TW202105306A - 發電量預測裝置、發電量預測方法、及程式 - Google Patents

發電量預測裝置、發電量預測方法、及程式 Download PDF

Info

Publication number
TW202105306A
TW202105306A TW109110675A TW109110675A TW202105306A TW 202105306 A TW202105306 A TW 202105306A TW 109110675 A TW109110675 A TW 109110675A TW 109110675 A TW109110675 A TW 109110675A TW 202105306 A TW202105306 A TW 202105306A
Authority
TW
Taiwan
Prior art keywords
power generation
model
predicted
aforementioned
weather forecast
Prior art date
Application number
TW109110675A
Other languages
English (en)
Other versions
TWI745907B (zh
Inventor
川上麗子
若杉一幸
Original Assignee
日商三菱重工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱重工業股份有限公司 filed Critical 日商三菱重工業股份有限公司
Publication of TW202105306A publication Critical patent/TW202105306A/zh
Application granted granted Critical
Publication of TWI745907B publication Critical patent/TWI745907B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Atmospheric Sciences (AREA)
  • Power Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Water Supply & Treatment (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本發明的其中一樣態是一種發電量預測裝置,具備:記憶部,其係記憶模型,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及預測部,其係對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。

Description

發電量預測裝置、發電量預測方法、及程式
本發明有關發電量預測裝置、發電量預測方法、及程式。 本案主張2019年3月29日在日本申請的特願 2019-067230號之優先權,並援用其內容。
太陽光發電的發電量係由日照量、氣溫綜合決定。有以下手法:由基於這些資訊構築出的物理模型所致之發電量的預測是為困難的緣故,把在定點定期觀測出空的像素影像作為說明變數,使用類神經網路來預測發電量(專利文獻1)。
但是,雲在晴天時為時速10km左右,在颱風時為60km左右之高速移動的緣故,在局部性上空的觀察下,數小時後的預測為困難。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2017-200360號專利公報
[發明欲解決之課題]
本發明考慮到上述情事,其目的在於提供一種發電量預測裝置、發電量預測方法、及程式,其係可以長期性準確預測發電量。 [解決課題之手段]
為了解決上述課題,本發明的其中一樣態是一種發電量預測裝置,具備:記憶部,其係記憶模型,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格(mesh)與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及預測部,其係對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
