TW202225678A - 使用轉移學習之晶圓級簽章分群 - Google Patents

使用轉移學習之晶圓級簽章分群 Download PDF

Info

Publication number
TW202225678A
TW202225678A TW110131488A TW110131488A TW202225678A TW 202225678 A TW202225678 A TW 202225678A TW 110131488 A TW110131488 A TW 110131488A TW 110131488 A TW110131488 A TW 110131488A TW 202225678 A TW202225678 A TW 202225678A
Authority
TW
Taiwan
Prior art keywords
wafer
maps
processor
sample
machine learning
Prior art date
Application number
TW110131488A
Other languages
English (en)
Inventor
納拉雅尼 納拉辛漢
艾倫 戴維拉
P 季珊德拉 庫馬 雷迪
光明 沈
山本經
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW202225678A publication Critical patent/TW202225678A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)

Abstract

使用基於機器學習之模型及一晶圓圖上之一簽章對該晶圓圖進行分類。該基於機器學習之模型使用轉移學習。可使用來自各種源之經提取且經擴增之影像及其等經提取特徵訓練該基於機器學習之模型。可將此等經提取特徵分類成在半導體製造期間發生之缺陷。

Description

使用轉移學習之晶圓級簽章分群
本發明係關於半導體製造。
半導體製造行業之演進正對良率管理且特定言之對計量及檢測系統提出更高要求。關鍵尺寸繼續縮小,但該行業需減少達成高良率、高價值生產之時間。最小化自偵測到一良率問題至解決該問題之總時間最大化半導體製造商之投資回報率。
製造半導體裝置(諸如邏輯及記憶體裝置)通常包含使用大量製造程序處理一半導體晶圓以形成該等半導體裝置之不同特徵及多個層級。例如,微影係一半導體製造程序,其涉及將一圖案自一倍縮光罩轉印至配置在一半導體晶圓上之一光阻劑。半導體製造程序之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沈積及離子植入。
大多數單片積體電路被製造為一晶圓上之數批次裝置。藉由在一單一晶圓上具有許多此等裝置,裝置更易於處置且製造成本可降低。由於各裝置內之功能元件趨於極小,故其等可容易損壞。例如,微粒物質對於一裝置可係不利的而無關於該微粒物質是否係空中傳播或液體傳播。著陸在晶圓之表面上之任何粒子在其等未以一及時方式被移除之情況下可干擾製造程序且引起裝置失效。以一類比方式,刮痕及對所要製造程序之其他實體干擾亦可引起裝置失效。
由於儘可能快地識別且校正此等實體異常(例如,缺陷)之原因如此重要,故通常在製造循環之各個階段給予晶圓一實體檢測。檢測系統嘗試不僅判定缺陷之類型(例如,刮痕或微粒物質),而且亦判定缺陷源。在許多情況中,缺陷之類型及缺陷之圖案可提供關於缺陷源之線索。通常言之,此等檢測已藉由在某一種類之一顯微鏡下研究一或多個晶圓,從而搜尋缺陷且嘗試基於經驗判定其等來源之一經訓練技術人員或工程師手動完成。
各晶圓之手動檢測係麻煩的且歸因於諸如疲勞、缺乏經驗或粗心之因素,結果可能不準確且不一致。由於涉及大量晶圓,故手動檢測在一製造環境中亦係不切實際的。空間簽章分析提供自動追蹤一積體電路晶圓程序中之問題之能力。可在製造程序之不同階段對晶圓執行空間簽章分析以偵測晶圓上之缺陷之某些圖案。可將經識別圖案映射至晶圓經歷之一不同程序。例如,一有缺陷CMP程序可引起長彎曲刮痕。因此,可自動偵測程序問題而無需訴諸於微觀缺陷之一子集之精細研究(其通常需要一掃描電子顯微鏡檢視)。此繼而導致更快校正動作,從而改良良率且增加利潤。
不幸地,空間簽章分析係一不靈活程序,且通常具有個別地過度分析缺陷之一趨勢,且重複地如此做而不辨識可存在之缺陷之圖案。因此,空間簽章分析通常具有判定缺陷之性質之一問題,趨於耗時太長且不可擴展或重新組態超出其原始實施能力及參數。
先前系統已使用具有晶圓簽章之參數規則。在一先前實例中,一像素級簽章分析平台藉由設定一系列參數規則或藉由使用一圖案模板而偵測簽章。參數搜尋限於基本數學可描述形狀。針對各形狀組態獨立規則,此導致過度擬合或遺漏偵測。另外,大多數程序簽章無法藉由使用諸如線、弧及圓形之簡單規則定義。一模板搜尋用於解決複雜形狀,但此受由一使用者定義之模板限制。關鍵簽章涵蓋形狀、大小、密度及完整性之若干變動。此等先前參數規則延遲發現受影響晶圓及任何根本原因分析,此降低半導體製造商之良率。
因此,需要經改良方法及系統。
在一第一實施例中提供一種方法。該方法包含在一處理器處接收一晶圓圖,其中該晶圓圖係針對一整個晶圓之一表面。該處理器經組態以運行用於對該晶圓圖進行分類之一基於機器學習之模型。使用該基於機器學習之模型及該晶圓圖上之一簽章對該晶圓圖進行分類。該基於機器學習之模型使用轉移學習。
該方法可進一步包含判定該分類之一可信度位準。該可信度位準係基於該簽章中之一缺陷之關鍵性。
該方法可進一步包含若該簽章在一可信度位準之外,則發送一警告。
該方法可進一步包含:在該處理器處接收複數個樣本晶圓圖;使用該處理器基於一缺陷之一根本原因對該等樣本晶圓圖進行分類;及使用該處理器自該等樣本晶圓圖產生樣本簽章之一庫。在一例項中,可使用該處理器自複數個缺陷圖、分級排序圖及/或度量衡圖提取影像,且可使用該處理器擴增該等影像。在一例項中,訓練該基於機器學習之模型使用來自該等影像之經提取特徵。
該方法可包含將該晶圓圖與具有一相同分類之晶圓圖分群在一起。
