TW202044443A - 利用自動產生缺陷特徵檢測半導體結構之方法及系統 - Google Patents

利用自動產生缺陷特徵檢測半導體結構之方法及系統 Download PDF

Info

Publication number
TW202044443A
TW202044443A TW109101810A TW109101810A TW202044443A TW 202044443 A TW202044443 A TW 202044443A TW 109101810 A TW109101810 A TW 109101810A TW 109101810 A TW109101810 A TW 109101810A TW 202044443 A TW202044443 A TW 202044443A
Authority
TW
Taiwan
Prior art keywords
model
neural network
deep learning
attributes
image
Prior art date
Application number
TW109101810A
Other languages
English (en)
Other versions
TWI809243B (zh
Inventor
雅各 喬治
沙瑞維南 普瑞瑪西文
馬丁 普莉霍爾
尼費帝沙 拉克希米 納拉斯瀚
賽朗 拉布
普拉山堤 俄帕魯里
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW202044443A publication Critical patent/TW202044443A/zh
Application granted granted Critical
Publication of TWI809243B publication Critical patent/TWI809243B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2148Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

基於從一候選缺陷之影像導出之一或多個自動產生屬性之值而實現用於所關注缺陷(DOI)之經改良偵測及分類的方法及系統。藉由反覆地訓練、簡化及重新訓練一深度學習模型而判定自動產生屬性。該深度學習模型使候選缺陷之光學影像與該等缺陷之一已知分類有關。在模型簡化之後,識別該簡化模型之屬性,該等屬性使候選缺陷之該等光學影像與該等缺陷之該已知分類強相關。隨後採用該簡化模型來產生與具有未知分類之候選缺陷之影像相關聯之該等經識別屬性之值。在另一態樣中,採用一統計分類器以基於自動產生屬性及人工識別之屬性對缺陷進行分類。

