TW202101862A - Rotor lamination and rotor assembly using same - Google Patents

Rotor lamination and rotor assembly using same Download PDF

Info

Publication number
TW202101862A
TW202101862A TW108122500A TW108122500A TW202101862A TW 202101862 A TW202101862 A TW 202101862A TW 108122500 A TW108122500 A TW 108122500A TW 108122500 A TW108122500 A TW 108122500A TW 202101862 A TW202101862 A TW 202101862A
Authority
TW
Taiwan
Prior art keywords
width value
value
magnet
air gap
accommodating
Prior art date
Application number
TW108122500A
Other languages
Chinese (zh)
Other versions
TWI693776B (en
Inventor
戴偉修
施建仲
楊家祥
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW108122500A priority Critical patent/TWI693776B/en
Application granted granted Critical
Publication of TWI693776B publication Critical patent/TWI693776B/en
Publication of TW202101862A publication Critical patent/TW202101862A/en

Links

Images

Abstract

A rotor lamination applied to a motor is disclosed. The motor has a motor air gap width value, and the rotor lamination includes a main-body portion, a plurality of edges and a plurality of magnet-receiving slots. The center of the main-body portion is located at the axis of the motor. The plurality of edges are disposed around an outside of the main-body. The plurality of magnet-receiving slots are configured to accommodate a plurality of magnets of the motor and disposed around the center of the main-body portion. Each magnet-receiving slot is configured to accommodate the corresponding magnet. The magnet-receiving slot has a slot width value in an outward direction from the axis. The magnet-receiving slot and the corresponding edge at outside of the main-body portion form a magnet depth value. The magnet depth value is greater than the value of a first rate constant multiplied by the slot width value and then subtracted the motor air gap width value, and is less than the value of the first rate constant multiplied by the slot width value and then plus the motor air gap width value.

Description

轉子疊片及其適用之轉子組件Rotor laminations and applicable rotor components

本案係關於一種馬達之轉子組件,尤指一種轉子疊片及其適用之轉子組件。This case is about a rotor assembly of a motor, especially a rotor lamination and its applicable rotor assembly.

一般而言,永磁電機(Permanent magnetic electric machine)或稱永磁馬達(Permanent magnetic motor)之結構係包括轉子(Rotor)及定子(Stator),定子係設有繞組,轉子係設有永久型磁鐵,且轉子可透過例如矽鋼片之轉子疊片堆疊而成。其中,係藉由定子與轉子之間產生之磁力相互作用,從而使轉子進行轉動。Generally speaking, the structure of a permanent magnetic electric machine or permanent magnetic motor includes a rotor (Rotor) and a stator (Stator). The stator is equipped with windings, and the rotor is equipped with permanent magnets. And the rotor can be formed by stacking rotor laminations such as silicon steel sheets. Among them, the magnetic force generated between the stator and the rotor interacts to make the rotor rotate.

為了提昇馬達效率或效能,必須提升單位電流所能產生的扭力比值,該值或稱為轉矩常數(Torque Constant, KT),該值常用以評估馬達的效率或效能。當馬達具有較大的轉矩常數KT,在相同的扭力需求下則僅需要較低的電流,可有效降低銅線損耗,達到提升效率之成效。In order to improve the efficiency or performance of a motor, it is necessary to increase the torque ratio that a unit current can generate. This value is also called the Torque Constant (KT), which is often used to evaluate the efficiency or performance of the motor. When the motor has a larger torque constant KT, it only needs a lower current under the same torque demand, which can effectively reduce the copper wire loss and achieve the effect of improving efficiency.

傳統永磁馬達多採用花瓣型轉子(Flower-petal-shaped rotor)的設計,其在轉子之靠近外徑處開設多個槽孔,以整理磁束,達到提升馬達扭矩或者降低頓轉扭矩之效果。然而,在設計花瓣型轉子時,為確保在優化轉矩漣波(Torque ripple)條件下仍可保持輸出轉矩(Output torque)性能(較大的轉矩),需要在修弧深度(Arc depth)、磁石(Magnet)擺放位置以及肋部(Rib)尺寸上取得平衡。而依靠模擬分析軟體進行時,往往又因為變動因子的數量極多,需要耗費極長的時間來求取設計值使表現平衡,而且轉子尺寸參數彼此關係相互耦合,也造成計算最佳轉子尺寸的難度上升。Traditional permanent magnet motors mostly adopt a flower-petal-shaped rotor design, which opens a plurality of slots near the outer diameter of the rotor to arrange the magnetic flux and achieve the effect of increasing the motor torque or reducing the torque of the rotation. However, when designing petal-shaped rotors, in order to ensure that the output torque performance (larger torque) can still be maintained under the conditions of optimized torque ripple, it is necessary to set the arc depth (Arc depth) ), the placement of the magnet (Magnet) and the size of the rib (Rib) are balanced. When relying on simulation analysis software, it often takes a very long time to find the design value to balance the performance due to the extremely large number of variable factors, and the relationship between the rotor size parameters are coupled with each other, which also causes the calculation of the optimal rotor size The difficulty rises.

有鑑於此,實有必要提供一種轉子疊片及其適用之轉子組件,以解決習知技術所面臨之問題。In view of this, it is really necessary to provide a rotor lamination and a suitable rotor assembly to solve the problems faced by the prior art.

本案之目的在於提供一種轉子疊片及其適用之轉子組件。透過馬達氣隙寬度值與磁石容置槽寬度值,設計磁石容置槽與本體部外側之周緣之間的磁石深度值,以於最大輸出轉矩區間內獲致最小轉矩漣波,進而提昇馬達輸出轉矩(output torque of motor)之抗退磁性(anti-demagnetization)的耐受性(endurance),達到提升馬達效率之功效。The purpose of this case is to provide a rotor lamination and a suitable rotor assembly. Through the motor air gap width value and the magnet accommodating groove width value, the magnet depth value between the magnet accommodating groove and the outer periphery of the main body is designed to obtain the smallest torque ripple in the maximum output torque range, thereby improving the motor The anti-demagnetization endurance of the output torque of motor achieves the effect of improving the efficiency of the motor.

