TW202044411A - 熱處理裝置、熱處理系統及熱處理方法 - Google Patents
熱處理裝置、熱處理系統及熱處理方法 Download PDFInfo
- Publication number
- TW202044411A TW202044411A TW109112261A TW109112261A TW202044411A TW 202044411 A TW202044411 A TW 202044411A TW 109112261 A TW109112261 A TW 109112261A TW 109112261 A TW109112261 A TW 109112261A TW 202044411 A TW202044411 A TW 202044411A
- Authority
- TW
- Taiwan
- Prior art keywords
- heat treatment
- temperature
- substrate
- waveform
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1927—Control of temperature characterised by the use of electric means using a plurality of sensors
- G05D23/193—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
- G05D23/1935—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces using sequential control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
本發明係於熱處理板上載置基板,對所載置之基板進行熱處理。自將基板載置於熱處理板上之時點起固定期間內,加熱器依照預定之初期動作條件動作,檢測熱處理板之溫度變化。於記憶部中記憶有複數個候補波形及與複數個候補波形分別對應之複數個初期動作條件之情形時,自複數個候補波形中將一個候補波形決定為基準波形。自將基板載置於熱處理板上之時點起固定期間內,加熱器依照與決定為基準波形之一個候補波形對應之初期動作條件動作,檢測熱處理板之溫度變化。以檢測出之溫度變化接近基準波形之方式變更記憶部中所記憶之初期動作條件。
Description
本發明係關於一種對基板進行熱處理之熱處理裝置、熱處理系統及熱處理方法。
自先前起,一直使用熱處理裝置對液晶顯示裝置或有機EL(Electro Luminescence,電致發光)顯示裝置等使用之FPD(Flat Panel Display,平板顯示器)用基板、半導體基板、光碟用基板、磁碟用基板、磁光碟用基板、光罩用基板、陶瓷基板或太陽電池用基板等各種基板進行熱處理。
熱處理裝置中,例如藉由於保持為預先設定之溫度(以下稱為設定溫度)之板構件上支持基板,對該基板進行熱處理。根據對基板之處理內容變更設定溫度。
例如,日本專利第5658083號記載之溫度變更系統中,藉由調整烘烤板部(板構件)所包含之加熱器層之驅動狀態,可使該烘烤板部之溫度上升或下降。
然,若於保持為設定溫度之板構件載置未處理之基板,則板構件之溫度受到基板之溫度影響會發生變化。因此,較理想為於板構件上載置基板時,使板構件之溫度迅速恢復設定溫度。
載置未處理基板時之板構件之溫度變化在一定程度上可預測。因此,通常,於熱處理裝置中,預先決定將基板載置於板構件上後用以使板構件之溫度恢復設定溫度之動作條件。然而,視設置熱處理裝置空間之溫度或熱處理裝置之個體差異等,存在即便使熱處理裝置依照預定之動作條件動作,亦難以使板構件之溫度迅速恢復設定溫度之情形。於該情形時,無法以高精度進行基板之熱處理。
本發明之目的在於提供一種可迅速且高精度地進行基板之熱處理之熱處理裝置、熱處理系統及熱處理方法。
(1)根據本發明之一態樣之熱處理裝置係對基板進行熱處理者,具備:板構件,其供載置基板;熱處理部,其通過板構件對載置於板構件上之基板進行熱處理;記憶部,其記憶於板構件上載置基板時點起固定期間內熱處理部之動作條件;動作控制部,其使熱處理部依照記憶部中記憶之動作條件動作;溫度檢測器,其檢測板構件之溫度;及條件變更部,其以使熱處理部依照動作條件動作時藉由溫度檢測器檢測出之溫度變化接近預定之基準波形的方式,變更記憶部中記憶之動作條件。
於該熱處理裝置中,於板構件上載置基板,對載置之基板進行熱處理。於該熱處理初期,將基板載置於板構件上之時點起固定期間內,熱處理部依照記憶部中記憶之動作條件動作。又,檢測板構件之溫度變化。以使檢測出之溫度變化接近基準波形之方式變更記憶部中記憶之動作條件。
藉此,於對複數個基板依序進行熱處理之情形時,於各熱處理初期,熱處理部依照上次熱處理時變更之動作條件動作。藉此,剛將基板載置於板構件上後之板構件之溫度變化與上次熱處理時相比更接近基準波形。
如此,將剛於板構件上載置基板後之板構件之溫度變化逐漸修正為適當之溫度變化。因此,將剛載置基板後之板構件之溫度迅速調整至用以對該基板進行熱處理之適當溫度。
又,根據上述構成,即便於熱處理裝置周邊之溫度變化之情形時,亦根據該溫度變化變更動作條件。因此,適當地進行基板之熱處理而不受熱處理裝置周圍之溫度變化影響。該等之結果為,可迅速且高精度地進行基板之熱處理。
(2)亦可為動作條件包含一個或複數個控制參數之值,條件變更部以使檢測出之溫度變化接近基準波形之方式變更記憶部中記憶之一個或複數個控制參數中至少1個之值。
於該情形時,可藉由變更一個或複數個控制參數中至少1個之值之簡單處理適當調整剛載置基板後之板構件之溫度。
(3)亦可為熱處理部構成為可進行PID控制,一個或複數個控制參數包含PID控制(Proportional-Integral-Derivative Control,比例積分微分控制)之比例參數、積分參數及微分參數中至少1個,上述PID控制係用以自將基板載置於板構件上之時點起使板構件之溫度恢復至用於對基板進行處理之處理溫度。
於該情形時,藉由變更比例參數、積分參數及微分參數之值中至少1個,可適當調整剛載置基板後之板構件之溫度。
(4)一個或複數個控制參數亦可包含熱處理部之輸出之上限。
於該情形時,藉由變更熱處理部之輸出之上限,可適當調整剛載置基板後之板構件之溫度。
(5)條件變更部亦可以如下方式進行動作條件之變更,即,使將基板載置於板構件上之時點起至藉由溫度檢測器檢測出之溫度恢復用於對基板進行處理之處理溫度之時點為止的到達時間接近預先設定之設定時間。
於該情形時,可基於到達時間及設定時間,適當調整剛載置基板後之板構件之溫度。
(6)條件變更部亦可以如下方式進行動作條件之變更,即,使將基板載置於板構件上之時點起固定期間內之特定時點藉由溫度檢測器檢測出之溫度之值接近基準波形中與特定時點對應之部分之溫度之值。
於該情形時,可基於板構件之溫度之值,適當調整剛載置基板後之板構件之溫度。
(7)條件變更部亦可以如下方式進行動作條件之變更,即,使檢測出之溫度之波形產生之相對於用以對基板進行熱處理之設定溫度的超越量或不足量變小。
於該情形時,可基於相對於設定溫度之超越量或不足量,適當調整剛載置基板後之板構件之溫度。
(8)根據本發明之另一態樣之熱處理裝置係對基板進行熱處理者,具備:板構件,其供載置基板;熱處理部,其通過板構件對載置於板構件上之基板進行熱處理;第1記憶部,其記憶表示將基板載置於板構件上之時點起固定期間內板構件之虛擬溫度變化之複數個候補波形,並且記憶與複數個候補波形分別對應之熱處理部之複數個動作條件;溫度檢測器,其檢測板構件之溫度;決定部,其自第1記憶部中記憶之複數個候補波形中將一個候補波形決定為基準波形;動作控制部,其使熱處理部依照第1記憶部中記憶之複數個動作條件中與決定為基準波形之一個候補波形對應之動作條件動作;及條件變更部,其以使熱處理部依照與一個候補波形對應之動作條件動作時藉由溫度檢測器檢測出之溫度變化接近基準波形之方式變更第1記憶部中記憶之與一個候補波形對應之動作條件。