Description

利用自動產生缺陷特徵檢測半導體結構之方法及系統
所描述實施例係關於用於樣品檢測之系統,且更特定言之係關於半導體晶圓檢測。
通常藉由應用於一基板或晶圓之一系列處理步驟製造諸如邏輯及記憶體裝置之半導體裝置。藉由此等處理步驟形成半導體裝置之各種特徵及多個結構層級。舉例而言,尤其微影係涉及在一半導體晶圓上產生一圖案的一個半導體製程。半導體製程之額外實例包含(但不限於)化學機械拋光、蝕刻、沈積及離子植入。可在一單一半導體晶圓上製造多個半導體裝置且接著將其分離成個別半導體裝置。
在一半導體製程期間之各個步驟使用檢測程序以偵測未圖案化及圖案化晶圓兩者上之缺陷以促進較高良率。隨著設計規則及程序窗之大小不斷縮小,要求檢測系統以愈來愈小的最小缺陷大小捕獲較寬範圍之實體缺陷,同時維持高處理能力。
另外,記憶體架構從二維浮動閘極架構轉變為完全三維幾何形狀。在一些實例中,膜堆疊及蝕刻結構極深(例如,深度至多6微米或更大)。此等高深寬比結構針對圖案化晶圓檢測產生挑戰。量測埋藏於此等結構內之缺陷之能力對於達成所要效能位準及裝置良率至關重要。
光學檢測技術已證明對於與二維結構相關聯之缺陷及埋藏於三維結構內之缺陷之高處理能力偵測有效。傳統上,缺陷發現及檢測配方最佳化基於平面二維結構之檢測。採用一光學檢測工具來量測與定位於晶圓之表面處之二維結構(例如,小於1微米厚)相關聯之大量候選缺陷。藉由利用一掃描電子顯微鏡(SEM)工具檢測經識別DOI而驗證藉由光學檢測工具偵測之候選缺陷。此通常稱為SEM檢視。SEM工具能夠產生影像,該等影像允許一使用者將一候選缺陷準確地分類為一妨害缺陷(即,藉由光學檢測工具識別之不完全為缺陷的缺陷)或一所關注缺陷(DOI)。此外,SEM影像允許一使用者對DOI之類型準確地分類。SEM檢視之結果係識別一晶圓上之妨害缺陷及DOI之位置及DOI之分類的標記缺陷集合。
在許多實例中,基於在SEM檢視期間識別之標記缺陷來配製一光學檢測工具之一檢測配方。對於需要從妨害事件識別所關注缺陷之檢測任務,一半導體層之一成功檢測配方應最大化偵測之所關注缺陷(DOI)之數目同時最小化偵測之妨害事件之數目。推而廣之,對於需要缺陷之頻格化之檢測任務,一半導體層之一成功檢測配方應最大化正確頻格化缺陷(即,正確分類缺陷)之數目同時最小化偵測之妨害事件之數目及不正確分類缺陷之數目。
在一個實例中,藉由估計從一候選缺陷之影像導出之一或多個屬性之值而實現基於光學檢測之妨害濾波及缺陷分類。採用一訓練分類模型以基於一或多個屬性之值從一妨害缺陷識別一DOI、對一DOI進行分類或該兩者。通常基於由光學檢測系統收集之標記缺陷之影像之屬性來訓練分類模型。使用一人工決策樹或一經典機器學習演算法(諸如支援向量機(SVM)、隨機森林、K近鄰算法等)來訓練分類模型。在此等實例中,人工選擇(即,由人類產生)從影像導出之一或多個屬性。無法保證選定屬性或屬性集合最佳地捕獲DOI與妨害缺陷之間之所要分離。此外,無法保證選定屬性或屬性集合在光學上對DOI進行分類。因此,基於人工選定屬性訓練之一分類模型很可能將表現不佳。隨著檢測應用變得愈來愈具挑戰性,此成為限制。
在另一實例中,藉由從一候選缺陷之影像而非影像之屬性直接識別一缺陷並對其進行分類而實現基於光學檢測之妨害濾波及缺陷分類。採用一訓練分類模型以基於候選缺陷之影像從一妨害缺陷直接識別一DOI、對一DOI進行分類或該兩者。通常基於由光學檢測系統收集之標記缺陷之影像來訓練訓練分類模型。使用諸如一卷積神經網路、深度學習神經網路等之一機器學習演算法來訓練分類模型。在此等實例中,神經網路能夠學習對於手頭分類任務而言最佳之客製特徵。然而,執行一複雜訓練神經網路以用於線上晶圓檢測之運算成本過高。因此,尚未獲得一可接受成本之高處理能力。此外,不可能整合人類對缺陷分類之知識或除可用光學影像之外之資訊以增強訓練程序。因此,當前,基於一神經網路訓練以直接在影像上操作之一分類模型無法受益於可能進一步改良訓練分類器之效能之人類知識或額外信號資訊。
因此,開發用於產生具有經改良效能之缺陷分類模型以藉由光學檢測系統增強缺陷發現及複雜結構及垂直半導體裝置之分類之方法及/或系統將為有利的。
藉由估計從一候選缺陷之影像導出之一或多個自動產生屬性之值而實現用於所關注缺陷(DOI)之經改良偵測及分類之方法及系統。訓練一統計分類器以基於自動產生屬性之值對缺陷進行分類。
在一個態樣中,藉由反覆地訓練、簡化並重新訓練一深度學習模型而判定自動產生屬性。深度學習模型使候選缺陷之光學影像與該等缺陷之一已知分類有關。反覆地降低深度學習模型之複雜性。在模型簡化之後,識別簡化模型之屬性,該等屬性使候選缺陷之光學影像與缺陷之已知分類強相關。隨後採用簡化模型來產生與具有未知分類之候選缺陷之影像相關聯之經識別屬性之值。由一統計分類器採用屬性值以對候選缺陷進行分類。
在另一態樣中,訓練一統計分類器以使輸入節點之值與一訓練神經網路模型之各層之輸出節點有關。各統計分類器經分析以指導神經網路模型之簡化。在一些實例中,各統計分類器經分析以識別對應層是否將新資訊添加至神經網路模型。若層未添加實質新資訊,則消除整個層。在另一實例中,各統計分類器經分析以識別對應層之節點是否實質上貢獻於層。消除對層之貢獻相對較小之節點。類似地,消除對一卷積層之輸出之貢獻相對較小的濾波器。
組合深度學習及獨立統計分類器以指導一基於深度學習之模型之簡化提供一直接效能驅動方法以在不損失效能之情況下最小化判定屬性之運算成本。
在另一進一步態樣中,基於自動產生屬性之值及具有已知分類之缺陷之人工產生屬性之值來訓練一統計分類器。以此方式,一訓練統計分類器併入人類使用者已知為缺陷之重要指示符之屬性,以及藉由數學運算判定為相同缺陷之重要指示符之屬性。
在另一進一步態樣中,以一反覆方式執行一統計分類器之訓練同時減少缺陷分類器之訓練中採用之屬性之數目。
前述內容係發明內容且因此必然含有細節之簡化、概括及省略;因此,熟習此項技術者將瞭解,發明內容僅為闡釋性的而絕不為限制性的。將在本文中陳述之非限制詳細描述中明白本文中描述之裝置及/或程序之其他態樣、發明特徵及優勢。
相關申請案之交叉參考
本專利申請案依據35 U.S.C. §119規定主張來自2019年1月18日申請之印度政府專利局之專利申請案第201941002244號之優先權,且依據35 U.S.C. §119規定主張來自2019年9月6日申請之美國臨時專利申請案序號62/896,578之優先權。各先前申請申請案之標的之全文以引用之方式併入本文中。
現將詳細參考本發明之背景實例及一些實施例,在隨附圖式中繪示其之實例。
本文中描述用於半導體結構內之所關注缺陷(DOI)之經改良偵測及分類的方法及系統。特定言之,藉由估計從一候選缺陷之影像導出之一或多個自動產生屬性之值而實現基於光學檢測之妨害濾波及缺陷分類。一統計分類器經訓練以基於自動產生屬性之值對缺陷進行分類。
藉由反覆地訓練、簡化並重新訓練一深度學習模型而判定自動產生屬性。深度學習模型使候選缺陷之光學影像與該等缺陷之一已知分類有關。反覆地降低深度學習模型之複雜性,同時維持足夠分類效能。在模型簡化之後,識別簡化模型之屬性,該等屬性使候選缺陷之光學影像與缺陷之已知分類強相關。隨後採用簡化模型來產生與具有未知分類之候選缺陷之影像相關聯之經識別屬性之值。由統計分類器採用屬性值對候選缺陷進行分類。
以此方式,藉由一運算便宜統計分類器而非在所偵測影像上操作之一運算昂貴複雜神經網路執行缺陷之線上分類。僅在一訓練階段期間而非在線上檢測期間採用運算昂貴深度學習。訓練之基於深度學習之模型經簡化以最小化過度參數化及網路容量,且簡化網路接著在晶圓掃描期間用於運算高效屬性計算。
基於基於深度學習所識別之屬性之缺陷分類實現針對特定使用案例定製之屬性之學習。一般而言,所要分類任務指導在訓練基於深度學習之模型期間採用之輸出及目標函數之選擇。以此方式,採用相同資料來學習不同屬性,各屬性基於輸出及目標函數之選擇而最佳地適於一特定分類任務。在一些實例中,學習將一個缺陷類型與另一缺陷類型最佳地分離(即,缺陷分類)之屬性。在此等實例中,輸出係不同缺陷類別之各者且目標函數針對各候選缺陷從缺陷類別之一者強制進行二進制選擇。在一些實例中,學習將妨害缺陷與所關注缺陷(DOI)最佳地分離(即,妨害濾波)之其他屬性。在此等實例中,輸出係一DOI或一妨害缺陷且目標函數針對各候選缺陷強制進行此兩個缺陷類別之一者之二進制選擇。
圖1係經組態以偵測候選缺陷且對半導體結構之所關注缺陷(DOI)進行分類之一光學檢測系統100之一項實施例之一簡化示意圖。光學檢測系統100包含一運算系統、一晶圓定位系統、及包含一照明子系統、一集光子系統、及一或多個偵測器的一光學檢測子系統。照明子系統包含一照明源101及從照明源至晶圓之照明光學路徑中之全部光學元件。集光子系統包含從樣品至各偵測器之集光光學路徑中之全部光學元件。為簡化,已省略系統之一些光學 組件。藉由實例,亦可包含折疊鏡、偏光器、光束形成光學器件、額外光源、額外集光器及偵測器。全部此等變動在本文中描述之本發明之範疇內。本文中描述之檢測系統可用於檢測圖案化及未圖案化晶圓及倍縮光罩。
如圖1中繪示,由藉由一或多個照明源101產生之一法向入射光束104照明一晶圓103。替代地,照明子系統可經組態以按一傾斜入射角將光束引導至樣品。在一些實施例中,系統100可經組態以將諸如一傾斜入射光束及一法向入射光束之多個光束引導至樣品。多個光束可實質上同時或循序地引導至樣品。
照明源101藉由實例可包含一寬頻雷射持續電漿光源、一雷射、一超連續譜雷射、一二極體雷射、一氦氖雷射、一氬雷射、一固態雷射、一二極體泵浦固態(DPSS)雷射、一氙弧燈、一氣體放電燈、一LED陣列、及一白熾燈。光源可經組態以發射近單色光或寬頻光。在一些實施例中,照明子系統亦可包含可限制引導至樣品之光之波長的一或多個光譜濾波器。一或多個光譜濾波器可為帶通濾波器及/或邊緣濾波器及/或陷波濾波器。可在任何適合波長範圍內將照明提供至樣品。在一些實例中,照明光包含在260奈米至950奈米的範圍内之波長。在一些實例中,照明光包含大於950奈米(例如,延伸至2,500奈米及以上)之波長以捕獲高深寬比結構中之缺陷。在一些實施例中,照明子系統亦可包含用以控制引導至樣品之照明光之偏光的一或多個偏光光學器件。
將由照明源101產生之光束104引導至一光束分離器105。光束分離器105將光束引導至物鏡109。物鏡109將光束111聚焦至晶圓103上入射點119處。藉由將從照明源101發射之光投射至晶圓103之表面上而界定(即,塑形且定大小)入射點119。
檢測系統100包含照明孔隙124。如圖1中描繪,運算系統130將命令信號122C傳遞至照明孔隙124。作為回應,照明孔隙124調整提供至晶圓103之表面上之照明方向及光束形狀。在一項實施例中,照明孔隙124係提供藉由從運算系統130傳遞之命令信號122C控制之不同孔隙形狀的一總成。