本案之另一目的在於提供一種轉子疊片及其適用之轉子組件。透過馬達氣隙寬度值與磁石容置槽寬度值,於兩相鄰之磁石容置槽之間,設計自轉子外周緣向轉子軸心凹設之修弧深度值,以於最大輸出轉矩區間內獲致最小轉矩漣波,進而改善馬達中磁鐵漏磁通(leak flux/flux leakage)以及氣隙磁通分佈/密度(air-gap flux distribution/density)的相互影響,達到提升馬達效率之功效。Another objective of this case is to provide a rotor lamination and a suitable rotor assembly. According to the width of the motor air gap and the width of the magnet accommodating slot, between two adjacent magnet accommodating slots, the arcing depth is designed concavely from the outer periphery of the rotor to the rotor shaft center to be in the range of the maximum output torque. Minimal torque ripple is obtained in the motor, thereby improving the mutual influence of magnet leakage/flux leakage and air-gap flux distribution/density in the motor, achieving the effect of improving motor efficiency .

本案之再一目的在於提供一種轉子疊片及其適用之轉子組件。透過馬達氣隙寬度值與磁石容置槽寬度值,設計磁石容置槽與修弧部之間的第一肋部寬度值以及兩相鄰磁石容置槽間之第二肋部寬度值,以避免弱磁控制(flux weakening control)對磁石造成退磁的條件下,可有效減少轉子肋部所造成漏磁通現象,確保轉子組件提供最佳輸出轉矩性能,進而達到提升馬達效率之功效。Another objective of this case is to provide a rotor lamination and a suitable rotor assembly. According to the motor air gap width value and the magnet accommodating groove width value, the first rib width value between the magnet accommodating groove and the trimming part and the second rib width value between two adjacent magnet accommodating grooves are designed to Under the condition of avoiding flux weakening control to demagnetize the magnet, it can effectively reduce the leakage of magnetic flux caused by the rotor ribs, ensure that the rotor assembly provides the best output torque performance, and achieve the effect of improving the motor efficiency.

本案又一目的在於提供一種轉子疊片及其適用之轉子組件。藉由最佳化尺寸及參數,更可簡化設計的困難度,同時加速產品開發的速度。Another objective of this case is to provide a rotor lamination and a suitable rotor assembly. By optimizing the size and parameters, the difficulty of design can be simplified and the speed of product development can be accelerated.

為達前述目的,本案提供一種轉子疊片,適用於一馬達,馬達具有一馬達氣隙寬度值,轉子疊片包括本體部、複數個周緣以及複數個磁石容置槽。本體部之中心組配對位於馬達之一軸心。複數個周緣環繞設置於本體部之外側。複數個磁石容置槽於槽內相對容置馬達之複數個磁石,複數個磁石容置槽相對軸心環設於本體部,其中每一磁石容置槽容置所對應之磁石,磁石容置槽自軸心向外的方向具有一容置槽寬度值,且磁石容置槽與本體部外側之周緣之間具有一磁石深度值,其中磁石深度值大於一第一倍率常數乘容置槽寬度值後減去馬達氣隙寬度值之運算總和值,且磁石深度值小於第一倍率常數乘容置槽寬度值後加上馬達氣隙寬度值之運算總和值。To achieve the foregoing objective, the present application provides a rotor lamination suitable for a motor. The motor has a motor air gap width. The rotor lamination includes a main body, a plurality of peripheral edges, and a plurality of magnet accommodating slots. The center group of the main body is located on the axis of the motor. A plurality of peripheral edges are arranged around the outer side of the main body. A plurality of magnet accommodating grooves are arranged in the groove to accommodate a plurality of magnets of the motor, and a plurality of magnet accommodating grooves are arranged on the main body relative to the shaft ring, wherein each magnet accommodating groove accommodates a corresponding magnet, and the magnet accommodates The slot has a slot width value in the direction outward from the axis, and there is a magnet depth value between the magnet slot and the outer periphery of the main body, wherein the magnet depth value is greater than a first rate constant times the slot width After the value, subtract the calculated total value of the motor air gap width value, and the magnet depth value is less than the first multiplying constant multiplied by the accommodating slot width value plus the calculated total value of the motor air gap width value.

為達前述目的,本案另提供一種轉子組件,適用於一馬達。馬達具有一馬達氣隙寬度值。轉子組件包括複數個磁石以及複數個轉子疊片。複數個轉子疊片沿馬達之一軸心之方向堆疊。轉子疊片包括本體部、複數個周緣以及複數個磁石容置槽。本體部之中心對位於軸心。複數個周緣環繞設置於本體部之外側。複數個磁石容置槽於槽內相對容置複數個磁石,以軸心為中心環設於本體部,其中每一磁石容置槽容置所對應之磁石,磁石容置槽自軸心朝向轉子組件外側的方向具有一容置槽寬度值,且磁石容置槽與本體部外側之周緣之間具有一磁石深度值,其中磁石深度值大於一第一倍率常數乘容置槽寬度值後減去馬達氣隙寬度值之運算總和值,且磁石深度值小於第一倍率常數乘容置槽寬度值後加上馬達氣隙寬度值之運算總和值。In order to achieve the foregoing objective, this case provides another rotor assembly suitable for a motor. The motor has a motor air gap width value. The rotor assembly includes a plurality of magnets and a plurality of rotor laminations. A plurality of rotor laminations are stacked along the direction of one axis of the motor. The rotor lamination includes a main body, a plurality of peripheral edges, and a plurality of magnet accommodating slots. The center of the main body is located on the axis. A plurality of peripheral edges are arranged around the outer side of the main body. A plurality of magnet accommodating grooves relatively accommodate a plurality of magnets in the grooves, which are ringed on the main body with the axis as the center, wherein each magnet accommodating groove accommodates a corresponding magnet, and the magnet accommodating groove faces the rotor from the axis The outer direction of the component has a accommodating slot width value, and there is a magnet depth value between the magnet accommodating slot and the outer periphery of the main body, wherein the magnet depth value is greater than a first multiplying constant multiplied by the accommodating slot width value and then subtracted The calculated sum value of the motor air gap width value, and the magnet depth value is less than the first multiplying constant multiplied by the accommodating slot width value plus the calculated sum value of the motor air gap width value.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上係當作說明之用,而非用於限制本案。Some typical embodiments embodying the features and advantages of this case will be described in detail in the following description. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of the case, and the descriptions and drawings therein are essentially for illustrative purposes, not for limiting the case.