於該熱處理裝置中,於第1記憶部中記憶表示將基板載置於板構件上之時點起固定期間內板構件之虛擬溫度變化的複數個候補波形。又,於第1記憶部中記憶與複數個候補波形分別對應之熱處理部之複數個動作條件。自第1記憶部中記憶之複數個候補波形中將一個候補波形決定為基準波形。
其後,於板構件上載置基板,對載置之基板進行熱處理。於該熱處理初期,將基板載置於板構件上之時點起固定期間內,熱處理部依照與決定為基準波形之一個候補波形對應之動作條件動作。又,檢測板構件之溫度變化。以使檢測出之溫度變化接近基準波形之方式變更第1記憶部中記憶之與一個候補波形對應之動作條件。
藉此,於對複數個基板依序進行熱處理之情形時,於各熱處理初期熱處理部依照上次熱處理時變更之動作條件動作。藉此,剛將基板載置於板構件上後之板構件之溫度變化與上次熱處理時相比更接近基準波形。
如此,將剛於板構件上載置基板後之板構件之溫度變化逐漸修正為適當之溫度變化。因此,將剛載置基板後之板構件之溫度迅速調整至用以對該基板進行熱處理之適當溫度。
又,根據上述構成,即便於熱處理裝置周邊之溫度變化之情形時,亦根據該溫度變化變更動作條件。因此,適當地進行基板之熱處理而不受熱處理裝置周圍之溫度變化影響。
進而,根據上述構成,將複數個候補波形中之一個候補波形決定為表示剛將基板載置於板構件上後之板構件之適當溫度變化的基準波形。該等之結果為,可適當且高精度地進行基板之熱處理。
(9)亦可為熱處理裝置進而具備操作部,上述操作部係由使用者操作,用以自第1記憶部中記憶之複數個候補波形中選擇一個候補波形;決定部回應於使用者對操作部之操作,將藉由操作部自第1記憶部中記憶之複數個候補波形中選擇之一個候補波形決定為基準波形。
於該情形時,使用者可使用操作部容易地自複數個候補波形將一個候補波形決定為基準波形。
(10)熱處理裝置亦可進而具備顯示控制部,該顯示控制部使顯示部可選擇地顯示複數個候補波形中之至少一部分。
於該情形時,使用者可一面確認顯示於顯示部之至少一部分候補波形,一面將一個候補波形容易地決定為基準波形。
(11)亦可為第1記憶部中記憶之複數個候補波形包含與複數個溫度區域分別對應之複數個候補波形群,決定部構成為可將用以對基板進行熱處理之溫度決定為設定溫度,顯示控制部於已藉由決定部決定設定溫度之情形時,使顯示部可選擇地顯示與所決定之處理溫度所屬之溫度區域對應之候補波形群之複數個候補波形。
於該情形時,使用者可根據設定溫度容易地掌握可選擇之候補波形。因此,防止將不適當之候補波形決定為基準波形。
(12)亦可為第1記憶部中記憶之複數個動作條件之各者包含一個或複數個控制參數之值,條件變更部以使檢測出之溫度變化接近基準波形之方式,變更第1記憶部中記憶之與一個候補波形對應之動作條件之一個或複數個控制參數中至少1個之值。
於該情形時,可藉由變更一個或複數個控制參數中至少1個之值之簡單處理適當調整剛載置基板後之板構件之溫度。
(13)根據本發明之進而另一態樣之熱處理系統具備:根據本發明之一態樣之熱處理裝置;資訊獲取部,其獲取與已藉由熱處理裝置進行熱處理之基板相關之處理資訊;第2記憶部,其記憶處理資訊與複數個候補波形間之預定之對應關係;及波形更新部,其基於藉由資訊獲取部獲取之處理資訊與第2記憶部中記憶之對應關係,以使與藉由資訊獲取部獲取之處理資訊對應之候補波形成為基準波形之方式更新基準波形。
根據該熱處理系統,根據所獲取之處理資訊更新基準波形。藉此,可更加適當且高精度地利用熱處理裝置進行基板之熱處理。
(14)根據本發明之進而另一態樣之熱處理方法係對基板進行熱處理者,包含以下步驟:於板構件上載置基板;藉由熱處理部通過板構件對載置之基板進行熱處理;於記憶部中記憶將基板載置於板構件上之時點起固定期間內熱處理部之動作條件;使熱處理部依照記憶部中記憶之動作條件動作;藉由溫度檢測器檢測板構件之溫度;以使熱處理部依照動作條件動作時藉由溫度檢測器檢測出之溫度變化接近預定之基準波形之方式變更記憶部中記憶之動作條件。
於該熱處理方法中,於板構件上載置基板,對載置之基板進行熱處理。於該熱處理初期,將基板載置於板構件上之時點起固定期間內,熱處理部依照記憶部中記憶之動作條件動作。又,檢測板構件之溫度變化。以使檢測出之溫度變化接近基準波形之方式變更記憶部中記憶之動作條件。
藉此,於對複數個基板依序進行熱處理之情形時,於各熱處理初期熱處理部依照上次熱處理時變更之動作條件動作。藉此,剛將基板載置於板構件上後之板構件之溫度變化與上次熱處理時相比更接近基準波形。
如此,將剛於板構件上載置基板後之板構件之溫度變化逐漸修正為適當之溫度變化。因此,將剛載置基板後之板構件之溫度迅速調整至用以對該基板進行熱處理之適當溫度。
又,根據上述方法,即便於熱處理裝置周邊之溫度變化之情形時,亦根據該溫度變化變更動作條件。因此,適當地進行基板W之熱處理而不受熱處理裝置周圍之溫度變化之影響。該等之結果為,可迅速且高精度地進行基板之熱處理。
(15)亦可為動作條件包含一個或複數個控制參數之值,變更動作條件之步驟包含:以使檢測出之溫度變化接近基準波形之方式變更記憶部中記憶之一個或複數個控制參數中至少1個之值。
於該情形時,可藉由變更一個或複數個控制參數中至少1個之值之簡單處理適當調整剛載置基板後之板構件之溫度。
(16)根據本發明之進而另一態樣之熱處理方法係對基板進行熱處理者,包含以下步驟:於板構件上載置基板;藉由熱處理部通過板構件對載置之基板進行熱處理;記憶表示將基板載置於板構件上之時點起固定期間內板構件之虛擬溫度變化的複數個候補波形,並且將與複數個候補波形分別對應之熱處理部之複數個動作條件記憶於第1記憶部中;藉由溫度檢測器檢測板構件之溫度;自第1記憶部中記憶之複數個候補波形中將一個候補波形決定為基準波形;使熱處理部依照第1記憶部中記憶之複數個動作條件中與決定為基準波形之一個候補波形對應之動作條件動作;及以使熱處理部依照與一個候補波形對應之動作條件動作時藉由溫度檢測器檢測出之溫度變化接近基準波形的方式,變更第1記憶部中記憶之與一個候補波形對應之動作條件。
於該熱處理方法中,於第1記憶部中記憶表示將基板載置於板構件上之時點起固定期間內板構件之虛擬溫度變化的複數個候補波形。又,於第1記憶部中記憶與複數個候補波形分別對應之熱處理部之複數個動作條件。自第1記憶部中記憶之複數個候補波形中將一個候補波形決定為基準波形。
其後,於板構件上載置基板,對載置之基板進行熱處理。於該熱處理初期,將基板載置於板構件上之時點起固定期間內,熱處理部依照與決定為基準波形之一個候補波形對應之動作條件動作。又,檢測板構件之溫度變化。以使檢測出之溫度變化接近基準波形之方式變更第1記憶部中記憶之與一個候補波形對應之動作條件。
藉此,於對複數個基板依序進行熱處理之情形時,於各熱處理初期熱處理部依照上次熱處理時變更之動作條件動作。藉此,剛將基板載置於板構件上後之板構件之溫度變化與上次熱處理時相比更接近基準波形。
如此,將剛於板構件上載置基板後之板構件之溫度變化逐漸修正為適當之溫度變化。因此,將剛載置基板後之板構件之溫度迅速調整至用以對該基板進行熱處理之適當溫度。
又,根據上述構成,即便於熱處理裝置周邊之溫度變化之情形時,亦根據該溫度變化變更動作條件。因此,適當地進行基板之熱處理而不受熱處理裝置周圍之溫度變化影響。
進而,根據上述構成,將複數個候補波形中之一個候補波形決定為表示剛將基板載置於板構件上後之板構件之適當溫度變化的基準波形。該等之結果為,可適當且高精度地進行基板之熱處理。
(17)將一個候補波形決定為基準波形之步驟亦可包含:回應於使用者對操作部之操作,將藉由操作部自第1記憶部中記憶之複數個候補波形選擇之一個候補波形決定為基準波形。
