材料和發光層的主體材料中的至少一個包含該有機化合物。
多個電晶體及多個有機EL器件317由第一基板301、第二基板306及密封劑305密封。由第一基板301、第二基板306及密封劑305圍繞的空間318也可以填充有惰性氣體(氮或氬等)或有機物(包括密封劑305)。
可以將環氧樹脂或玻璃粉用作密封劑305。此外,作為密封劑305,較佳為使用儘量未使水分和氧透過的材料。從黏合性的觀點來看,在作為密封劑使用玻璃粉的情況下,作為第一基板301及第二基板306較佳為使用玻璃基板。
圖5C、圖5D示出可用於發光裝置的電晶體的例子。
圖5C所示的電晶體320包括:用作閘極的導電層321;用作閘極絕緣層的絕緣層328;包含通道形成區域327i及一對低電阻區域327n的半導體層327;與一對低電阻區域327n中的一個連接的導電層322a;與一對低電阻區域327n中的另一個連接的導電層322b;用作閘極絕緣層的絕緣層325;用作閘極的導電層323;以及覆蓋導電層323的絕緣層324。絕緣層328位於導電層321與通道形成區域327i之間。絕緣層325位於導電層323與通道形成區域327i之間。電晶體320較佳為被絕緣層326覆蓋。絕緣層326也可以包括在電晶體320的組件。
導電層322a及導電層322b藉由設置在絕緣層324中的開口與低電阻區域327n連接。導電層322a及導電層322b中的一個用作源極,另一個用作汲極。
絕緣層325至少與半導體層327的通道形成區域327i重疊地設置。絕緣層325也可以覆蓋一對低電阻區域327n的頂面及側面。
圖5D所示的電晶體330包括被用作閘極的導電層331、被用作閘極絕緣層的絕緣層338、被用作源極及汲極的導電層332a及導電層332b、半導體層337、被用作閘極絕緣層的絕緣層335、以及被用作閘極的導電層333。絕緣層338位於導電層331和半導體層337之間。絕緣層335位於導電層333和半導體層337之間。電晶體330較佳為被絕緣層334覆蓋。絕緣層334也可以包括在電晶體330的組件。
作為電晶體320及電晶體330,採用兩個閘極夾著形成通道的半導體層的結構。此外,也可以連接兩個閘極,並藉由對該兩個閘極供應同一信號,來驅動電晶體。或者,藉由對兩個閘極中的一個施加用來控制臨界電壓的電位,對另一個施加用來進行驅動的電位,可以控制電晶體的臨界電壓。
較佳的是,將水或氫等雜質不容易擴散的材料用於覆蓋電晶體的絕緣層中的至少一個。由此,可以將絕緣層用作障壁層。藉由採用這種結構,可以有效地抑制雜質從外部擴散到電晶體中,從而可以提高發光裝置的可靠性。
作為絕緣層325、絕緣層326、絕緣層328、絕緣層334、絕緣層335及絕緣層338較佳為使用無機絕緣膜。作為無機絕緣膜,例如可以使用氮化矽膜、氧氮化矽膜、氧化矽膜、氮氧化矽膜、氧化鋁膜、氮化鋁膜等。此外,也可以使用氧化鉿膜、氧化釔膜、氧化鋯膜、氧化鎵膜、氧化鉭膜、氧化鎂膜、氧化鑭膜、氧化鈰膜及氧化釹膜等。此外,也可以層疊上述絕緣膜中的兩個以上。
作為能夠用於構成發光裝置的各種導電層的材料,可以使用鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬或者以上述金屬為主要成分的合金等。另外,可以以單層或疊層結構使用包含這些材料的膜。例如,有包含矽的鋁膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構、依次層疊鈦膜或氮化鈦膜、鋁膜或銅膜和鈦膜或氮化鈦膜的三層結構、依次層疊鉬膜或氮化鉬膜、鋁膜或銅膜和鉬膜或氮化鉬膜的三層結構等。另外,也可以使用包含氧化銦、氧化錫或氧化鋅的氧化物。另外,藉由使用包含錳的銅,可以提高蝕刻時的形狀的控制性,所以是較佳的。
本實施方式可以與其他實施方式適當地組合。
實施方式4 在本實施方式中,參照圖式說明本發明的一個實施方式的電子裝置。
作為電子裝置,例如可以舉出:電視機;用於電腦等的顯示器;如數位相機;數位攝影機;數位相框;行動電話機(也稱為行動電話、行動電話裝置);可攜式遊戲機;可攜式資訊終端;音頻再生裝置;彈珠機等大型遊戲機;生物識別系統;以及檢測機器。
本發明的一個實施方式的電子裝置在顯示部中包括本發明的一個實施方式的發光裝置,因此具有高發光效率以及高可靠性。
在本實施方式的電子裝置的顯示部上例如可以顯示具有全高清、4K2K、8K4K、16K8K或更高的解析度的影像。此外,顯示部的螢幕尺寸可以為對角線20英寸以上、30英寸以上、50英寸以上、60英寸以上或70英寸以上。
此外,由於本發明的一個實施方式的電子裝置具有撓性,因此也可以將該電子裝置沿著房屋或高樓的內壁或外壁、汽車的內部裝飾或外部裝飾的曲面組裝。
此外,本發明的一個實施方式的電子裝置也可以包括二次電池,較佳為藉由非接觸電力傳送對該二次電池充電。
作為二次電池,例如,可以舉出利用凝膠狀電解質的鋰聚合物電池(鋰離子聚合物電池)等鋰離子二次電池、鎳氫電池、鎳鎘電池、有機自由基電池、鉛蓄電池、空氣二次電池、鎳鋅電池、銀鋅電池等。
本發明的一個實施方式的電子裝置也可以包括天線。藉由由天線接收信號,可以在顯示部上顯示影像或資訊等。另外,在電子裝置包括天線及二次電池的情況下,可以將天線用於非接觸電力傳送。
本實施方式的電子裝置也可以包括感測器(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)。
本實施方式的電子裝置可以具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;執行各種軟體(程式)的功能;進行無線通訊的功能;讀出儲存在存儲介質中的程式或資料的功能;等。
圖6A示出電視機的一個例子。在電視機7100中,在外殼7101中組裝有顯示部7000。在此示出利用支架7103支撐外殼7101的結構。
可以對顯示部7000適用本發明的一個實施方式的發光裝置。
可以藉由利用外殼7101所具備的操作開關或另外提供的遙控器7111進行圖6A所示的電視機7100的操作。另外,也可以在顯示部7000中具備觸控感測器,藉由用指頭等觸摸顯示部7000可以進行電視機7100的操作。可以在遙控器7111中具備顯示從該遙控器7111輸出的資料的顯示部。藉由利用遙控器7111所具備的操作鍵或觸控面板,可以進行頻道或音量的操作,並可以對在顯示部7000上顯示的影像進行操作。
另外,電視機7100採用具備接收機及數據機等的結構。可以藉由利用接收機接收一般的電視廣播。再者,藉由數據機將電視機連接到有線或無線方式的通訊網路,可以進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通訊。