請先參考第1圖至第5圖。其中第1圖係揭示本案較佳實施例之馬達之立體結構圖,第2圖係揭示第1圖中馬達結構之平面剖面圖,第3圖係揭示本案較佳實施例之轉子疊片之立體結構圖,第4圖係揭示本案較佳實施例之轉子疊片之上視圖,而第5圖係揭示本案較佳實施例之轉子疊片之局部放大圖。於本實施例中,馬達1至少包括有一轉子組件2以及一定子組件3。其中轉子組件2與定子組件3之組合係採外定子內轉子之方式完成。於本實施例中,定子組件3具有一中空部31以及對應環繞於其複數個齒部之複數個繞組32,而轉子組件2設置於定子組件3之中空部31內。其中馬達1之轉子組件2與定子組件3之間,組配形成一馬達氣隙寬度值g。較佳者,馬達氣隙寬度值g介於0.25mm至1.0mm,但本案並不以此為限。於本實施例中,轉子組件2包括有複數個磁石27以及複數個轉子疊片20。其中複數個轉子疊片20可例如是由矽鋼材料所製成,但本案並不以此為限。複數個轉子疊片20沿馬達1的一軸心C堆疊,軸心C即架構為轉子組件2之中心,轉子組件2以軸心C為中心轉動,軸心C亦為馬達1之中心。另外,於本實施例中,轉子疊片20之配置數量、配置間距及單片厚度…等可視實際應用需求而調整變化。每一轉子疊片20包括有一本體部21、複數個周緣23以及複數個磁石容置槽22。本體部21之中心組配對位於馬達1之軸心C。複數個周緣23環繞於本體部21之外側。複數個磁石容置槽22以軸心C為中心而且彼此對稱地環設於本體部21,並貫穿本體部21。複數個轉子疊片20沿軸心C對應堆疊後,前述複數個磁石容置槽22於空間上可相對容置複數個磁石27。詳細說明,複數個磁石容置槽22分別於各自的槽內容置對應的複數個磁石27。前述磁石27可例如是一長條形柱狀永久磁體,然本案並不以此為限。於本實施例中,複數個磁石容置槽22之數量係相對於複數個磁石27之數量,亦即兩者之數量相同,例如均為8個。其中每一磁石容置槽22組配容置所對應之磁石27,亦即8個磁石容置槽22與所對應之8個磁石27,係以軸心C為中心分別對應約45度之圓心角對稱且一對一分佈及配置,但並不以此為限。於其他實施例中,前述複數個磁石容置槽22之數量與複數個磁石27之數量,可例如是6、10、12。換言之,本案複數個磁石容置槽22之數量與複數個磁石27之數量可表示為2N個,其中N為整數,且N大於等於3。藉此,轉子組件2可提供2N極數的設計,於此便不再贅述。此外,磁石容置槽22亦可一對多地容置磁石27,但並不以此為限。Please refer to Figures 1 to 5 first. The first figure is a three-dimensional structure view of the motor of the preferred embodiment of the present invention, the second figure is a plan sectional view of the motor structure of the first figure, and the third figure is a three-dimensional view of the rotor laminations of the preferred embodiment of the present invention. Fig. 4 shows the top view of the rotor lamination of the preferred embodiment of the present invention, and Fig. 5 shows the partial enlarged view of the rotor lamination of the preferred embodiment of the present invention. In this embodiment, the motor 1 at least includes a rotor assembly 2 and a stator assembly 3. Among them, the combination of the rotor assembly 2 and the stator assembly 3 is completed by adopting an outer stator and an inner rotor. In this embodiment, the stator assembly 3 has a hollow portion 31 and a plurality of windings 32 corresponding to a plurality of teeth portions thereof, and the rotor assembly 2 is disposed in the hollow portion 31 of the stator assembly 3. Among them, the rotor assembly 2 and the stator assembly 3 of the motor 1 are assembled to form a motor air gap width g. Preferably, the motor air gap width g is between 0.25 mm and 1.0 mm, but this case is not limited to this. In this embodiment, the rotor assembly 2 includes a plurality of magnets 27 and a plurality of rotor laminations 20. The plurality of rotor laminations 20 can be made of silicon steel material, but this case is not limited to this. A plurality of rotor laminations 20 are stacked along an axis C of the motor 1. The axis C is the center of the rotor assembly 2, and the rotor assembly 2 rotates around the axis C, which is also the center of the motor 1. In addition, in this embodiment, the number of arrangement of the rotor laminations 20, arrangement spacing, and thickness of a single piece... etc. can be adjusted and changed according to actual application requirements. Each rotor lamination 20 includes a main body 21, a plurality of peripheral edges 23 and a plurality of magnet accommodating slots 22. The center assembly of the main body 21 is located at the axis C of the motor 1. A plurality of peripheral edges 23 surround the outer side of the main body 21. A plurality of magnet accommodating grooves 22 are symmetrically arranged around the main body 21 centered on the axis C and penetrate the main body 21. After a plurality of rotor laminations 20 are correspondingly stacked along the axis C, the aforementioned plurality of magnet accommodating slots 22 can relatively accommodate a plurality of magnets 27 in space. In detail, a plurality of magnet accommodating grooves 22 respectively hold a corresponding plurality of magnets 27 in their respective grooves. The aforementioned magnet 27 may be, for example, a long bar-shaped cylindrical permanent magnet, but the present case is not limited to this. In this embodiment, the number of the plurality of magnet accommodating slots 22 is relative to the number of the plurality of magnets 27, that is, the number of both is the same, for example, both are 8. Each of the magnet accommodating grooves 22 sets the corresponding magnets 27, that is, the 8 magnet accommodating grooves 22 and the corresponding 8 magnets 27 respectively correspond to the center of the circle of about 45 degrees with the axis C as the center. Angular symmetry and one-to-one distribution and configuration, but not limited to this. In other embodiments, the number of the aforementioned plurality of magnet accommodating grooves 22 and the number of the plurality of magnets 27 may be 6, 10, 12, for example. In other words, the number of magnet accommodating slots 22 and the number of magnets 27 in this case can be expressed as 2N, where N is an integer, and N is greater than or equal to 3. In this way, the rotor assembly 2 can provide a 2N pole design, which will not be repeated here. In addition, the magnet accommodating slot 22 can also accommodate the magnets 27 one-to-many, but it is not limited to this.