而且,本發明的其中一樣態是上述發電量預測裝置,其中,在機械學習前述模型之際所用的前述說明變數包含:含有前述預測地點的網格、前述周圍複數個網格的各天氣預測資訊、以及前述發電量;前述預測部係首先,對前述模型輸入含有前述預測地點的網格、前述周圍複數個網格的預測時間的各天氣預測資訊、以及前述發電量的實際值,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出,之後,持續重複到得到期望的時間的預測值為止,對前述模型輸入含有前述預測地點的網格、前述周圍複數個網格的預測時間的各天氣預測資訊、以及之前所求出的前述發電量的預測值,求出前述預測地點中的前述發電量的下一個的預測值,作為來自前述模型的輸出。
而且,本發明的其中一樣態是上述發電量預測裝置,其中,在機械學習前述模型之際所用的前述說明變數,乃是,根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的各天氣預測資訊予以配列化之配列資料;前述預測部係對前述模型輸入根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊予以配列化之配列資料,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
而且,本發明的其中一樣態是上述發電量預測裝置,其中,在機械學習前述模型之際所用的前述說明變數包含:含有前述預測地點的網格、以及前述周圍複數個網格的各天氣預測資訊的時序;前述預測部,係對前述模型輸入含有前述預測地點的網格與一直到前述周圍複數個網格的預測時間為止的各天氣預測資訊的時序,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
而且,本發明的其中一樣態是上述發電量預測裝置,其中,在機械學習前述模型之際所用的前述說明變數,乃是,根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的各天氣預測資訊予以配列化之配列資料;前述預測部係對前述模型輸入根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊予以配列化之配列資料的時序,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
而且,本發明的其中一樣態是上述發電量預測裝置,其中,前述發電量乃是太陽光發電所致之發電量;前述各天氣預測資訊至少包含日照量的預測值。
而且,本發明的其中一樣態是一種發電量預測方法,包含以下步驟:藉由記憶部記憶模型之步驟,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及藉由預測部對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出之步驟。
而且,本發明的其中一樣態是一種在電腦執行以下步驟之程式,該步驟包含:藉由記憶部記憶模型之步驟,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及藉由預測部對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出之步驟。 [發明效果]
根據本發明的各樣態,可以至少在提供天氣預測資訊之未來的期間份,把周邊地區的天氣預測資訊外加到預測地點的天氣預測資訊來預測發電量的緣故,所以可以長期性準確預測發電量。
以下,參閱圖面說明有關本發明的實施方式。尚且,對於各圖中相同或是對應的構成,賦予相同的元件符號或是在末尾賦予不同的英文字之由相同的數字所構成的元件符號,並適宜省略說明。
<第1實施方式> 圖1為用於有關本發明的第1實施方式之發電量預測裝置1的構成例的方塊圖。尚且,發電量預測裝置1之基本的構成係在第1~第5實施方式中為相同。
圖1表示的發電量預測裝置1,係使用伺服器、個人電腦等的電腦來構成,作為電腦所具備之以硬體與程式、資料等的軟體的組合所構成的功能性重要元件,具備:通訊部11、預測部12及記憶部13。而且,記憶部13記憶:模型14、實際值15、預測值16、以及天氣預測資訊17。