如圖1中描繪,運算系統130將命令信號122A傳遞至照明源101。作為回應,照明源101調整照明光束111之(若干)光譜範圍。一般而言,入射於晶圓103上之光束111可以包含偏光、強度、大小及形狀等之一或多個方式不同於由照明源101發射之光。
在圖1中描繪之實施例中,檢測系統100包含可選擇照明偏光元件147。在一個實例中,運算系統130將命令信號122E傳遞至照明偏光元件147。作為回應,照明偏光元件147調整提供至晶圓103之表面上之照明光之偏光。
如圖1中描繪,檢測系統100包含控制遞送至晶圓103之照明功率的一照明功率衰減器102。在一些其他實施例中,照明功率密度衰減器係一光束塑形元件,其調整照明點119之大小以減小遞送至晶圓103之照明功率密度。在一些其他實施例中,採用照明功率縮減及光束定大小之一組合來減小遞送至晶圓103之照明功率密度。如圖1中描繪,運算系統130將一控制信號122B傳遞至照明功率衰減器102以基於藉由偵測器115、120及125之任一者偵測之影像而控制照明功率。一般而言,照明功率衰減器102係選用的。因此,在一些其他實施例中,檢測系統100不包含照明功率衰減器102。
在一些實施例中,系統100可包含照明路徑中的一偏轉器(未展示)。在一項實施例中,偏轉器可為一聲光偏轉器(AOD)。在其他實施例中,偏轉器可包含一機械掃描總成、一電子掃描器、一旋轉鏡、一基於多邊形之掃描器、一諧振掃描器、一壓電掃描器、一振鏡、或一檢流計。偏轉器使光束掃描遍及樣品。在一些實施例中,偏轉器可按一近似恆定掃描速度使光束掃描遍及樣品。
系統100包含分別用以收集由晶圓103散射及/或反射之光且將該光聚焦至偵測器陣列115、120及125上的集光光學器件116、117及118。將偵測器115、120及125之輸出傳遞至運算系統130以處理信號且判定存在候選缺陷及其位置。
集光光學器件116至118之任一者可為一透鏡、一複合透鏡或此項技術中已知之任何適當透鏡。替代地,集光光學器件116至118之任一者可為一反射或部分反射光學組件,諸如一鏡。另外,儘管圖1中繪示特定集光角度,然應瞭解,可以任何適當集光角度配置集光光學器件。集光角度可取決於舉例而言入射角及/或樣品之形貌特性而變化。
偵測器115、120及125之各者通常用於將反射及散射光轉換成一電信號,且因此可實質上包含此項技術中已知之任何光偵測器。然而,可基於偵測器之所要效能特性、待檢測樣品之類型及照明之組態來選擇一特定偵測器以在本發明之一或多項實施例內使用。舉例而言,若可用於檢測之光量相對較低,則諸如一時間延遲積分(TDI)相機之一效率增強偵測器可提高系統之信雜比及處理能力。然而,取決於可用於檢測之光量及執行之檢測之類型,可使用諸如電荷耦合裝置(CCD)相機、光二極體、光電管及光電倍增管(PMT)之其他偵測器。在本發明之至少一項實施例中,一光電倍增管用於偵測從一樣品散射之光。各偵測器可包含僅一個感測區域,或可能數個感測區域(例如,一偵測器陣列或多陽極PMT)。
系統100可採用多種成像模式,諸如明場及暗場模式。舉例而言,在一項實施例中,偵測器125產生一明場影像。如圖1中繪示,藉由物鏡109收集以一窄角從晶圓103之表面散射之一定量之光。此光往回穿過物鏡109且照射於光束分離器105上。光束分離器105將光之一部分透射至集光光學器件118,集光光學器件118繼而將光聚焦至偵測器125上。以此方式,藉由偵測器陣列125產生一明場影像。集光光學器件118包含使由物鏡109收集之反射光成像至偵測器陣列125上的成像透鏡107。一孔隙182、傅立葉濾波器106或該兩者經放置於物鏡109之後焦平面處。可藉由使用不同照明孔隙124、集光孔隙、傅立葉濾波器106或其之組合而實施諸如明場、暗場及相位對比之多種成像模式。可基於DOI信號及收集之影像來判定成像模式之組態,諸如照明方向或成像收集立體角。以引用之方式併入本文中之美國專利第7,295,303號及第7,130,039號進一步詳細描述此等成像模式。在另一實例中,偵測器115及120藉由使以較大場角收集之散射光成像而產生暗場影像。以引用之方式併入本文中之美國專利第6,208,411號進一步詳細描述此等成像模式。
在圖1中描繪之實施例中,檢測系統100包含可選擇集光偏光元件181。在一個實例中,運算系統130將命令信號122F傳遞至集光偏光元件181。作為回應,集光偏光元件181調整提供至偵測器125之表面上之收集光之偏光。
如圖1中描繪,檢測系統100包含一可選擇傅立葉濾波器106。運算系統130將命令信號122D傳遞至傅立葉濾波器106。作為回應,傅立葉濾波器106調整傅立葉濾波器之傅立葉濾波性質(例如,藉由改變定位於集光光束路徑中之特定傅立葉濾波器元件)。
檢測系統100包含集光孔隙182。如圖1中描繪,運算系統130將命令信號122G傳遞至集光孔隙182。作為回應,集光孔隙182調整從晶圓103之表面收集之透射至對應偵測器之光量。在一項實施例中,集光孔隙182係提供藉由從運算系統130傳遞之命令信號122G控制之不同孔隙形狀的一總成。
系統100亦包含處理藉由偵測器115、120及125之任一者偵測之反射及/或散射信號所需的各種電子組件(未展示)。舉例而言,系統100可包含用以從偵測器115、120及125之任一者接收輸出信號且將該等輸出信號放大一預定量的放大器電路及用以將經放大信號轉換成適合在處理器131內使用之一數位格式的一類比轉數位轉換器(ADC)。在一項實施例中,處理器可藉由一傳輸媒體直接耦合至一ADC。替代地,處理器可從耦合至ADC之其他電子組件接收信號。以此方式,處理器可藉由一傳輸媒體及任何中介電子組件間接耦合至ADC。
在圖1中繪示之實施例中,晶圓定位系統114基於從運算系統130接收之命令126在光束111下方移動晶圓103。晶圓定位系統114包含一晶圓卡盤108、運動控制器113、一旋轉載物台110、平移載物台112、及z平移載物台121。Z平移載物台121經組態以在法向於晶圓103之表面之一方向(例如,座標系統123之z方向)上移動晶圓103。平移載物台112及旋轉載物台110經組態以在平行於晶圓103之表面之一方向(例如,座標系統123之x方向及y方向)上移動晶圓103。在一些其他實施例中,晶圓103藉由多個平移載物台之協調運動在平面內方向(例如,x方向及y方向)上移動。
將晶圓103支撐於晶圓卡盤108上。在一些實施例中,晶圓103經定位使得其幾何中心與旋轉載物台110之旋轉軸近似對準。以此方式,旋轉載物台110在一可接受容限內以一指定角速度ω繞其幾何中心旋轉晶圓103。另外,平移載物台112以一指定速度VT 在近似垂直於旋轉載物台110之旋轉軸之一方向上平移晶圓103。運動控制器113協調晶圓103藉由旋轉載物台110之旋轉及晶圓103藉由平移載物台112之平移以達成晶圓103在檢測系統100內之一所要平面內掃描運動。另外,運動控制器113協調晶圓103藉由平移載物台121之移動以達成晶圓103在檢測系統100內之一所要平面外掃描運動。
可以若干不同模式相對於檢測系統100之光學子系統定位晶圓103。在一檢測模式中,在橫向方向(例如,x方向及y方向)上重複掃描晶圓103以進行二維掃描。另外,可在橫向方向上不同z位置處重複掃描晶圓103以進行三維掃描。在一些實例中,在對應於穿過一分層結構之兩個或兩個以上深度(例如,晶圓表面下方之距離)之兩個或兩個以上不同z位置處掃描晶圓103。在一缺陷檢視模式中,晶圓103經定位於x方向及y方向上之一固定位置,同時在z方向上掃描。以此方式,基於被量測結構內之一深度範圍內之晶圓103之一固定橫向位置處之量測資料而產生三維影像。通常採用缺陷檢視模式來執行缺陷之更詳細調查(例如,較高影像解析度、較高焦深解析度或該兩者)。
在一些實施例中,將晶圓相對於檢測系統之焦平面移動至若干不同z位置以使晶圓堆疊之不同深度成像。在一些其他實施例中,將檢測系統之焦平面之位置相對於晶圓光學地調整至若干不同z位置以使晶圓堆疊之不同深度成像。在一些實例中,在各z位置處收集之影像經彙總以形成在兩個橫向維度(例如,平行於晶圓表面)及若干不同深度(即,不同z位置)中量測之一厚半導體結構之一三維體積影像。
一般而言,包含照明子系統及集光子系統兩者之光學子系統140在定位於一被量測結構(例如,一垂直堆疊結構)之複數個不同深度處之複數個焦平面之各者處產生一聚焦光學影像。藉由在z方向上移動焦平面之光學調整、z方向上之樣品定位或該兩者而達成光學子系統之焦平面在各不同深度處之對準。一或多個偵測器偵測在複數個不同深度之各者處收集之光且產生指示在複數個不同深度之各者處收集之光量的複數個輸出信號。
在一些實例中,光學檢測系統100從在兩個橫向維度(例如,平行於晶圓表面)及一深度維度(例如,法向於晶圓表面)中量測之一體積產生一厚半導體結構之三維影像。在圖1中描繪之實施例中,運算系統130將來自量測通道之一或多者(例如,來自偵測器115、120及125之一或多者)之輸出配置至對應於量測體積之一體積 資料集中。
在一缺陷檢視實例中,在檢測系統之焦平面內之若干不同晶圓位置之相同(x,y)位置擷取一系列影像。在此實例中,運算系統130藉由組裝以各不同焦點偏移擷取之一系列二維影像之一堆疊而產生量測體積之一三維影像。焦點偏移係樣品之最具反射性表面與檢測系統之焦平面之間之相對距離。一般而言,待掃描參數不限於焦點偏移。在其他實例中,感測器軸向位置、光譜帶、照明方向等可經掃描以形成一三維缺陷影像。在一些實施例中,藉由運算系統130產生具有三個以上維度之一缺陷影像。在一個實例中,針對一給定(x,y)位置掃描焦點偏移及照明方向兩者。在一個實例中,運算系統130藉由將以各不同焦點偏移及各不同照明角擷取之一系列二維影像組裝至一四階張量中而產生量測體積之一四維影像。在一些實例中,收集一預定義焦點偏移集合之一系列影像同時使照明強度及其他系統參數保持不變。
一般而言,藉由應用一缺陷偵測演算法而從影像偵測缺陷。在一些實施例中,從由檢測系統100產生之影像資料直接執行缺陷偵測。在一些實施例中,從收集影像資料提取一或多個屬性向量且基於經量測屬性向量來執行缺陷偵測。一般而言,一屬性向量係表示一物件(例如,所關注缺陷、標稱結構等)之數值屬性之一n維向量。在一些實例中,一缺陷偵測演算法包含調整缺陷偵測演算法之靈敏度的一或多個可選擇臨限值。在選定高度限制臨限值時,缺陷偵測演算法從一影像集合偵測較少所關注缺陷。在選定高度允許臨限值時,缺陷偵測演算法從相同影像集合偵測更多所關注缺陷。在偵測到過少缺陷之情況下可能將錯過真實缺陷,且在偵測到過多缺陷之情況下將捕獲許多妨害(例如,錯誤)缺陷。因此,調諧至一特定量測應用之一最佳化量測配方包含偵測演算法臨限值之選擇,此最大化真實缺陷之捕獲率,同時最小化妨害(即,錯誤)缺陷之捕獲率。