在一第二實施例中提供一種系統。該系統包含一半導體晶圓檢測系統及與該半導體晶圓檢測系統電子通信之一處理器。該處理器經組態以接收一晶圓圖且使用該基於機器學習之模型及該晶圓圖上之一簽章對該晶圓圖進行分類。該晶圓圖係針對一整個晶圓之一表面。該處理器經組態以運行用於對該晶圓圖進行分類之一基於機器學習之模型。該基於機器學習之模型使用轉移學習。
該半導體晶圓檢測系統可包含一光源或一電子束源。
該半導體晶圓檢測系統可產生該晶圓圖。
該處理器可進一步經組態以判定該分類之一可信度位準。該可信度位準可係基於該簽章中之一缺陷之關鍵性。
該處理器可進一步經組態以若該簽章在一可信度位準之外,則發送一警告。
該處理器可進一步經組態以:接收複數個樣本晶圓圖;基於一缺陷之一根本原因對該等樣本晶圓圖進行分類;且自該等樣本晶圓圖產生樣本簽章之一庫。在一例項中,該處理器進一步經組態以自複數個缺陷圖、分級排序圖及/或度量衡圖提取影像,且擴增該等影像。在一例項中,該處理器進一步經組態以使用來自該等影像之經提取特徵訓練該基於機器學習之模型。
該處理器可進一步經組態以將該晶圓圖與具有一相同分類之晶圓圖分群在一起。
在一第三實施例中提供一種非暫時性電腦可讀儲存媒體。該非暫時性電腦可讀儲存媒體包括用於對一或多個運算裝置執行以下步驟之一或多個程式。使用一基於機器學習之模型及一晶圓圖上之一簽章對該晶圓圖進行分類。該基於機器學習之模型使用轉移學習。該晶圓圖係針對一整個晶圓之一表面。
該等步驟可進一步包含:接收複數個樣本晶圓圖;基於一缺陷之一根本原因對該等樣本晶圓圖進行分類;及自該等樣本晶圓圖產生樣本簽章之一庫。
該等步驟可進一步包含自複數個缺陷圖、分級排序圖及/或度量衡圖提取影像,及擴增該等影像。
該等步驟可進一步包含使用來自該等影像之經提取特徵訓練該基於機器學習之模型。
相關申請案之交叉參考
本申請案主張2020年8月25日申請且被指定為申請案第202041036573號之印度專利申請案及2020年10月8日申請且被指定為美國申請案第63/089,036號之美國臨時專利申請案之優先權,該等案之揭示內容藉此以引用的方式併入。
儘管將依據特定實施例描述所主張之標的物,然其他實施例(包含未提供本文中闡述之所有益處及特徵之實施例)亦在本發明之範疇內。可在不偏離本發明之範疇之情況下進行各種結構、邏輯、程序步驟、及電子變化。因此,本發明之範疇僅參考隨附發明申請專利範圍而界定。
轉移學習及機器學習可用於依一晶圓級對晶圓簽章進行自動分類。晶圓圖簽章將資訊提供給半導體製造商,此係因為其等輔助根本原因分析。圖4係展示三個影響點之晶圓處置器問題之一例示性簽章。圖5係展示長弧刮痕之CMP問題之一例示性簽章。圖6繪示各種半導體製造問題之其他例示性簽章。此等實例之各者具有一不同源,且快速地識別晶圓上之簽章可幫助判定問題之一根本原因。
現有應用係手動的或使用麻煩且不足夠,尤其鑑於落在一單一類別下之簽章形狀之分佈。轉移學習可用於對晶圓圖上之多標記、多類別簽章進行分類。此有助於變化經引入之新簽章,此係因為重新訓練快速且趨於需要低運算能力。
圖7係一方法100之一實施例。方法100之一些或全部步驟可使用一處理器。在101,在一處理器處接收一晶圓圖。晶圓圖係針對一整個晶圓之一表面,其在圖4至圖6之實例中展示。表面可係一晶圓之一平坦表面或包含晶圓上之裝置(例如,晶粒或積體電路)之一表面。處理器經組態以運行一基於機器學習之模型以對晶圓圖進行分類。
在102,使用基於機器學習之模型及晶圓圖上之一簽章對晶圓圖進行分類。基於機器學習之模型使用轉移學習。一晶圓簽章可有助於半導體製造商。此等可用於尋找錯誤之根本原因。一根本原因之早期發現意謂更少晶圓報廢。此增加一半導體製造商之良率。藉由自動化且量化簽章,半導體製造商亦可更快地對線內偏移(excursion)作出反應且運行根本原因分析。
在圖3中展示之實施例中,接收樣本晶圓圖。基於一缺陷之一根本原因對此等樣本晶圓圖進行分類。例如,圖2繪示簽章之一例示性分類。如圖3中展示,自樣本晶圓圖產生樣本簽章之一庫。可使用來自此等影像之經提取特徵訓練基於機器學習之模型。
在圖3之實施例中,自缺陷圖、分級排序圖及/或度量衡圖提取影像。一缺陷圖係展示經偵測缺陷位置之一晶圓圖。一分級排序圖係展示晶圓中之晶粒之通過/未通過狀態之一晶圓圖。一度量衡圖係展示晶圓中之實際組件之經量測性質或放置於晶圓中之特殊目標標記之一晶圓圖。可接著擴增此等影像。
可執行提取。可訓練一深度神經網路以將影像映射至類別。深度神經網路之中間層可提供影像之一抽象表示。在提取期間,處理一影像且自中間層之一者之輸出提取特徵。若使用已在一不同影像資料集上訓練之一深度神經網路產生特徵,則執行轉移學習。
可執行擴增。擴增包含藉由以使得原始影像可被視為不同例項之此一方式變換原始影像(即,一小資料集)而產生一更大影像資料集。未將影像變換成足以被視為一完全不同資料集之部分。
使用圖1之流程圖進一步解釋圖3之實施例。自經擴增影像提取特徵。接著對此等特徵進行分類且將其等添加至樣本簽章庫。一使用者可基於樣本簽章庫中之實例驗證及/或重新訓練基於機器學習之模型。手動分類可用於提供一真實數據。例如,一半導體製造商可對一個或兩個實例進行分類,且接著基於機器學習之模型可判定剩餘部分。在圖1之實例中,將影像分類成類別A-n。基於機器學習之模型可檢查趨勢,追蹤缺陷源且監測生產。基於機器學習之模型亦可尋找特定晶圓處理步驟或工具之複雜簽章。
方法100之實施例可解決在一半導體製造環境中找到之可歸因於晶圓報廢而影響良率損失之簽章之範圍。可對由於輸入係影像而非資料而無法使用現有方法定義之簽章類別進行分類。
在一例項中,可判定分類之一可信度位準。可信度位準可係基於簽章中之一缺陷之關鍵性。可監測自可信度位準之偏移。例如,若簽章在一可信度位準之外,則可發送一警告。可信度度量可使半導體製造商能夠基於簽章分級的關鍵性控制簽章分級之純度。
在一例項中,可將晶圓圖與具有一相同分類之晶圓圖分群在一起。可基於不同形狀、大小及形式有組織地將簽章分群。
轉移學習可與基於機器學習之模型一起使用。轉移學習係其中在一個任務上訓練之一模型在一第二相關任務上重新規劃之一機器學習技術。當模型化第二任務時,轉移學習可實現迅速進展或經改良效能。
本文中揭示之實施例可實現使用轉移學習及深度學習技術之一組合進行自動晶圓級簽章分析。在一原型中,簽章類別以大於80%之精確性被偵測且基於初始分析被召回。在一特定實例中,分析大約3000個生產晶圓。簽章類別之純度可由一可信度矩陣控制。本文中揭示之實施例適用於跨晶圓、層及裝置之半導體製造中。可監測一週期內之工具穩定性。