圖6B示出筆記型個人電腦的一個例子。筆記型個人電腦7200包括外殼7211、鍵盤7212、指向裝置7213、外部連接埠7214等。外殼7211中組裝有顯示部7000。
可以對顯示部7000適用本發明的一個實施方式的發光裝置。
圖6C和圖6D示出數位看板的一個例子。
圖6C所示的數位看板7300包括外殼7301、顯示部7000及揚聲器7303等。 此外,還可以包括LED燈、操作鍵(包括電源開關或操作開關)、連接端子、各種感測器、麥克風等。
圖6D示出設置於圓柱狀柱子7401上的數位看板7400。數位看板7400包括沿著柱子7401的曲面設置的顯示部7000。
在圖6C和圖6D中,可以對顯示部7000適用本發明的一個實施方式的發光裝置。
顯示部7000越大,一次能夠提供的資訊量越多。顯示部7000越大,越容易吸引人的注意,例如可以提高廣告宣傳效果。
藉由將觸控面板用於顯示部7000,不僅可以在顯示部7000上顯示靜態影像或動態影像,使用者還能夠直覺性地進行操作,所以是較佳的。此外,在用於提供路線資訊或交通資訊等資訊的用途時,可以藉由直覺性的操作提高易用性。
如圖6C和圖6D所示,數位看板7300或數位看板7400較佳為可以藉由無線通訊與使用者所攜帶的智慧手機等資訊終端設備7311或資訊終端設備7411聯動。例如,顯示在顯示部7000上的廣告資訊可以顯示在資訊終端設備7311或資訊終端設備7411的螢幕上。此外,藉由操作資訊終端設備7311或資訊終端設備7411,可以切換顯示部7000的顯示。
此外,可以在數位看板7300或數位看板7400上以資訊終端設備7311或資訊終端設備7411的螢幕為操作單元(控制器)執行遊戲。由此,不特定多個使用者可以同時參加遊戲,享受遊戲的樂趣。
圖7A至圖7F示出具有撓性顯示部7001的可攜式資訊終端的一個例子。
使用本發明的一個實施方式的發光裝置製造顯示部7001。例如,可以適用能夠以0.01mm以上且150mm以下的曲率半徑彎曲的發光裝置。顯示部7001也可以具備觸控感測器,可以藉由用手指等接觸顯示部7001進行可攜式資訊終端的操作。
圖7A至圖7C示出能夠折疊的可攜式資訊終端的一個例子。圖7A示出展開狀態的可攜式資訊終端7600,圖7B示出從展開狀態和折疊狀態中的一個狀態變為另一個狀態時的中途狀態的可攜式資訊終端7600,圖7C示出折疊狀態的可攜式資訊終端7600。可攜式資訊終端7600在折疊狀態下可攜性好,在展開狀態下因為具有無縫拼接的較大的顯示區域所以顯示一覽性強。
顯示部7001由鉸鏈7602所連接的三個外殼7601來支撐。藉由鉸鏈7602使兩個外殼7601之間彎折,可以從可攜式資訊終端7600的展開狀態可逆性地變為折疊狀態。
圖7D及圖7E示出能夠折疊的可攜式資訊終端的一個例子。圖7D示出以使顯示部7001位於內側的方式折疊的可攜式資訊終端7650。圖7E示出以使顯示部7001位於外側的方式折疊的可攜式資訊終端7650。可攜式資訊終端7650具有顯示部7001及非顯示部7651。在不使用可攜式資訊終端7650時,以使顯示部7001向內側的方式折疊,由此能夠抑制顯示部7001被弄髒或受損傷。
圖7F示出手錶型的可攜式資訊終端的一個例子。可攜式資訊終端7800具有錶帶7801、顯示部7001、輸入輸出端子7802、操作按鈕7803等。錶帶7801被用作外殼。可攜式資訊終端7800可以安裝有具有撓性的電池7805。例如,也可以與顯示部7001或錶帶7801重疊的方式配置電池7805。
錶帶7801、顯示部7001及電池7805具有撓性。因此容易使可攜式資訊終端7800彎曲為所希望的形狀。
操作按鈕7803除了時間設定之外還可以具有電源開關、無線通訊的開關、靜音模式的開啟及關閉、省電模式的開啟及關閉等各種功能。例如,藉由利用組裝在可攜式資訊終端7800中的作業系統,還可以自由地設定操作按鈕7803的功能。
藉由使用指頭等接觸顯示在顯示部7001上的圖示7804,可以啟動應用程式。
另外,可攜式資訊終端7800可以進行被通訊標準化的近距離無線通訊。例如,藉由與可進行無線通訊的耳麥相互通訊,可以進行免提通話。
此外,可攜式資訊終端7800也可以包括輸入輸出端子7802。在可攜式資訊終端7800包括輸入輸出端子7802的情況下,可以藉由連接器直接與其他資訊終端進行資料的交換。另外,也可以藉由輸入輸出端子7802進行充電。另外,在本實施方式中例示出的可攜式資訊終端的充電工作也可以利用非接觸電力傳送進行,而不藉由輸入輸出端子。
圖8A示出汽車9700的外觀。圖8B示出汽車9700的駕駛座。汽車9700包括車體9701、車輪9702、擋風玻璃9703、燈9704、霧燈9705等。本發明的一個實施方式的發光裝置可以用於汽車9700的顯示部等。例如,可以在圖8B所示的顯示部9710至顯示部9715中設置本發明的一個實施方式的發光裝置等。或者,也可以對燈9704或霧燈9705使用本發明的一個實施方式的發光裝置。
顯示部9710和顯示部9711是設置在汽車的擋風玻璃上的顯示裝置。藉由使用具有透光性的導電材料來製造電極及佈線,可以使本發明的一個實施方式的發光裝置等處於稱為能看到對面的所謂的透視式狀態。若顯示部9710或顯示部9711成為透視式狀態就在駕駛汽車9700時也不會成為視野的障礙。因此,可以將本發明的一個實施方式的發光裝置設置在汽車9700的擋風玻璃上。另外,當設置用來驅動發光裝置的電晶體時,較佳為採用使用有機半導體材料的有機電晶體或者使用氧化物半導體的電晶體等具有透光性的電晶體。
顯示部9712是設置在支柱部分的顯示裝置。例如,藉由將來自設置在車體的成像單元的影像顯示在顯示部9712,可以彌補被支柱遮擋的視野。顯示部9713是設置在儀表板部分的顯示裝置。例如,藉由將來自設置在車體的成像單元的影像顯示在顯示部9713,可以彌補被儀表板遮擋的視野。亦即,藉由顯示來自設置在汽車外側的成像單元的影像,可以彌補死角,從而提高安全性。另外,藉由顯示彌補看不到的部分的影像,可以更自然、更自在地確認安全。
另外,圖8C示出作為駕駛座和副駕駛座採用了長條座椅的汽車室內。顯示部9721是設置於車門部分的顯示裝置。例如,藉由將設置於車體的成像單元所拍攝的影像顯示在顯示部9721,可以彌補被車門遮擋的視野。另外,顯示部9722是設置於方向盤的顯示裝置。顯示部9723是設置於長條座椅的座位中央部的顯示裝置。注意,藉由將顯示裝置設置於座椅或靠背等並以該顯示裝置的發熱為熱源,可以將該顯示裝置用作座椅加熱器。