如關於圖1描述,運算系統130產生並傳遞命令信號122A至122G,使得根據一指定光學模式來選定照明功率、照明孔隙、集光孔隙、光譜帶、傅立葉濾波器、照明偏光、集光偏光、或其之任何組合。另外,諸如檢測系統100之一檢測系統包含其他可選擇光學系統設定,諸如入射角、方位角等。光學系統設定之各相異組合被稱為光學檢測系統100之一相異光學模式。
實務上,針對一特定量測應用選擇一最佳光學模式以達成一或多個效能目標。例示性效能目標包含但不限於最小化偵測影像中之標稱結構之回應、增強偵測影像中之缺陷信號之回應、最小化偵測影像中之晶圓雜訊或妨害信號之回應、區分偵測影像中之缺陷與晶圓雜訊或妨害信號之回應、改良來自偵測影像之缺陷之估計實體位置之準確性、或其之任何組合。
在圖1中描繪之實施例中,由運算系統130從一使用者輸入源135接收關於考量中之量測應用之資訊136。通常,使用者輸入源135係一實體,諸如瞭解被檢測結構及預期缺陷之一使用者或操作者。藉由非限制實例,結構資訊136包含所關注缺陷之預期堆疊深度、所關注缺陷之晶圓級簽章、3-D堆疊之折射率等。在一項實施例中,檢測系統100包含可用於從一操作者接受輸入之周邊裝置(例如,鍵盤、滑鼠、觸控螢幕、通信埠等)以將結構資訊136從使用者傳遞至檢測系統100。
在一些實施例中,一使用者亦傳遞用於檢測系統100之光學模式之一初始集合。檢測系統100之一使用者通常執行初步模型化或採用過去經驗來達成檢測系統100之光學模式之一初始集合,其最可能導致最佳檢測結果。通常,光學模式之一初始集合包含數十個不同光學模式,但遠少於數千個可用光學模式。在一些實例中,一使用者亦將一或多個初始焦點位準傳遞至檢測系統100。一或多個初始焦點位準包含所關注缺陷應處於之焦點位準。
回應於使用者輸入136及137,檢測系統100在光學模式之初始集合之各者且在一或多個初始焦點位準之各者執行晶圓103之檢測。通常,在一掃描模式中運行檢測,其中在一或多個初始焦點位準之各者檢測晶圓之一大面積(例如,晶圓之整個面積)。在初始檢測期間採用之缺陷偵測演算法之臨限值設定在識別許多候選缺陷(即,真實缺陷及妨害缺陷兩者)之高度允許值。舉例而言,圖2描繪藉由檢測系統100在晶圓103上識別之候選缺陷。
在執行初始檢測之後,運算系統130選擇在初始檢測中識別之數個最有前途的候選缺陷(例如,圖2中描繪之候選缺陷145A至145C)。最有前途的缺陷係最緊密地匹配由檢測系統100之使用者提供之預期缺陷的所關注缺陷。
在一些實施例中,檢測系統100藉由相對於光學檢測子系統140定位晶圓103使得一選定所關注缺陷在檢測系統100之視域中而執行選定所關注缺陷之一全焦點檢視。透過被量測結構始終在若干焦點位準執行一系列量測。基於全焦點檢視之結果,運算系統130判定最佳地捕獲所關注缺陷之一或多個焦平面或聚焦範圍。在一些實例中,基於一量測缺陷簽章(例如,影像或屬性向量)與一預期缺陷簽章之間之一最佳匹配而判定一或多個焦平面或聚焦範圍。
在判定一或多個焦平面或聚焦範圍之後,檢測系統100記錄與在一或多個焦平面或聚焦範圍處而非貫穿結構之整個深度之初始檢測之各者中識別之缺陷位置相關聯之影像圖塊(例如,32×32個像素圖塊、64×64個像素圖塊等)。圖2描繪分別與候選缺陷145A至145C相關聯之影像圖塊146A至146C之集合。在一些實例中,一億或更多個缺陷位置在多個焦點位準成像並進行記錄。以此方式,與缺陷發現相關聯之記錄資料量限於一深度子集。在後續缺陷驗證及分類器訓練程序期間採用記錄資料。藉由限制記錄資料量,顯著簡化後續缺陷驗證及分類器訓練程序。
在另一態樣中,將經驗證缺陷影像及相關聯缺陷分類映射至藉由檢測系統100識別之對應缺陷。採用包含相關聯記錄影像及缺陷分類之經驗證缺陷來訓練一妨害濾波器、一統計分類器或該兩者。
圖3係用於缺陷發現及驗證以檢測半導體結構之一系統150之一項實施例之一簡化示意圖。系統150包含如參考圖1描述之檢測系統100、一缺陷驗證工具151、及一運算系統160。在一些實施例中,藉由運算系統130或另一運算系統實施由如本文中描述之運算系統160執行之任務。
在一些實施例中,缺陷驗證工具151係一基於電子束之分析工具。在一些其他實施例中,缺陷驗證工具151係一基於x射線之分析工具。在此等實施例中,可無需一材料移除工具以使埋藏缺陷對於基於x射線之分析工具可見。因此,一相關聯材料移除工具係選用的。
在一些實例中,藉由去處理晶圓103且用檢測系統100檢測曝露缺陷而達成缺陷驗證。在此等實例中,可無需一不同缺陷驗證工具151。在一些實施例中,諸如一SEM檢視工具之一缺陷驗證工具可與檢測系統100整合為一單一晶圓處理工具,或替代地,個別地或以任何組合分離成不同晶圓處理系統。
運算系統130協調檢測程序,且執行分析、資料處置及通信任務。類似地,運算系統160協調材料移除及檢視程序,執行分析,且執行資料處置及通信任務。
可以許多不同方式完成缺陷驗證。在一些實施例中,執行電壓對比檢測以驗證缺陷。在此等實施例中,根據一小樣本計劃裝飾一晶圓且藉由一電壓對比檢測工具對裝飾晶圓執行電壓對比量測。
在一些其他實施例中,完成晶圓製造且對完成晶圓執行一位元映射測試以驗證缺陷。
在一些其他實施例中,一晶圓經去處理以移除考量中之多層結構之層。可藉由化學程序、機械程序或該兩者完成去處理。在一個實例中,採用一聚焦離子束(FIB)工具以從一晶圓之表面移除材料。晶圓經去處理直至埋藏缺陷定位於晶圓之表面處或附近且可藉由缺陷驗證工具151 (例如,一SEM檢視工具、檢測系統100等)有效地成像。將與缺陷驗證量測相關聯之缺陷位置及相關聯缺陷影像152儲存於一記憶體(例如,運算系統160之板上記憶體162)中。在一些實施例中,以一KLA結果檔案(KLARF)之形式儲存缺陷資訊。KLARF檔案係由缺陷驗證工具150產生之一平面ASCII檔案。使用相同KLARF檔案格式來保存來自檢測系統100之缺陷資訊。
在一進一步態樣中,將與作為缺陷發現之部分藉由檢測系統100識別之缺陷相關聯之缺陷資訊141傳遞至運算系統160。運算系統160對經識別缺陷取樣以產生傳遞至缺陷驗證工具151之候選缺陷153之一多樣性集合。在一些實施例中,運算系統160頻格化在缺陷發現期間藉由檢測系統100識別之缺陷(例如,1億或更多個DOI)且從各頻格選擇數個缺陷以產生候選缺陷153之多樣性集合。將候選缺陷153之多樣性集合保存於一記憶體(例如,運算系統160之板上記憶體162)中。
對候選缺陷之多樣性集合執行缺陷驗證量測。將來自缺陷驗證量測之缺陷位置、缺陷分類及相關聯缺陷影像儲存於一記憶體(例如,運算系統160之板上記憶體162)中。可在人類使用者之輔助下或自動執行缺陷分類。缺陷分類將缺陷識別為一妨害缺陷或一所關注缺陷(DOI)。若缺陷被分類為一DOI,則識別缺陷之特定分類。在一些實施例中,亦以一KLARF檔案格式儲存與候選缺陷之多樣性集合相關聯之缺陷位置、分類及相關聯缺陷影像。
將來自候選缺陷之多樣性集合、驗證缺陷之任何其他集合或其之一組合之缺陷驗證資料作為標記缺陷資料171映射至保存之缺陷影像圖塊。採用缺陷驗證資料及對應缺陷影像圖塊來訓練一妨害濾波器、缺陷分類器或該兩者。
在一個態樣中,一統計分類器經訓練以基於藉由一屬性識別模組從缺陷影像判定之自動產生屬性之值對缺陷進行分類。
圖4係繪示一項實施例中之一缺陷分類器訓練引擎170之一圖式。如圖4中描繪,一基於深度學習之屬性模型訓練模組172接收與經驗證晶圓缺陷相關聯之影像資料171A (例如,影像圖塊)以及各缺陷之已知分類171B。從標記缺陷資料171提取與各缺陷相關聯之影像資料171A及分類171B。
用於基於自動產生屬性來訓練一分類器之影像資料可個別地、與相同標稱結構之其他例項組合或該兩者而與各缺陷例項相關聯。在一些實例中,用於基於自動產生屬性來訓練一分類器之影像資料可與一測試晶圓上之缺陷、一參考晶圓上之對應缺陷位置、測試晶圓與參考晶圓上之缺陷影像之間之一差異、或其之一組合相關聯。
在一些實例中,影像資料與半導體結構之一特定例項相關聯。在一些實例中,影像資料與相同標稱半導體結構之兩個不同例項相關聯。在一些其他實例中,影像資料與相同標稱半導體結構之兩個不同例項之間之一差分影像(即,逐像素差異)相關聯。在一些實例中,相同標稱結構之兩個不同例項係製造在相同晶圓上之不同晶粒上之相同標稱結構。在一些實例中,相同標稱結構之兩個不同例項係製造在不同晶圓上之不同晶粒上之相同標稱結構。
基於深度學習之屬性模型訓練模組172產生具有缺陷影像資料作為輸入及缺陷之已知分類作為輸出之一基於深度學習之模型。在一些實施例中,基於深度學習之模型係包含包含若干影像濾波器之至少一個卷積層及包含若干節點(即,神經元)之至少一個連接層的一神經網路模型。圖5描繪包含對應於考量中之各影像圖塊之影像像素之輸入節點191之一集合之一神經網路模型190之一簡化圖解。舉例而言,若採用32×32個像素影像圖塊,則輸入節點191之數目係32*32。神經網路模型190包含一卷積層192及N個連接層195。卷積層包含對存在於輸入節點191上之影像資料操作的若干濾波器193 (例如,32個濾波器)。濾波器之各者之輸出存在於LAYER1 之輸入節點上。在一個實例中,若採用32×32個像素影像圖塊及32個濾波器,則LAYER1 之節點之數目係32*32*32。然而,一般而言,可採用減少卷積層之輸出處之節點之數目的不同集區方案。各連接層包含一輸入節點集合及一輸出節點集合。一組權重使一連接層之各輸入節點與連接層之輸出節點相關。如圖5中描繪,節點194係LAYER1 之一輸入節點且節點194藉由一組權重(例如,WI1 至WIK )耦合至LAYER1 之輸出節點之各者。在一些實例中,連接層如藉由LAYERN 繪示般完全連接(即,各輸入節點藉由一加權值連接至各輸出節點)。在一些實例中,連接層稀疏地連接(即,並非全部輸入節點連接至全部輸出節點)。
一般而言,藉由非限制實例呈現神經網路模型190。可在本專利文件之範疇內預期其他深度學習模型。舉例而言,神經網路模型190可包含任何數目個卷積層、任何數目個連接層或該兩者。
基於缺陷影像資料及對應分類來訓練神經網路模型190。舉例而言,神經網路190之最後連接層(例如,LAYERN )之輸出節點之各者對應於一不同分類。舉例而言,如圖5中繪示,存在LAYERN 之三個輸出節點,各輸出節點對應於一不同缺陷分類。舉例而言,針對具有一已知分類Class1之一缺陷之LAYERN 之輸出節點之值理想地為{1,0,0}。針對具有一已知分類Class2之一缺陷之LAYERN 之輸出節點之值理想地為{0,1,0}。針對具有一已知分類Class3之一缺陷之LAYERN 之輸出節點之值理想地為{0,0,1}。在模型訓練期間,各連接層之權重及卷積層之各濾波器之濾波器值經調整以最接近地達成與考量中之全部成像缺陷之已知分類相關聯之理想模型輸出。
在一些實例中,神經網路模型經訓練以識別與一妨害濾波器相關聯之屬性。在此等實例中,存在LAYERN 之兩個輸出節點。在此實例中,針對一妨害缺陷之LAYERN 之輸出節點之值係{1,0},且針對一DOI之LAYERN 之輸出節點之值係{0,1}。以此方式,神經網路可經訓練以藉由調諧神經網路模型之結構及用於驅動模型訓練之效能目標函數而基於相同影像資料識別與不同分類目標相關聯之屬性。