為了訓練一模型以偵測一晶圓上之CMP問題,可使用已在一類似域(例如,晶圓處置問題)上訓練之一模型。在圖4及圖5中展示此等類型之簽章。然而,實務上,由於模型繼承其訓練資料之偏差且不知道如何一般化至新域,故可發生效能之一劣化或崩潰。為了訓練一模型以執行一新任務(諸如偵測蝕刻缺陷),無法重用一現有模型,此係因為任務之間之標記不同。
實務上,將儘可能多的知識自源設定轉移至目標任務或域可係有益的。取決於資料,此知識可採用各種形式。例如,其可關於物件如何構成以識別新穎物件。
轉移學習可藉由利用一些相關任務或域之已存在的經標記資料而處置此等案例。在解決源域中之源任務時獲得之此知識可經儲存且應用至新晶圓簽章。
轉移學習可通常被定義為透過來自已經被學習之一相關任務(一或多個源任務)之知識之轉移之一新任務(或一目標任務)中之學習的改良。在本文中描述之實施例中,僅使用標稱例項訓練基於機器學習之模型涉及學習一或多個源任務,且使用非標稱例項重新訓練基於機器學習之模型將來自源任務(標稱例項)之知識轉移至目標任務(非標稱例項)。在轉移學習中,代理者在其學習一源任務時對於一目標任務一無所知(或甚至不知道將存在一目標任務)。例如,在本文中描述之實施例中,基於機器學習之模型在其使用先前資料訓練時對於新簽章一無所知。然而,一般言之,可以此項技術中已知之任何適合方式執行本文中描述之轉移學習。
歸納轉移可不僅被視為用於改良一標準監督式學習任務中之學習之一方式,而且亦為抵消由涉及相對小資料集之任務提出之困難之一方式。亦即,若一任務存在相對小量之資料或類別標記,則將其視為一目標任務且執行自一相關源任務之歸納轉移可導致更準確模型。儘管事實為假定兩個資料集來自不同概率分佈,然此等方法可使用源任務資料以增強目標任務資料。可如美國公開案第20170193400號中描述般進一步執行如本文中描述之轉移學習,該案宛如全文陳述般以引用之方式併入本文中。可如此專利申請案及本文中揭示之相關申請案中描述般進一步組態本文中描述之實施例。
由本文中描述之實施例使用之重新訓練(及訓練)架構可經設計以使用最小數目個樣本收斂至真實數據(針對驗證樣本)。在一實施例中,一或多個組件包含一或多個額外組件,使用一或多個額外組件執行重新訓練。一或多個額外組件可包含針對樣品上之全部層之一共同母網路、針對樣品上之全部層之一大型共同母網路或其他組件。例如,轉移學習方法可應用至使用本文中描述之任何轉移學習訓練輸入產生方法產生之(若干)訓練集以訓練基於機器學習之模型。
在一例項中,一深度神經網路(例如,一VGG19深度神經網路)用於自一晶圓圖提取一特徵向量。深度神經網路之後可接著用於執行分類之一系列邏輯迴歸模型。深度神經網路可係基於機器學習之模型。
一般言之,「深度學習」 (亦稱為深度結構化學習、階層式學習或深度機器學習)係基於嘗試模型化資料之高階抽象化之一組演算法之機器學習之一分支。在一簡單情況中,可存在兩組層:接收一輸入信號之一組層及發送一輸出信號之一組層。當輸入層接收一輸入時,其將輸入之一經修改版本傳遞至下一層。在一深度網路中,輸入與輸出之間存在許多層,從而容許演算法使用由多個線性及非線性變換構成之多個處理層。
深度學習係基於資料之學習表示之機器學習方法之一更廣泛族之部分。一觀察(例如,一影像)可以許多方式(諸如每像素之強度值之一向量)或以一更抽象方式(作為一組邊緣、特定形狀之區域等)表示。一些表示在簡化學習任務(例如,面部辨識或面部表情辨識)方面比其他表示更佳。深度學習之一個承諾係使用有效演算法來替換手工特徵用於無監督或半監督式特徵學習及階層式特徵提取。
在此領域中之研究嘗試製作更佳表示且產生模型以自大規模未標記資料學習此等表示。一些表示受神經科學之進展啟發且鬆散地基於一神經系統中之資訊處理及通信型樣之解譯,諸如嘗試定義各種刺激與腦中之相關聯神經元回應之間的一關係之神經編碼。
在一些實施例中,深度學習模型係一生成模型。一「生成」模型可大體上被定義為本質上概率性之一模型。可基於一適合訓練資料集學習生成模型(其中可學習其參數)。在一實施例中,深度學習模型經組態為一深度生成模型。例如,模型可經組態以具有一深度學習架構,其中模型可包含執行數個演算法或變換之多個層。
在另一實施例中,深度學習模型經組態為一神經網路。在一進一步實施例中,深度學習模型可係具有一組權重之一深度神經網路,該組權重根據該模型已被饋送以訓練該模型之資料模型化世界。神經網路可大體上被定義為基於神經單元之一相對大集合之一運算方法,其鬆散地模型化一生物大腦使用由軸突連接之生物神經元之相對大叢集解決問題之方式。各神經單元與許多其他神經單元連接,且鏈結可強制執行或抑制其等對經連接神經單元之激發狀態之效應。此等系統係自學習且經訓練而非明確程式化且在解決方案或特徵偵測難以按一傳統電腦程式表達之領域中具有優勢。
神經網路通常由多個層組成,且信號路徑自前部橫越至後部。神經網路之目標係以與人腦相同之方式解決問題,雖然若干神經網路要抽象得多。現代神經網路項目通常使用數千至數百萬個神經單元及數百萬個連接工作。神經網路可具有此項技術中已知之任何適合架構及/或組態。
在一項實施例中,資訊包含對於在樣品上偵測到之一缺陷之一分類。在一項此實施例中,深度學習模型經組態為一AlexNet。例如,一AlexNet包含其後接著數個完全連接層(例如,3)之數個卷積層(convolutional layer)(例如,5),其等組合地經組態且經訓練以對影像進行分類。
在另一此實施例中,深度學習模型經組態為一GoogleNet。例如,一GoogleNet可包含層,諸如卷積層、匯集層及完全連接層,諸如經組態且經訓練以對影像進行分類之本文中進一步描述之層。雖然GoogleNet架構可包含相對高數目個層,但一些層可並行操作,且彼此並行運作之層的群組通常被稱為起始模組。其他層可循序操作。因此,GoogleNet與本文中描述之其他神經網路不同之處在於並非全部層皆以一循序結構配置。