本實施方式的發電量預測裝置1,係預測自然能量發電系統2中各個規定的時間之未來的發電量(發電電力量)。自然能量發電系統2乃是使用太陽光發電系統、小水力發電系統、風力發電系統等、自然能量之發電系統。發電量預測裝置1從自然能量發電系統2透過規定的通訊線路,在各個規定的時間接收發電量的實際值。發電量預測裝置1例如在每1小時接收過去1小時的發電電力量或者是平均發電電力的值,每當天氣預測資訊提供系統3發表新的天氣預測資訊時,接收特定時間份的過去的發電電力量或者是平均發電電力的值。
而且,發電量預測裝置1係從氣象廳等的天氣預測媒體所營運的天氣預測資訊提供系統3,以廣域的網格資料取得天氣預測資訊。例如,在自然能量發電系統2位置在網格M1的情況下,發電量預測裝置1係與網格M1的天氣預測資訊一起,也從天氣預測資訊提供系統3取得周圍複數個網格M2~M9等的天氣預測資訊。天氣預測資訊例如包含:氣溫、日照量、雨量、降雪量、風速、風向、濕度、日照時間等之每個網格的預測值。天氣預測資訊例如包含一直到數天後為止之每1小時的預測值,發表包含每隔數小時之新的預測值或已被更新的預測值之天氣預測資訊。而且,例如,1個網格的大小為1~6km見方,發電量預測裝置1取得自然能量發電系統2的位置的周邊20~30km見方左右的天氣預測資訊。但是,該大小沒有限定。
通訊部11從自然能量發電系統2接收表示發電量實際值的資料,或是從天氣預測資訊提供系統3接收表示天氣預測資訊的檔案,或是與自然能量發電系統2、天氣預測資訊提供系統3或未圖示之其他的系統收發規定的資訊。
記憶部13所記憶的模型14乃是深度學習等的機械學習中的預測模型,例如,是藉由使用了機械學習構築出,該機械學習包含自然能量發電系統2的位置(預測地點)之網格與至少包含周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應的目的變數。尚且,模型14係在使用過去的發電量的實際值、以及過去的天氣預測資訊來進行預測處理之前,藉由機械學習來預先構築出的。而且,配合必要,模型14係使用新的說明變數以及目的變數來更新,或是重新構築。實際值15包含複數個從自然能量發電系統2接收到之過去的發電量實際值。預測值16包含複數個預測部12已預測出的自然能量發電系統2的發電量的預測值。天氣預測資訊17包含從天氣預測資訊提供系統3所取得之複數個天氣預測資訊。
預測部12係對模型14輸入至少包含預測地點的網格以及周圍複數個網格的預測時間的各天氣預測資訊,求出預測地點中的發電量的預測值,作為來自模型14的輸出。
根據本實施方式,可以至少在提供天氣預測資訊之未來的期間份,把周邊地區的天氣預測資訊外加到預測地點的天氣預測資訊來預測發電量的緣故,所以可以長期性準確預測發電量。
<第2實施方式> 參照圖2,說明關於本發明的第2實施方式。圖2為表示作為圖1表示的發電量預測裝置1的第2實施方式之作動例之流程。尚且,以下,使用自然能量發電系統2為太陽光發電系統的情況作為例子。圖2表示的處理,乃是預測未來某個預測時間中的發電量之處理(太陽光發電量預測處理)。
尚且,在第2實施方式中,在機械學習圖1表示的模型14之際所用的說明變數包含:含有預測地點的網格、周圍複數個網格的各天氣預測資訊、以及發電量,藉由機械學習來構築模型14,該機械學習使用了其說明變數以及與自然能量所致之發電量對應之目的變數。亦即,在第2實施方式中,除了天氣預測資訊,在說明變數還包含發電量(實際值或是預測值)。
圖2表示的處理開始的話,圖1表示的預測部12係判斷是否已經到了新的天氣預測發表時間(步驟S1)。在尚未到新的天氣預測發表時間的情況(在步驟S1為「否」的情況)下,預測部12結束圖2表示的處理。在已經到來新的天氣預測發表時間的情況(在步驟S1為「是」的情況)下,預測部12舉得新發表的天氣預測資訊與現在時間的發電量Y(t)(實際值)(步驟S2)。在此,現在時間的發電量Y(t)(實際值)例如乃是從現在時間到過去的特定時間份(例如過去1小時份)的發電電力量的實際值。尚且,發電量Y(t)為發電量的實際值,發電量Y(t+k)為k單位時間後的發電量的預測值,例如,發電量Y(t+1)為1單位時間後的發電量的預測值。在此,單位時間乃是算出預測值的時間間隔(例如1小時),例如可以與天氣預測資訊的預測值的時間間隔相同。