原則上,作為一線上檢測程序之部分,可採用經訓練神經網路模型以基於收集之影像資料直接對缺陷進行分類。然而,實施此一模型之運算成本在高處理能力半導體晶圓檢測之背景內容中係令人望而卻步的。
在一進一步態樣中,通常以一反覆方式降低經訓練神經網路模型之複雜性以達成保持原始模型之預測能力之一較小尺寸模型。在一些實施例中,藉由減少模型層(卷積層、連接層或該兩者)之數目、減少卷積層之影像濾波器之數目、減少與一或多個連接層相關聯之節點之數目、或其之任何組合而簡化神經網路模型。在執行一簡化步驟之後,在相同影像資料及已知分類上重新訓練簡化之神經網路模型。藉由比較驅動訓練程序之效能目標函數之殘差而比較簡化之神經網路模型之效能與原始模型。反覆地簡化神經網路模型直至簡化之神經網路模型之效能實質上不同於原始訓練模型之效能。
在另一態樣中,一統計分類器經訓練以使輸入節點之值與一經訓練神經網路模型之各層之輸出節點相關。舉例而言,圖6描繪經訓練以模仿LAYER1 之一統計分類器196。各統計分類器經分析以指導神經網路模型之簡化。在一些實例中,各統計分類器經分析以識別對應層是否將新資訊添加至神經網路模型。若層未添加實質新資訊,則消除整個層。在另一實例中,各統計分類器經分析以識別對應層之節點是否實質上貢獻於層。消除對層之貢獻相對較小之節點。類似地,基於經訓練以模仿LAYER1 之一統計分類器來分析LAYER1 之輸入節點。發現未實質上貢獻於LAYER1 之LAYER1 之輸入節點指示卷積層之哪些濾波器未將實質新資訊貢獻於模型。消除此等濾波器。
組合深度學習及獨立統計分類器以指導一基於深度學習之模型之簡化提供一直接效能驅動方法以在不損失效能之情況下最小化判定屬性之運算成本。
一般而言,在本專利文件之範疇內預期簡化基於深度學習之模型之其他方法。舉例而言,可採用單獨或與經訓練統計分類器組合實施傳統權重稀疏性分析及啟動圖以在最小效能影響之情況下達成模型簡化。
在另一進一步態樣中,從一簡化深度學習模型提取與各訓練影像或影像集合相關聯之自動產生屬性之值。如圖4中描繪,基於深度學習之屬性模型訓練模組172產生一簡化屬性模型173。簡化屬性模型173係在最終模型簡化步驟之後之經訓練之基於深度學習之模型。
一自動產生屬性係簡化屬性模型173之一元素或元素組合。在一個實例中,一自動產生屬性係藉由卷積層192之濾波器193之一或多者濾波之一輸入影像之最大像素強度。在另一實例中,一自動產生屬性係一或多個連接層之一節點、或節點之組合之值。一般而言,從簡化屬性模型173提取之屬性係展現對特定分類應用之最大敏感性之簡化屬性模型173之元素。
自動產生屬性識別模組174藉由針對各晶圓缺陷影像計算從簡化屬性模型173之一或多個元素導出之屬性之值而針對各晶圓缺陷影像或影像之組合判定各自動產生屬性之值175。
在另一態樣中,基於具有已知分類之缺陷之自動產生屬性之值來訓練一統計分類器。如圖4中描繪,將與標記缺陷資料171相關聯之自動產生屬性之值175傳遞至缺陷分類器訓練模組178。另外,亦將對應於標記缺陷資料之已知缺陷分類171B傳遞至缺陷分類器訓練模組178。缺陷分類器訓練模組178訓練一統計模型,該統計模型基於與一缺陷相關聯之自動產生屬性之值來預測該缺陷之分類。一般而言,統計模型可為任何適合模型(例如,決策樹、支援向量機(SVM)、隨機森林、K近鄰算法等)。從缺陷分類器訓練模組178傳遞經訓練缺陷分類器179。
在另一進一步態樣中,基於自動產生屬性之值及具有已知分類之缺陷之人工產生屬性之值來訓練統計分類器。如圖4中描繪,將與標記缺陷資料171相關聯之自動產生屬性之值175及人工產生屬性之值177傳遞至缺陷分類器訓練模組178。缺陷分類器訓練模組178訓練一統計模型,該統計模型基於與如上文中描述之一缺陷相關聯之自動及人工產生屬性之值來預測該缺陷之分類。
以此方式,一經訓練統計分類器併入人類使用者已知為缺陷之重要指示符之屬性以及由數學運算判定為相同缺陷之重要指示符之屬性。重要的係,一些人工產生屬性與不同於用於訓練屬性模型173之光學圖塊(例如,GDS資料、度量衡量測等)之輸入源相關聯。在一些實例中,一人工產生屬性與藉由檢測系統收集之整個影像圖框而非影像圖塊相關聯。
如圖4中描繪,藉由人工產生屬性識別模組176基於晶圓缺陷影像資料171A而判定人工產生屬性之值177。
缺陷之人工產生屬性包含由人類而非一機器產生之缺陷之屬性。舉例而言,人工產生屬性包含像素亮度量值、MDAT偏移、MDAT灰階(參考灰階)及能量。另外,一人工產生屬性可包含回應於來自在掃描期間偵測之缺陷之光之一特性(例如,強度)或甚至一像素群組之間之一相對回應的缺陷之一屬性。缺陷之人工產生屬性可儘可能通用。其可包含非強度型屬性,諸如缺陷位置、缺陷大小等。其可包含從圖形資料庫系統(GDS)檔案或其他源導出之設計屬性(即,參考幾何形狀及材料規格)。
在另一態樣中,採用一經訓練缺陷分類器以基於從具有未知分類之缺陷之影像導出之自動產生屬性之值對缺陷進行分類。
圖7描繪一項實施例中之一缺陷分類引擎200之一圖解。將與具有未知分類之一候選缺陷相關聯之影像資料201傳遞至參考圖4描述之自動產生屬性識別模組174。藉由自動產生屬性識別模組174使用參考圖4描述之相同簡化屬性模型173基於缺陷影像資料201來判定與未分類缺陷相關聯之自動產生屬性202之值。在一些實施例中,將自動產生屬性202之值傳遞至經訓練缺陷分類器179,且經訓練缺陷分類器179基於自動產生屬性202之值來判定經成像缺陷之分類204。在此等實施例中,僅基於如參考圖4描述之自動產生屬性來訓練經訓練缺陷分類器179。
在一些其他實施例中,亦將影像資料201傳遞至如參考圖4描述之人工產生屬性識別模組174。藉由如參考圖4描述之人工產生屬性識別模組174基於缺陷影像資料201而判定與未分類缺陷相關聯之人工產生屬性202之值。在此等實施例中,將自動產生屬性202之值及人工產生屬性203之值傳遞至經訓練缺陷分類器179,且經訓練缺陷分類器179基於值202及203來判定經成像缺陷之分類204。在此等實施例中,基於如參考圖4描述之自動產生屬性及人工產生屬性之組合來訓練經訓練缺陷分類器179。
圖8描繪與基於不同分類器之已知分類之缺陷相關聯之捕獲率相對於妨害率之一圖210。檢測應用係在一化學機械拋光(CMP)程序步驟之後之一銅金屬層上之缺陷之分類。標繪線214描繪運用僅使用人工產生屬性訓練之一統計分類器達成之分類結果。標繪線212描繪運用使用如本文中描述之人工產生屬性及自動產生屬性兩者訓練之一統計分類器達成之分類結果。標繪線213描繪運用經訓練以基於影像資料直接對缺陷進行分類之一單層卷積神經網路達成之分類結果。類似地,標繪線211描繪運用經訓練以基於影像資料直接對缺陷進行分類之一雙層卷積神經網路達成之分類結果。
歸因於運算成本,使用一經訓練卷積神經網路以基於影像資料直接對缺陷進行分類當前不適於高處理能力線上檢測。然而,運用使用人工產生屬性及自動產生屬性兩者訓練之一統計分類器達成之分類結果與此等運算密集型技術相比具有優勢。另外,圖8繪示與僅使用人工產生屬性訓練之一統計分類器相比,運用使用人工產生屬性及自動產生屬性兩者訓練之一統計分類器達成之分類效能之改良。
圖9描繪繪示如藉由使用參考圖8描述之檢測應用之人工產生屬性及自動產生屬性兩者訓練之一統計分類器量測之基於其相對重要性排序之一屬性清單的一圖表220。如圖9中描繪,僅標記為「斑點相似度」及「圖塊缺陷信號」之屬性為人工產生屬性。自動產生全部其他屬性。如圖9中描繪,對於此特定檢測應用,許多自動產生屬性之排序明顯高於人工產生屬性。
在另一進一步態樣中,可藉由反覆地減少分類器之訓練中採用之屬性之數目以一反覆方式執行如參考圖4描述之一統計分類器之訓練。
在圖4中描繪之實施例中,缺陷分類器訓練模組178判定提供為訓練統計分類器之輸入之一或多個屬性之各者之重要性之一相對度量。圖9描繪提供為統計分類器之輸入之若干屬性之相對重要性之一度量之一圖解。另外,缺陷分類器訓練模組178基於與一或多個屬性之各者相關聯之重要性之相對度量來判定屬性之一子集。舉例而言,缺陷分類器訓練模組178判定消除具有低於一預定臨限值之一重要性值之全部屬性。在一個實例中,缺陷分類器訓練模組178判定消除具有低於25之一重要性值之全部屬性。隨後基於與一或多個訓練影像之各者相關聯之作為統計分類器之輸入之剩餘屬性及與一或多個訓練影像之各者相關聯之作為統計分類器之輸出之已知分類來重新訓練統計分類器。可反覆地重複統計分類器之評估、簡化及重新訓練,同時分類器效能保持高於一可接受位準。
檢測系統100包含一處理器131及一定量之電腦可讀記憶體132。處理器131及記憶體132可經由匯流排133通信。記憶體132包含儲存一定量之程式碼的一定量之記憶體134,程式碼在由處理器131執行時導致處理器131執行本文中描述之缺陷偵測及分類功能性。
系統150包含一處理器161及一定量之電腦可讀記憶體162。處理器161及記憶體162可經由匯流排163通信。記憶體162包含儲存一定量之程式碼的一定量之記憶體164,程式碼在由處理器161執行時導致處理器161執行本文中描述之缺陷偵測及分類功能性。
在一些實施例中,經訓練缺陷分類器179經傳遞至檢測系統100且應用於由檢測系統100產生之缺陷影像。與各光學模式相關聯之偵測臨限值經調整以達成一所要妨害率。在圖1中描繪之實施例中,檢測系統100實施經訓練缺陷分類器179以基於一生產設定中之半導體結構之二維或三維影像之分析識別缺陷並對缺陷進行分類。在一些實例中,處理器131經組態以從如本文中描述之影像偵測缺陷並對缺陷進行分類。
另外,檢測系統100可包含可用於接受來自一操作者之輸入(例如,鍵盤、滑鼠、觸控螢幕等)及向操作者顯示輸出(例如,顯示監視器)的周邊裝置。來自一操作者之輸入命令可由運算系統130使用以調整用於控制照明功率之臨限值。所得功率位準可在一顯示監視器上以圖形方式呈現給一操作者。
圖11繪示可用於基於半導體結構之影像來偵測缺陷之一例示性方法300之一流程圖。在一些非限制實例中,參考圖1描述之檢測系統100經組態以實施方法300。然而,一般而言,方法300之實施不受本文中描述之特定實施例之限制。
在方塊301中,舉例而言由檢測系統100產生包含一或多個候選缺陷之一或多個訓練影像。一或多個候選缺陷之各者具有一已知缺陷分類。
在方塊302中,訓練一基於深度學習之模型,該模型具有一或多個候選缺陷之一或多個訓練影像作為輸入及一或多個候選缺陷之各者之已知分類作為輸出。在一些實施例中,基於深度學習之模型係包含包含複數個影像濾波器之至少一個卷積層及包含複數個節點之至少一個連接層的一神經網路模型。