在一進一步此實施例中,深度學習模型經組態為一VGG網路。例如,藉由增加卷積層之數目同時固定架構之其他參數而形成VGG網路。藉由在全部層中使用實質上小的卷積濾波器可使添加卷積層以增加深度變可能。如同本文中描述之其他神經網路,VGG網路經形成且經訓練以對影像進行分類。VGG網路亦包含其後接著完全連接層之卷積層。經組態為VGG之神經網路之實例在Simonyan等人之「Very Deep Convolutional Networks for Large-Scale Image Recognition」,ICLR 2015年中描述,該案宛如全文陳述般以引用之方式併入本文中。可如此參考案中描述般進一步組態本文中描述之深度學習模型。
在一些此等實施例中,深度學習模型經組態為一深度殘差網路。例如,如同本文中描述之一些其他網路,一深度殘差網路可包含其後接著完全連接層之卷積層,其等組合地經組態且經訓練用於影像分類。在一深度殘差網路中,該等層經組態以參考層輸入學習殘差功能而非學習未引用功能。特定言之,代替希望各一些堆疊層直接擬合一所要底層映射,明確容許此等層擬合一殘差映射,此由具有捷徑連接之前饋神經網路實現。捷徑連接係略過一或多個層之連接。可藉由獲取包含卷積層之一普通神經網路結構且插入捷徑連接而形成一深度殘差網路,其藉此獲取普通神經網路且將其轉變為其殘差學習對應物。
在一進一步此實施例中,深度學習模型包含經組態用於對樣品上之缺陷進行分類之一或多個完全連接層。一「完全連接層」可大體上被定義為其中各節點連接至先前層中之各節點之一層。(若干)完全連接層可基於由(若干)卷積層提取之特徵執行分類,其等可如本文中進一步描述般組態。(若干)完全連接層經組態用於特徵選擇及分類。換言之,(若干)完全連接層自一特徵圖選擇特徵且接著基於經選擇特徵對(若干)影像中之缺陷進行分類。經選擇特徵可包含特徵圖中之全部特徵(若適當)或僅特徵圖中之一些特徵。
若深度學習模型輸出針對在樣品上偵測到之一缺陷之一分類,則深度學習模型可輸出一影像分類,該影像分類可包含每一影像之一分類結果與相關聯於各分類結果之一可信度。亦可如本文中進一步描述般使用影像分類之結果。影像分類可具有任何適合格式(諸如一影像或缺陷ID、諸如「圖案」、「橋」等之一缺陷描述)。可如本文中進一步描述般儲存且使用影像分類結果。
在一些實施例中,由深度學習模型判定之資訊包含由深度學習模型提取之影像之特徵。在一項此實施例中,深度學習模型包含一或多個卷積層。(若干)卷積層可具有此項技術中已知之任何適合組態且通常經組態以藉由使用一或多個濾波器將一卷積函數應用至輸入影像而判定依據跨影像之位置而變化之一影像之特徵(即,一特徵圖)。以此方式,深度學習模型(或深度學習模型之至少一部分)可經組態為一卷積神經網路(CNN)。例如,深度學習模型可經組態為用於提取局部特徵之一CNN,其通常係卷積層及匯集層之堆疊。本文中描述之實施例可利用深度學習概念(諸如一CNN)來解決通常難處理之表示反演問題。深度學習模型可具有此項技術中已知之任何CNN組態或架構。一或多個匯集層亦可具有此項技術中已知之任何適合組態(例如,最大匯集層)且通常經組態用於減少由一或多個卷積層產生之特徵圖之維數同時維持最重要的特徵。
藉由深度學習模型判定之特徵可包含本文中進一步描述或此項技術中已知之可自本文中描述之輸入推斷(且可能用於產生本文中進一步描述之輸出)之任何適合特徵。例如,特徵可包含每一像素之強度值之一向量。特徵亦可包含本文中描述之任何其他類型之特徵,例如,純量值的向量、獨立分佈、聯合分佈的向量或此項技術中已知之任何其他適合特徵類型。
一般言之,本文中描述之深度學習模型係一經訓練深度學習模型。例如,可事先藉由一或多個其他系統及/或方法訓練針對其執行一或多個診斷功能之深度學習模型。另外,可在針對深度學習模型執行一或多個診斷功能之前藉由本文中描述之實施例之一或多者訓練深度學習模型。以此方式,本文中描述之診斷功能不同於在一深度學習模型之訓練期間執行之深度學習模型特性化,此係因為在本文中描述之實施例中,已經產生且訓練深度學習模型且接著如本文中描述般判定模型之功能性,其可接著用於執行深度學習模型之一或多個額外功能。
在圖8中展示一系統200之一項實施例。該系統200包含基於光學之子系統201。一般而言,該基於光學之子系統201經組態用於藉由將光引導至(或使光掃描遍及)一樣品202及偵測來自樣品202之光來針對樣品202產生基於光學之輸出。在一項實施例中,樣品202包含一晶圓。該晶圓可包含此項技術中已知之任何晶圓。在另一實施例中,樣品202包含倍縮光罩。該倍縮光罩可包含此項技術中已知之任何倍縮光罩。
在圖8中所展示之系統200之實施例中,基於光學之子系統201包含經組態將光引導至樣品202之一照明子系統。該照明子系統包含至少一個光源。例如,如圖8中所展示,該照明子系統包含光源203。在一項實施例中,該照明子系統經組態以按一或多個入射角(其或其等可包含一或多個傾斜角及/或一或多個法線角)將光引導至樣品202。例如,如圖8中所展示,以一傾斜入射角引導來自光源203之光穿過光學元件204且接著穿過透鏡205而至樣品202。該傾斜入射角可包含任何合適之傾斜入射角,其可取決於例如樣品202之特性而改變。
基於光學之子系統201可經組態以在不同時間按不同入射角將光引導至樣品202。例如,基於光學之子系統201可經組態以更改該照明子系統之一或多個元件之一或多個特性,使得光可按與圖8中所展示之入射角不同之一入射角被引導至樣品202。在一個此實例中,該基於光學之子系統201可經組態以移動光源203、光學元件204及透鏡205,使得光按一不同傾斜入射角或一法線(或一近法線)入射角被引導至樣品202。
在一些例項中,該基於光學之子系統201可經組態以同時按一個以上入射角將光引導至樣品202。例如,該照明子系統可包含一個以上照明通道,該等照明通道之一者可包含如圖8中所展示之光源203、光學元件204及透鏡205且該等照明通道之另一者(未顯示)可包含可不同地或相同地組態之類似元件,或可包含至少一光源及可能諸如本文中進一步描述之一或多個其他組件。若此光與另一光同時被引導至樣品,則按不同入射角被引導至樣品202之光之一或多個特性(例如,波長、偏光等)可不同,使由按不同入射角照明樣品202產生之光可在(若干)偵測器處彼此區分。