顯示部9714、顯示部9715或顯示部9722可以藉由顯示導航資訊、速度計、轉速計、里程、油量表、換擋指示燈、空調的設定等提供各種資訊。另外,使用者可以適當地改變顯示部所顯示的顯示內容及佈置等。另外,顯示部9710至顯示部9713、顯示部9721、顯示部9723也可以顯示上述資訊。顯示部9710至顯示部9715、顯示部9721至顯示部9723還可以被用作照明設備。此外,顯示部9710至顯示部9715、顯示部9721至顯示部9723還可以被用作加熱裝置。
另外,本發明的一個實施方式的電子裝置因為作為光源包括本發明的一個實施方式的發光裝置所以具有高發光效率及高可靠性。例如,可以將本發明的一個實施方式的發光裝置用於發射可見光或近紅外光的光源。另外,可以將本發明的一個實施方式的發光裝置用於照明設備的光源。
圖9A是以手指靜脈為對象的生物識別系統,該生物識別系統包括外殼911、光源912、檢測台913等。藉由在檢測台913上放置手指,可以拍攝靜脈形狀。檢測台913的上方設置有發射近紅外光的光源912,檢測台913的下方設置有攝像裝置914。檢測台913由使近紅外光透過的材料構成,可以利用攝像裝置914拍攝從光源912照射且透過手指的近紅外光。此外,也可以在檢測台913和攝像裝置914之間設置光學系統。可以將上述機器的結構還用於以掌靜脈為對象的生物識別系統。
可以將本發明的一個實施方式的發光裝置用於光源912。本發明的一個實施方式的發光裝置可以以彎曲形狀設置,可以向對象物高均勻地照射光。尤其是,較佳為發射在700nm以上且1200nm以下的波長中具有最強的峰強度的近紅外光的發光裝置。藉由接收透過手指或手掌等的光並進行成像,可以檢測出靜脈位置。將該作用用作生物識別。另外,藉由與全局快門方式組合,即使被攝體移動,也可以進行精度高的檢測。
另外,光源912可以包括如圖9B所示的發光部915、916、917那樣的多個發光部。發光部915、916、917各自所發射的光的波長可以不同。另外,發光部915、916、917也可以以不同時序進行照射。因此,藉由改變照射光的波長或角度可以連續地拍攝不同影像,可以將多個影像用於識別來實現高安全性。
圖9C是以掌靜脈為對象的生物識別系統,該生物識別系統包括外殼921、操作按鈕922、檢測部923以及發射近紅外光的光源924等。藉由在檢測部923上刷手,可以檢測出掌靜脈的形狀。另外,可以利用操作按鈕輸入密碼等。檢測部923的周圍配置有光源924,向對象物(手掌)照射光。然後,被對象物反射的光入射到檢測部923。可以將本發明的一個實施方式的發光裝置用於光源924。檢測部923正下配置有攝像裝置925,可以捕捉到對象物的影像(手掌的全體圖)。此外,也可以在檢測部923和攝像裝置925之間設置光學系統。可以將上述機器的結構還用於以手指靜脈為對象的生物識別系統。
圖9D是無損檢測設備,該無損檢測設備包括外殼931、操作面板932、傳送機構933、顯示器934、檢測單元935、發射近紅外光的光源938等。可以將本發明的一個實施方式的發光裝置用於光源938。用傳送機構933將被檢測構件936傳送到檢測單元935正下。近紅外光從光源938照射到被檢測構件936,利用設置在檢測單元935中的攝像裝置937拍攝該透過光。所拍攝的影像顯示在顯示器934上。然後,將被檢測構件936傳送到外殼931的出口,分類並回收次品。藉由利用近紅外光進行拍攝,可以以無損的方式高速地檢測出被檢測構件中的缺陷或異物等不良要素。
圖9E是行動電話機,該行動電話機包括外殼981、顯示部982、操作按鈕983、外部連接介面984、揚聲器985、麥克風986、第一攝像頭987及第二攝像頭988等。該行動電話機在顯示部982中具有觸控感測器。外殼981及顯示部982具有撓性。藉由用手指或觸控筆等觸摸顯示部982可以進行打電話或輸入文字等各種操作。可以利用第一攝像頭987取得可見光影像,可以利用第二攝像頭988取得紅外光影像(近紅外光影像)。圖9E所示的行動電話機或顯示部982也可以包括本發明的一個實施方式的發光裝置。
本實施方式可以與其他實施方式適當地組合。 實施例1
(合成例子1) 在本實施例中,說明本發明的一個實施方式的有機化合物的合成方法。在本實施例中,說明實施方式1的由結構式(100)表示的N-[4”-(9H-咔唑-9-基)-1,1’:4’,1”-三聯苯-4-基]-N-(1,1’-聯苯-2-基)-9,9-二甲基-9H-茀-2-胺(簡稱:oYGTBiF(2))的合成方法。
Figure 02_image075
首先,將1.3g(3.7mmol)的N-[1,1’-聯苯]-2-基-9,9-二甲基-9H-茀-2-胺、1.6g(3.7mmol)的9-(4”-氯[1,1’:4’,1”-三聯苯]-4-基)-9H-咔唑以及26mg(74μmol)的二-三級丁基(1-甲基-2,2-二苯基環丙基)膦(註冊商標:cBRIDP)放入安裝有回流管的200mL三頸燒瓶中,用氮氣將體系置換。將0.71g(7.4mmol)的三級丁醇鈉以及30mL的二甲苯放在燒瓶中,在減壓下進行脫氣三次並進行氮氣置換三次。將21mg(37μmol)的雙(二亞苄基丙酮)鈀(0)放入燒瓶中,以150℃進行攪拌10小時。在攪拌之後,藉由吸引過濾從混合物去除不溶物。對所得到的濾液添加水,利用甲苯對水層進行萃取。使用水對所得到的有機層進行洗滌兩次,然後使用飽和食鹽水進行洗滌。利用硫酸鎂對有機層進行乾燥。對所得到的混合物進行重力過濾,去除硫酸鎂。濃縮所得到的濾液,得到黃色黏性固體2.6g。藉由矽膠管柱層析法(展開溶劑為甲苯:己烷=1:2)對所得到的固體進行純化,並且,利用甲苯對所得到的淡黃色固體進行重結晶,以30%的產率得到淡黃色固體0.83g。
利用梯度昇華方法對所得到的0.83g的固體進行昇華純化。在昇華純化中,在以15mL/分的流量流過氬且壓力為3.8Pa的條件下,以320℃加熱固體16小時。在昇華純化後,以66%的回收率得到0.55g的目的物的淡黃色固體。由於在昇華純化中320℃的加熱引起材料的昇華且回收率很高,亦即為66%,因此確認到本發明的一個實施方式的有機化合物具有良好的昇華性且其蒸鍍製程沒有問題。(A-1)示出合成方案。
Figure 02_image077
以下示出所得到的淡黃色固體的核磁共振光譜法(1 H-NMR)的分析結果。根據該結果可知,在本實施例中得到由結構式(100)表示的oYGTBiF(2)。
1 H NMR(二氯甲烷-d2 ,300MHz):δ=8.17(d、J=7.8Hz、2H)、7.91(d、J=8.7Hz、2H)、7.78(d、J=8.7Hz、2H)、7.71(d、J=8.7Hz、2H)、7.67(d、J=8.7Hz、2H)、7.57(d、J=7.2Hz、1H)、7.52-7.19(m、18H)、7.14-7.06(m、5H)、6.92(d、J=1.8Hz、1H)、6.79(dd、J1=6.0Hz、J2=2.1Hz、1H)、1.30(s、6H).