值得注意的是,如第4圖及第5圖所示,於本實施例中磁石容置槽22自軸心C朝向轉子組件2外側的方向上(,或者朝向本體部21之周緣23的方向上)具有一容置槽寬度值T,其中容置槽寬度值T等於或略大於磁石27之厚度,以使磁石27可穩固地嵌設於所對應之磁石容置槽22且不致脫離。較佳者,容置槽寬度值T小於15倍的馬達氣隙寬度值g,但本案並不以此為限。於本實施例中,複數個周緣23彼此相鄰並環繞本體部21,亦即,複數個周緣23環繞設置於本體部21之外側。另外,磁石容置槽22與本體部21外側之周緣23之間具有一磁石深度值Md。於實施例中,磁石深度值Md大於一第一倍率常數K1乘容置槽寬度值T後減去馬達氣隙寬度值g之運算總和值,且磁石深度值Md小於第一倍率常數K1乘容置槽寬度值T後加上馬達氣隙寬度值g之運算總和值。其關係可如下式(1)所示:

Figure 02_image001
(1)It is worth noting that, as shown in FIGS. 4 and 5, in this embodiment, the magnet accommodating groove 22 is in the direction from the axis C toward the outside of the rotor assembly 2 (or toward the peripheral edge 23 of the main body 21 The top) has a accommodating slot width value T, wherein the accommodating slot width value T is equal to or slightly larger than the thickness of the magnet 27, so that the magnet 27 can be firmly embedded in the corresponding magnet accommodating slot 22 without being separated. Preferably, the accommodating groove width value T is less than 15 times the motor air gap width value g, but this case is not limited to this. In this embodiment, the plurality of peripheral edges 23 are adjacent to each other and surround the main body portion 21, that is, the plurality of peripheral edges 23 are disposed around the outer side of the main body portion 21. In addition, there is a magnet depth value Md between the magnet accommodating groove 22 and the outer periphery 23 of the main body 21. In an embodiment, the magnet depth value Md is greater than a first multiplying constant K1 multiplied by the accommodating slot width value T and then subtracted from the motor air gap width value g, and the magnet depth value Md is less than the first multiplying constant K1 multiplied by the volume After the slot width value T is added, the calculated sum value of the motor air gap width value g. The relationship can be shown in the following formula (1):
Figure 02_image001
(1)

於本實施例中,第一倍率常數K1介於1.4至1.5之間。表1係模擬不同磁石深度值所得之輸出轉矩以及轉矩漣波: 表1 磁石深度值Md 輸出轉矩 [N.M] 轉矩漣波 [%] K1×T-2g 28.6 1.7 K1×T-1.5g 29.19 1.65 K1×T-1g 29.99 1.6 K1×T-0.5g 31.01 1.55 K1×T+0g 31.89 1.7 K1×T+0.5g 31.47 1.85 K1×T+1g 31.16 2.12 K1×T+1.5g 30.38 1.73 K1×T+2g 29.81 1.56 In this embodiment, the first rate constant K1 is between 1.4 and 1.5. Table 1 is the output torque and torque ripple obtained by simulating different magnet depth values: Table 1 Magnet depth value Md Output torque [N. M] Torque ripple [%] K1×T-2g 28.6 1.7 K1×T-1.5g 29.19 1.65 K1×T-1g 29.99 1.6 K1×T-0.5g 31.01 1.55 K1×T+0g 31.89 1.7 K1×T+0.5g 31.47 1.85 K1×T+1g 31.16 2.12 K1×T+1.5g 30.38 1.73 K1×T+2g 29.81 1.56

第6圖係揭示不同磁石深度值相對輸出轉矩之關係圖。第7圖係揭示不同磁石深度值相對轉矩漣波之關係圖。如第6圖與第7圖所示,當轉子疊片20設計之磁石深度值Md介於式(1)的範圍時,即磁石深度值Md大於一第一倍率常數K1乘容置槽寬度值T後減去馬達氣隙寬度值g之運算總和值,且磁石深度值Md小於第一倍率常數K1乘容置槽寬度值T後加上馬達氣隙寬度值g之運算總和值,馬達1可於最大輸出轉矩區間內,同時獲致最小轉矩漣波。藉此,馬達輸出轉矩之抗退磁性的耐受性可獲得提昇,進而達到提升馬達效率之功效。Figure 6 shows the relationship between different magnet depth values and output torque. Figure 7 is a graph showing the relationship between different magnet depth values and torque ripple. As shown in Figures 6 and 7, when the magnet depth value Md designed for the rotor lamination 20 is within the range of formula (1), that is, the magnet depth value Md is greater than a first multiplying constant K1 times the accommodating slot width value After T is subtracted from the calculated total value of the motor air gap width value g, and the magnet depth value Md is less than the first multiplying constant K1 multiplied by the accommodating slot width value T and added to the calculated total value of the motor air gap width value g, the motor 1 can In the range of maximum output torque, the minimum torque ripple is obtained at the same time. Thereby, the resistance to demagnetization of the output torque of the motor can be improved, thereby achieving the effect of improving the efficiency of the motor.

此外,再請參考第1圖至第5圖以及第8圖。其中第8圖係揭示本案較佳實施例之轉子疊片之另一局部結構放大圖。於本實施例中,每兩相鄰之周緣23之間可更定義一個外周緣23a,其中轉子疊片20更包括複數個修弧部24,分別位於兩相鄰之磁石容置槽22之間(或前述每兩相鄰之周緣23之間),自本體部21之外側之複數個外周緣23a向軸心C凹設,且於外周緣23a至修弧部24之底邊24a間具有一修弧深度值Pd。其中修弧深度值Pd大於一第二倍率常數K2乘容置槽寬度值T後減去馬達氣隙寬度值g之運算總和值,且修弧深度值Pd小於第二倍率常數K2乘容置槽寬度值T後加上馬達氣隙寬度值g之運算總和值。其關係可如下式(2)所示:

Figure 02_image003
(2)In addition, please refer to Figure 1 to Figure 5 and Figure 8. Fig. 8 is an enlarged view showing another partial structure of the rotor lamination of the preferred embodiment of the present invention. In this embodiment, an outer peripheral edge 23a may be further defined between every two adjacent peripheral edges 23, wherein the rotor lamination 20 further includes a plurality of arc trimming portions 24, which are respectively located between two adjacent magnet accommodating grooves 22 (Or between every two adjacent peripheries 23 mentioned above), a plurality of outer peripheries 23a on the outer side of the main body portion 21 are recessed toward the axis C, and there is a gap between the outer peripheries 23a and the bottom edge 24a of the trimming portion 24 The value of arc trimming depth Pd. The arc repair depth value Pd is greater than a second multiplying constant K2 times the accommodating slot width value T and then the motor air gap width value g is subtracted from the calculated sum value, and the arc repairing depth value Pd is less than the second magnification constant K2 times the accommodating slot After the width value T, add the calculated sum value of the motor air gap width value g. The relationship can be shown in the following formula (2):
Figure 02_image003
(2)