在另一例項中,該照明子系統可包含僅一個光源(例如,圖8中所展示之光源203)且來自光源之光可藉由該照明子系統之一或多個光學元件(未展示)而分離至不同光學路徑中(例如,基於波長、偏光等)。不同光學路徑之各者中之光接著可被引導至樣品202。多個照明通道可經組態以在相同時間或不同時間將光引導至樣品202(例如,當使用不同照明通道以循序照明樣品時)。在另一例項中,相同照明通道可經組態以在不同時間使用不同特性將光引導至樣品202。例如,在一些例項中,光學元件204可經組態為光譜濾波器且該光譜濾波器之性質可以多種不同方式(例如,藉由置換出該光譜濾波器)改變,使得不同波長之光可在不同時間被引導至樣品202。該照明子系統可具有此項技術中已知之用於將具有不同或相同特性之光按不同或相同入射角循序或同時引導至樣品202之任何其他合適組態。
在一項實施例中,光源203可包含一寬頻電漿(BBP)源。以此方式,由光源203產生且被引導至樣品202之光可包含寬頻光。然而,光源可包含任何其他合適光源,諸如雷射。雷射可包含此項技術中已知之任何合適雷射且可經組態以產生任何合適波長或此項技術中已知之波長之光。此外,雷射經組態以產生單色或近單色之光。以此方式,雷射可為一窄頻雷射。光源203亦可包含一多色光源,該多色光源產生多個離散波長或波段之光。
來自光學元件204之光可藉由透鏡205聚焦至樣品202上。儘管透鏡205在圖8中被展示為一單一折射光學元件,但應暸解,實務上,透鏡205可包含數個折射及/或反射光學元件,其等組合地將來自該光學元件之光聚焦至該樣品。圖8中所展示及本文中描述之照明子系統可包含任何其他合適之光學元件(未展示)。此等光學元件之實例包含(但不限於)(若干)偏光組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)光束分離器(諸如光束分離器213)、(若干)孔隙及類似物,其等可包含此項技術中已知之任何此等合適光學元件。此外,該基於光學之子系統201可經組態以基於照明之類型而更該該照明子系統之一或多個元件以用於產生基於光學之輸出。
基於光學之子系統201亦可包含一掃描子系統,該掃描子系統經組態以使光掃描遍及樣品202。例如,基於光學之子系統201可包含載物台206,在基於光學之輸出產生期間樣品202被安置在該載物台206上。該掃描子系統可包含任何合適機械及/或機器人總成(其包含載物台206),該總成可經組態以移動樣品202,使得光可掃描遍及樣品202。此外或替代地,基於光學之子系統201可經組態使得該基於光學之子系統201之一或多個光學元件執行光遍及樣品202之某一掃描。光可以任何合適方式(諸如以蛇形路徑或以螺旋形路徑)掃描遍及樣品202。
基於光學之子系統201進一步包含一或多個偵測通道。該一或多個偵測通道之至少一者包含一偵測器,該偵測器經組態以偵測歸因於由子系統照明樣品202而來自該樣品202之光且回應於經偵測光而產生輸出。例如,圖8中所展示之基於光學之子系統201包含兩個偵測通道,一個偵測通道藉由集光器207、元件208及偵測器209形成,且另一偵測通道藉由集光器210、元件211及偵測器212形成。如圖8中所展示,該兩個偵測通道經組態以按不同集光角度收集且偵測光。在一些例項中,兩個偵測通道經組態以偵測經散射光,且該等偵測通道經組態以偵測依不同角度自樣品202散射之光。然而,一或多個偵測通道經組態以偵測來自樣品202之另一類型之光(例如,經反射光)。
如圖8中進一步展示,兩個偵測通道經展示為定位於紙平面中且該照明子系統亦經展示定位於該紙平面中。因此,在此實施例中,兩個偵測通道經定位(例如,居中)於入射平面中。然而,一或多個偵測通道可經定位於入射平面外。例如,藉由集光器210、元件211及偵測器212形成之偵測通道可經組態以收集且偵測自入射平面散射之光。因此,此一偵測通道可被統稱為一「側」通道,且此一側通道可在實質上垂直於入射平面之一平面中居中。
儘管圖8展示包含兩個偵測通道之基於光學之子系統201之一實施例,但基於光學之子系統201可包含不同數目個偵測通道(例如,僅一個偵測通道或兩個或更多個偵測通道)。在一個此例項中,藉由集光器210、元件211及偵測器212形成之偵測通道可形成如上文描述之一個側通道,且基於光學之子系統201可包含形成為定位在入射平面之相對側上之另一側通道之一額外偵測通道(未展示)。因此,基於光學之子系統201可包含偵測通道,該偵測通道包含集光器207、元件208及偵測器209且在入射平面中居中且經組態以按法向於或接近法向於樣品202表面之(若干)散射角收集並偵測光。因此,此偵測通道可被統稱為一「頂部」通道,且基於光學之子系統201亦可包含如上文描述般組態之兩個或更多個側通道。因而,基於光學之子系統201可包含至少三個通道(即,一個頂部通道及兩個側通道),且該至少三個通道之各者具有其自身的集光器,其各者經組態以按不同於其他集光器之各者之散射角收集光。
如上文進一步描述,包含於基於光學之子系統201中之偵測通道之各者可經組態以偵測散射光。因此,圖8中所展示之基於光學之子系統201可經組態用於針對樣品202之暗場(DF)輸出產生。然而,基於光學之子系統201亦可或替代性地包含經組態用於針對樣品202之明場(BF)輸出產生之(若干)偵測通道。換言之,基於光學之子系統201可包含至少一個偵測通道,該至少一個偵測通道經組態以偵測自樣品202鏡面反射之光。因此,本文中描述之基於光學之子系統201可經組態用於僅DF、僅BF或DF及BF兩者之成像。儘管該等集光器之各者在圖8中被展示為單一折射光學元件,但應暸解,該等集光器之各者可包含一或多個折射光學晶粒及/或一或多個折射光學元件。
該一或多個偵測通道可包含此項技術中已知之任何合適偵測器。例如,該等偵測器可包含光電倍增管(PMT)、電荷耦合裝置(CCD)、延時積分(TDI)攝影機及此項技術中已知之任何其他合適偵測器。該等偵測器亦可包含非成像偵測器或成像偵測器。以此方式,若該等偵測器係非成像偵測器,則該等偵測器之各者可經組態以偵測散射光之特定特性(諸如強度),但可不經組態以偵測依據成像平面內之位置而變化之此等特性。因而,藉由包含在該基於光學之子系統之該等偵測通道之各者中之該等偵測器之各者產生之輸出可為信號或資料,而非影像信號或影像資料。在此等例項中,一處理器(諸如處理器214)可經組態以產生來自偵測器之非成像輸出之樣品202之影像。然而,在其他例項中,該等偵測器可經組態為成像偵測器,其等經組態以產生成像信號或影像資料。因此,基於光學之子系統可經組態以依數種方式產生本文中描述之光學影像或其他基於光學之輸出。