接著,測量oYGTBiF(2)的甲苯溶液及固體薄膜的紫外-可見吸收光譜(以下簡稱為“吸收光譜”)及發射光譜。藉由真空蒸鍍法在石英基板上製造固體薄膜。
使用紫外可見分光光度計(溶液:日本分光株式會社製造的V-550,薄膜:日立高新技術(Hitachi High-Technologies Corporation)製造的U-4100)進行吸收光譜的測量。甲苯溶液中的oYGTBiF(2)的吸收光譜藉由從石英皿中放入oYGTBiF(2)的甲苯溶液測量而得的吸收光譜減去石英皿中放入甲苯測量而得的吸收光譜來算出。另外,薄膜的吸收光譜根據包括基板的薄膜的穿透率及反射率得到的吸光度(-log10 [%T/100-%R])算出。注意,%T表示穿透率,%R表示反射率。使用螢光分光光度計(由日本濱松光子學株式會社製造,FS920)測量發射光譜。吸收光譜及發射光譜的測量都在室溫下進行。
圖10A示出所得到的甲苯溶液的吸收光譜及發射光譜的測量結果。橫軸表示波長,縱軸表示吸收強度及發光強度。
在圖10A中,在366nm附近觀察到oYGTBiF (2)的甲苯溶液的吸收峰,在421nm附近(激發波長:366nm)觀察到發射峰。
圖10B示出所得到的固體薄膜的吸收光譜及發射光譜的測量結果。橫軸表示波長,縱軸表示吸收強度及發光強度。
在圖10B中,在294nm附近、350nm附近及367nm附近觀察到oYGTBiF(2)的固體薄膜的吸收峰,在440nm附近(激發波長:365nm)觀察到發射峰。
可知,本發明的一個實施方式的有機化合物oYGTBiF(2)是適合於如下材料的主體材料:發射藍色光或者其能量位於比藍色更長的波長一側的光的螢光材料;以及發射綠色光或其能量位於比綠色更長的波長一側的光的磷光材料。oYGTBiF(2)還可以被用作與可見區域或近紅外區域的發光物質(螢光材料、延遲螢光材料或磷光材料等)一起使用的主體材料或者發光物質。
接著,利用循環伏安法(CV:Cyclic Voltammetry)測量計算出oYGTBiF(2)的HOMO能階及LUMO能階。下面示出算出方法。
作為測量裝置,使用電化學分析儀(BAS株式會社(BAS Inc.)製造,型號:ALS型號600A或600C)。在CV測量時的溶液中,作為溶劑,使用脫水二甲基甲醯胺(DMF)(株式會社Aldrich製造,99.8%,目錄號碼:22705-6),使作為支援電解質的過氯酸四正丁基銨(n-Bu4 NClO4 )(東京化成工業株式會社(Tokyo Chemical Industry Co., Ltd.)製造,目錄號碼:T0836)以100mmol/L的濃度溶解,並且使測量對象以2mmol/L的濃度溶解而調製。
另外,作為工作電極使用鉑電極(BAS株式會社製造,PTE鉑電極),作為輔助電極使用鉑電極(BAS株式會社製造,VC-3用Pt對電極(5cm)),作為參考電極使用Ag/Ag+ 電極(BAS株式會社製造,RE7非水參比電極)。另外,測量在室溫(20℃以上且25℃以下)下進行。
另外,將CV測量時的掃描速度統一為0.1V/sec,測量相對於參考電極的氧化電位Ea[V]及還原電位Ec[V]。Ea是氧化-還原波的中間電位,Ec是還原-氧化波的中間電位。在此,因為已知在本實施例中使用的參考電極的相對於真空能階的勢能為-4.94[eV],所以根據HOMO能階[eV]=-4.94-Ea,LUMO能階[eV]=-4.94-Ec的公式可以算出HOMO能階及LUMO能階。
此外,反復進行CV測量100次,對比第100次循環的測量中的氧化-還原波與第1次循環的測量中的氧化-還原波,來調查化合物的電性穩定性。
根據該結果可知,在oYGTBiF(2)的氧化電位Ea[V]的測量中,HOMO能階為-5.42eV。另一方面,在還原電位Ec[V]的測量中,LUMO能階為-2.31eV,可知oYGTBiF(2)具有高電子阻擋性。在氧化-還原波的反復測量中,對第1次循環的測量的波形與第100次循環的波形進行對比,可知在Ea測量中保持了88%的峰強度,在Ec測量中保持了99%的峰強度,由此確認到oYGTBiF(2)的耐氧化性及耐還原性非常良好。
另外,使用由珀金埃爾默股份有限公司(PerkinElmer,Inc.)製造的Pyris1DSC進行oYGTBiF(2)的差示掃描量熱測量(DSC測量)。在差示掃描量熱測量中,連續地進行如下操作兩次:以40℃/分的升溫速度從-10℃升溫到320℃,然後以該溫度保持1分鐘後以100℃/分的降溫速度冷卻到-10℃。由第二次循環的DSC測量結果可知,oYGTBiF(2)的玻璃轉移溫度為137℃,亦即,oYGTBiF(2)是具有非常高的耐熱性的物質。
另外,進行oYGTBiF(2)的熱重-差熱分析(Thermogravimetry-Differential Thermal Analysis)。當測量時,使用高真空差動型熱重分析儀(布魯克AXS有限公司(BrukerAXS K.K.)製造的TG-DTA2410SA)。在大氣壓、升溫速度為10℃/分、氮氣流(流速為200mL/分)的條件下進行測量。根據熱重-差熱分析可知,從熱重求得的重量成為測量開始時的-5%的溫度(分解溫度)為484℃,亦即,oYGTBiF(2)是具有高耐熱性的物質。
根據以上的結果,確認到:本發明的一個實施方式的有機化合物兼具有高耐熱性和良好的昇華性,可以提供一種耐熱性高的有機光器件(發光器件及受光器件),並且可以提高器件製造的生產率。 實施例2
在本實施例中,說明製造本發明的一個實施方式的發光器件並進行評價的結果。
在本實施例中,作為發光器件,製造使用在實施例1中說明的oYGTBiF(2)(結構式(100))的器件1、用於對比的比較器件2、比較器件3、比較器件4,說明評價結果。
圖11示出在本實施例中使用的四個發光器件的結構,表1示出具體結構。另外,以下示出在本實施例中使用的材料的化學式。
Figure 02_image079
Figure 02_image081
<<發光器件的製造>> 如圖11所示,本實施例所示的發光器件具有如下結構:基板800上形成有第一電極801,第一電極801上作為EL層802依次層疊有電洞注入層811、電洞傳輸層812、發光層813、電子傳輸層814以及電子注入層815,且電子注入層815上層疊有第二電極803。
首先,在基板800上形成第一電極801。電極面積為4mm2 (2mm×2mm)。另外,作為基板800使用玻璃基板。第一電極801藉由利用濺射法形成厚度為70nm的包含氧化矽的銦錫氧化物(ITSO)而形成。在本實施例中,第一電極801被用作陽極。
在此,作為預處理,利用水對基板表面進行洗滌,在200℃的溫度下焙燒1小時,然後進行UV臭氧處理370秒。然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空焙燒30分鐘,然後對基板進行冷卻30分鐘左右。
接著,在第一電極801上形成電洞注入層811。在將真空蒸鍍裝置內部減壓到10-4 Pa之後,以材料X:ALD-MP001Q=1:0.1(重量比)且厚度為10nm的方式共蒸鍍材料X與ALD-MP001Q(分析工房株式會社,材料序號:1S20180314),由此形成電洞注入層811。ALD-MP001Q是受體性材料。
接著,在電洞注入層811上形成電洞傳輸層812。以厚度為20nm的方式蒸鍍材料X且以厚度為10nm的方式蒸鍍N,N-雙[4-(二苯并呋喃-4-基)苯基]-4-胺基-對三聯苯(簡稱:DBfBB1TP),由此形成電洞傳輸層812。
作為電洞注入層811及電洞傳輸層812中的材料X,在器件1中使用N-[4”-(9H-咔唑-9-基)-1,1’:4’,1”-三聯苯-4-基]-N-(1,1’-聯苯-2-基)-9,9-二甲基-9H-茀-2-胺(簡稱:oYGTBiF(2)),在比較器件2中使用N-[4’-(9H-咔唑-9-基)-1,1’-聯苯-4-基]-N-(1,1’-聯苯-2-基)-9,9’-二甲基-9H-茀-2-胺(簡稱:oYGBBiF),在比較器件3中使用2,4’-二苯基-4”-[4’-(9H-咔唑-9-基)-1,1’-聯苯-4-基]三苯胺(簡稱:oYGTBi1BP),在比較器件4中使用N-[4”-(9H-咔唑-9-基)-1,1’:4’,1”-三聯苯-4-基]-N-(1,1’-聯苯-4-基)-9,9-二甲基-9H-茀-2-胺(簡稱:YGTBiF(2))。
接著,在電洞傳輸層812上形成發光層813。作為主體材料使用7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA),作為客體材料(螢光材料)使用3,10-雙[N-(9-苯基-9H-咔唑-2-基)-N-苯基胺基]萘并[2,3-b;6,7-b’]雙苯并呋喃(簡稱:3,10PCA2Nbf(IV)-02),以重量比為cgDBCzPA:3,10PCA2Nbf(IV)-02=1:0.015的方式進行共蒸鍍。將厚度設定為25nm。