接著,預測部12把已取得之現在時間的發電量Y(t)(實際值)與下個時間的天氣預測資訊X(t+1)作為說明變數,經由使用了模型14之機械學習手法來預測下個時間的發電量Y(t+1)(步驟S3)。
接著,預測部12把計數用的變數i初始化為「0」後(步驟S4),僅增量「1」(步驟S5)。接著,預測部12把發電量Y(t+i)(預測前次值)以及下個時間的天氣預測資訊X(t+i+1)作為說明變數,預測下個時間的發電量Y(t+i+1)(步驟S6)。接著,預測部12判斷處理是否已經執行到預測端(步驟S7),在處理尚未執行到預測端的情況(在步驟S7為「否」的情況)下,把變數i僅增量「1」後(步驟S5),把發電量Y(t+i)(預測前次值)與下個時間的天氣預測資訊X(t+i+1)作為說明變數,預測下個時間的發電量Y(t+i+1)(步驟S6)。
另一方面,在處理已經執行到了預測端的情況(在步驟S7為「是」的情況)下,預測部12輸出預測時間的發電量Y(t+i+1)(步驟S8),結束圖2表示的處理。在此,步驟S8中的輸出,係預測部12把預測時間的發電量Y(t+i+1)顯示例如發電量預測裝置1所具備之未圖示的顯示部,或是作為預測值16記憶到記憶部13,或是透過通訊部11通知到規定的通知端。
如以上,第2實施方式中,發電量預測裝置1從氣象廳等的天氣預測媒體以廣域的網格資料取得天氣預測資訊。而且,發電量預測裝置1根據這些資訊使用機械學習的手法來預測發電量。天氣預測資訊每隔數小時發表,更新天氣預測資訊。發電量預測裝置1係在每次天氣更新時間取得發電量與天氣預測資訊。而且,發電量預測裝置1根據現在時間的實際發電量與1小時後的天氣預測資訊,經由機械學習手法,求出預測間隔後(例如1小時後)的發電量。而且,發電量預測裝置1根據發電量預測的前次值(1小時後的發電量預測)與2小時後的天氣預測資訊,經由機械學習手法,求出預測次間隔後(2小時後)的發電量。而且,以下,發電量預測裝置1係同樣遞迴地求出發電量。接著,發電量預測裝置1係一旦到欲預測的時間為止預測處理完畢的話,就輸出預測時間的發電量。
亦即,在第2實施方式中,於發電量預測裝置1,在機械學習模型14之際所用的說明變數包含:含有預測地點的網格、周圍之複數個網格的各天氣預測資訊、以及發電量。而且,預測部12首先把含有預測地點的網格、周圍複數個網格的預測時間之各天氣預測資訊、以及發電量的實際值輸入到模型14,作為來自模型14的輸出,求出預測地點中的發電量的預測值,之後,一直重複到得到期望的時間的預測值,把含有預測地點的網格、周圍複數個網格的預測時間之各天氣預測資訊、以及之前求出的發電量的預測值輸入到模型14,求出預測地點中的發電量之下一個的預測值,作為來自模型14的輸出。
根據第2實施方式,把廣域的天氣預測資訊予以網格化並使用作為說明變數,經此,比起使用了局部地點的天氣預測資訊的情況,是實現了精度更佳的長期性的發電量的預測。而且,根據第2實施方式,經由遞迴地預測發電量,比起使用了發電量的實際資料與天氣的觀測資料的情況,可以實現精度更佳的長期性的發電量的預測。
<第3實施方式> 參閱圖3及圖4,說明有關本發明的第3實施方式。圖3為表示圖1表示的模型14的構成例之示意圖(在圖3作為模型14a來表示)。圖4為用於說明圖3表示的模型14a之示意圖。第3實施方式在模型14a的構成具有特徵。
如圖3表示,第3實施方式的模型14a,乃是用在CNN(Convolutional Neural Network)等的影像辨識之深度學習用的模型。模型14a乃是具有複數個隱藏層141~144與輸出層145,而且,隱藏層包含褶積層141與匯總層142之類神經網路。
尚且,配列資料17a乃是根據緯度及經度(位置資訊)來把天氣預測資訊(日照量等)予以配列化之2維的配列資料,對應到模型14a的輸入層。亦即,配列資料17a乃是根據緯度及經度(位置資訊)把含有預測地點的網格以及周圍複數個網格的各天氣預測資訊予以配列化之配列資料,乃是在機械學習模型14a之際所用的說明變數。天氣預測資訊係例如在圖4表示作為天氣預測資訊17b般,作為每個緯度經度的時序資料的形式,但是,以把這些置換成基於緯度・經度之配列資料17a的方式,可以在輸入資料(配列資料17a)特徵化天氣的分布資訊。天氣預測資訊17b係例如表示與2017年12月5日10時0分的北緯33.85度、東經129.00度對應的網格的日照量的預測值為270.75877261 (kW/m2 )。