應注意,本文中提供圖8以大體上繪示一基於光學之子系統201之一組態,其可被包含於本文中描述之系統實施例中或其可產生由本文中描述之系統實施例所使用之基於光學之輸出。本文中描述之基於光學之子系統201組態可經變更以最佳化基於光學之子系統201之效能,如在設計一商業輸出擷取系統時通常所執行般。此外,本文中描述之系統可使用一現有系統來實施(例如,藉由將本文中描述之功能性添加至一現有系統)。對於一些此等系統,本文中描述之方法可經提供作為系統之選用功能性(例如,除該系統之其他功能性之外)。替代性地,本文中描述之系統可被設計為一全新系統。
處理器214可以任何合適方式耦合至系統200之組件(例如,經由一或多個傳輸媒體,其或其等可包含有線及/或無線傳輸媒體),使得處理器214可接收輸出。處理器214可經組態以使用該輸出執行數個功能。系統200可自處理器214接收指令或其他資訊。處理器214及/或電子資料儲存單元215視情況可與一晶圓檢測工具、一晶圓度量衡工具或一晶圓再檢測工具(未繪示)電子通信以接收額外資訊或發送指令。例如,處理器214及/或電子資料儲存單元215可與一掃描電子顯微鏡電子通信。
本文中描述之處理器214、(若干)其他系統或(若干)其他子系統可為各種系統之部分,包含一個人電腦系統、影像電腦、大型電腦系統、工作站、網路設備、網際網路設備或其他裝置。(若干)子系統或(若干)系統亦可包含此項技術中已知之任何合適處理器,諸如一平行處理器。此外,(若干)子系統或(若干)系統可包含具有高速處理之一平台及軟體(作為獨立或網路工具)。
處理器214及電子資料儲存單元215可經安置於系統200或另一裝置中或可為系統200或另一裝置之部分。在一實例中,處理器214及電子資料儲存單元215可為一獨立控制單元之部分或可在一集中式品質控制單元中。可使用多個處理器214或電子資料儲存單元215。
處理器214實務上可由硬體、軟體及韌體之任何組合實施。又,如本文中描述之其功能可藉由一個單元執行,或在不同組件當中劃分,其等之各者繼而可藉由硬體、軟體及韌體之任何組合來實施。供處理器214實施多種方法及功能之程式碼或指令可儲存於可讀儲存媒體中,諸如電子資料儲存單元215中之一記憶體或其他記憶體。
若系統200包含一個以上處理器214,則不同子系統可彼此耦合,使得影像、資料、資訊、指令等可在該等子系統之間發送。例如,一個子系統可藉由任何合適傳輸媒體耦合至(若干)額外子系統,該傳輸媒體可包含此項技術中已知之任何合適有線及/或無線傳輸媒體。此等子系統之兩者或更多者亦可藉由一共用電腦可讀儲存媒體(未展示)而有效地耦合。
處理器214可經組態以使用系統200之輸出或其他輸出執行數個功能。例如,處理器214可經組態以將該輸出發送至一電子資料儲存單元215或另一儲存媒體。處理器214可根據本文中描述之任何實施例組態。該處理器214亦可經組態以使用該系統200之輸出或使用來自其他源之影像或資料執行其他功能或額外步驟。
系統200及本文中描述之方法之各種步驟、功能及/或操作藉由以下一或多者實行:電子電路、邏輯閘、多工器、可程式化邏輯裝置、ASIC、類比或數位控制件/開關、微控制器或運算系統。實施諸如本文中描述之方法之程式指令可經由載體媒體傳輸或儲存於載體媒體上。該載體媒體可包含諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及類似物之一儲存媒體。一載體媒體可包含諸如一電線、電纜或無線傳輸鏈路之一傳輸媒體。例如,可藉由一單一處理器214或替代地多個處理器214實行貫穿本發明描述之各種步驟。此外,系統200之不同子系統可包含一或多個運算或邏輯系統。因此,上述描述不應被解釋為對本發明之限制,而僅係一圖解。
在一例項中,處理器214與系統200通信。處理器214經組態以執行方法100之實施例。在一例項中,處理器214可操作基於機器學習之模型。系統200可檢測晶圓之缺陷,其結果可用於產生在處理器214處接收之晶圓圖。
一額外實施例係關於一種非暫時性電腦可讀媒體,其儲存可在一控制器上執行以用於執行用於對一晶圓圖進行分類之一電腦實施方法之程式指令,如本文中所揭示。特定言之,如圖8中所展示,電子資料儲存單元215或其他儲存媒體可含有一非暫時性電腦可讀媒體,其包含可在處理器214上執行之程式指令。電腦實施方法可包含本文中描述之(若干)任何方法(包含方法100)之(若干)任何步驟。
該等程式指令可以多種方式之任一者實施,包含基於程序之技術、基於組件之技術及/或物件導向之技術等。例如,該等程式指令可使用ActiveX控制項、C++物件、JavaBeans、微軟基礎類別(MFC)、流式SIMD擴展(SSE)或其他技術或方法論來實施。
雖然系統200使用光,但方法100可使用一不同半導體檢測工具執行。例如,方法100可使用來自使用一電子束之一系統(諸如一掃描電子顯微鏡)或使用一離子束之一系統之結果執行。因此,系統可具有一電子束源或一離子束源。
儘管本發明已關於一或多項特定實施例來描述,但將暸解,本發明之其他實施例可在不偏離本發明之範疇之情況下進行。因此,本發明被視為僅受限於隨附發明申請專利範圍及其等之合理解釋。
100:方法 101:步驟 102:步驟 200:系統 201:基於光學之子系統 202:樣品 203:光源 204:光學元件 205:透鏡 206:載物台 207:集光器 208:元件 209:偵測器 210:集光器 211:元件 212:偵測器 213:光束分離器 214:處理器 215:電子資料儲存單元
為了更全面理解本發明之性質及目標,應參考結合隨附圖式進行之以下詳細描述,其中: 圖1係根據本發明之一操作之一流程圖; 圖2繪示簽章之一例示性分類; 圖3係根據本發明之簽章分類之一流程圖; 圖4係晶圓處置器問題之一例示性簽章; 圖5係CMP問題之一例示性簽章; 圖6繪示各種半導體製造問題之其他例示性簽章; 圖7係根據本發明之一方法之一實施例之一流程圖;及 圖8係根據本發明之一系統之一實施例。