接著,在發光層813上形成電子傳輸層814。藉由以厚度為15nm的方式蒸鍍cgDBCzPA,以厚度為10nm的方式蒸鍍2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBPhen),形成電子傳輸層814。
接著,在電子傳輸層814上形成電子注入層815。電子注入層815藉由以厚度為1nm的方式蒸鍍氟化鋰(LiF)而形成。
接著,在電子注入層815上形成第二電極803。第二電極803藉由以厚度為200nm的方式藉由蒸鍍法沉積鋁而形成。在本實施例中,第二電極803被用作陰極。
藉由上述製程在基板800上形成在一對電極之間夾有EL層802的發光器件。另外,上述製程中說明的電洞注入層811、電洞傳輸層812、發光層813、電子傳輸層814以及電子注入層815是構成本發明的一個實施方式的發光器件中的EL層的功能層。另外,在上述製造方法的蒸鍍過程中,都利用電阻加熱法進行蒸鍍。
另外,使用另一基板(未圖示)密封如上所述那樣製成的發光器件。當使用另一基板(未圖示)進行密封時,在氮氛圍的手套箱內將塗佈有因紫外光線而固化的黏合劑的另一基板(未圖示)固定於基板800上,並以黏合劑附著於形成在基板800上的發光器件的周圍的方式將基板彼此黏合。在密封時以6J/cm2 照射365nm的紫外光使黏合劑固化,並且以80℃進行1小時的加熱處理來使黏合劑穩定化。
《發光器件的工作特性》 對在本實施例中製造的發光器件的工作特性進行測量。測量在室溫下進行。
圖12示出發光器件的亮度-電流效率特性。圖13示出發光器件的電壓-亮度特性。圖14示出發光器件的電壓-電流特性。圖15示出發光器件的亮度-外部量子效率特性。
表2示出1000cd/m2 附近的發光器件的主要初始特性值。
Figure 02_image083
根據圖12至圖15及表2可知,器件1、比較器件2、比較器件4的發光效率高。另外,可知器件1的發光效率高於比較器件3。
另外,圖16示出以12.5mA/cm2 的電流密度使電流流過發光器件時的發射光譜。如圖16所示,器件1呈現在459nm附近具有最大峰的發射光譜,該發射光譜來源於發光層813所包含的3,10PCA2Nbf(IV)-02的發光。同樣地,比較器件2呈現在458nm附近具有最大峰的發射光譜,比較器件3呈現在457nm附近具有最大峰的發射光譜,比較器件4呈現在459nm附近具有最大峰的發射光譜。
接著,進行發光器件的可靠性測試。圖17A和圖17B示出可靠性測試的結果。在圖17A中,縱軸表示初始亮度為100%時的正規化亮度(%),橫軸表示驅動時間(h)。在圖17B中,縱軸表示從初始(驅動時間為0小時時)的電壓的電壓變化(ΔV),橫軸表示驅動時間(h)。在可靠性測試中,將電流密度設定為50mA/cm2 ,驅動發光器件。
在對比330小時後的亮度時,器件1保持初始亮度的85%,比較器件2保持初始亮度的80%,比較器件3保持初始亮度的87%,比較器件4保持初始亮度的82%。
由此可知,器件1具有與比較器件2、比較器件4相等的發光效率並具有高於比較器件2、比較器件4的可靠性。另外,可知器件1具有高於比較器件3的發光效率並具有與比較器件3相等的可靠性。
用於器件1的oYGTBiF(2)是三級胺,其中胺的氮鍵合有聯苯骨架的鄰位、茀骨架、亞三聯苯骨架,離該亞三聯苯骨架的胺的氮最遠的伸苯基與咔唑骨架鍵合。就是說,胺的氮和咔唑的氮經過亞三聯苯骨架鍵合。另一方面,在用於比較器件2的oYGBBiF中,咔唑的氮和胺的氮經過亞聯苯骨架鍵合而不是經過亞三聯苯骨架,這一點是與用於器件1的oYGTBiF(2)不同之處。另外,在用於比較器件3的oYGTBi1BP中,聯苯骨架的對位鍵合到胺的氮而不是茀骨架鍵合到胺的氮,這一點是與oYGTBiF(2)不同之處。另外,在用於比較器件4的YGTBiF(2)中,聯苯骨架的對位鍵合到胺的氮而不是聯苯骨架的鄰位鍵合到胺的氮,這一點是與oYGTBiF(2)不同之處。因此,可以說,藉由使用一種有機化合物可以提高發光器件的發光效率及可靠性,該有機化合物是三級胺,其中胺的氮鍵合有聯苯骨架的鄰位、茀骨架、亞三聯苯骨架,離該亞三聯苯骨架的胺的氮最遠的伸苯基與咔唑骨架鍵合。 實施例3
在本實施例中,說明製造本發明的一個實施方式的發光器件並進行評價的結果。
在本實施例中,作為發光器件,製造使用在實施例1中說明的oYGTBiF(2)(結構式(100))的器件5及器件6,說明評價結果。
表3示出在本實施例中使用的兩個發光器件的具體結構。除了改變發光層813的發光材料這一點以外,器件5的結構與器件1(圖11)相同,除了改變電洞傳輸層812的厚度這一點以外,器件6的結構與器件5相同。因此,關於器件5及器件6的製造方法的與器件1相同的部分可以參照實施例2。另外,以下示出在本實施例中使用的材料的化學式。
Figure 02_image085
Figure 02_image087
如表3所示,在本實施例的發光器件的發光層813中,作為主體材料使用cgDBCzPA,作為發光材料使用N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)。
另外,如表3所示,器件5和器件6的用於電洞傳輸層812的oYGTBiF(2)的厚度互不相同。
<<發光器件的工作特性>> 對在本實施例中製造的發光器件的工作特性進行測量。測量在室溫下進行。
圖18示出發光器件的亮度-電流效率特性。圖19示出發光器件的電壓-亮度特性。圖20示出發光器件的電壓-電流特性。圖21示出發光器件的亮度-外部量子效率特性。
表4示出1000cd/m2 附近的發光器件的主要初始特性值。
Figure 02_image089
根據圖18至圖21及表4可知,器件5、器件6的發光效率高。另外,雖然器件6的電洞傳輸層812的厚度比器件5大100nm,但是1000cd/m2 時的驅動電壓僅增加0.6V。這意味著oYGTBiF(2)的電洞傳輸性良好。
另外,圖22示出以12.5mA/cm2 的電流密度使電流流過發光器件時的發射光譜。如圖22所示,器件5呈現在458nm附近具有最大峰的發射光譜,該發射光譜來源於發光層813所包含的1,6BnfAPrn-03的發光。同樣地,器件6呈現在456nm附近具有最大峰的發射光譜。注意,在器件5和器件6之間的光學距離稍微錯開,發光色度也錯開,這是因為:只改變oYGTBiF(2)的厚度來進行該材料的傳輸性的評價。
接著,進行發光器件的可靠性測試。圖23A和圖23B示出可靠性測試的結果。在圖23A中,縱軸表示初始亮度為100%時的正規化亮度(%),橫軸表示驅動時間(h)。在圖23B中,縱軸表示從初始(驅動時間為0小時時)的電壓的電壓變化(ΔV),橫軸表示驅動時間(h)。在可靠性測試中,將電流密度設定為50mA/cm2 ,驅動發光器件。
根據可靠性測試的結果可知,器件5及器件6都呈現高可靠性。
一般而言,在電洞注入層中的電子受體性材料的濃度高且使用HOMO能階較深的電洞傳輸性材料的情況下,電洞傳輸層的增厚有時導致發光器件的驅動電壓的增高。如圖23B所示,器件5和器件6的310小時後的電壓和初始電壓之差都為0.15V以內,可知電壓上升的程度小。由此可知,即使增大使用本發明的一個實施方式的有機化合物的電洞傳輸層的厚度,發光器件的驅動電壓也不容易上升。 實施例4
在本實施例中,說明製造本發明的一個實施方式的發光器件並進行評價的結果。
在本實施例中,作為發光器件,製造使用在實施例1中說明的oYGTBiF(2)(結構式(100))的器件7及器件8,說明評價結果。
表5示出在本實施例中使用的兩個發光器件的具體結構。除了改變發光層813及電子傳輸層814的材料這一點以外,器件7的結構與器件1(圖11)相同,除了改變電洞傳輸層812的厚度這一點以外,器件8的結構與器件7相同。因此,關於器件7及器件8的製造方法的與器件1相同的部分可以參照實施例2。器件7及器件8的結構與器件1(圖11)相同,關於其製造方法可以參照實施例2。另外,以下示出在本實施例中使用的材料的化學式。
Figure 02_image091
Figure 02_image093
如表5所示,在本實施例的發光器件的發光層813中,作為主體材料使用9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(簡稱:αN-βNPAnth),作為發光材料使用1,6BnfAPrn-03。另外,藉由以重量比為1:1(=ZADN:Liq)且厚度為25nm的方式共蒸鍍2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)和8-羥基喹啉-鋰(簡稱:Liq),形成電子傳輸層814。