而且,輸出層145係對應到與複數個範圍之每一個的發電量對應的特徵量的分類。從輸出層145,輸出與被輸入的配列資料17a對應的發電量的預測值146。
在第3實施方式中,乃是模型14a(與圖1的模型14對應)具有複數個隱藏層,而且,隱藏層包含褶積層以及匯總層之類神經網路。而且,在機械學習模型14a之際所用的說明變數,乃是根據位置資訊配列化含有預測地點的網格以及周圍複數個網格的各天氣預測資訊之配列資料。而且,預測部12係對模型14a輸入根據位置資訊配列化含有預測地點的網格以及周圍複數個網格的預測時間的各天氣預測資訊之配列資料,求出預測地點中的發電量的預測值,作為來自模型14a的輸出。
如以上,第3實施方式中,發電量預測裝置1係使用用在影像辨識的深度學習的技術,從廣域的網格狀的天氣預測資訊的位置關係或分布抽出有效的特徵量,預測發電量。天氣預測資訊係作為每個緯度經度的時序資料的形式,但是,以把這些置換成基於緯度・經度之配列的方式,可以在輸入資料特徵化天氣的分布資訊。亦即,以使用藉由座標(緯度・經度)配列化了網格狀的天氣預測資訊之資訊作為說明變數的方式,把天氣預測資訊的分布視為恰似影像資訊般,可以在發電量預測把有效的天氣的位置關係或分布作為特徵量而自動取得,提升發電量預測精度。
<第4實施方式> 參照圖5,說明關於本發明的第4實施方式。圖5為表示圖1表示的模型14的構成例之示意圖(在圖5作為模型14b或是14b-1來表示)。第4實施方式在模型14b或是14b-1的構成具有特徵。
如圖5表示,第4實施方式的模型14b乃是使用LSTM(Long Short-Term Memory)等的時序資料之深度學習用的模型。模型14b乃是隱藏層包含記憶體單元1481、輸入閘1482、忘卻閘1483以及輸出閘1484,且以把輸出予以遞迴輸入之區塊148所構成之類神經網路。模型14b-1乃是與模型14b相同的模型,為展開了模型14b的遞迴輸入的形狀之模型。模型14b的輸入層147乃是由天氣預測資訊17b的每1小時之複數地點的日照量的資料所構成之多維的天氣預測資訊X(t-1)、X(t)、X(t+1)、…。模型14b的輸出層148為發電量的預測值(或者是實際值)的時序也就是發電量Y(t-1)、Y(t)、Y(t+1)、…。
在第4實施方式中,模型14b(與圖1的模型14對應)乃是隱藏層包含記憶體單元1481並且以把輸出予以遞迴輸入之區塊148所構成之類神經網路。而且,在機械學習模型14b之際所用的說明變數包含:含有預測地點的網格、以及周圍複數個網格的各天氣預測資訊的時序。而且,預測部12係對模型14b輸入含有預測地點的網格以及一直到周圍複數個網格的預測時間為止的各天氣預測資訊的時序,求出預測地點中的發電量的預測值,作為來自模型14b的輸出。
如以上,第4實施方式中,發電量預測裝置1係使用用在時序預測的深度學習的技術,從長時間的天氣預測資訊抽出時間所致之天氣的變化等有效的特徵量,預測發電量。根據第4實施方式,把長時間的天氣的時序資訊作為說明變數,並使用時序深度學習,藉此,可以把天氣的預測值的時序所致之推移作為特徵量並自動取得,實現精度佳的發電量預測。
<第5實施方式> 參照圖6,說明關於本發明的第5實施方式。圖6為表示圖1表示的模型14的構成例之示意圖(在圖6表示作為模型14c)。第5實施方式在模型14c的構成具有特徵。
在第5實施方式,模型14c具有複數個隱藏層141~144,而且,包含:第1類神經網路14a-1,其係隱藏層包含褶積層141與匯總層142;以及第2類神經網路14b-2,其係隱藏層包含記憶體單元1481、輸入閘1482、忘卻閘1483以及輸出閘1484,並且以把輸出予以遞迴輸入之區塊148所構成。而且,在機械學習模型14c之際所用的說明變數,乃是根據位置資訊配列化含有預測地點的網格以及周圍複數個網格的各天氣預測資訊之配列資料17a。而且,預測部12係對第1類神經網路14a-1輸入根據位置資訊配列化含有預測地點的網格以及周圍複數個網格的各預測時間的各天氣預測資訊之配列資料17a的時序(在2維的配列資料中包含時序而作為3維的配列資料),把來自第1類神經網路14a-1的輸出(輸出層145)的時序輸入到第2類神經網路14b-2,求出預測地點中的發電量的預測值,作為來自第2類神經網路14b-2的輸出。在此,第1類神經網路14a-1與第3實施方式的模型14a對應。而且,第2類神經網路14b-2與在第4實施方式所用的模型14b對應。