於該情形時,可使用操作部自複數個候補波形將一個候補波形容易地決定為基準波形。
(18)熱處理方法亦可進而包含使顯示部可選擇地顯示複數個候補波形中之至少一部分之步驟。
於該情形時,可一面確認顯示於顯示部之至少一部分候補波形,一面將一個候補波形容易地決定為基準波形。
(19)亦可為第1記憶部中記憶之複數個候補波形包含與複數個溫度區域分別對應之複數個候補波形群,熱處理方法進而包含將用以對基板進行熱處理之溫度決定為設定溫度之步驟,使顯示部可選擇地顯示複數個候補波形中之至少一部分之步驟包含:於已決定設定溫度之情形時,使顯示部可選擇地顯示與所決定之處理溫度所屬之溫度區域對應之候補波形群之複數個候補波形。
於該情形時,可根據設定溫度容易地掌握可選擇之候補波形。因此,防止將不適當之候補波形決定為基準波形。
(20)亦可為第1記憶部中記憶之複數個動作條件之各者包含一個或複數個控制參數之值,變更與一個候補波形對應之動作條件之步驟包含:以使檢測出之溫度變化接近基準波形之方式,變更第1記憶部中記憶之與一個候補波形對應之動作條件之一個或複數個控制參數中至少1個之值。
於該情形時,可藉由變更一個或複數個控制參數中至少1個之值之簡單處理適當調整剛載置基板後之板構件之溫度。
(21)熱處理方法亦可進而包含以下步驟:獲取與已進行熱處理之基板相關之處理資訊;將處理資訊與複數個候補波形間之預定之對應關係記憶於第2記憶部中;及基於藉由獲取步驟所獲取之處理資訊與第2記憶部中記憶之對應關係,以使與所獲取之處理資訊對應之候補波形成為基準波形之方式更新基準波形。
於該情形時,根據所獲取之處理資訊更新基準波形。藉此,可更加適當且高精度地利用熱處理裝置進行基板之熱處理。
[1]第1實施形態
以下,參照圖式對第1實施形態之熱處理裝置及熱處理方法進行說明。於以下說明中,基板係指液晶顯示裝置或有機EL(Electro Luminescence,電致發光)顯示裝置等所使用之FPD(Flat Panel Display,平板顯示器)用基板、半導體基板、光碟用基板、磁碟用基板、磁光碟用基板、光罩用基板、陶瓷基板或太陽電池用基板等。以下說明中,作為熱處理裝置之一例,說明對基板進行加熱處理之熱處理裝置。
(1)熱處理裝置之構成
圖1係表示第1實施形態之熱處理裝置之構成之模式性側視圖。如圖1所示,熱處理裝置100包含熱處理板10、主動冷卻板20、被動冷卻板30、升降裝置40及控制裝置50。
熱處理板10係具有扁平圓柱形狀之金屬製傳熱板,具有平坦之上表面及下表面。熱處理板10之上表面構成為可載置加熱處理之對象之基板W,具有較該基板W之外徑更大之外徑。於熱處理板10之上表面,設置有支持基板W之下表面之複數個近接球等。圖1中,以單點鏈線表示載置於熱處理板10上之基板W。
於熱處理板10,設置有加熱器11及溫度感測器19。溫度感測器19檢測熱處理板10之上表面之溫度,將與檢測出之溫度對應之檢測信號向後述溫度獲取部55輸出。
加熱器11例如包含雲母加熱器或珀爾帖元件等。於加熱器11連接有發熱驅動部13。發熱驅動部13例如以將熱處理板10之溫度保持為用以進行基板W之加熱處理之預先設定之溫度(設定溫度)的方式驅動加熱器11。又,發熱驅動部13例如以使熱處理板10之溫度上升或下降之方式驅動加熱器11。
主動冷卻板20於較熱處理板10更下方之位置以自熱處理板10之下表面隔開規定距離之方式配置。主動冷卻板20具有朝向熱處理板10之上表面。於主動冷卻板20之上表面設置有具有高熱導率之導熱片材(未圖示)。
於主動冷卻板20設置有冷卻機構21。冷卻機構21例如包含形成於主動冷卻板20內之冷卻水通路或珀爾帖元件等。於冷卻機構21連接有冷卻驅動部22。冷卻驅動部22以主動冷卻板20之上表面之溫度低於熱處理板10之溫度之方式驅動冷卻機構21。
被動冷卻板30於熱處理板10與主動冷卻板20之間之空間被升降裝置40支持而升降(參照圖1之空心箭頭)。被動冷卻板30為金屬製圓板狀構件,具有上表面及下表面。被動冷卻板30之上表面與熱處理板10之下表面對向,被動冷卻板30之下表面與主動冷卻板20之上表面對向。於被動冷卻板30之上表面設置有具有高熱導率之導熱片材(未圖示)。
升降裝置40例如包含氣缸。於升降裝置40連接有升降驅動部41。升降驅動部41例如以使被動冷卻板30與主動冷卻板20相接之方式驅動升降裝置40。於該情形時,利用主動冷卻板20將被動冷卻板30冷卻。又,升降驅動部41例如以使被動冷卻板30與熱處理板10相接之方式驅動升降裝置40。於該情形時,利用被動冷卻板30冷卻熱處理板10。
控制裝置50控制包含發熱驅動部13、冷卻驅動部22及升降驅動部41在內之熱處理裝置100之各構成要素之動作。控制裝置50之詳細情況將於下文敍述。再者,於上述熱處理裝置100,在熱處理板10與熱處理裝置100之外部裝置(例如搬送機器人)之間進而設置有用以進行基板W之交接之交接機構(未圖示)。
(2)熱處理裝置100中之複數個基板W之加熱處理
於圖1之熱處理裝置100中,對複數個基板W以與各自之加熱處理之內容相應之設定溫度依序進行加熱處理。圖2係表示對複數個基板W依序進行加熱處理之情形時熱處理板10之溫度變化之一例的圖。
於圖2所示之曲線圖中,縱軸表示熱處理板10之溫度,橫軸表示時間。又,以粗實線表示熱處理板10之溫度變化。於本例中,對於9片基板W,每3片基板W變更加熱處理之內容。因此,每3片基板W變更熱處理板10之設定溫度。
具體而言,於時點t1~t2之期間,於將熱處理板10之溫度保持為設定溫度90℃之狀態下對3片基板W依序進行加熱處理。又,於時點t3~t4之期間,於將熱處理板10之溫度保持為設定溫度115℃之狀態下對3片基板W依序進行加熱處理。進而,於時點t5~t6之期間,於將熱處理板10之溫度保持為設定溫度140℃之狀態下對3片基板W依序進行加熱處理。
當於保持為設定溫度之熱處理板10上載置未處理之基板W時,如圖2中空心箭頭所示,熱處理板10之溫度自設定溫度降低。該情形時之熱處理板10之溫度降低量根據設定溫度不同。設定溫度越高則溫度降低量越大,設定溫度越低則溫度降低量越小。
於熱處理板10上載置基板W後,若維持熱處理板10之溫度偏離設定溫度之狀態,則無法對該基板W準確地進行預定之加熱處理。於是,於熱處理板10上載置未處理之基板W後,進行控制以使熱處理板10之溫度迅速恢復為設定溫度並且穩定於設定溫度。
具體而言,於本例中,基於溫度感測器19之檢測信號對加熱器11進行PID(比例積分微分)控制。又,調整加熱器11之輸出之上限。
對於複數個設定溫度之各者,可藉由模擬或實驗等求出用以使熱處理板10之溫度恢復為設定溫度之熱處理裝置100之動作條件。於是,於熱處理裝置100中,對複數個設定溫度之各者,預先設定將基板W載置於熱處理板10上之時點起固定期間內加熱器11之動作條件(以下稱初期動作條件)。
圖3係表示對複數個設定溫度各自設定之初期動作條件之一例之圖。圖3之初期動作條件包含針對加熱器11之PID控制之參數之值。又,初期動作條件包含表示加熱器11之輸出之上限之上限參數之值。圖3中,上限參數表述為「加熱器上限」。上限參數之值例如以相對於加熱器11之額定輸出所容許之輸出之上限之比率(%)表示。
根據圖3之例,與設定溫度90℃對應之初期動作條件包含比例參數「0.4」、積分參數「15」、微分參數「3」及上限參數「80(%)」。又,與設定溫度115℃對應之初期動作條件包含比例參數「0.3」、積分參數「15」、微分參數「3」及上限參數「90(%)」。進而,與設定溫度140℃對應之初期動作條件包含比例參數「0.2」、積分參數「15」、微分參數「3」及上限參數「100(%)」。