另外,如表5所示,器件7和器件8的用於電洞傳輸層812的oYGTBiF(2)的厚度互不相同。
<<發光器件的工作特性>> 對在本實施例中製造的發光器件的工作特性進行測量。測量在室溫下進行。
圖24示出發光器件的亮度-電流效率特性。圖25示出發光器件的電壓-亮度特性。圖26示出發光器件的電壓-電流特性。圖27示出發光器件的亮度-外部量子效率特性。
表6示出1000cd/m2 附近的發光器件的主要初始特性值。
Figure 02_image095
根據圖24至圖27及表6可知,器件7、器件8的發光效率高。另外,雖然器件8的電洞傳輸層812的厚度比器件7大100nm,但是1000cd/m2 時的驅動電壓僅增加0.6V。這意味著oYGTBiF(2)的電洞傳輸性良好。
另外,圖28示出以12.5mA/cm2 的電流密度使電流流過發光器件時的發射光譜。如圖28所示,器件7呈現在458nm附近具有最大峰的發射光譜,該發射光譜來源於發光層813所包含的1,6BnfAPrn-03的發光。同樣地,器件8呈現在456nm附近具有最大峰的發射光譜。注意,在器件7和器件8之間的光學距離稍微錯開,發光色度也錯開,這是因為:只改變oYGTBiF(2)的厚度來進行該材料的傳輸性的評價。
接著,進行發光器件的可靠性測試。圖29A和圖29B示出可靠性測試的結果。在圖29A中,縱軸表示初始亮度為100%時的正規化亮度(%),橫軸表示驅動時間(h)。在圖29B中,縱軸表示從初始(驅動時間為0小時時)的電壓的電壓變化(ΔV),橫軸表示驅動時間(h)。在可靠性測試中,將電流密度設定為50mA/cm2 ,驅動發光器件。
根據可靠性測試的結果可知,器件7及器件8都呈現高可靠性。
如圖29B所示,器件7和器件8的380小時後的電壓和初始電壓之差都為0.20V以內,可知電壓上升的程度小。由此可知,即使增大使用本發明的一個實施方式的有機化合物的電洞傳輸層的厚度,發光器件的驅動電壓也不容易上升。
另外,實施例3和實施例4的用於發光器件的發光層及電子傳輸層的材料不同。根據這些實施例可知,藉由組合本發明的一個實施方式的有機化合物與各種材料,可以製造發光效率及可靠性高的發光器件。
(參考例子) 以下,說明在實施例2的比較器件中使用的2,4’-二苯基-4”-[4’-(9H-咔唑-9-基)-1,1’-聯苯-4-基]三苯胺(簡稱:oYGTBi1BP)以及N-[4”-(9H-咔唑-9-基)-1,1’:4’,1”-三聯苯-4-基]-N-(1,1’-聯苯-4-基)-9,9-二甲基-9H-茀-2-胺(簡稱:YGTBiF(2))的合成方法。
Figure 02_image097
<oYGTBi1BP的合成> 首先,將1.4g(4.2mmol)的N-(4-聯苯基)-2-聯苯胺、1.8g(4.2mmol)的9-(4”-氯[1,1’:4’,1”-三聯苯]-4-基)-9H-咔唑以及30mg(84μmol)的二-三級丁基(1-甲基-2,2-二苯基環丙基)膦(註冊商標:cBRIDP)放入安裝有回流管的200mL三頸燒瓶中,用氮氣將體系置換。將0.81g(8.4mmol)的三級丁醇鈉以及100mL的二甲苯放在燒瓶中,在減壓下進行脫氣三次並進行氮氣置換三次。將24mg(42μmol)的雙(二亞苄基丙酮)鈀(0)放入燒瓶中,以150℃進行攪拌11小時。在攪拌之後,藉由吸引過濾從混合物去除不溶物。對所得到的濾液添加水,利用甲苯對水層進行萃取。使用水對所得到的有機層進行洗滌兩次,然後使用飽和食鹽水進行洗滌。利用硫酸鎂對有機層進行乾燥。對所得到的混合物進行重力過濾,去除硫酸鎂。藉由利用礬土-矽藻土(日本和光純藥工業公司、目錄號碼:531-16855)的過濾對所得到的濾液進行純化,濃縮所得到的濾液,得到淡黃色固體2.3g。藉由重結晶(使用溶劑:甲苯和己烷的混合溶劑)對所得到的固體進行純化,以50%的產率得到目的物的淡黃色固體1.5g。
利用梯度昇華方法對所得到的1.5g的固體進行昇華純化。在昇華純化中,在以15mL/分的流量流過氬且壓力為3.8Pa的條件下,以345℃加熱固體16小時。在昇華純化後,以66%的回收率得到1.0g的目的物的淡黃色固體。(X-1)示出合成方案。
Figure 02_image099
以下示出所得到的淡黃色固體的1 H-NMR的分析結果。根據該結果可知,得到oYGTBi1BP。
1 H NMR(二氯甲烷-d2 ,300MHz):δ=8.16(d、J=8.1Hz、2H)、7.90(dd、J1=4.5Hz、J2=1.8Hz、2H)、7.77(dd、J1=4.2Hz、J2=2.1Hz、2H)、7.70-7.66(m、4H)、7.55-7.14(m、24H)、6.99(d、J=5.7Hz、2H)、6.96(d、J=5.7Hz、2H).
接著,測量oYGTBi1BP的甲苯溶液及固體薄膜的吸收光譜及發射光譜。測量條件與實施例1相同,因此省略說明。
根據測量結果,在365nm附近觀察到oYGTBi1BP的甲苯溶液的吸收峰,在411nm(激發波長:346nm)觀察到發射峰。在296nm附近、347nm附近及362nm附近觀察到oYGTBi1BP的固體薄膜的吸收峰,在426nm附近(激發波長:360nm)觀察到發射峰。
接著,利用CV測量計算出oYGTBi1BP的HOMO能階及LUMO能階。算出方法與實施例1相同,因此省略說明。
此外,反復進行CV測量100次,對比第100次循環的測量中的氧化-還原波與第1次循環的測量中的氧化-還原波,來調查化合物的電性穩定性。
根據該結果可知,在oYGTBi1BP的氧化電位Ea[V]的測量中,HOMO能階為-5.50eV。另一方面,在還原電位Ec[V]的測量中可知,LUMO能階為-2.32eV。在氧化-還原波的反復測量中,對第1次循環的測量的波形與第100次循環的波形進行對比,可知在Ea測量中保持了85%的峰強度,在Ec測量中保持了94%的峰強度,由此確認到oYGTBi1BP的耐氧化性及耐還原性非常良好。
另外,使用由珀金埃爾默股份有限公司(PerkinElmer,Inc.)製造的Pyris1DSC進行oYGTBi1BP的差示掃描量熱測量(DSC測量)。在差示掃描量熱測量中,連續地進行如下操作兩次:以40℃/分的升溫速度從-10℃升溫到380℃,然後以相同溫度保持1分鐘後以100℃/分的降溫速度冷卻到-10℃。由第二次循環的DSC測量結果可知,oYGTBi1BP的玻璃轉移溫度為122℃,亦即,oYGTBi1BP是具有非常高的耐熱性的物質。
另外,進行oYGTBi1BP的熱重-差熱分析。測量方法與實施例1相同,因此省略說明。根據熱重-差熱分析可知,從熱重測量求得的重量成為測量開始時的-5%的溫度(分解溫度)為486℃,亦即,oYGTBi1BP是具有高耐熱性的物質。
<YGTBiF(2)的合成> 將2.0g(4.0mmol)的2-胺基-N-[(1,1’-聯苯)-4-基]-N-(4-溴苯基)-9,9-二甲基茀、1.4g(4.0mmol)的[4’-(咔唑-9-基)-4-聯苯基]硼酸、24mg(76μmol)的三(鄰甲苯基)膦、5mL的2M碳酸鉀水溶液、30mL的甲苯、10mL的乙醇放入安裝有回流管的200mL三頸燒瓶中,在減壓下進行混合物的脫氣,然後用氮氣將體系置換。在60℃下對該混合物進行加熱,對該混合物添加8.9mg(40μmol)的醋酸鈀(II)。將該混合物回流10小時。對所得到的混合物進行吸引過濾。對所得到的濾液添加水,利用甲苯對水層進行萃取。合併所得到的萃取液與有機層,利用水和飽和食鹽水進行洗滌,利用硫酸鎂進行乾燥。對該混合物進行重力過濾,濃縮所得到的濾液,得到淡褐色固體。藉由利用高速液體層析法(HPLC)(移動相:氯仿)對該固體進行純化,以43%的產率得到1.3g的目的物的淡黃色固體。
利用梯度昇華方法對所得到的1.3g的固體進行昇華純化。在昇華純化中,在以15mL/分的流量流過氬且壓力為3.1Pa的條件下,以350℃加熱固體15小時。在昇華純化後,以85%的回收率得到1.1g的目的物的淡黃色固體。(Y-1)示出合成方案。
Figure 02_image101
以下示出所得到的淡黃色固體的1 H-NMR的分析結果。根據該結果可知,得到YGTBiF(2)。
1 H NMR(二氯甲烷-d2 ,300MHz):δ=8.17(d、J=7.8Hz、2H)、7.92(d、J=8.7Hz、2H)、7.75(dd、J1=27.6Hz、J2=9.0Hz、4H)、7.70-7.61(m、8H)、7.56(d、J=9.0Hz、2H)、7.52-7.42(m、7H)、7.36-7.24(m、10H)、7.14(dd、J1=6.0Hz、J2=2.1Hz、1H)、1.45(s、6H).