Claims (20)

  1. 一種方法,其包括: 在一處理器處接收一晶圓圖,其中該晶圓圖係針對一整個晶圓之一表面,其中該處理器經組態以運行用於對該晶圓圖進行分類之一基於機器學習之模型;及 使用該基於機器學習之模型及該晶圓圖上之一簽章對該晶圓圖進行分類,其中該基於機器學習之模型使用轉移學習。
  2. 如請求項1之方法,其進一步包括判定該分類之一可信度位準,其中該可信度位準係基於該簽章中之一缺陷之關鍵性。
  3. 如請求項1之方法,其進一步包括若該簽章在一可信度位準之外,則發送一警告。
  4. 如請求項1之方法,其進一步包括: 在該處理器處接收複數個樣本晶圓圖; 使用該處理器基於一缺陷之一根本原因對該等樣本晶圓圖進行分類;及 使用該處理器自該等樣本晶圓圖產生樣本簽章之一庫。
  5. 如請求項4之方法,其進一步包括: 使用該處理器自複數個缺陷圖、分級排序圖及/或度量衡圖提取影像;及 使用該處理器擴增該等影像。
  6. 如請求項5之方法,其進一步包括使用來自該等影像之經提取特徵訓練該基於機器學習之模型。
  7. 如請求項1之方法,其進一步包括將該晶圓圖與具有一相同分類之晶圓圖分群在一起。
  8. 一種系統,其包括: 一半導體晶圓檢測系統;及 一處理器,其與該半導體晶圓檢測系統電子通信,其中該處理器經組態以: 接收一晶圓圖,其中該晶圓圖係針對一整個晶圓之一表面,其中該處理器經組態以運行一基於機器學習之模型以對該晶圓圖進行分類;且 使用該基於機器學習之模型及該晶圓圖上之一簽章對該晶圓圖進行分類,其中該基於機器學習之模型使用轉移學習。
  9. 如請求項8之系統,其中該半導體晶圓檢測系統包含一光源或一電子束源。
  10. 如請求項8之系統,其中該半導體晶圓檢測系統產生該晶圓圖。
  11. 如請求項8之系統,其中該處理器進一步經組態以判定該分類之一可信度位準,其中該可信度位準係基於該簽章中之一缺陷之關鍵性。
  12. 如請求項8之系統,其中該處理器進一步經組態以若該簽章在一可信度位準之外,則發送一警告。
  13. 如請求項8之系統,其中該處理器進一步經組態以: 接收複數個樣本晶圓圖; 基於一缺陷之一根本原因對該等樣本晶圓圖進行分類;且 自該等樣本晶圓圖產生樣本簽章之一庫。
  14. 如請求項13之系統,其中該處理器進一步經組態以: 自複數個缺陷圖、分級排序圖及/或度量衡圖提取影像;且 擴增該等影像。
  15. 如請求項14之系統,其中該處理器進一步經組態以使用來自該等影像之經提取特徵訓練該基於機器學習之模型。
  16. 如請求項8之系統,其中該處理器進一步經組態以將該晶圓圖與具有一相同分類之晶圓圖分群在一起。
  17. 一種非暫時性電腦可讀儲存媒體,其包括用於對一或多個運算裝置執行以下步驟之一或多個程式: 使用一基於機器學習之模型及一晶圓圖上之一簽章對該晶圓圖進行分類,其中該基於機器學習之模型使用轉移學習,且其中該晶圓圖係針對一整個晶圓之一表面。
  18. 如請求項17之非暫時性電腦可讀儲存媒體,其中該等步驟進一步包含: 接收複數個樣本晶圓圖; 基於一缺陷之一根本原因對該等樣本晶圓圖進行分類;及 自該等樣本晶圓圖產生樣本簽章之一庫。
  19. 如請求項18之非暫時性電腦可讀儲存媒體,其中該等步驟進一步包含: 自複數個缺陷圖、分級排序圖及/或度量衡圖提取影像;及 擴增該等影像。
  20. 如請求項19之非暫時性電腦可讀儲存媒體,其中該等步驟進一步包含使用來自該等影像之經提取特徵訓練該基於機器學習之模型。
TW110131488A 2020-08-25 2021-08-25 使用轉移學習之晶圓級簽章分群 TW202225678A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
IN202041036573 2020-08-25
IN202041036573 2020-08-25
US202063089036P 2020-10-08 2020-10-08
US63/089,036 2020-10-08
US17/405,014 2021-08-17
US17/405,014 US11967060B2 (en) 2020-08-25 2021-08-17 Wafer level spatial signature grouping using transfer learning