然,視設置熱處理裝置100之空間之溫度而定,預先設定之初期動作條件未必適當。又,假設如後述基板處理裝置400(圖7)使用複數個熱處理裝置100對複數個基板W進行共同加熱處理之情形。於該情形時,於複數個熱處理裝置100之間通常存在個體差異。因此,若對複數個熱處理裝置100設定共同之初期動作條件,則可能無法於各熱處理裝置100進行理想之溫度調整。
於是,於本實施形態之熱處理裝置100中,每次進行基板W之加熱處理時,以使載置基板W之時點起固定期間內熱處理板10之溫度變化接近理想基準波形之方式變更初期動作條件。基準波形係以使因載置基板W降低之熱處理板10之溫度迅速恢復且穩定至設定溫度之方式決定。又,基準波形係基於例如熱處理板10之構成及加熱器11之發熱能力等針對每個設定溫度決定。
此處,假設設定有與設定溫度90℃對應且相對於設定溫度90℃之超越量為0的基準波形之情形。例如,以設定溫度90℃對圖2之第1個基板W進行加熱處理時,熱處理裝置100依照預定之初期動作條件動作。於該情形時,若熱處理板10之溫度變化產生較大之超越,則以使該超越量接近0之方式變更與設定溫度90℃對應之初期動作條件。其後,以設定溫度90℃對第2個基板W進行加熱處理時,使熱處理裝置100依照變更後之初期動作條件動作。藉此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化與第1個基板W之熱處理時相比更接近基準波形。因此,於第2個基板W之加熱處理時,將基板W載置於熱處理板10上後,熱處理板10之溫度與第1個基板W之加熱處理時相比迅速且準確地恢復設定溫度。
又,若以設定溫度90℃對第2個基板W進行加熱處理時,熱處理板10之溫度變化再次產生超越,則以使該超越量更接近0之方式再次變更與設定溫度90℃對應之初期動作條件。其後,以設定溫度90℃對第3個基板W進行加熱處理時,熱處理裝置100依照變更後之初期動作條件動作。藉此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化與第2個基板W之熱處理時相比更接近基準波形。因此,第3個基板W之加熱處理時,將基板W載置於熱處理板10上後,熱處理板10之溫度與第2個基板W之加熱處理時相比迅速且準確地恢復設定溫度。
圖2之例中,對於與設定溫度115℃、140℃對應之初期動作條件,亦與設定溫度90℃之情形之例同樣地,於每次進行基板W之加熱處理時進行與熱處理板10之溫度變化相應之初期動作條件之變更。
如上所述,每次對基板W進行加熱處理時根據實時之熱處理板10之溫度變化變更初期動作條件。於該情形時,隨著反覆進行基板W之加熱處理,熱處理之精度提昇。又,根據上述控制,於使用複數個熱處理裝置100對複數個基板W進行共同之加熱處理之情形時,抑制複數個熱處理裝置100間對基板W進行之加熱處理產生偏差。
(3)初期動作條件之具體變更例
圖4係用以對初期動作條件之具體變更例進行說明之圖。於圖4之上段所示之曲線圖中,縱軸表示溫度,橫軸表示時間。又,於該曲線圖中,用粗實線表示於一個基板W之加熱處理中藉由圖1之溫度感測器19檢測之熱處理板10之溫度變化之一例。將該粗實線所示之波形稱為實測波形。進而,於圖4之上段所示之曲線圖中,用單點鏈線表示對應於本例之加熱處理之設定溫度預先決定之基準波形。
於本例中,於時點t0,熱處理板10保持設定溫度之值α,其後於時點t10將基板W載置於熱處理板10上開始加熱處理。基準波形自時點t10至時點t11,自設定溫度之值α下降至低於值α之值β,自時點t11至時點t12,自值β上升至值α。進而,時點t12以後,基準波形於極短之時間期間略微超過值α後,保持於值α。設為基準波形相對於值α之超越量實質上為0。以下說明中,將於熱處理板10上載置基板W之時點t10起至基準波形恢復設定溫度之值α之時點t12為止的時間稱為設定時間。
圖4之上段之例中,實測波形大幅偏離基準波形。具體而言,實測波形自時點t10至時點t11自設定溫度之值α下降至低於值β之值γ,自時點t11至較時點t12更前之時點t13,自值γ上升至值α。又,剛過時點t13後之實測波形相對於值α產生較大之超越。因此,實測波形於經過時點t12後,要經過相對較長之時間才能穩定。
為了變更初期動作條件,例如獲取時點t10至時點t12之期間中預定之時點(於本例中為基準波形取極小值之時點)t11時實測波形之值γ。將獲取之值γ與時點t11下之基準波形之值β進行對比。又,獲取自時點t10起至實測波形恢復值α之時點t13之時間pr。以下說明中,將與該實測波形對應之時間pr稱為到達時間。進而,獲取剛過時點t13後產生之實測波形相對於值α之超越量OS。
於時點t11下之實測波形之值γ處於對該實測波形之值預先決定之容許範圍外之情形時,實測波形大幅偏離基準波形。因此,較理想為變更初期動作條件。於是,於時點t11下之實測波形之值γ處於容許範圍外且值γ低於值β之情形時,以使對熱處理板10供給之熱量變大之方式變更初期動作條件。藉此,使實測波形之值接近基準波形之值。另一方面,於時點t11下之實測波形之值γ處於容許範圍外且值γ高於值β之情形時,以使對熱處理板10供給之熱量變小之方式變更初期動作條件。藉此,使實測波形之值接近基準波形之值。
又,於到達時間pr處於對該到達時間預先決定之容許範圍外之情形時,實測波形大幅偏離基準波形。因此,較理想為變更初期動作條件。於是,於到達時間pr處於容許範圍外且到達時間pr短於設定時間之情形時,以使對熱處理板10供給之熱量變小之方式變更初期動作條件。藉此,使到達時間pr接近設定時間。另一方面,於到達時間pr處於容許範圍外且到達時間pr長於設定時間之情形時,以使對熱處理板10供給之熱量變大之方式變更初期動作條件。藉此,使到達時間pr接近設定時間。
進而,於所獲取之超越量OS超出對超越量OS預先決定之容許範圍之情形時,實測波形大幅偏離基準波形。因此,較理想為變更初期動作條件。於是,於超越量OS超出容許範圍之情形時,以使對熱處理板10供給之熱量變小之方式變更初期動作條件。藉此,使超越量OS變小。
圖4之下段所示之曲線圖中,縱軸表示加熱器11之輸出,橫軸表示時間。又,該曲線圖中,用粗實線表示依照預先設定之初期動作條件控制之加熱器11之輸出波形。該輸出波形對應於圖4之上段之曲線圖所示之實測波形。於本例中,時點t0至時點t10期間,加熱器11之輸出保持固定之值SP。其後,加熱器11之輸出於時點t10增大,藉由基於初期動作條件之PID控制進行調整。
此處,於使對熱處理板10供給之熱量變小之情形時,例如藉由將PID控制之比例參數之值變大,如圖4中空心箭頭a13所示,使加熱器11之輸出波形整體變低即可。或者,例如藉由將上限參數變小,如圖4中空心箭頭a14所示,使加熱器11之輸出之上限之值MP變低。
另一方面,於使對熱處理板10供給之熱量變大之情形時,例如藉由將PID控制之比例參數之值變小,如圖4中空心箭頭a15所示,使加熱器11之輸出波形整體變高即可。或者,例如藉由使上限參數變大,如圖4中空心箭頭a16所示,使加熱器11之輸出之上限之值MP變高即可。
(4)控制裝置50
如圖1所示,控制裝置50具有記憶部51、發熱控制部52、冷卻控制部53、升降控制部54、溫度獲取部55及條件變更部56作為功能部。控制裝置50包含CPU(Central Processing Unit,中央運算處理裝置)、RAM(Random Access Memory,隨機存取記憶體)及ROM(Read Only Memory,唯讀記憶體)。CPU執行ROM或其他記憶媒體中記憶之電腦程式(後述溫度調整處理用程式),藉此實現上述各功能部。再者,亦可藉由電子電路等硬件實現控制裝置50之功能性構成要素之一部分或全部。
第1實施形態之控制裝置50中,記憶部51記憶對複數個設定溫度之各者預先設定之初期動作條件。發熱控制部52於藉由熱處理板10對基板W進行加熱處理初期,以依照記憶部51中記憶之初期動作條件動作之方式,基於自溫度感測器19輸出之檢測信號控制發熱驅動部13。冷卻控制部53於熱處理裝置100之電源接通期間,以將主動冷卻板20冷卻之方式控制冷卻驅動部22。升降控制部54於使熱處理板10之設定溫度下降時,以使被動冷卻板30接觸熱處理板10之方式控制升降裝置40。