在第5實施方式中,兼用在第3實施方式使用的模型14a以及在第4實施方式使用的模型14b。亦即,在長時間取得廣域的天氣網格預測資訊,使用影像辨識深度學習並特徵量化後,使用用在時序預測的深度學習來更進一步特徵量化,預測發電量。根據第5實施方式,使用網格狀的天氣的時序資訊作為說明變數,藉此,可以把天氣的位置資訊與時序所致之推移作為特徵量並自動取得,實現精度佳的發電量預測。
如以上,根據本發明的各實施方式,可以自動取得發電量的預測的特徵量,實現精度佳的發電量預測。
以上,有關該發明的實施方式係參閱圖面並進行了說明,但具體的構成係不限於上述實施方式,也包含不逸脫該發明的要旨的範圍的設計變更等。
〈電腦構成〉 圖7為表示有關至少1個實施方式的電腦的構成之概略方塊圖。 電腦90具備:處理器91、主記憶體92、儲存庫93、以及介面94。 上述的發電量預測裝置1被安裝到電腦90。接著,上述之各處理部的動作,係以程式的形式被記憶到儲存庫93。處理器91係從儲存庫93讀出程式並展開到主記憶體92,根據該程式執行上述處理。而且,處理器91係根據程式,在主記憶體92確保與上述之各記憶部對應的記憶區域。
程式可以是用於實現在電腦90發揮的功能的一部分者。例如,程式可以是藉由與已經記憶在儲存庫之其他的程式的組合、或是與被安裝在其他的裝置之其他的程式的組合,而發揮功能者。尚且,在其他的實施方式中,電腦係除了上述構成,或是取代上述構成,還可以具備PLD(Programmable Logic Device)等之客製(custom)LSI (Large Scale Integrated Circuit)。作為PLD的例子,舉例有PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)。該情況下,藉由處理器所實現的功能的一部分或是全部也可以藉由該積體電路來實現。
作為儲存庫93的例子,舉例有HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁性碟片、光磁性碟片、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導體記憶體等。儲存庫93可以是直接連接電腦90的匯流排之內部媒體,也可以是透過介面94或是通訊線路連接到電腦90之外部媒體。而且,在該程式藉由通訊線路被配送到電腦90的情況下,接受配送的電腦90把該程式展開到主記憶體92,執行上述處理。至少1個實施方式中,儲存庫93乃是不為暫時性之有形的記憶媒體。 [產業上的可利用性]
根據上述的發明的各樣態,可以至少在提供天氣預測資訊之未來的期間份,把周邊地區的天氣預測資訊外加到預測地點的天氣預測資訊來預測發電量的緣故,所以可以長期性準確預測發電量。
1:發電量預測裝置 2:自然能量發電系統 3:天氣預測資訊提供系統 12:預測部 13:記憶部 14,14a,14b,14b-1,14c:模型
[圖1] 為用於說明有關本發明的一實施方式之發電量預測裝置(第1~第5實施方式)的構成例的方塊圖。 [圖2] 為表示在圖1表示的發電量預測裝置1的作動例(第2實施方式)之流程。 [圖3] 為表示圖1表示的模型14的構成例(第3實施方式)之示意圖。 [圖4] 為用於說明圖3表示的模型14a之示意圖。 [圖5] 為表示圖1表示的模型14之另一構成例(第4實施方式)之示意圖。 [圖6] 為表示圖1表示的模型14之更另一構成例(第5實施方式)之示意圖。 [圖7] 為表示有關至少1個實施方式的電腦的構成之概略方塊圖。
1:發電量預測裝置
2:自然能量發電系統
3:天氣預測資訊提供系統
11:通訊部
12:預測部
13:記憶部
14:模型
15:實際值
16:預測值
17:天氣預測資訊
M1~M9:網格