接著,測量YGTBiF(2)的甲苯溶液及固體薄膜的吸收光譜及發射光譜。測量條件與實施例1相同,因此省略說明。
根據測量結果,在363nm附近觀察到YGTBiF(2)的甲苯溶液的吸收峰,在425nm(激發波長:363nm)觀察到發射峰。在294nm附近、350nm附近、365nm附近觀察到YGTBiF(2)的固體薄膜的吸收峰,在442nm附近(激發波長:380nm)觀察到發射峰。
接著,利用CV測量計算出YGTBiF(2)的HOMO能階及LUMO能階。算出方法與實施例1相同,因此省略說明。
此外,反復進行CV測量100次,對比第100次循環的測量中的氧化-還原波與第1次循環的測量中的氧化-還原波,來調查化合物的電性穩定性。
根據該結果可知,在YGTBiF(2)的氧化電位Ea[V]的測量中,HOMO能階為-5.41eV。另一方面,在還原電位Ec[V]的測量中,可知LUMO能階為-2.34eV。在氧化-還原波的反復測量中,對第1次循環的測量的波形與第100次循環的波形進行對比,可知在Ea測量中保持了90%的峰強度,在Ec測量中保持了96%的峰強度,由此確認到YGTBiF(2)的耐氧化性及耐還原性非常良好。
另外,使用由珀金埃爾默股份有限公司(PerkinElmer,Inc.)製造的Pyris1DSC進行YGTBiF(2)的差示掃描量熱測量(DSC測量)。在差示掃描量熱測量中,連續地進行如下操作兩次:以40℃/分的升溫速度從-10℃升溫到330℃,然後以相同溫度保持1分鐘後以100℃/分的降溫速度冷卻到-10℃。由第二次循環的DSC測量結果可知,YGTBiF(2)的玻璃轉移溫度為145℃,亦即,YGTBiF(2)是具有非常高的耐熱性的物質。
另外,進行YGTBiF(2)的熱重-差熱分析。測量方法與實施例1相同,因此省略說明。根據熱重-差熱分析可知,從熱重測量求得的重量成為測量開始時的-5%的溫度(分解溫度)為499℃,亦即,YGTBiF(2)是具有高耐熱性的物質。
101:第一電極 102:第二電極 103:EL層 103a:EL層 103b:EL層 103c:EL層 104:電荷產生層 111:電洞注入層 112:電洞傳輸層 113:發光層 114:電子傳輸層 115:電子注入層 201:基板 202:絕緣層 202a:絕緣層 202b:絕緣層 203B:發光器件 203G:發光器件 203R:發光器件 203W:發光器件 204:絕緣層 205:基板 206B:濾色片 206G:濾色片 206R:濾色片 207:空間 208:黏合層 209:黑矩陣 210:電晶體 211:第一電極 212G:導電層 212R:導電層 213:EL層 213B:EL層 213G:EL層 213R:EL層 215:第二電極 220B:光學距離 220G:光學距離 220R:光學距離 301:第一基板 302:像素部 303:電路部 304a:電路部 304b:電路部 305:密封劑 306:第二基板 307:佈線 308:FPC 309:電晶體 310:電晶體 311:電晶體 312:電晶體 313:第一電極 314:絕緣層 315:EL層 316:第二電極 317:有機EL器件 318:空間 320:電晶體 321:導電層 322a:導電層 322b:導電層 323:導電層 324:絕緣層 325:絕緣層 326:絕緣層 327:半導體層 327i:通道形成區域 327n:低電阻區域 328:絕緣層 330:電晶體 331:導電層 332a:導電層 332b:導電層 333:導電層 334:絕緣層 335:絕緣層 337:半導體層 338:絕緣層 401:第一電極 402:EL層 403:第二電極 405:絕緣層 406:導電層 407:黏合層 416:導電層 420:基板 422:黏合層 423:障壁層 424:絕緣層 450:有機EL器件 490a:基板 490b:基板 490c:障壁層 800:基板 801:第一電極 802:EL層 803:第二電極 811:電洞注入層 812:電洞傳輸層 813:發光層 814:電子傳輸層 815:電子注入層 911:外殼 912:光源 913:檢測台 914:攝像裝置 915:發光部 916:發光部 917:發光部 921:外殼 922:操作按鈕 923:檢測部 924:光源 925:攝像裝置 931:外殼 932:操作面板 933:傳送機構 934:顯示器 935:檢測單元 936:被檢測構件 937:攝像裝置 938:光源 981:外殼 982:顯示部 983:操作按鈕 984:外部連接埠 985:揚聲器 986:麥克風 987:第一攝像頭 988:第二攝像頭 7000:顯示部 7001:顯示部 7100:電視機 7101:外殼 7103:支架 7111:遙控器 7200:筆記型個人電腦 7211:外殼 7212:鍵盤 7213:指向裝置 7214:外部連接埠 7300:數位看板 7301:外殼 7303:揚聲器 7311:資訊終端設備 7400:數位看板 7401:柱子 7411:資訊終端設備 7600:可攜式資訊終端 7601:外殼 7602:鉸鏈部 7650:可攜式資訊終端 7651:非顯示部 7800:可攜式資訊終端 7801:錶帶 7802:輸入輸出端子 7803:操作按鈕 7804:圖示 7805:電池 9700:汽車 9701:車體 9702:車輪 9703:擋風玻璃 9704:燈 9705:霧燈 9710:顯示部 9711:顯示部 9712:顯示部 9713:顯示部 9714:顯示部 9715:顯示部 9721:顯示部 9722:顯示部 9723:顯示部
在圖式中: [圖1A至圖1D]是示出發光器件的例子的剖面圖; [圖2A]是示出發光裝置的例子的俯視圖,[圖2B]、[圖2C]是示出發光裝置的例子的剖面圖; [圖3A]、[圖3C]是示出發光裝置的例子的剖面圖,[圖3B]是示出發光器件的例子的剖面圖; [圖4A]、[圖4B]是示出發光裝置的例子的剖面圖; [圖5A]是示出發光裝置的例子的俯視圖,[圖5B]是示出發光裝置的例子的剖面圖,[圖5C]、[圖5D]是示出電晶體的例子的剖面圖; [圖6A至圖6D]是示出電子裝置的例子的圖; [圖7A至圖7F]是示出電子裝置的例子的圖; [圖8A至圖8C]是示出電子裝置的例子的圖; [圖9A至圖9E]是示出電子裝置的例子的圖; [圖10A]、[圖10B]是由結構式(100)所示的有機化合物的紫外-可見吸收光譜及發射光譜; [圖11]是示出實施例的發光器件的剖面圖; [圖12]是示出實施例2的發光器件的亮度-電流效率特性的圖; [圖13]是示出實施例2的發光器件的電壓-亮度特性的圖; [圖14]是示出實施例2的發光器件的電壓-電流特性的圖; [圖15]是示出實施例2的發光器件的亮度-外部量子效率特性的圖; [圖16]是示出實施例2的發光器件的發射光譜的圖; [圖17A]、[圖17B]是示出實施例2的發光器件的可靠性測試的結果的圖; [圖18]是示出實施例3的發光器件的亮度-電流效率特性的圖; [圖19]是示出實施例3的發光器件的電壓-亮度特性的圖; [圖20]是示出實施例3的發光器件的電壓-電流特性的圖; [圖21]是示出實施例3的發光器件的亮度-外部量子效率特性的圖; [圖22]是示出實施例3的發光器件的發射光譜的圖; [圖23A]、[圖23B]是示出實施例3的發光器件的可靠性測試的結果的圖; [圖24]是示出實施例4的發光器件的亮度-電流效率特性的圖; [圖25]是示出實施例4的發光器件的電壓-亮度特性的圖; [圖26]是示出實施例4的發光器件的電壓-電流特性的圖; [圖27]是示出實施例4的發光器件的亮度-外部量子效率特性的圖; [圖28]是示出實施例4的發光器件的發射光譜的圖; [圖29A]、[圖29B]是示出實施例4的發光器件的可靠性測試的結果的圖。

Claims (17)

  1. 一種由通式(G0)表示的有機化合物:
    Figure 03_image001
    , 其中,R1 至R5 中的任一個表示通式(A), R1 至R5 中的其他分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基以及取代或未取代的碳原子數為6以上且13以下的芳基中的任一個, 並且,R6 至R13 、R21 至R29 、R31 至R39 及R41 至R48 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基以及取代或未取代的碳原子數為6以上且13以下的芳基中的任一個。
  2. 如請求項1之有機化合物, 其中該有機化合物由通式(G1)表示:
    Figure 03_image003
    , 並且R2 至R5 分別獨立地表示氫、碳原子數為1以上且6以下的烷基、碳原子數為3以上且6以下的環烷基以及取代或未取代的碳原子數為6以上且13以下的芳基中的任一個。
  3. 如請求項1之有機化合物,其中R35 至R39 中的一個表示取代或未取代的苯基以及取代或未取代的萘基中的任一個。
  4. 如請求項1之有機化合物, 其中R21 和R22 表示同一基團, 並且R21 和R22 表示碳原子數為1以上且6以下的烷基以及取代或未取代的苯基中的任一個。
  5. 如請求項4之有機化合物,其中R21 和R22 各自表示甲基。