在方塊303中,藉由減少神經網路模型之層之數目、神經網路模型之影像濾波器之數目、神經網路模型之節點之數目、或其之任何組合而判定一簡化深度學習模型。
在方塊304中,重新訓練簡化之基於深度學習之模型,該模型具有一或多個候選缺陷之一或多個影像作為簡化深度學習模型之輸入及一或多個候選缺陷之各者之已知分類作為輸出。
在方塊305中,判定與一或多個訓練影像之各者相關聯之簡化之基於深度學習之模型之一或多個屬性之各者之一值。
在方塊306中,訓練一統計分類器,該統計分類器包含與一或多個訓練影像之各者相關聯之一或多個屬性作為輸入及與一或多個訓練影像之各者相關聯之已知分類作為輸出。
一般而言,可在半導體裝置之製造之研究開發、生產量漸增及大批量生產階段期間應用本文中描述之分類技術,且該等分類技術適用於任何光學基於影像之量測技術。另外,此等技術可應用於光學及x射線檢測模態。
不管製程之特定類型,需要在一多層堆疊之全部層級中且在特定程序中儘可能早地偵測缺陷。特定檢測實施例較佳地包含貫穿一堆疊(包含堆疊表面及貫穿一堆疊之各個深度)偵測缺陷。舉例而言,特定實施例允許在至多約3微米之深度處發現缺陷。在另一實施例中,可在大至約8微米之堆疊深度處偵測缺陷。被檢測之一垂直ONON或OPOP堆疊之厚度僅受照明光之穿透深度之限制。透過氧化物-氮化物-氧化物-氮化物(ONON)或氧化物-多晶矽-氧化物-多晶矽(OPOP)堆疊之透射較不受較長波長之吸收之限制。因此,可採用較長照明波長來有效地檢測極深結構。
本文中描述之檢測系統及分類技術可應用於複雜垂直堆疊結構之三維影像,包含但不限於3D反及(NAND)閘記憶體裝置、垂直NAND (VNAND)記憶體結構、任何適合3D或垂直半導體結構(諸如使用兆位元單元陣列電晶體(TCAT)、垂直堆疊陣列電晶體(VSAT)、位元成本可擴展技術(BiCST)、管道形BiCS技術(P-BiCS)等形成之NAND或NOR記憶體裝置)。垂直方向大體上係垂直於基板表面之一方向。此外,儘管採用特定製造步驟、程序及材料來形成此等3D結構,然可在製造流程中之任何點應用檢測實施例且此等層可包含任何數目及類型之材料。
圖10描繪處於晶圓生產程序之氮化矽(例如,SiN或Si3N4)移除步驟之一3D NAND結構180之一簡化圖解以用於闡釋性目的。一經製造3D NAND結構包含額外特徵及元件。在一個實例中,一經製造3D NAND結構包含許多額外層且一些描繪結構(例如,結構182)包含額外材料。圍繞氧化物核心結構181之多晶矽結構182在多層3D NAND結構中垂直地(例如,法向於基板186之表面)延伸。氧化矽層187藉由隨後蝕除之氮化矽層(未展示)彼此隔開。圖10中出於圖解之目的未蝕除氮化矽層183。程序中之下一步驟係在氧化矽層之間之空間中生長鎢。然而,如圖10中繪示,不完全蝕刻已留下氮化矽缺陷184及185。電子裝置將因缺陷184及185而不起作用。因此,重要的係在製程中儘可能早地量測此缺陷以防止與將發生故障之一裝置之進一步處理相關聯之時間及資源之損失。
本文中針對可用於檢測一樣品之一檢測系統或工具描述各項實施例。本文中使用術語「樣品」來指代一晶圓、一倍縮光罩、或可檢測缺陷、特徵或此項技術中已知之其他資訊(例如,一定量之霧度或膜性質)之任何其他樣本。
如本文中使用,術語「晶圓」大體上係指由一半導體或非半導體材料形成之基板。實例包含但不限於單晶矽、砷化鎵、及磷化銦。通常可在半導體製造設備中發現及/或處理此等基板。在一些情況中,一晶圓可僅包含基板(即,裸晶圓)。替代地,一晶圓可包含在一基板上形成之不同材料之一或多個層。在一晶圓上形成之一或多個層可為「圖案化」或「未圖案化」。舉例而言,一晶圓可包含具有可重複圖案特徵之複數個晶粒。
一「倍縮光罩」可為處於一倍縮光罩製程之任何階段之一倍縮光罩,或可或可不釋放以用於一半導體製造設備中之一完成倍縮光罩。一倍縮光罩或一「遮罩」大體上定義為具有在其上形成且組態成一圖案之實質上不透明區的一實質上透明基板。基板可包含舉例而言一玻璃材料,諸如石英。可在一微影程序之一曝光步驟期間將一倍縮光罩安置於一光阻劑覆蓋晶圓上方,使得可將倍縮光罩上之圖案轉印至光阻劑。
在一或多項例示性實施例中,可在硬體、軟體、韌體或其之任何組合中實施所描述功能。若在軟體中實施,則功能可作為一或多個指令或程式碼儲存於一電腦可讀媒體上或經由一電腦可讀媒體傳輸。電腦可讀媒體包含電腦儲存媒體及通信媒體兩者,包含促成將一電腦程式從一個位置轉移至另一位置之任何媒體。一儲存媒體可為可由一通用或專用電腦存取之任何可用媒體。藉由實例且非限制之方式,此等電腦可讀媒體可包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存裝置、或可用於以指令或資料結構之形式攜載或儲存所要程式碼構件且可由一通用或專用電腦或一通用或專用處理器存取的任何其他媒體。再者,任何連接適當地稱為一電腦可讀媒體。舉例而言,若使用一同軸纜線、光纖纜線、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外線、無線電及微波)從一網站、伺服器或其他遠端源傳輸軟體,則同軸纜線、光纖纜線、雙絞線、DSL或無線技術(諸如紅外線、無線電及微波)包含於媒體之定義中。如本文中使用之磁碟及磁盤包含光盤(CD)、雷射磁盤、光盤、數位多功能磁盤(DVD)、軟碟及藍光磁盤,其中磁碟通常磁性地複製資料,而磁盤利用雷射光學地複製資料。上述內容之組合亦應包含於電腦可讀媒體之範疇內。
儘管上文出於指導目的描述某些特定實施例,然本專利文件之教示具有普遍適用性且不限於上文描述之特定實施例。在一個實例中,一偵測器可包含一纖維陣列。在一個實例中,檢測系統100可包含一個以上光源(未展示)。可不同或相同地組態光源。舉例而言,光源可經組態以產生具有不同特性之光,光可在相同或不同時間以相同或不同入射角在相同或不同照明區域引導至一晶圓。可根據本文中描述之實施例之任一者來組態光源。另外,可根據本文中描述之實施例之任一者來組態光源之一者,且另一光源可為此項技術中已知之任何其他光源。在一些實施例中,一檢測系統可同時在一個以上照明區域上照明晶圓。多個照明區域可在空間上重疊。多個照明區域可在空間上相異。在一些實施例中,一檢測系統可在不同時間在一個以上照明區域上照明晶圓。不同照明區域可在時間上重疊(即,在某一時段內同時照明)。不同照明區域可在時間上相異。一般而言,照明區域之數目可為任意的,且各照明區域可具有相等或不同大小、定向及入射角。在又另一實例中,檢測系統100可為具有獨立於晶圓103之任何運動進行掃描之一或多個照明區域之一掃描點系統。在一些實施例中,使一照明區域沿一掃描線以一重複圖案掃描。掃描線可或可不與晶圓103之掃描運動對準。儘管如本文中呈現,晶圓定位系統114藉由協調之旋轉及平移移動而產生晶圓103之運動,然在又另一實例中,晶圓定位系統114可藉由協調兩個平移移動而產生晶圓103之運動。舉例而言,晶圓定位系統114可沿兩個正交線性軸產生運動(例如,X-Y運動)。
因此,可在不脫離如發明申請專利範圍中陳述之本發明之範疇之情況下實踐所描述實施例之各種修改、調適及各種特徵之組合。
100:光學檢測系統 101:照明源 102:照明功率衰減器 103:晶圓 104:光束 105:光束分離器 106:傅立葉濾波器 107:成像透鏡 108:晶圓卡盤 109:物鏡 110:旋轉載物台 111:光束 112:平移載物台 113:運動控制器 114:晶圓定位系統 115:偵測器 116:集光光學器件 117:集光光學器件 118:集光光學器件 119:入射點/照明點 120:偵測器 121:z平移載物台 122A:命令信號 122B:控制信號 122C:命令信號 122D:命令信號 122E:命令信號 122F:命令信號 122G:命令信號 123:座標系統 124:照明孔隙 125:偵測器 126:命令 130:運算系統 131:處理器 132:電腦可讀記憶體 133:匯流排 134:記憶體 135:使用者輸入源 136:結構資訊/使用者輸入 137:使用者輸入 140:光學子系統/光學檢測子系統 141:缺陷資訊 145A:候選缺陷 145B:候選缺陷 145C:候選缺陷 146A:影像圖塊 146B:影像圖塊 146C:影像圖塊 147:照明偏光元件 150:系統/缺陷驗證工具 151:缺陷驗證工具 152:缺陷影像 153:候選缺陷 160:運算系統 161:處理器 162:電腦可讀記憶體 163:匯流排 164:記憶體 170:缺陷分類器訓練引擎 171:標記缺陷資料 171A:影像資料 171B:已知缺陷分類 172:基於深度學習之屬性模型訓練模組 173:簡化屬性模型 174:自動產生屬性識別模組 175:自動產生屬性之值 176:人工產生屬性識別模組 177:人工產生屬性之值 178:缺陷分類器訓練模組 179:經訓練缺陷分類器 180:3D NAND結構 181:集光偏光元件/氧化物核心結構 182:集光孔隙/多晶矽結構 183:氮化矽層 184:氮化矽缺陷 185:氮化矽缺陷 186:基板 187:氧化矽層 190:神經網路模型 191:輸入節點 192:卷積層 193:濾波器 194:節點 195:連接層 196:統計分類器 200:缺陷分類引擎 201:影像資料 202:自動產生屬性之值 203:人工產生屬性之值 204:分類 210:圖/標繪線 211:標繪線 212:標繪線 213:標繪線 214:標繪線 220:圖表 300:方法 301:方塊 302:方塊 303:方塊 304:方塊 305:方塊 306:方塊
圖1係經組態以基於影像對半導體晶圓執行缺陷偵測及分類之一光學檢測系統100之一項實施例之一簡化示意圖。
圖2係繪示包含候選缺陷及在選定候選缺陷處或附近收集之影像之一晶圓之一圖式。
圖3係經組態以對一特定量測應用之缺陷進行分類之一系統之一項實施例之一簡化示意圖。
圖4係繪示一項實施例中之一缺陷分類器訓練引擎之一圖式。
圖5描繪用於識別可用於缺陷分類之缺陷影像之屬性之一神經網路模型之一簡化圖解。
圖6描繪經訓練以模仿一訓練神經網路模型之一層之一統計分類器之一簡化圖解。
圖7描繪一項實施例中之一缺陷分類引擎200之一圖解。
圖8描繪與基於不同分類器之已知分類之缺陷相關聯之捕獲率相對於妨害率之一圖。
圖9描繪繪示基於其如藉由一統計分類器量測之相對重要性排序之一屬性清單之一圖表。
圖10描繪處於晶圓生產程序之氮化矽移除步驟之一3D NAND結構180之一簡化圖解。
圖11繪示可用於基於缺陷影像之自動產生屬性對缺陷進行分類之一例示性方法300之一流程圖。
170:缺陷分類器訓練引擎
171A:影像資料
171B:已知缺陷分類
172:基於深度學習之屬性模型訓練模組
173:簡化屬性模型
174:自動產生屬性識別模組
175:自動產生屬性之值
176:人工產生屬性識別模組
177:人工產生屬性之值
178:缺陷分類器訓練模組
179:經訓練缺陷分類器