Claims (8)

  1. 一種發電量預測裝置,具備: 記憶部,其係記憶模型,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及 預測部,其係對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
  2. 如請求項1的發電量預測裝置,其中, 在機械學習前述模型之際所用的前述說明變數包含:含有前述預測地點的網格、前述周圍複數個網格的各天氣預測資訊、以及前述發電量; 前述預測部係首先,對前述模型輸入含有前述預測地點的網格、前述周圍複數個網格的預測時間的各天氣預測資訊、以及前述發電量的實際值,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出,之後,持續重複到得到期望的時間的預測值為止,對前述模型輸入含有前述預測地點的網格、前述周圍複數個網格的預測時間的各天氣預測資訊、以及之前所求出的前述發電量的預測值,求出前述預測地點中的前述發電量的下一個的預測值,作為來自前述模型的輸出。
  3. 如請求項1的發電量預測裝置,其中, 在機械學習前述模型之際所用的前述說明變數,乃是,根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的各天氣預測資訊予以配列化之配列資料; 前述預測部係對前述模型輸入根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊予以配列化之配列資料,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
  4. 如請求項1的發電量預測裝置,其中, 在機械學習前述模型之際所用的前述說明變數包含:含有前述預測地點的網格、以及前述周圍複數個網格的各天氣預測資訊的時序; 前述預測部,係對前述模型輸入含有前述預測地點的網格與一直到前述周圍複數個網格的預測時間為止的各天氣預測資訊的時序,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
  5. 如請求項1的發電量預測裝置,其中, 在機械學習前述模型之際所用的前述說明變數,乃是,根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的各天氣預測資訊予以配列化之配列資料; 前述預測部係對前述模型輸入根據位置資訊把含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊予以配列化之配列資料的時序,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出。
  6. 如請求項1至5中任1項的發電量預測裝置,其中, 前述發電量乃是太陽光發電所致之發電量; 前述各天氣預測資訊至少包含日照量的預測值。
  7. 一種發電量預測方法,包含以下步驟: 藉由記憶部記憶模型之步驟,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及 藉由預測部對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出之步驟。
  8. 一種在電腦執行以下步驟之程式,該步驟包含: 藉由記憶部記憶模型之步驟,該模型是藉由機械學習而被構築出,該機械學習是使用了至少包含了含有預測地點的網格與周圍複數個網格的各天氣預測資訊之說明變數、以及與自然能量所致之發電量對應之目的變數;以及 藉由預測部對前述模型輸入至少含有前述預測地點的網格與前述周圍複數個網格的預測時間的各天氣預測資訊,求出前述預測地點中的發電量的預測值,作為來自前述模型的輸出之步驟。
TW109110675A 2019-03-29 2020-03-27 發電量預測裝置、發電量預測方法、及程式 TWI745907B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067230 2019-03-29
JP2019067230A JP2020166622A (ja) 2019-03-29 2019-03-29 発電量予測装置、発電量予測方法、およびプログラム