於本實施例中,第二倍率常數K2介於0.5至0.6之間。表2係模擬不同修弧深度值所得之輸出轉矩以及轉矩漣波: 表2 修弧深度值Pd 輸出轉矩 [N.M] 轉矩漣波 [%] K2×T-2g 29.4 2.21 K2×T-1.5g 30.65 2.14 K2×T-1g 31.78 2.05 K2×T-0.5g 32.63 1.85 K2×T+0g 31.89 1.7 K2×T+0.5g 30.98 1.85 K2×T+1g 30.28 2.03 K2×T+1.5g 28.8 1.73 K2×T+2g 27.5 1.65 In this embodiment, the second rate constant K2 is between 0.5 and 0.6. Table 2 is the output torque and torque ripple obtained by simulating different arc repair depth values: Table 2 Trimming depth value Pd Output torque [N. M] Torque ripple [%] K2×T-2g 29.4 2.21 K2×T-1.5g 30.65 2.14 K2×T-1g 31.78 2.05 K2×T-0.5g 32.63 1.85 K2×T+0g 31.89 1.7 K2×T+0.5g 30.98 1.85 K2×T+1g 30.28 2.03 K2×T+1.5g 28.8 1.73 K2×T+2g 27.5 1.65

第9圖係揭示不同修弧深度值相對輸出轉矩之關係圖。第10圖係揭示不同修弧深度值相對轉矩漣波之關係圖。如第9圖與第10圖所示,當轉子疊片20設計之修弧深度值Pd介於式(2)的範圍時,即修弧深度值Pd大於一第二倍率常數K2乘容置槽寬度值T後減去馬達氣隙寬度值g之運算總和值,且修弧深度值Pd小於第二倍率常數K2乘容置槽寬度值T後加上馬達氣隙寬度值g之運算總和值,馬達1可於最大輸出轉矩區間內,同時獲致最小轉矩漣波。藉此,馬達中磁鐵漏磁通以及氣隙磁通分佈/密度的相互影響可獲得改善,進而達到提升馬達效率之功效。Figure 9 shows the relationship between different arc trimming depth values and output torque. Figure 10 shows the relationship between different arc trimming depth values and torque ripple. As shown in Figures 9 and 10, when the arc trimming depth Pd of the rotor lamination 20 is within the range of formula (2), that is, the arc trimming depth Pd is greater than a second multiplying constant K2 times the accommodating slot After the width value T is subtracted from the calculated total value of the motor air gap width g, and the arc repair depth value Pd is less than the second multiplying constant K2 multiplied by the accommodating slot width value T and added to the calculated total value of the motor air gap width g, The motor 1 can achieve the minimum torque ripple within the maximum output torque range. In this way, the mutual influence of the magnet leakage flux and the air gap flux distribution/density in the motor can be improved, thereby achieving the effect of improving the motor efficiency.

此外,再請參考第1圖至第5圖以及第8圖與第11圖。其中第11圖係揭示本案較佳實施例之轉子疊片之再一局部結構放大圖。於本實施例中,每個磁石容置槽22與對應的修弧部24之間具有一第一肋部25,於修弧部24之底邊24a之邊界處23b至磁石容置槽22之邊緣處22a具有一第一肋部寬度值Rr。其中肋部寬度值Rr係大於容置槽寬度值T除容置槽寬度值T與馬達氣隙寬度值g之和後減去0.5倍之馬達氣隙寬度值g之運算總和值,且小於容置槽寬度值T除容置槽寬度值T與馬達氣隙寬度值g之和後加上0.25倍之馬達氣隙寬度值g之運算總和值。其關係可如下式(3)所示:

Figure 02_image005
(3)In addition, please refer to Figures 1 to 5 and Figures 8 and 11. FIG. 11 is an enlarged view showing another partial structure of the rotor lamination of the preferred embodiment of the present invention. In this embodiment, there is a first rib 25 between each magnet accommodating groove 22 and the corresponding arc trimming portion 24, which is located at the boundary of the bottom 24a of the arc trimming portion 24 from 23b to the magnet accommodating groove 22 The edge 22a has a first rib width value Rr. Wherein the rib width value Rr is greater than the accommodating slot width value T divided by the accommodating slot width value T and the motor air gap width value g, minus 0.5 times the motor air gap width value g, and is less than the total The groove width value T is divided by the sum of the accommodating groove width value T and the motor air gap width value g and then plus 0.25 times the motor air gap width value g. The relationship can be shown in the following formula (3):
Figure 02_image005
(3)

此外,於本實施例中每兩個相鄰之磁石容置槽22之間具有一第二肋部26,第二肋部26具有一第二肋部寬度值Rt。其中第二肋部寬度值Rt大於容置槽寬度值T除容置槽寬度值T與馬達氣隙寬度值g之和後加上0.25倍之馬達氣隙寬度值g之運算總和值,且小於容置槽寬度值T除容置槽寬度值T與馬達氣隙寬度值g之和後加上1.25倍之馬達氣隙寬度值g之運算總和值。其關係可如下式(4)所示:

Figure 02_image007
(4)In addition, in this embodiment, there is a second rib 26 between every two adjacent magnet accommodating grooves 22, and the second rib 26 has a second rib width value Rt. Wherein the second rib width value Rt is greater than the accommodating slot width value T divided by the accommodating slot width value T and the motor air gap width value g plus 0.25 times the motor air gap width value g, and is less The accommodating slot width value T is divided by the sum of the accommodating slot width value T and the motor air gap width value g and then plus 1.25 times the motor air gap width value g. The relationship can be shown in the following formula (4):
Figure 02_image007
(4)

藉此設計之磁石容置槽22與修弧部24之間的第一肋部寬度值Rr以及兩相鄰磁石容置槽22間之第二肋部寬度值Rt,於避免弱磁控制對磁石造成退磁的條件下,可有效減少轉子肋部所造成漏磁通現象,確保轉子組件2提供最佳輸出轉矩性能,進而達到提升馬達效率之功效。The first rib width Rr between the magnet accommodating groove 22 and the trimming portion 24 and the second rib width Rt between the two adjacent magnet accommodating grooves 22 are thus designed to prevent the magnet from being weakened. Under the condition of demagnetization, the leakage magnetic flux phenomenon caused by the rotor ribs can be effectively reduced, and the rotor assembly 2 can provide the best output torque performance, thereby achieving the effect of improving the motor efficiency.