  6. 如請求項4之有機化合物,其中R21 和R22 各自表示未取代的苯基。
  7. 如請求項1之有機化合物,其中R21 和R22 彼此鍵合而形成螺環。
  8. 如請求項7之有機化合物, 其中R21 和R22 各自表示取代或未取代的苯基, 並且R21 和R22 彼此鍵合而形成螺二茀環。
  9. 如請求項1之有機化合物,其中R41 至R48 分別獨立地表示氫、甲基、三級丁基以及取代或未取代的苯基中的任一個。
  10. 一種包含請求項1之有機化合物的發光器件。
  11. 一種發光器件,包括: 一對電極;以及 該一對電極之間的層,該層包括請求項1之有機化合物。
  12. 一種發光器件,包括: 第一電極; 該第一電極上的電洞傳輸層; 該電洞傳輸層上的發光層;以及 該發光層上的第二電極, 其中,該發光層和該電洞傳輸層中的至少一個包括請求項1之有機化合物。
  13. 一種發光裝置,包括: 請求項10之發光器件;以及 電晶體和基板中的至少一個。
  14. 一種發光模組,包括: 請求項13之發光裝置;以及 連接器和積體電路中的至少一個。
  15. 一種電子裝置,包括: 請求項13之發光裝置;以及 天線、電池、外殼、照相機、揚聲器、麥克風和操作按鈕中的至少一個。
  16. 一種照明設備,包括: 請求項10之發光裝置;以及 外殼、覆蓋物和支架中的至少一個。
  17. 一種受光器件,包括: 一對電極;以及 該一對電極之間的層,該層包括請求項1之有機化合物。
TW109123169A 2019-07-12 2020-07-09 有機化合物、發光器件、受光器件、發光裝置、發光模組、電子裝置及照明設備 TW202111085A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129980 2019-07-12
JP2019-129980 2019-07-12

Publications (1)

Publication Number Publication Date
TW202111085A true TW202111085A (zh) 2021-03-16

Family

ID=74058892

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123169A TW202111085A (zh) 2019-07-12 2020-07-09 有機化合物、發光器件、受光器件、發光裝置、發光模組、電子裝置及照明設備

Country Status (6)

Country Link
US (1) US11673863B2 (zh)
JP (1) JP2021014452A (zh)
KR (1) KR20210007908A (zh)
CN (1) CN112209868A (zh)
DE (1) DE102020118101A1 (zh)
TW (1) TW202111085A (zh)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031371A (ja) 2001-07-17 2003-01-31 Mitsubishi Chemicals Corp 有機電界発光素子及び青色発光素子
JP2003317946A (ja) 2002-04-23 2003-11-07 Konica Minolta Holdings Inc 有機el素子及び有機el素子の製造方法
US7651787B2 (en) 2003-02-19 2010-01-26 Lg Display Co., Ltd. Organic electroluminescent device
US20070215889A1 (en) 2006-03-20 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine compound, and light-emitting element, light-emitting device, and electronic appliance using the aromatic amine compound
JP2009076817A (ja) 2007-09-25 2009-04-09 Sony Corp 有機電界発光素子および表示装置
JP5631559B2 (ja) 2008-05-16 2014-11-26 株式会社半導体エネルギー研究所 芳香族アミン化合物および発光素子
KR102066437B1 (ko) 2013-07-02 2020-01-15 덕산네오룩스 주식회사 광효율 개선층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
KR102314735B1 (ko) * 2014-07-24 2021-10-21 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
US10439146B2 (en) 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2017130079A1 (en) 2016-01-29 2017-08-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2017204556A1 (ko) 2016-05-26 2017-11-30 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018012780A1 (ko) 2016-07-14 2018-01-18 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102220659B1 (ko) 2016-10-19 2021-02-26 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20180096458A (ko) 2017-02-21 2018-08-29 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR102550843B1 (ko) * 2017-03-16 2023-07-05 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR102406212B1 (ko) * 2017-05-31 2022-06-10 주식회사 동진쎄미켐 캡핑층 형성용 화합물 및 이를 포함하는 유기 발광 소자
CN108336246B (zh) 2018-02-13 2019-07-26 长春海谱润斯科技有限公司 一种有机发光器件

Also Published As

Publication number Publication date
US20210009518A1 (en) 2021-01-14
KR20210007908A (ko) 2021-01-20
CN112209868A (zh) 2021-01-12
DE102020118101A1 (de) 2021-01-14
US11673863B2 (en) 2023-06-13
JP2021014452A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6817473B2 (ja) 発光素子、表示装置、電子機器、及び照明装置
KR102655709B1 (ko) 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
CN111341927B (zh) 发光元件、显示装置、电子设备及照明装置
KR102647906B1 (ko) 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102665364B1 (ko) 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
TW201716382A (zh) 化合物、發光元件、顯示裝置、電子裝置及照明設備
KR102579603B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP7475281B2 (ja) 有機化合物、発光デバイス用ホスト材料、発光デバイス、発光装置、発光モジュール、電子機器、
KR102560857B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20220002337A (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
TW202111085A (zh) 有機化合物、發光器件、受光器件、發光裝置、發光模組、電子裝置及照明設備
KR20210111760A (ko) 유기 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20240070701A (ko) 발광 소자, 표시 장치, 전자 기기, 및 조명 장치