Claims (20)

  1. 一種方法,其包括: 產生包含一或多個候選缺陷之一或多個訓練影像,該一或多個候選缺陷之各者具有一已知缺陷分類; 訓練一基於深度學習之模型,該模型具有該一或多個候選缺陷之該一或多個訓練影像作為該深度學習模型之輸入及該一或多個候選缺陷之各者之該已知分類作為該深度學習模型之輸出,其中該基於深度學習之模型係包含包含複數個影像濾波器之至少一個卷積層及包含複數個節點之至少一個連接層的一神經網路模型; 藉由減少該神經網路模型之層之一數目、該神經網路模型之影像濾波器之一數目、該神經網路模型之節點之一數目、或其之任何組合而判定一簡化深度學習模型; 重新訓練該簡化之基於深度學習之模型,該模型具有該一或多個候選缺陷之該一或多個影像作為該簡化深度學習模型之輸入及該一或多個候選缺陷之各者之該已知分類作為該簡化深度學習模型之輸出; 判定與該一或多個訓練影像之各者相關聯之該簡化之基於深度學習之模型之一或多個屬性之各者之一值;及 訓練一統計分類器,該統計分類器包含與該一或多個訓練影像之各者相關聯之該一或多個屬性作為該統計分類器之輸入及與該一或多個訓練影像之各者相關聯之該已知分類作為該統計分類器之輸出。
  2. 如請求項1之方法,其中該一或多個屬性包含一濾波影像之一最大像素強度,其中該濾波影像係藉由該複數個影像濾波器之任一者操作之該一或多個訓練影像之任一者。
  3. 如請求項1之方法,其中該一或多個屬性包含該神經網路模型之一或多個節點之一值。
  4. 如請求項1之方法,其進一步包括: 判定與該一或多個候選缺陷之各者相關聯之一或多個人工產生屬性之各者之一值,其中該統計分類器之該輸入亦包含該一或多個人工產生屬性。
  5. 如請求項1之方法,其進一步包括: 訓練使該神經網路模型之一層之節點之值與該神經網路模型之一後續層之節點之值有關的一統計模型; 基於該訓練統計模型來判定該層之重要性之一相對度量、該層之各節點之重要性之一相對度量、各影像濾波器之重要性之一相對度量、或其之任何組合,其中該減少該神經網路模型之層之該數目、該神經網路模型之影像濾波器之該數目、該神經網路模型之節點之該數目、或其之任何組合基於該層之重要性之該經判定相對度量、該層之各節點之重要性之該相對度量、各影像濾波器之重要性之該相對度量、或其之任何組合。
  6. 如請求項1之方法,其中該一或多個訓練影像包含包含與該一或多個候選缺陷相關聯之一結構之一第一例項的一第一影像及包含該結構之一第二例項的一第二影像。
  7. 如請求項6之方法,其中該一或多個訓練影像包含一差分影像,其中該差分影像係該第一影像與該第二影像之間之一逐像素差異。
  8. 如請求項6之方法,其中從相同晶圓收集該第一影像及該第二影像。
  9. 如請求項1之方法,其進一步包括: 產生包含一或多個候選缺陷之一或多個樣本影像,該一或多個候選缺陷之各者具有一未知缺陷分類; 判定與該一或多個樣本影像之各者相關聯之該簡化之基於深度學習之模型之該一或多個屬性之各者之一值;及 基於該訓練統計分類器來判定該一或多個候選缺陷之各者之一分類,其中該訓練統計分類器之一輸入包含與該一或多個樣本影像之各者相關聯之該一或多個屬性之該等值且該訓練統計分類器之該輸出係該一或多個候選缺陷之各者之該分類。
  10. 如請求項1之方法,其進一步包括: 基於該訓練統計分類器來判定該一或多個屬性之各者之重要性之一相對度量; 基於與該一或多個屬性之各者相關聯之重要性之該相對度量來判定該一或多個屬性之一子集; 重新訓練該統計分類器,該統計分類器包含與該一或多個訓練影像之各者相關聯之該一或多個屬性之該子集作為該統計分類器之輸入及與該一或多個訓練影像之各者相關聯之該已知分類作為該統計分類器之輸出。
  11. 一種系統,其包括: 一照明源,其在一半導體晶圓上之一或多個候選缺陷之位置處將一第一量之照明光提供至一半導體晶圓,該一或多個候選缺陷之各者具有一已知缺陷分類; 一偵測器,其回應於該第一量之照明光而偵測來自該半導體晶圓之一定量之光且產生包含該一或多個候選缺陷之複數個訓練影像;及 一運算系統,其經組態以: 訓練一基於深度學習之模型,該模型具有該一或多個候選缺陷之該一或多個訓練影像作為該深度學習模型之輸入及該一或多個候選缺陷之各者之該已知分類作為該深度學習模型之輸出,其中該基於深度學習之模型係包含包含複數個影像濾波器之至少一個卷積層及包含複數個節點之至少一個連接層的一神經網路模型; 藉由減少該神經網路模型之層之一數目、該神經網路模型之影像濾波器之一數目、該神經網路模型之節點之一數目、或其之任何組合而判定一簡化之深度學習模型; 重新訓練該簡化之基於深度學習之模型,該模型具有該一或多個候選缺陷之該一或多個影像作為該簡化之深度學習模型之輸入及該一或多個候選缺陷之各者之該已知分類作為該簡化之深度學習模型之輸出; 判定與該一或多個訓練影像之各者相關聯之該簡化之基於深度學習之模型之一或多個屬性之各者之一值;及 訓練一統計分類器,該統計分類器包含與該一或多個訓練影像之各者相關聯之該一或多個屬性作為該統計分類器之輸入及與該一或多個訓練影像之各者相關聯之該已知分類作為該統計分類器之輸出。
  12. 如請求項11之系統,其中該一或多個屬性包含一濾波影像之一最大像素強度,其中該濾波影像係藉由該複數個影像濾波器之任一者操作之該一或多個訓練影像之任一者。
  13. 如請求項11之系統,其中該一或多個屬性包含該神經網路模型之一或多個節點之一值。
  14. 如請求項11之系統,該運算系統進一步經組態以: 判定與該一或多個候選缺陷之各者相關聯之一或多個人工產生屬性之各者之一值,其中該統計分類器之該輸入亦包含該一或多個人工產生屬性。
  15. 如請求項11之系統,該運算系統進一步經組態以: 訓練使該神經網路模型之一層之節點之值與該神經網路模型之一後續層之節點之值有關的一統計模型;及 基於該訓練統計模型來判定該層之重要性之一相對度量、該層之各節點之重要性之一相對度量、各影像濾波器之重要性之一相對度量、或其之任何組合,其中該減少該神經網路模型之層之該數目、該神經網路模型之影像濾波器之該數目、該神經網路模型之節點之該數目、或其之任何組合基於該層之重要性之該經判定相對度量、該層之各節點之重要性之該相對度量、各影像濾波器之重要性之該相對度量、或其之任何組合。
  16. 如請求項11之系統,該照明源在具有一未知缺陷分類之一半導體晶圓上之一或多個候選缺陷之位置處將一第二量之照明光提供至一半導體晶圓,該偵測器回應於入射量之照明光而偵測來自該半導體晶圓之一第二量之光且產生包含具有未知缺陷分類之該一或多個候選缺陷之複數個樣本影像,該運算系統進一步經組態以: 判定與該一或多個樣本影像之各者相關聯之該簡化之基於深度學習之模型之該一或多個屬性之各者之一值;且 基於該訓練統計分類器來判定該一或多個候選缺陷之各者之一分類,其中該訓練統計分類器之一輸入包含與該一或多個樣本影像之各者相關聯之該一或多個屬性之該等值且該訓練統計分類器之該輸出係該一或多個候選缺陷之各者之該分類。
  17. 一種系統,其包括: 一照明源,其在一半導體晶圓上之一或多個候選缺陷之位置處將一第一量之照明光提供至一半導體晶圓,該一或多個候選缺陷之各者具有一已知缺陷分類; 一偵測器,其回應於該第一量之照明光而偵測來自該半導體晶圓之一定量之光且產生包含該一或多個候選缺陷之複數個訓練影像;及 一運算系統,其包括: 一或多個處理器;及 一非暫時性電腦可讀媒體,其儲存指令,該等指令在由該一或多個處理器執行時導致該運算系統: 訓練一基於深度學習之模型,該模型具有該一或多個候選缺陷之該一或多個訓練影像作為該深度學習模型之輸入及該一或多個候選缺陷之各者之該已知分類作為該深度學習模型之輸出,其中該基於深度學習之模型係包含包含複數個影像濾波器之至少一個卷積層及包含複數個節點之至少一個連接層的一神經網路模型; 藉由減少該神經網路模型之層之一數目、該神經網路模型之影像濾波器之一數目、該神經網路模型之節點之一數目、或其之任何組合而判定一簡化之深度學習模型; 重新訓練該簡化之基於深度學習之模型,該模型具有該一或多個候選缺陷之該一或多個影像作為該簡化之深度學習模型之輸入及該一或多個候選缺陷之各者之該已知分類作為該簡化之深度學習模型之輸出; 判定與該一或多個訓練影像之各者相關聯之該簡化之基於深度學習之模型之一或多個屬性之各者之一值;及 訓練一統計分類器,該統計分類器包含與該一或多個訓練影像之各者相關聯之該一或多個屬性作為該統計分類器之輸入及與該一或多個訓練影像之各者相關聯之該已知分類作為該統計分類器之輸出。
  18. 如請求項17之系統,其中該一或多個屬性包含一濾波影像之一最大像素強度,其中該濾波影像係藉由該複數個影像濾波器之任一者操作之該一或多個訓練影像之任一者。
  19. 如請求項17之系統,該非暫時性電腦可讀媒體進一步儲存指令,該等指令在由該一或多個處理器執行時導致該運算系統: 判定與該一或多個候選缺陷之各者相關聯之一或多個人工產生屬性之各者之一值,其中該統計分類器之該輸入亦包含該一或多個人工產生屬性。
  20. 如請求項17之系統,該非暫時性電腦可讀媒體進一步儲存指令,該等指令在由該一或多個處理器執行時導致該運算系統: 訓練使該神經網路模型之一層之節點之值與該神經網路模型之一後續層之節點之值有關的一統計模型;及 基於該訓練統計模型來判定該層之重要性之一相對度量、該層之各節點之重要性之一相對度量、各影像濾波器之重要性之一相對度量、或其之任何組合,其中該減少該神經網路模型之層之該數目、該神經網路模型之影像濾波器之該數目、該神經網路模型之節點之該數目、或其之任何組合基於該層之重要性之該經判定相對度量、該層之各節點之重要性之該相對度量、各影像濾波器之重要性之該相對度量、或其之任何組合。
TW109101810A 2019-01-18 2020-01-17 利用自動產生缺陷特徵檢測半導體結構之方法及系統 TWI809243B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
IN201941002244 2019-01-18
IN201941002244 2019-01-18
US201962896578P 2019-09-06 2019-09-06
US62/896,578 2019-09-06
US16/744,385 US11379967B2 (en) 2019-01-18 2020-01-16 Methods and systems for inspection of semiconductor structures with automatically generated defect features
US16/744,385 2020-01-16