綜上所述,本案提供一種轉子疊片及其適用之轉子組件。依據馬達氣隙寬度值與磁石容置槽寬度,設計磁石容置槽與本體部外側之周緣之間的磁石深度值,以於最大輸出轉矩區間內,獲致最小轉矩漣波,進而提昇馬達輸出轉矩之抗退磁性的耐受性。透過馬達氣隙寬度值與磁石容置槽寬度,於兩相鄰之該磁石容置槽之間,設計自外周緣向軸心凹設之修弧深度值,以於最大輸出轉矩區間內,獲致最小轉矩漣波,進而改善馬達中磁鐵漏磁通以及氣隙磁通分佈/密度的相互影響。又透過馬達氣隙寬度值與磁石容置槽寬度值,設計磁石容置槽與修弧部之間的第一肋部寬度值以及兩相鄰磁石容置槽間之第二肋部寬度值,以於避免弱磁控制對磁石造成退磁的條件下,可有效減少轉子肋部所造成漏磁通現象,確保轉子組件提供最佳輸出轉矩性能,進而達到提升馬達效率之功效。藉由最佳化尺寸及參數,更可簡化設計的困難度,同時加速產品開發的速度。In summary, this case provides a rotor lamination and a suitable rotor assembly. According to the width of the motor air gap and the width of the magnet accommodating groove, design the magnet depth value between the magnet accommodating groove and the outer periphery of the main body, so as to obtain the smallest torque ripple within the maximum output torque range, thereby improving the motor Resistance to demagnetization of output torque. According to the width of the motor air gap and the width of the magnet accommodating slot, between two adjacent magnet accommodating slots, the arc trimming depth is designed concavely from the outer periphery to the axis to be within the maximum output torque range. Obtain the smallest torque ripple, thereby improving the mutual influence of the magnet leakage flux and the air gap flux distribution/density in the motor. Through the motor air gap width value and the magnet accommodating groove width value, the first rib width value between the magnet accommodating groove and the trimming part and the second rib width value between two adjacent magnet accommodating grooves are designed. In order to avoid the demagnetization of the magnet due to the weakening control, it can effectively reduce the leakage of magnetic flux caused by the rotor ribs, ensure that the rotor assembly provides the best output torque performance, and achieve the effect of improving the motor efficiency. By optimizing the size and parameters, the difficulty of design can be simplified and the speed of product development can be accelerated.

本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。This case can be modified in many ways by those who are familiar with this technology, but it is not deviated from the protection of the patent application.

1:馬達 2:轉子組件 20:轉子疊片 21:本體部 22:磁石容置槽 22a:邊緣處 23:周緣 23a:外周緣 23b:邊界處 24:修弧部 24a:底邊 25:第一肋部 26:第二肋部 27:磁石 3:定子組件 31:中空部 32:繞組 g:馬達氣隙寬度值 C:軸心 Md:磁石深度值 Pd:修弧深度值 Rr:第一肋部寬度值 Rt:第二肋部寬度值 T:容置槽寬度值1: motor 2: Rotor assembly 20: Rotor lamination 21: Body part 22: Magnet storage slot 22a: At the edge 23: Perimeter 23a: outer periphery 23b: At the border 24: Trim the arc 24a: bottom edge 25: first rib 26: second rib 27: Magnet 3: stator assembly 31: Hollow part 32: winding g: Motor air gap width value C: axis Md: Depth value of magnet Pd: arc repair depth value Rr: first rib width value Rt: The second rib width value T: Width of the containing slot

第1圖係揭示本案較佳實施例之馬達之立體結構圖。 第2圖係揭示第1圖中馬達結構之平面剖面圖。 第3圖係揭示本案較佳實施例之轉子疊片之立體結構圖。 第4圖係揭示本案較佳實施例之轉子疊片之上視圖。 第5圖係揭示本案較佳實施例之轉子疊片之局部結構放大圖。 第6圖係揭示不同磁石深度值相對輸出轉矩之關係圖。 第7圖係揭示不同磁石深度值相對轉矩漣波之關係圖。 第8圖係揭示本案較佳實施例之轉子疊片之另一局部結構放大圖。 第9圖係揭示不同修弧深度值相對輸出轉矩之關係圖。 第10圖係揭示不同修弧深度值相對轉矩漣波之關係圖。 第11圖係揭示本案較佳實施例之轉子疊片之再一局部結構放大圖。Fig. 1 is a three-dimensional structural diagram of the motor of the preferred embodiment of the present invention. Figure 2 is a plan sectional view of the motor structure in Figure 1. Figure 3 is a three-dimensional structural view of the rotor laminations of the preferred embodiment of the present invention. Figure 4 shows a top view of the rotor laminations of the preferred embodiment of the present invention. Fig. 5 is an enlarged view showing the partial structure of the rotor lamination in the preferred embodiment of the present invention. Figure 6 shows the relationship between different magnet depth values and output torque. Figure 7 is a graph showing the relationship between different magnet depth values and torque ripple. Fig. 8 is an enlarged view showing another partial structure of the rotor lamination of the preferred embodiment of the present invention. Figure 9 shows the relationship between different arc trimming depth values and output torque. Figure 10 shows the relationship between different arc trimming depth values and torque ripple. Fig. 11 is an enlarged view showing another partial structure of the rotor lamination of the preferred embodiment of the present invention.

20:轉子疊片 20: Rotor lamination

21:本體部 21: Body part

22:磁石容置槽 22: Magnet storage slot

23:周緣 23: Perimeter

24:修弧部 24: Trim the arc

25:第一肋部 25: first rib

26:第二肋部 26: second rib

C:軸心 C: axis

Md:磁石深度值 Md: Depth value of magnet

T:容置槽寬度值 T: Width of the containing slot

Claims (14)