Publications (2)

Publication Number Publication Date
TW202105306A true TW202105306A (zh) 2021-02-01
TWI745907B TWI745907B (zh) 2021-11-11

Family

ID=72668174

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110675A TWI745907B (zh) 2019-03-29 2020-03-27 發電量預測裝置、發電量預測方法、及程式

Country Status (5)

Country Link
US (1) US20220200279A1 (zh)
EP (1) EP3926818A4 (zh)
JP (1) JP2020166622A (zh)
TW (1) TWI745907B (zh)
WO (1) WO2020203854A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833549B (zh) * 2023-01-12 2024-02-21 春禾科技股份有限公司 日照值估測系統

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346356B2 (ja) * 2020-05-20 2023-09-19 株式会社日立製作所 予測装置および予測方法
JP2022088807A (ja) * 2020-12-03 2022-06-15 三菱重工業株式会社 予測システム、予測方法およびプログラム
CN113487068B (zh) * 2021-06-21 2023-03-24 湖北工业大学 一种基于长短期记忆模块的短期风功率预测方法
FR3135798A1 (fr) * 2022-05-19 2023-11-24 IFP Energies Nouvelles Procédé de prévision d’une puissance produite par au moins un panneau photovoltaïque

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797599B2 (ja) * 2012-04-19 2015-10-21 株式会社日立パワーソリューションズ 発電量予測方法及びそのシステム
US20140195159A1 (en) * 2013-01-09 2014-07-10 Iteris, Inc. Application of artificial intelligence techniques and statistical ensembling to forecast power output of a wind energy facility
CN104699936B (zh) * 2014-08-18 2018-05-04 沈阳工业大学 基于计算流体力学短期风速预测的风电场扇区管理方法
JP5886407B1 (ja) * 2014-12-05 2016-03-16 中国電力株式会社 予測装置
JP2016136001A (ja) * 2015-01-23 2016-07-28 中国電力株式会社 予測装置
US20170371073A1 (en) * 2015-01-30 2017-12-28 Nec Corporation Prediction apparatus, prediction method, and non-transitory storage medium
WO2016136323A1 (ja) * 2015-02-27 2016-09-01 株式会社E.I.エンジニアリング エネルギー予測システム、エネルギー予測方法、これを実行させるためのコンピュータプログラム及びこのプログラムを記録した記録媒体並びに運転支援システム
JP2017200360A (ja) 2016-04-28 2017-11-02 清水建設株式会社 太陽光発電量予測システム、太陽光発電量予測方法、プログラム
US11164111B2 (en) * 2016-06-17 2021-11-02 Panasonic Intellectual Property Management Co., Ltd. Electric power management system for reducing large and rapid change in power received from electricity delivery system
US10819116B2 (en) * 2017-02-28 2020-10-27 International Business Machines Corporation Forecasting solar power generation using real-time power data
JP7069622B2 (ja) 2017-10-03 2022-05-18 富士電機株式会社 通貨処理装置
CN108832619A (zh) * 2018-05-29 2018-11-16 北京交通大学 基于卷积神经网络的电力系统暂态稳定评估方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833549B (zh) * 2023-01-12 2024-02-21 春禾科技股份有限公司 日照值估測系統

Also Published As

Publication number Publication date
JP2020166622A (ja) 2020-10-08
US20220200279A1 (en) 2022-06-23
WO2020203854A1 (ja) 2020-10-08
EP3926818A4 (en) 2022-04-27
TWI745907B (zh) 2021-11-11
EP3926818A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
TWI745907B (zh) 發電量預測裝置、發電量預測方法、及程式
Osuri et al. The impact of satellite-derived wind data assimilation on track, intensity and structure of tropical cyclones over the North Indian Ocean
Parker Whose probabilities? Predicting climate change with ensembles of models
Acock et al. Estimating missing weather data for agricultural simulations using group method of data handling
CN114493050B (zh) 多维度融合的新能源功率并联预测方法和装置
JP5734936B2 (ja) 発電量予測装置およびその方法
CN112308281A (zh) 一种温度信息预测方法及装置
CN114493052B (zh) 多模型融合自适应新能源功率预测方法和系统
CN111505740A (zh) 气象预测方法、装置、计算机设备和存储介质
CN113568067B (zh) 数值天气预报方法、装置、计算机存储介质及电子设备
CN114819264A (zh) 一种基于时空依赖的光伏电站辐照度超短期预测方法及存储介质
US20230327440A1 (en) Power generation amount management system and power generation amount management method
CN117421871A (zh) 海上风电潜力评估方法、装置和计算机设备
CN117332291B (zh) 一种面向分布式光伏的区域资源监测布局方法及系统
Han et al. Fengwu-ghr: Learning the kilometer-scale medium-range global weather forecasting
JP5957725B2 (ja) 予測装置、予測方法、および、予測プログラム
CN114418243B (zh) 分布式新能源云端网格预测方法与系统
KR102168427B1 (ko) 지역별 공간 특성이 반영되는 규모 상세화 방법
JP5945014B1 (ja) 発電量予測装置、発電量予測装置の制御方法及びプログラム
CN115293461B (zh) 建筑体供暖碳排放预测方法及系统
CN116227249B (zh) 功率气象数据智能迁移的新能源长期电量预测方法与系统
CN116663432B (zh) 一种百米高度风速预报订正降尺度方法及装置
US20220413181A1 (en) Coupled pluvial, fluvial, and urban flood tool
CN118154011A (zh) 新能源场站的气象灾害评估方法和装置
Alkhayat et al. The Effect of Using Aerosol Variables on the Performance of Deep Learning-based GHI Forecasting Models