又,第1實施形態之控制裝置50中,溫度獲取部55基於自溫度感測器19輸出之檢測信號獲取熱處理板10之溫度。更具體而言,溫度獲取部55藉由以固定週期對自溫度感測器19輸出之檢測信號進行取樣,獲取溫度之變化。條件變更部56以使藉由溫度獲取部55獲取之溫度變化接近預定之基準波形的方式變更記憶部51中記憶之初期動作條件。
再者,熱處理裝置100具備未圖示之操作部。使用者可藉由對操作部進行操作,針對每個設定溫度將初期之初期動作條件及基準波形記憶於記憶部51中。即,使用者可針對複數個設定溫度分別設定初期動作條件及基準波形。
(5)溫度調整處理
記憶部51中記憶之初期動作條件之變更係藉由使圖1之控制裝置50執行下述溫度調整處理進行。圖5及圖6係表示溫度調整處理之一例之流程圖。藉由將熱處理裝置100之電源接通,開始溫度調整處理。
首先,圖1之發熱控制部52及升降控制部54以使熱處理板10之溫度保持設定溫度之值之方式控制發熱驅動部13或升降驅動部41(步驟S10)。此處,熱處理板10之設定溫度之值例如係自熱處理裝置100之外部對控制裝置50賦予。
其次,發熱控制部52判定熱處理板10上是否載置有基板W(步驟S11)。該判定例如係基於是否接收到表示自熱處理裝置100之外部將基板W載置於熱處理板10上的信號進行。或者,於熱處理裝置100設置有用以檢測熱處理板10上有無基板W之感測器之情形時,發熱控制部52亦可基於該感測器之輸出進行上述判定。
於熱處理板10上未載置基板W之情形時,發熱控制部52及升降控制部54返回步驟S10之處理。另一方面,於熱處理板10上載置有基板W之情形時,發熱控制部52自圖1之記憶部51讀入與當前之設定溫度對應之初期動作條件(步驟S12)。
其次,發熱控制部52基於讀入之初期動作條件及溫度感測器19之輸出,控制發熱驅動部13,藉此調整熱處理板10之溫度(步驟S13)。此時溫度獲取部55獲取基板W之加熱處理中熱處理板10之溫度變化(步驟S14)。
其後,當基板W之加熱處理結束時,條件變更部56基於所獲取之溫度變化,判定該加熱處理中之到達時間pr(圖4)是否處於針對到達時間pr預先決定之容許範圍外(步驟S15)。再者,步驟S15中使用之容許範圍亦可為設定時間。即,步驟S15中使用之容許範圍亦可決定為僅允許到達時間pr與設定時間一致。
於到達時間pr偏離容許範圍情形時,條件變更部56計算出該加熱處理中之到達時間pr與基準波形之設定時間之差量(步驟S16)。另一方面,於到達時間pr處於容許範圍內之情形時,條件變更部56基於所獲取之溫度變化,判定該加熱處理中之特定時點下之溫度值是否處於針對該溫度值預先決定之容許範圍外(步驟S17)。再者,步驟S17中使用之容許範圍亦可為特定時點下之基準波形之溫度值。即,步驟S17中使用之容許範圍亦可決定為僅允許特定時點下之實時之溫度值與基準波形之溫度值一致。
於溫度值偏離容許範圍之情形時,條件變更部56基於所獲取之溫度變化,計算出特定時點下獲取之溫度值與基準波形之溫度值之差量(步驟S18)。另一方面,於溫度值處於容許範圍內之情形時,條件變更部56判定該加熱處理中之超越量OS是否處於針對該超越量OS預先決定之容許範圍外(步驟S19)。再者,步驟S19中使用之容許範圍亦可為0。即,步驟S19中使用之容許範圍亦可決定為僅允許不產生超越。
於超越量OS偏離容許範圍之情形時,條件變更部56基於所獲取之溫度變化,計算出所獲取之超越量OS與基準波形之超越量之差量(步驟S20)。另一方面,於超越量OS處於容許範圍內之情形時,發熱控制部52及升降控制部54返回步驟S10之處理。
上述步驟S16、S18、S20之任一處理後,條件變更部56基於所算出之時間、溫度值或超越量之差量,決定初期動作條件中應變更之參數(步驟S21)。例如,條件變更部56根據所算出之差量之水準決定應變更之參數。具體而言,條件變更部56於差量之水準較高之情形時,將PID控制之比例參數決定為應變更之參數。又,條件變更部56於差量之水準較低之情形時,將上限參數決定為應變更之參數。
其次,條件變更部56針對應變更之參數,依照預定之方法變更該參數(步驟S22)。例如,條件變更部56將決定為變更對象之參數之值變更預定之值。藉此,變更記憶部51中記憶之初期動作條件。其後,發熱控制部52及升降控制部54返回步驟S10之處理。
上述之溫度調整處理中,亦可省略步驟S15、S17、S19中之一部分處理。於該情形時,省略之處理隨附之差量之計算處理(步驟S16、S18、S20中之任一處理)亦省略。
(6)第1實施形態之效果
上述熱處理裝置100中,於熱處理板10上載置基板W,對所載置之基板W進行熱處理。於該熱處理初期,將基板W載置於熱處理板10上之時點起固定期間內,加熱器11依照記憶部51中記憶之初期動作條件動作。又,檢測熱處理板10之溫度變化。以使檢測出之溫度變化接近基準波形之方式變更記憶部51中記憶之初期動作條件。
藉此,對複數個基板W依序進行熱處理之情形時,於各熱處理初期,使加熱器11依照上次熱處理時變更之初期動作條件動作。藉此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化與上次熱處理時相比更接近基準波形。
如此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化逐漸修正為適當之溫度變化。因此,將剛載置基板W後之熱處理板10之溫度迅速調整為用以進行該基板W之熱處理之適當溫度。
又,根據上述構成,即便於熱處理裝置100周邊之溫度變化之情形時,亦根據該溫度變化變更初期動作條件。因此,適當進行基板W之熱處理而不受熱處理裝置100周圍之溫度變化之影響。該等之結果為,可迅速且高精度地進行基板之熱處理。
(7)具備圖1之熱處理裝置100之基板處理裝置
圖7係表示具備圖1之熱處理裝置100之基板處理裝置之一例之模式性方塊圖。如圖7所示,基板處理裝置400與曝光裝置500鄰接設置,具備控制部410、塗佈處理部420、顯影處理部430、熱處理部440及基板搬送裝置450。熱處理部440包含對基板W進行加熱處理之複數個圖1之熱處理裝置100、及對基板W僅進行冷卻處理之複數個冷卻板(未圖示)。
控制部410例如包含CPU及記憶體、或微電腦,控制塗佈處理部420、顯影處理部430、熱處理部440及基板搬送裝置450之動作。
基板搬送裝置450於藉由基板處理裝置400進行基板W之處理時,於塗佈處理部420、顯影處理部430、熱處理部440及曝光裝置500之間搬送基板W。
塗佈處理部420於未處理之基板W之一面上形成阻劑膜(塗佈處理)。於曝光裝置500中對形成有阻劑膜之塗佈處理後之基板W進行曝光處理。顯影處理部430藉由對利用曝光裝置500進行曝光處理後之基板W供給顯影液,進行基板W之顯影處理。熱處理部440於利用塗佈處理部420進行之塗佈處理、利用顯影處理部430進行之顯影處理、及利用曝光裝置500進行之曝光處理前後進行基板W之熱處理。
再者,塗佈處理部420亦可於基板W形成防反射膜。於該情形時,亦可於熱處理部440設置用以提昇基板W與防反射膜之密接性之密接強化處理的處理單元。又,塗佈處理部420亦可於基板W形成用以保護形成於基板W上之阻劑膜之阻劑覆蓋膜。
如上所述,於熱處理部440之複數個熱處理裝置100中進行溫度調整處理。藉此,可對複數個基板W進行高精度且均勻之加熱處理。又,即便於藉由相互存在個體差異之複數個熱處理裝置100對複數個基板W分別進行共同之加熱處理之情形時,亦可對複數個基板W進行高精度且均勻之加熱處理。
[2]第2實施形態