一種轉子疊片,適用於一馬達,該馬達具有一馬達氣隙寬度值,該轉子疊片包括: 一本體部,且該本體部之中心組配對位於該馬達之一軸心; 複數個周緣,環繞設置於該本體部之外側;以及 複數個磁石容置槽,該複數個磁石容置槽於槽內相對容置該馬達之複數個磁石,該複數個磁石容置槽相對該軸心環設於該本體部,其中每一該磁石容置槽容置所對應之該磁石,該磁石容置槽自該軸心向外的方向具有一容置槽寬度值,且該磁石容置槽與該本體部外側對應之該周緣之間具有一磁石深度值, 其中該磁石深度值大於一第一倍率常數乘該容置槽寬度值後減去該馬達氣隙寬度值之運算總和值,且該磁石深度值小於該第一倍率常數乘該容置槽寬度值後加上該馬達氣隙寬度值之運算總和值。A rotor lamination is suitable for a motor, the motor has a motor air gap width value, and the rotor lamination includes: A body part, and the center assembly of the body part is located at a shaft center of the motor; A plurality of peripheral edges are arranged around the outer side of the main body part; and A plurality of magnet accommodating grooves, the plurality of magnet accommodating grooves relatively accommodating a plurality of magnets of the motor in the groove, the plurality of magnet accommodating grooves are arranged on the main body part relative to the shaft ring, and each of the magnets The magnet corresponding to the accommodating groove, the magnet accommodating groove has a accommodating groove width value in a direction outward from the axis, and there is a gap between the magnet accommodating groove and the peripheral edge corresponding to the outer side of the main body A magnet depth value, Wherein the magnet depth value is greater than a first multiplying constant multiplied by the accommodating slot width value and then subtracted from the motor air gap width value of the operation sum, and the magnet depth value is less than the first multiplying constant multiplied by the accommodating slot width value Then add the calculated sum of the motor air gap width value. 如請求項1所述之轉子疊片,其中該第一倍率常數介於1.4至1.5之間。The rotor lamination of claim 1, wherein the first rate constant is between 1.4 and 1.5. 如請求項1所述之轉子疊片,更包括複數個修弧部,分別位於兩相鄰之該磁石容置槽之間,且自每兩相鄰之該周緣之間定義之一外周緣向該軸心凹設而具有一修弧深度值,其中該修弧深度值大於一第二倍率常數乘該容置槽寬度值後減去該馬達氣隙寬度值之運算總和值,且該修弧深度值小於該第二倍率常數乘該容置槽寬度值後加上該馬達氣隙寬度值之運算總和值。The rotor lamination as described in claim 1, further comprising a plurality of arc trimming parts, which are respectively located between two adjacent magnet accommodating slots, and define an outer peripheral edge direction between every two adjacent peripheral edges The shaft center is recessed and has an arcing depth value, wherein the arcing depth value is greater than a second multiplying constant multiplied by the accommodating slot width value and then subtracting the calculated sum of the motor air gap width value, and the arcing The depth value is less than the second multiplying constant multiplying the accommodating slot width value and adding the motor air gap width value to the calculated sum value. 如請求項3所述之轉子疊片,其中該第二倍率常數介於0.5至0.6之間。The rotor lamination of claim 3, wherein the second rate constant is between 0.5 and 0.6. 如請求項3所述之轉子疊片,其中每一該磁石容置槽與對應之該修弧部之間具有一第一肋部,該第一肋部具有一第一肋部寬度值,該第一肋部寬度值大於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後減去0.5倍之該馬達氣隙寬度值之運算總和值,且該第一肋部寬度值小於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後加上0.25倍之該馬達氣隙寬度值之運算總和值。The rotor lamination according to claim 3, wherein a first rib is provided between each of the magnet accommodating grooves and the corresponding arc trimming portion, the first rib has a first rib width value, and The first rib width value is greater than the accommodating groove width value divided by the sum of the accommodating groove width value and the motor air gap width value minus 0.5 times the calculated sum of the motor air gap width value, and the first The rib width value is less than the accommodating slot width value divided by the accommodating slot width value and the motor air gap width value plus 0.25 times the motor air gap width value of the calculated sum. 如請求項5所述之轉子疊片,其中兩相鄰之該磁石容置槽之間更具有一第二肋部,該第二肋部具有一第二肋部寬度值,該第二肋部寬度值大於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後加上0.25倍之該馬達氣隙寬度值之運算總和值,且該第二肋部寬度值小於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後加上1.25倍之該馬達氣隙寬度值之運算總和值。The rotor lamination of claim 5, wherein there is a second rib between two adjacent magnet accommodating slots, the second rib has a second rib width, and the second rib The width value is greater than the accommodating slot width value divided by the accommodating slot width value and the motor air gap width value plus 0.25 times the motor air gap width value of the calculated sum value, and the second rib width value The sum of the value of the width of the accommodating slot divided by the width of the accommodating slot and the width of the motor air gap plus 1.25 times the value of the motor air gap. 如請求項1所述之轉子疊片,其中該複數個磁石容置槽與該複數個磁石之數量相同,該數量為2N,其中N為整數,且N大於等於3。The rotor lamination according to claim 1, wherein the number of the plurality of magnet accommodating slots is the same as the number of the plurality of magnets, the number is 2N, where N is an integer, and N is greater than or equal to 3. 一種轉子組件,適用於一馬達,該馬達具有一馬達氣隙寬度值,該轉子組件包括: 複數個磁石;以及 複數個轉子疊片,沿該馬達之一軸心之方向堆疊,其中每一該轉子疊片包括: 一本體部,該本體部之中心對位於該軸心 複數個周緣,環繞設置於該本體部之外側;以及 複數個磁石容置槽,該複數個磁石容置槽於槽內相對容置該複數個磁石,以該軸心為中心環設於該本體部,其中每一該磁石容置槽容置所對應之該磁石,該磁石容置槽自該軸心朝向該轉子組件之外側的方向具有一容置槽寬度值,且該磁石容置槽與該本體部外側對應之該周緣之間具有一磁石深度值, 其中該磁石深度值大於一第一倍率常數乘該容置槽寬度值後減去該馬達氣隙寬度值之運算總和值,且該磁石深度值小於該第一倍率常數乘該容置槽寬度值後加上該馬達氣隙寬度值之運算總和值。A rotor assembly is suitable for a motor, the motor has a motor air gap width, and the rotor assembly includes: A plurality of magnets; and A plurality of rotor laminations are stacked along the direction of an axis of the motor, wherein each of the rotor laminations includes: A body, the center of the body is located on the axis A plurality of peripheral edges are arranged around the outer side of the main body part; and A plurality of magnet accommodating grooves, the plurality of magnet accommodating grooves relatively accommodating the plurality of magnets in the grooves, and are arranged around the main body with the axis as the center, wherein each of the magnet accommodating grooves corresponds to For the magnet, the magnet accommodating groove has a accommodating groove width from the shaft center toward the outer side of the rotor assembly, and there is a magnet depth between the magnet accommodating groove and the peripheral edge corresponding to the outer side of the main body value, Wherein the magnet depth value is greater than a first multiplying constant multiplied by the accommodating slot width value and then subtracted from the motor air gap width value of the operation sum, and the magnet depth value is less than the first multiplying constant multiplied by the accommodating slot width value Then add the calculated sum of the motor air gap width value. 如請求項8所述之轉子組件,其中該第一倍率常數介於1.4至1.5之間。The rotor assembly according to claim 8, wherein the first rate constant is between 1.4 and 1.5. 如請求項8所述之轉子組件,其中每一該轉子疊片更包括複數個修弧部,分別位於兩相鄰之該磁石容置槽之間,且自每兩相鄰之該周緣之間定義之一外周緣向該軸心凹設而具有一修弧深度值,其中該修弧深度值大於一第二倍率常數乘該容置槽寬度值後減去該馬達氣隙寬度值之運算總和值,且該修弧深度值小於該第二倍率常數乘該容置槽寬度值後加上該馬達氣隙寬度值之運算總和值。The rotor assembly according to claim 8, wherein each of the rotor laminations further includes a plurality of arc trimming parts, which are respectively located between two adjacent magnet accommodating slots, and between every two adjacent peripheral edges It is defined that an outer periphery is recessed toward the shaft center and has a trimming depth value, wherein the trimming depth value is greater than a second multiplying constant multiplied by the accommodating slot width value and then subtracted by the motor air gap width value. Value, and the arc trimming depth value is less than the second multiplying constant multiplied by the accommodating slot width value and then plus the motor air gap width value. 如請求項10所述之轉子組件,其中該第二倍率常數介於0.5至0.6之間。The rotor assembly according to claim 10, wherein the second rate constant is between 0.5 and 0.6. 如請求項10所述之轉子組件,其中每一該磁石容置槽與對應之該修弧部之間具有一第一肋部,該第一肋部具有一第一肋部寬度值,該第一肋部寬度值大於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後減去0.5倍之該馬達氣隙寬度值之運算總和值,且該第一肋部寬度值小於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後加上0.25倍之該馬達氣隙寬度值之運算總和值。The rotor assembly according to claim 10, wherein a first rib is provided between each of the magnet accommodating slots and the corresponding arc trimming portion, the first rib has a first rib width value, and the first rib A rib width value is greater than the accommodating groove width value divided by the sum of the accommodating groove width value and the motor air gap width value minus 0.5 times the calculated sum of the motor air gap width value, and the first rib The part width value is smaller than the sum of the accommodating slot width divided by the accommodating slot width value and the motor air gap width value plus 0.25 times the motor air gap width value. 如請求項12所述之轉子組件,其中兩相鄰之該磁石容置槽之間更具有一第二肋部,該第二肋部具有一第二肋部寬度值,該第二肋部寬度值大於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後加上0.25倍之該馬達氣隙寬度值之運算總和值,且該第二肋部寬度值小於該容置槽寬度值除該容置槽寬度值與該馬達氣隙寬度值之和後加上1.25倍之該馬達氣隙寬度值之運算總和值。The rotor assembly according to claim 12, wherein there is a second rib between two adjacent magnet accommodating grooves, the second rib has a second rib width, and the second rib width The value is greater than the accommodating slot width value divided by the accommodating slot width value and the motor air gap width value plus 0.25 times the motor air gap width value of the calculated sum, and the second rib width value is less than The accommodating slot width value is divided by the sum of the accommodating slot width value and the motor air gap width value, and then 1.25 times the motor air gap width value is added to the calculated sum value. 如請求項8所述之轉子組件,其中該複數個磁石容置槽與該複數個磁石之數量相同,該數量為2N,其中N為整數,且N大於等於3。The rotor assembly according to claim 8, wherein the number of the plurality of magnet accommodating slots is the same as the number of the plurality of magnets, and the number is 2N, where N is an integer, and N is greater than or equal to 3.
TW108122500A 2019-06-27 2019-06-27 Rotor lamination and rotor assembly using same TWI693776B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108122500A TWI693776B (en) 2019-06-27 2019-06-27 Rotor lamination and rotor assembly using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108122500A TWI693776B (en) 2019-06-27 2019-06-27 Rotor lamination and rotor assembly using same