Publications (1)

Publication Number Publication Date
TW202225678A true TW202225678A (zh) 2022-07-01

Family

ID=80353893

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110131488A TW202225678A (zh) 2020-08-25 2021-08-25 使用轉移學習之晶圓級簽章分群

Country Status (7)

Country Link
US (1) US11967060B2 (zh)
EP (1) EP4154078A4 (zh)
JP (1) JP2023539235A (zh)
KR (1) KR20230056698A (zh)
CN (1) CN116113982A (zh)
TW (1) TW202225678A (zh)
WO (1) WO2022046677A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102665637B1 (ko) * 2023-10-19 2024-05-20 주식회사 에이아이비즈 복수의 이상 탐지 기법을 통합하여 공정 설비의 이상을 탐지하는 방법, 장치 및 프로그램
CN118067740B (zh) * 2024-04-18 2024-06-25 华南理工大学 一种用于滤波器的光测、电测检测设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718526B1 (en) 2003-02-07 2004-04-06 Kla-Tencor Corporation Spatial signature analysis
US7570796B2 (en) * 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US8041518B2 (en) * 2007-05-08 2011-10-18 Globalfoundries Inc. Determining die test protocols based on process health
KR101214806B1 (ko) 2010-05-11 2012-12-24 가부시키가이샤 사무코 웨이퍼 결함 검사 장치 및 웨이퍼 결함 검사 방법
US9437506B2 (en) * 2013-05-10 2016-09-06 Lattice Semiconductor Corporation Semiconductor defect characterization
US11580375B2 (en) 2015-12-31 2023-02-14 Kla-Tencor Corp. Accelerated training of a machine learning based model for semiconductor applications
US10360477B2 (en) 2016-01-11 2019-07-23 Kla-Tencor Corp. Accelerating semiconductor-related computations using learning based models
WO2017203600A1 (ja) 2016-05-24 2017-11-30 株式会社日立ハイテクノロジーズ 欠陥分類装置および欠陥分類方法
US11580398B2 (en) 2016-10-14 2023-02-14 KLA-Tenor Corp. Diagnostic systems and methods for deep learning models configured for semiconductor applications
US10598617B2 (en) * 2017-05-05 2020-03-24 Kla-Tencor Corporation Metrology guided inspection sample shaping of optical inspection results
US10387755B2 (en) * 2017-06-28 2019-08-20 Applied Materials, Inc. Classification, search and retrieval of semiconductor processing metrology images using deep learning/convolutional neural networks
US10713534B2 (en) 2017-09-01 2020-07-14 Kla-Tencor Corp. Training a learning based defect classifier
US11282695B2 (en) * 2017-09-26 2022-03-22 Samsung Electronics Co., Ltd. Systems and methods for wafer map analysis
KR102073362B1 (ko) 2017-12-29 2020-02-04 주식회사 비스텔 웨이퍼 맵을 불량 패턴에 따라 분류하는 방법 및 컴퓨터 프로그램
US10825650B2 (en) 2018-09-28 2020-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. Machine learning on wafer defect review
US11263737B2 (en) * 2019-01-10 2022-03-01 Lam Research Corporation Defect classification and source analysis for semiconductor equipment
US10930597B2 (en) * 2019-03-27 2021-02-23 Kla-Tencor Corporation Die screening using inline defect information

Also Published As

Publication number Publication date
JP2023539235A (ja) 2023-09-13
WO2022046677A1 (en) 2022-03-03
EP4154078A4 (en) 2024-06-19
KR20230056698A (ko) 2023-04-27
US11967060B2 (en) 2024-04-23
CN116113982A (zh) 2023-05-12
US20220067911A1 (en) 2022-03-03
EP4154078A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
CN111052332B (zh) 训练以学习为基础的缺陷分类器
CN111819676B (zh) 训练用于低分辨率图像中的缺陷检测的神经网络
CN111052331B (zh) 识别检测到的缺陷中的扰乱及所关注缺陷的系统及方法
TW201824417A (zh) 用於影像融合之以卷積神經網路為基礎之模式選擇及缺陷分類
US11961219B2 (en) Generative adversarial networks (GANs) for simulating specimen images
KR102650301B1 (ko) 장애물 필터링을 위한 심층 학습 네트워크
US11694327B2 (en) Cross layer common-unique analysis for nuisance filtering
US11774371B2 (en) Defect size measurement using deep learning methods
US11967060B2 (en) Wafer level spatial signature grouping using transfer learning
TW202226027A (zh) 用於光學或其他模式選擇之深度生成模型
US20240169514A1 (en) Defect detection in manufactured articles using multi-channel images
TW202206800A (zh) 深度學習為基礎之缺陷偵測