以下,參照圖式對第2實施形態之熱處理裝置及熱處理方法進行說明。
(1)熱處理裝置之構成
圖8係表示第2實施形態之熱處理裝置之構成之模式性側視圖。如圖8所示,熱處理裝置100包含熱處理板10、主動冷卻板20、被動冷卻板30、升降裝置40、控制裝置50、操作部61及顯示部62。
熱處理板10為具有扁平圓柱形狀之金屬製傳熱板,具有平坦之上表面及下表面。熱處理板10之上表面構成為可載置成為加熱處理之對象之基板W,具有較該基板W之外徑更大之外徑。於熱處理板10之上表面設置有支持基板W之下表面之複數個近接球等。圖8中,用單點鏈線表示載置於熱處理板10上之基板W。
於熱處理板10設置有加熱器11及溫度感測器19。溫度感測器19檢測熱處理板10之上表面之溫度,將與檢測之溫度對應之檢測信號輸出至後述溫度獲取部55。
加熱器11例如包含雲母加熱器或珀爾帖元件等。於加熱器11連接有發熱驅動部13。發熱驅動部13例如以使熱處理板10之溫度保持用以進行基板W之加熱處理之預先設定之溫度(設定溫度)的方式驅動加熱器11。又,發熱驅動部13例如以使熱處理板10之溫度上升或下降之方式驅動加熱器11。
主動冷卻板20於較熱處理板10更下方之位置以自熱處理板10之下表面隔開規定距離之方式配置。主動冷卻板20具有朝向熱處理板10之上表面。於主動冷卻板20之上表面設置有具有高熱導率之導熱片材(未圖示)。
於主動冷卻板20設置有冷卻機構21。冷卻機構21例如包含形成於主動冷卻板20內之冷卻水通路或珀爾帖元件等。於冷卻機構21連接有冷卻驅動部22。冷卻驅動部22以主動冷卻板20之上表面之溫度低於熱處理板10之溫度之方式驅動冷卻機構21。
被動冷卻板30於熱處理板10與主動冷卻板20之間之空間被升降裝置40支持而升降(參照圖8之空心箭頭)。被動冷卻板30為金屬製之圓板狀構件,具有上表面及下表面。被動冷卻板30之上表面與熱處理板10之下表面對向,被動冷卻板30之下表面與主動冷卻板20之上表面對向。於被動冷卻板30之上表面設置有具有高熱導率之導熱片材(未圖示)。
升降裝置40例如包含氣缸。於升降裝置40連接有升降驅動部41。升降驅動部41例如以使被動冷卻板30與主動冷卻板20相接之方式驅動升降裝置40。於該情形時,利用主動冷卻板20將被動冷卻板30冷卻。又,升降驅動部41例如以使被動冷卻板30與熱處理板10相接之方式驅動升降裝置40。於該情形時,利用被動冷卻板30冷卻熱處理板10。
控制裝置50控制熱處理裝置100之各構成要素之動作。控制裝置50之詳細情況將於下文敍述。再者,於上述熱處理裝置100進而設置有用以於熱處理板10與熱處理裝置100之外部裝置(例如圖7之基板搬送裝置450)之間進行基板W之交接之交接機構(未圖示)。
顯示部62包含例如LCD(Liquid Crystal Display,液晶顯示器)面板或有機EL(Electro Luminescence,電致發光)面板。顯示部62顯示用以供使用者將基板W之加熱處理之處理條件設定為處理製程配方之設定畫面。設定畫面之詳細情況將於下文敍述。
操作部61例如係與顯示部62一體設置之觸控面板,構成為可於顯示部62所顯示之設定畫面輸入處理製程配方之內容。又,操作部61構成為可選擇顯示於設定畫面之複數個項目(後述複數個候補波形)中之任一者。再者,操作部61亦可包含鍵盤及滑鼠等代替觸控面板,或包含觸控面板及鍵盤及滑鼠等。
(2)熱處理裝置100中之複數個基板W之加熱處理
圖8之熱處理裝置100中,與圖2之例同樣地,對複數個基板W以與各者之加熱處理之內容相應之設定溫度依序進行加熱處理。如圖2之例中所說明,將基板W載置於熱處理板10上後,若維持熱處理板10之溫度偏離設定溫度之狀態,則無法對該基板W準確地進行預定之加熱處理。因此,於本實施形態中,於熱處理板10上載置未處理之基板W後,進行控制以使熱處理板10之溫度適當恢復至設定溫度並穩定於設定溫度。
該控制中,以使將未處理之基板W載置於熱處理板10上之時點起固定期間內熱處理板10之溫度變化表現出預定之適當(理想)波形的方式,調整熱處理裝置100之動作。該波形相當於第1實施形態之基準波形。以下,將表示於熱處理板10上載置未處理之基板W之時點起固定期間內熱處理板10之適當溫度變化的波形稱為基準波形。
基準波形係根據成為加熱處理之對象之基板W之種類、加熱處理之目的及設定溫度等決定。因此,即便於對複數個基板W以共同之設定溫度進行加熱處理之情形時,與該等複數個基板W分別對應之複數個基準波形亦未必相互一致。
於是,於本實施形態之熱處理裝置100中,將可成為基準波形之複數個波形作為複數個候補波形記憶於圖8之記憶部51中。將由使用者自複數個候補波形選擇之一個候補波形決定為基準波形。
圖9係表示圖8之記憶部51中記憶之複數個候補波形之一例之圖。圖9之例中,於圖8之記憶部51中記憶有互不相同之複數個候補波形A~H。又,圖9之例中,將對設定溫度預先決定之複數個溫度區域之各者與複數個候補波形建立對應。
具體而言,將80℃以上且未達110℃之溫度區域與2個候補波形A、B建立對應。候補波形A、B係熱處理板10之溫度自設定溫度pt下降後恢復設定溫度pt之時間互不相同。又,候補波形A、B係相對於設定溫度pt之超越量互不相同。
將110℃以上且未達130℃之溫度區域與3個候補波形C、D、E建立對應。候補波形C、D、E係熱處理板10之溫度自設定溫度pt下降後恢復設定溫度pt之時間互不相同。又,候補波形C、D、E係相對於設定溫度pt之超越量互不相同。
將130℃以上且未達150℃之溫度區域與3個候補波形F、G、H建立對應。候補波形F、G、H係熱處理板10之溫度自設定溫度pt下降後恢復設定溫度pt之時間互不相同。又,候補波形F、G、H係相對於設定溫度pt之超越量互不相同。
各候補波形A~H中,剛將基板W載置於熱處理板10上後自設定溫度pt下降之溫度變化量(降低量)係對應之溫度區域越低則越小,對應之溫度區域越高則越大。
又,於本實施形態中,針對每個候補波形,將用以使熱處理板10之溫度依照該候補波形適當恢復設定溫度的加熱器11之動作條件作為初期動作條件記憶於圖8之記憶部51中。即,記憶部51中記憶與複數個候補波形分別對應之複數個初期動作條件。藉此,於基板W之加熱處理初期,以與選作基準波形之候補波形對應之初期動作條件驅動加熱器11。各初期動作條件可藉由模擬或實驗等求出。
圖10係表示與圖9之複數個候補波形A~H分別對應之複數個初期動作條件之一例的圖。於本實施形態中,各初期動作條件包含用以基於圖8之溫度感測器19之檢測信號對加熱器11進行PID(比例積分微分)控制之PID控制參數。又,各初期動作條件包含表示加熱器11之輸出之上限之上限參數。圖10中,PID控制參數記為「PID」,上限參數記為「加熱器上限」。上限參數之值例如以相對於加熱器11之額定輸出容許之輸出之上限之比率(%)表示。
如圖10所示,與圖9之候補波形A對應之初期動作條件包含比例參數「0.4」、積分參數「15」、微分參數「3」及上限參數「80(%)」。與圖9之候補波形B對應之初期動作條件包含比例參數「0.5」、積分參數「15」、微分參數「3」及上限參數「80(%)」。
又,與圖9之候補波形C對應之初期動作條件包含比例參數「0.3」、積分參數「15」、微分參數「3」及上限參數「90(%)」。與圖9之候補波形D對應之初期動作條件包含比例參數「0.5」、積分參數「15」、微分參數「3」及上限參數「90(%)」。與圖9之候補波形E對應之初期動作條件包含比例參數「0.2」、積分參數「15」、微分參數「3」及上限參數「90(%)」。
進而,與圖9之候補波形F對應之初期動作條件包含比例參數「0.2」、積分參數「15」、微分參數「3」及上限參數「100(%)」。與圖9之候補波形G對應之初期動作條件包含比例參數「0.5」、積分參數「15」、微分參數「3」及上限參數「100(%)」。與圖9之候補波形H對應之初期動作條件包含比例參數「0.1」、積分參數「15」、微分參數「3」及上限參數「100(%)」。