Publications (2)

Publication Number Publication Date
TWI693776B TWI693776B (en) 2020-05-11
TW202101862A true TW202101862A (en) 2021-01-01

Family

ID=71895919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122500A TWI693776B (en) 2019-06-27 2019-06-27 Rotor lamination and rotor assembly using same

Country Status (1)

Country Link
TW (1) TWI693776B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450470B1 (en) * 2003-02-21 2012-09-19 Rexroth Indramat GmbH Interior permanent magnet synchronous machine
KR101095556B1 (en) * 2005-06-13 2011-12-19 삼성전자주식회사 A permanent magnet motor
TWI477034B (en) * 2011-12-01 2015-03-11 Adlee Powertronic Co Ltd Built-in permanent magnet motor
CN203193413U (en) * 2013-02-21 2013-09-11 西安正麒电气有限公司 Rotor punching sheet structure of permanent-magnet synchronous motor
CN105429410B (en) * 2014-09-19 2019-06-04 珠海格力电器股份有限公司 Permanent magnet synchronous motor
CN105186816B (en) * 2015-07-16 2018-08-03 博格思众(常州)电机电器有限公司 The composite structure of stator and rotor
US10622875B2 (en) * 2017-06-07 2020-04-14 GM Global Technology Operations LLC Interior permanent magnet electric machine

Also Published As

Publication number Publication date
TWI693776B (en) 2020-05-11

Similar Documents

Publication Publication Date Title
JP5382156B2 (en) Rotating electric machine
TWI710198B (en) Rotor assembly for motor
WO2018043081A1 (en) Rotor and reluctance motor
KR20150016906A (en) Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
JP2013188131A (en) Permanent magnet motor
CN104638864A (en) Permanent magnet motor and method for accelerating rotating speed of permanent magnet motor
Ajamloo et al. Multi-objective optimization of an outer rotor BLDC motor based on Taguchi method for propulsion applications
CN109768641A (en) Patterning offset pole rotor
JP2010088219A (en) Embedded permanent magnet rotor and cleaner
JP2014147254A (en) Rotor of permanent magnet dynamo-electric machine, and permanent magnet dynamo-electric machine
TW202101862A (en) Rotor lamination and rotor assembly using same
CN112152348B (en) Rotor lamination and rotor assembly suitable for same
WO2019102580A1 (en) Permanent magnet rotating electric machine
US20220294288A1 (en) Rotor, motor, and drive device
JP2018196216A (en) Built-in type permanent magnet motor
TWM619399U (en) Motor
JP4491211B2 (en) Permanent magnet rotating electric machine
JP6327348B2 (en) Rotating electric machine
KR102242638B1 (en) Rotor for maximizing air-gap magnetic flux in slotless motor and slotless motor including the same
JP2013021774A (en) Motor
US20200220400A1 (en) Interior permanent magnet electric machine with tapered bridge structure
JP2010246301A (en) Rotor for permanent magnet type motor
JP2005168077A (en) Motor
TWI835682B (en) Flux-switching permanent magnet motor