Publications (2)

Publication Number Publication Date
TW202044443A true TW202044443A (zh) 2020-12-01
TWI809243B TWI809243B (zh) 2023-07-21

Family

ID=71609095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109101810A TWI809243B (zh) 2019-01-18 2020-01-17 利用自動產生缺陷特徵檢測半導體結構之方法及系統

Country Status (6)

Country Link
US (1) US11379967B2 (zh)
KR (1) KR102539921B1 (zh)
CN (1) CN113302728B (zh)
IL (1) IL284248B2 (zh)
TW (1) TWI809243B (zh)
WO (1) WO2020150538A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11055840B2 (en) * 2019-08-07 2021-07-06 Kla Corporation Semiconductor hot-spot and process-window discovery combining optical and electron-beam inspection
CN114616657A (zh) 2019-11-04 2022-06-10 东京毅力科创株式会社 用于校准多个晶圆检查系统(wis)模块的系统和方法
US11624607B2 (en) 2020-01-06 2023-04-11 Tokyo Electron Limited Hardware improvements and methods for the analysis of a spinning reflective substrates
US11435391B2 (en) * 2020-01-22 2022-09-06 Nanya Technology Corporation Dual-sided wafer imaging apparatus and methods thereof
US11360030B2 (en) * 2020-02-04 2022-06-14 Applied Materials Isreal Ltd Selecting a coreset of potential defects for estimating expected defects of interest
CN111429415B (zh) * 2020-03-18 2020-12-08 东华大学 基于网络协同剪枝的产品表面缺陷高效检测模型构建方法
US11022566B1 (en) * 2020-03-31 2021-06-01 Applied Materials Israel Ltd. Examination of a semiconductor specimen
US11150200B1 (en) * 2020-06-15 2021-10-19 Mitutoyo Corporation Workpiece inspection and defect detection system indicating number of defect images for training
TWI732618B (zh) * 2020-07-02 2021-07-01 撼訊科技股份有限公司 影像辨識方法及其系統
WO2022029771A1 (en) * 2020-08-03 2022-02-10 Inspekto A.M.V Ltd Adaptive system and method for inspection of imaged items
US11328410B2 (en) * 2020-08-03 2022-05-10 KLA Corp. Deep generative models for optical or other mode selection
IL276478B2 (en) * 2020-08-03 2023-07-01 Inspekto A M V Ltd Adaptive system and method for inspecting photographed objects
US11776108B2 (en) 2020-08-05 2023-10-03 KLA Corp. Deep learning based defect detection
US20230325413A1 (en) * 2020-09-17 2023-10-12 Hitachi High-Tech Corporation Error Factor Estimation Device and Error Factor Estimation Method
CN112365491A (zh) * 2020-11-27 2021-02-12 上海市计算技术研究所 容器焊缝检测的方法、电子设备及存储介质
CN114626538A (zh) * 2020-12-09 2022-06-14 艾聚达信息技术(苏州)有限公司 人工智能模型自动提升训练系统及方法
US11216932B1 (en) * 2021-03-26 2022-01-04 Minds AI Technologies Ltd Electronic substrate defect detection
TWI812091B (zh) * 2021-04-21 2023-08-11 德商卡爾蔡司Smt有限公司 訓練機器學習邏輯及分析高深寬比結構中奈米柱橫截面環之方法、半導體檢測裝置、電腦程式及實體儲存媒體
US11738363B2 (en) 2021-06-07 2023-08-29 Tokyo Electron Limited Bath systems and methods thereof
CN113469997B (zh) * 2021-07-19 2024-02-09 京东科技控股股份有限公司 平面玻璃的检测方法、装置、设备和介质
US11791184B2 (en) 2021-07-26 2023-10-17 Samsung Electronics Co., Ltd. Semiconductor fabrication process and method of optimizing the same
US20230051330A1 (en) * 2021-08-16 2023-02-16 Applied Materials Inc. Using defect models to estimate defect risk and optimize process recipes
US20230057295A1 (en) * 2021-08-23 2023-02-23 Element8 Technology Investment Group Inc. System and method for providing a multi-sided platform for broadband and content delivery networks
US11756186B2 (en) 2021-09-15 2023-09-12 Mitutoyo Corporation Workpiece inspection and defect detection system utilizing color channels
US11955358B2 (en) 2021-09-24 2024-04-09 Applied Materials, Inc. Model-based failure mitigation for semiconductor processing systems
CN114881934B (zh) * 2022-04-13 2024-05-28 华南理工大学 一种基于神经网络的柔性ic基板表面缺陷分层分类方法
FR3135554A1 (fr) * 2022-05-13 2023-11-17 Commissariat à l'énergie atomique et aux énergies alternatives Procédé et dispositif de traitement d’image pour la localisation de gouttes représentatives de défauts ou irrégularités
CN116504663B (zh) * 2023-06-20 2023-08-22 深圳市芯片测试技术有限公司 一种晶圆多等级测试方法及装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271916B1 (en) 1994-03-24 2001-08-07 Kla-Tencor Corporation Process and assembly for non-destructive surface inspections
US5608526A (en) 1995-01-19 1997-03-04 Tencor Instruments Focused beam spectroscopic ellipsometry method and system
US5859424A (en) 1997-04-08 1999-01-12 Kla-Tencor Corporation Apodizing filter system useful for reducing spot size in optical measurements and other applications
US6201601B1 (en) 1997-09-19 2001-03-13 Kla-Tencor Corporation Sample inspection system
US6208411B1 (en) 1998-09-28 2001-03-27 Kla-Tencor Corporation Massively parallel inspection and imaging system
US6429943B1 (en) 2000-03-29 2002-08-06 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
US7130039B2 (en) 2002-04-18 2006-10-31 Kla-Tencor Technologies Corporation Simultaneous multi-spot inspection and imaging
US7295303B1 (en) 2004-03-25 2007-11-13 Kla-Tencor Technologies Corporation Methods and apparatus for inspecting a sample
US7478019B2 (en) 2005-01-26 2009-01-13 Kla-Tencor Corporation Multiple tool and structure analysis
US7567351B2 (en) 2006-02-02 2009-07-28 Kla-Tencor Corporation High resolution monitoring of CD variations
JP2009014510A (ja) 2007-07-04 2009-01-22 Hitachi High-Technologies Corp 検査方法及び検査装置
US9581430B2 (en) 2012-10-19 2017-02-28 Kla-Tencor Corporation Phase characterization of targets
US8912495B2 (en) 2012-11-21 2014-12-16 Kla-Tencor Corp. Multi-spectral defect inspection for 3D wafers
US9075027B2 (en) 2012-11-21 2015-07-07 Kla-Tencor Corporation Apparatus and methods for detecting defects in vertical memory
US10769320B2 (en) 2012-12-18 2020-09-08 Kla-Tencor Corporation Integrated use of model-based metrology and a process model
US9291554B2 (en) 2013-02-05 2016-03-22 Kla-Tencor Corporation Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection
US9389349B2 (en) 2013-03-15 2016-07-12 Kla-Tencor Corporation System and method to determine depth for optical wafer inspection
US9696264B2 (en) 2013-04-03 2017-07-04 Kla-Tencor Corporation Apparatus and methods for determining defect depths in vertical stack memory
US10650508B2 (en) 2014-12-03 2020-05-12 Kla-Tencor Corporation Automatic defect classification without sampling and feature selection
US9816940B2 (en) 2015-01-21 2017-11-14 Kla-Tencor Corporation Wafer inspection with focus volumetric method
US9524450B2 (en) * 2015-03-04 2016-12-20 Accenture Global Services Limited Digital image processing using convolutional neural networks
CN105719188B (zh) * 2016-01-22 2017-12-26 平安科技(深圳)有限公司 基于多张图片一致性实现保险理赔反欺诈的方法及服务器
US10346740B2 (en) * 2016-06-01 2019-07-09 Kla-Tencor Corp. Systems and methods incorporating a neural network and a forward physical model for semiconductor applications
US10223615B2 (en) 2016-08-23 2019-03-05 Dongfang Jingyuan Electron Limited Learning based defect classification
US10115040B2 (en) 2016-09-14 2018-10-30 Kla-Tencor Corporation Convolutional neural network-based mode selection and defect classification for image fusion
BR102016028266A2 (pt) * 2016-12-01 2018-06-19 Autaza Tecnologia Ltda - Epp Método e sistema para a inspeção automática de qualidade de materiais
EP3596449A4 (en) 2017-03-14 2021-01-06 University of Manitoba DETECTION OF STRUCTURAL DEFECTS USING AUTOMATIC LEARNING ALGORITHMS
US10810721B2 (en) * 2017-03-14 2020-10-20 Adobe Inc. Digital image defect identification and correction
GB201704373D0 (en) * 2017-03-20 2017-05-03 Rolls-Royce Ltd Surface defect detection
US10453366B2 (en) 2017-04-18 2019-10-22 Samsung Display Co., Ltd. System and method for white spot mura detection
US10607119B2 (en) * 2017-09-06 2020-03-31 Kla-Tencor Corp. Unified neural network for defect detection and classification

Also Published As

Publication number Publication date
US11379967B2 (en) 2022-07-05
CN113302728B (zh) 2024-02-09
IL284248B1 (en) 2023-12-01
WO2020150538A1 (en) 2020-07-23
TWI809243B (zh) 2023-07-21
IL284248A (en) 2021-08-31
KR20210107149A (ko) 2021-08-31
CN113302728A (zh) 2021-08-24
IL284248B2 (en) 2024-04-01
KR102539921B1 (ko) 2023-06-02
US20200234428A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
TWI809243B (zh) 利用自動產生缺陷特徵檢測半導體結構之方法及系統
KR102438824B1 (ko) 3차원 반도체 구조체들의 검사를 위한 결함 발견 및 레시피 최적화
CN109791897B (zh) 用于半导体晶片检验的三维成像
TWI751376B (zh) 識別在一晶圓上偵測到之缺陷中之損害及所關注缺陷
TWI797382B (zh) 在極端紫外光光罩上所檢測到之缺陷處理
TWI821499B (zh) 檢測系統及用於對度量衡缺陷分段之方法
US11644756B2 (en) 3D structure inspection or metrology using deep learning
TW202201154A (zh) 用於模擬樣本影像之生成對抗網路(GANs)
TW202226027A (zh) 用於光學或其他模式選擇之深度生成模型
TW202212802A (zh) 針對具有樣品內及樣品間變異之樣品使用無監督學習及適應性資料庫產生方法之影像對準設定
TW202407331A (zh) 多模式光學檢測
TW202314887A (zh) 用於基於半導體之應用的深度學習影像去除雜訊
TW202225678A (zh) 使用轉移學習之晶圓級簽章分群
TW202300900A (zh) 以經呈現設計影像之設計照護區域之分段