此處,熱處理裝置100中應設定之處理製程配方包含設定溫度及熱處理時間。針對設定處理製程配方時顯示於圖8之顯示部62之設定畫面進行說明。
圖11及圖12係表示顯示於圖8之顯示部62之處理製程配方之設定畫面之一例的圖。處理製程配方之設定畫面中,顯示溫度輸入欄62a、時間輸入欄62b及波形選擇欄62c。
如圖11所示,於溫度輸入欄62a、時間輸入欄62b及波形選擇欄62c空白之狀態下,使用者可使用圖8之操作部61於溫度輸入欄62a中輸入所期望之設定溫度。又,使用者可使用圖8之操作部61於時間輸入欄62b中輸入所期望之熱處理時間。藉此,設定基板W之加熱處理中應使用之處理製程配方。
當設定處理製程配方時,如圖12所示,將與使用者輸入之設定溫度所屬之溫度區域對應的複數個候補波形(於本例中為候補波形A、B)顯示於波形選擇欄62c。於是,使用者可使用圖8之操作部61選擇複數個候補波形中之一個作為基準波形。此時,自記憶部51讀入與所選擇之候補波形(基準波形)對應之初期動作條件。藉此,設定基板W之加熱處理中應使用之基準波形及初期動作條件。
根據上述圖11及圖12之設定畫面之例,藉由於溫度輸入欄62a輸入設定溫度,於波形選擇欄62c顯示與該設定溫度對應之複數個候補波形。藉此,使用者可容易地掌握與設定溫度相應之可選之複數個候補波形。又,使用者可自可選之複數個候補波形中容易地選擇一個候補波形。因此,防止將不適當之候補波形決定為基準波形。
然,視設置熱處理裝置100之空間之溫度不同,所設定之初期動作條件未必適當。又,假設如具備圖8之熱處理裝置100之後述基板處理裝置,使用複數個熱處理裝置100對複數個基板W進行共同之加熱處理之情形。於該情形時,複數個熱處理裝置100之間通常存在個體差異。因此,若對複數個熱處理裝置100設定共同之初期動作條件,則可能無法於各熱處理裝置100中進行理想之溫度調整。
於是,本實施形態之熱處理裝置100中,針對每次基板W之加熱處理,以使自載置基板W之時點起固定期間內熱處理板10之溫度變化接近設定之基準波形之方式變更初期動作條件。
假設設定溫度設定為90℃且將圖10之候補波形B設定為基準波形之情形。候補波形B產生之超越量相對較小。例如,於對圖2之第1個基板W以設定溫度90℃且以候補波形B作為基準波形進行加熱處理時,熱處理裝置100依照與候補波形B對應之圖10之初期動作條件動作。於該情形時,若熱處理板10之溫度變化產生較大之超越,則以使該超越量變小之方式變更與候補波形B對應之初期動作條件。其後,於對第2個基板W以設定溫度90℃且以候補波形B作為基準波形進行加熱處理時,熱處理裝置100依照變更後之初期動作條件動作。藉此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化與第1個基板W之熱處理時相比更接近基準波形。因此,於第2個基板W之加熱處理時,將基板W載置於熱處理板10上後,熱處理板10之溫度與第1個基板W之加熱處理時相比更適當地恢復設定溫度。
又,於對第2個基板W以設定溫度90℃並以候補波形B作為基準波形進行加熱處理時,若熱處理板10之溫度變化產生中等程度之超越,則以使該超越量進一步變小之方式再次變更與候補波形B對應之初期動作條件。其後,於對第3個基板W以設定溫度90℃並以候補波形B作為基準波形進行加熱處理時,熱處理裝置100依照變更後之初期動作條件動作。藉此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化與第2個基板W之熱處理時相比更接近基準波形。因此,於第3個基板W之加熱處理時,將基板W載置於熱處理板10上後,熱處理板10之溫度與第2個基板W之加熱處理時相比更適當地恢復設定溫度。
圖2之例中,對於與設定溫度115℃、140℃對應之初期動作條件,亦與設定溫度90℃之情形之例同樣地,於每次進行基板W之加熱處理時變更與熱處理板10之溫度變化相應之初期動作條件。
如上所述,於每次對基板W進行加熱處理時根據實時之熱處理板10之溫度變化變更初期動作條件。於該情形時,隨著反覆進行基板W之加熱處理,熱處理之精度提昇。又,根據上述控制,於使用複數個熱處理裝置100對複數個基板W進行共同之加熱處理之情形時,抑制複數個熱處理裝置100間對基板W之加熱處理產生偏差。初期動作條件之變更例如用與使用圖4說明之第1實施形態之初期動作條件之變更例同樣之方法進行。
(3)控制裝置50
如圖8所示,控制裝置50具有記憶部51、發熱控制部52、冷卻控制部53、升降控制部54、溫度獲取部55、條件變更部56、決定部57及顯示控制部58作為功能部。控制裝置50包含CPU(中央運算處理裝置)、RAM(隨機存取記憶體)及ROM(唯讀記憶體)。藉由使CPU執行ROM或其他記憶媒體中記憶之電腦程式,實現上述各功能部。再者,亦可藉由電子電路等硬件實現控制裝置50之功能性構成要素之一部分或全部。
第2實施形態之控制裝置50中,記憶部51記憶複數個候補波形,並且記憶與複數個候補波形分別對應之複數個初期動作條件。又,記憶部51記憶由使用者設定之處理製程配方、基準波形及初期動作條件作為例如下次加熱處理中應使用之資訊。發熱控制部52以於藉由熱處理板10進行基板W之加熱處理之初期,依照與所設定之基準波形對應之初期動作條件動作之方式基於自溫度感測器19輸出之檢測信號控制發熱驅動部13。冷卻控制部53於熱處理裝置100之電源接通期間,以冷卻主動冷卻板20之方式控制冷卻驅動部22。升降控制部54於使熱處理板10之溫度下降時,以使被動冷卻板30接觸熱處理板10之方式控制升降裝置40。
又,第2實施形態之控制裝置50中,溫度獲取部55基於自溫度感測器19輸出之檢測信號獲取熱處理板10之溫度。更具體而言,溫度獲取部55藉由以固定週期對自溫度感測器19輸出之檢測信號進行取樣,獲取溫度之變化。條件變更部56以使藉由溫度獲取部55獲取之溫度變化接近設定之基準波形之方式變更與決定為基準波形之一個候補波形對應之初期動作條件。
進而,第2實施形態之控制裝置50中,顯示控制部58使處理製程配方及基準波形之設定畫面顯示於顯示部62。決定部57於設定處理製程配方時,將由使用者於設定畫面上輸入之溫度之值決定為設定溫度。此時,顯示控制部58使與所決定之設定溫度所屬之溫度區域對應之複數個候補波形可選擇地顯示於設定畫面上。又,決定部57將由使用者操作操作部61於設定畫面上選擇之候補波形決定為基準波形。
再者,熱處理裝置100亦可構成為可基於使用者對操作部61之操作,使記憶部51記憶新候補波形。又,熱處理裝置100亦可構成為可基於使用者對操作部61之操作,使記憶部51記憶新初期動作條件。
如上所述,圖8之控制裝置50之各功能部動作。藉此,於第2實施形態之控制裝置50中,亦執行使用圖5及圖6說明之第1實施形態之溫度調整處理。
(4)第2實施形態之效果
上述熱處理裝置100中,將可成為基準波形之複數個候補波形記憶於記憶部51中。又,將與複數個候補波形分別對應之複數個初期動作條件記憶於記憶部51中。自記憶部51中記憶之複數個候補波形中將一個候補波形決定為基準波形。
其後,於熱處理板10上載置基板W,對所載置之基板W進行加熱處理。於該加熱處理初期,在將基板W載置於熱處理板10上之時點起固定期間內,加熱器11依照與決定為基準波形之一個候補波形對應之動作條件動作。又,檢測熱處理板10之溫度變化。以使檢測出之溫度變化接近基準波形之方式變更與記憶部51中記憶之一個候補波形對應之初期動作條件。
藉此,於對複數個基板W依序進行加熱處理之情形時,於各加熱處理初期,加熱器11依照上次加熱處理時變更之初期動作條件動作。藉此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化與上次加熱處理時相比更接近基準波形。
如此,剛將基板W載置於熱處理板10上後之熱處理板10之溫度變化被逐漸修正為適當之溫度變化。因此,將剛載置基板W後之熱處理板10之溫度迅速調整為用以進行該基板W之加熱處理之適當溫度。
又,根據上述構成,即便於熱處理裝置100周邊之溫度變化之情形時,亦根據該溫度變化變更初期動作條件。因此,適當進行基板W之加熱處理而不受熱處理裝置100周圍之溫度變化之影響。
進而,根據上述構成,將複數個候補波形中一個候補波形決定為表示剛將基板W載置於熱處理板10上後之熱處理板10之適當溫度變化的基準波形。該等之結果為,可適當且高精度地進行基板W之加熱處理。
(5)具備圖8之熱處理裝置100之基板處理裝置
第2實施形態之圖8之熱處理裝置100與第1實施形態之圖1之熱處理裝置100同樣地用於圖7之基板處理裝置400。於該情形時,複數個圖8之熱處理裝置100設置於圖7之熱處理部440。各熱處理裝置100中,進行溫度調整處理。藉此,可對複數個基板W之各者進行高精度且適當之加熱處理。又,即便於藉由相互存在個體差異之複數個熱處理裝置100對複數個基板W分別進行共同之加熱處理之情形時,亦可對複數個基板W進行高精度且均勻之加熱處理。
[3]第3實施形態
以下,參照圖式對第3實施形態之熱處理系統及熱處理方法進行說明。
圖13係表示第3實施形態之熱處理系統之構成之方塊圖。如圖13所示,熱處理系統900包含1或複數個(於本例中為3個)基板處理裝置400、線寬測定裝置700及管理裝置800。3個基板處理裝置400、線寬測定裝置700及管理裝置800可相互通信地連接於網路990。
圖13之各基板處理裝置400具有與圖7之基板處理裝置400基本相同之構成。又,圖13之基板處理裝置400中,於熱處理部440設置有複數個圖8之熱處理裝置100。線寬測定裝置700分別測定藉由複數個基板處理裝置400進行處理後形成於複數個基板W之阻劑膜之線寬,將測定結果輸出至管理裝置800。
管理裝置800例如為個人電腦,包含CPU及記憶體、或微電腦。管理裝置800包含記憶部801及波形更新部802作為功能部。該等功能部係藉由使管理裝置800之CPU執行記憶體中記憶之電腦程式實現。再者,亦可藉由電子電路等硬件實現上述構成之一部分或全部。
記憶部801中記憶有表示藉由線寬測定裝置700所得之線寬之測定結果與複數個候補波形間之預定之對應關係的表格(以下稱為線寬波形表格)。圖14係表示圖13之記憶部801中記憶之線寬波形表格之一例之圖。
圖14之線寬波形表格中,對於針對設定溫度預先決定之圖9之每個溫度區域,規定線寬之測定結果與候補波形之對應關係。此處,圖14之例中,線寬之差量表示線寬之實際尺寸相對於設計尺寸之差量。又,第1閾值係相比第2閾值更小之值。
根據圖14之線寬波形表格,於80℃以上且未達110℃之溫度區域中,將線寬之差量小於第1閾值之測定結果與圖9之候補波形B建立對應。又,將線寬之差量為第1閾值以上且小於第2閾值之測定結果與圖9之候補波形B建立對應。進而,將線寬之差量為第2閾值以上之測定結果與圖9之候補波形A建立對應。
一方面,於110℃以上且未達130℃之溫度區域中,將線寬之差量小於第1閾值之測定結果與圖9之候補波形E建立對應。又,將線寬之差量為第1閾值以上且小於第2閾值之測定結果與圖9之候補波形D建立對應。進而,將線寬之差量為第2閾值以上之測定結果與圖9之候補波形C建立對應。
另一方面,於130℃以上且未達150℃之溫度區域中,將線寬之差量小於第1閾值之測定結果與圖9之候補波形H建立對應。又,將線寬之差量為第1閾值以上且小於第2閾值之測定結果與圖9之候補波形G建立對應。進而,將線寬之差量為第2閾值以上之測定結果與圖9之候補波形F建立對應。
波形更新部802對藉由一個基板處理裝置400進行處理後之基板W,接收自線寬測定裝置700輸出之測定結果。於該情形時,波形更新部802基於線寬波形表格,針對複數個溫度區域分別對與所接收之測定結果對應之候補波形進行判定。
其次,波形更新部802向一個基板處理裝置400所具備之複數個熱處理裝置100發送應將針對每個就設定溫度預先決定之溫度區域判定所得的候補波形設為基準波形之指示。藉此,於一個基板處理裝置400之複數個熱處理裝置100中,於已設定之基準波形與指示之候補波形不同之情形時,將指示之候補波形重新決定為基準波形。
例如,假設於一個基板處理裝置400之一個熱處理裝置100中,以圖9之候補波形B作為基準波形進行設定溫度80℃之加熱處理的情形。此處,設為藉由線寬測定裝置700對藉由一個基板處理裝置400進行處理後之基板W測定阻劑膜線寬,結果為線寬之差量為第2閾值以上。於該情形時,根據圖14之線寬波形表格,與設定溫度80℃之加熱處理對應之候補波形為候補波形A。候補波形A與已設定之基準波形即候補波形B不同。藉此,將一個熱處理裝置100中之基準波形自候補波形B更新為候補波形A。
圖15係表示藉由圖13之波形更新部802進行之一連串處理之一例的流程圖。藉由將管理裝置800之電源接通,開始圖15之一連串處理。
如圖15所示,波形更新部802基於自線寬測定裝置700賦予之信號,判定是否已對藉由一個基板處理裝置400進行處理後基板W進行線寬測定(步驟S31)。
於未進行線寬測定之情形時,波形更新部802反覆進行步驟S31之處理。另一方面,若已進行線寬測定,則波形更新部802基於自線寬測定裝置700賦予之測定結果,計算出線寬之差量(步驟S32)。
其次,波形更新部802基於所算出之線寬之差量與記憶部801中記憶之線寬波形表格,對每個預定之溫度區域判定適當之候補波形(步驟S33)。
其次,波形更新部802將判定結果發送至一個基板處理裝置400(步驟S34)。又,波形更新部802基於判定結果,對一個基板處理裝置400賦予應更新基準波形之指示(步驟S35)。
其後,波形更新部802基於自線寬測定裝置700賦予之信號,判定是否已對藉由另一基板處理裝置400進行處理後之基板W進行線寬測定(步驟S36)。
於未進行線寬測定之情形時,波形更新部802反覆進行步驟S36之處理。另一方面,若已進行線寬測定,則波形更新部802將另一基板處理裝置400設為一個基板處理裝置400(步驟S37),行進至上述步驟S32之處理。
於本實施形態之熱處理系統900中,根據各基板處理裝置400之處理後之基板W之線寬之測定結果,將該基板處理裝置400之複數個熱處理裝置100中設定之基準波形更新為更加適當之波形。藉此,可更加適當且高精度地進行基板W之熱處理。
[4]其他實施形態
(1)第1~第3實施形態中,對具有加熱熱處理板10之構成及冷卻熱處理板10之構成的熱處理裝置100進行了說明,但本發明並不限定於此。熱處理裝置100亦可不具有冷卻熱處理板10之構成(上述之例中為主動冷卻板20、被動冷卻板30及升降裝置40)。
(2)第1~第3實施形態中,對熱處理板10為金屬製傳熱板之例進行了說明,但熱處理板10亦可為陶瓷製傳熱板。於該情形時,作為形成傳熱板之陶瓷,可列舉氮化鋁(AlN)或氧化鋁(Al2
O3
)等。
(3)第1實施形態之熱處理裝置100中,亦可設置有用以將熱處理板10之上表面分別分割為複數個區域,並且以與各區域對應之方式加熱該部分的構成。即,亦可針對熱處理板10之複數個區域之各者設置加熱器11及發熱驅動部13。或,亦可構成為對熱處理板10之複數個區域之各者設置加熱器11且發熱驅動部13可獨立驅動複數個加熱器11。
於該情形時,記憶部51中亦可針對熱處理板10之複數個區域之各者記憶初期動作條件。又,條件變更部56亦可例如以使加熱處理中之熱處理板10之複數個區域之溫度變化接近基準波形之方式變更與至少一部分之區域分別對應之初期動作條件之複數個參數。根據此種構成,可對熱處理板10之上表面之複數個區域進行詳細之溫度調整。再者,於該情形時,亦可將對複數個區域中之一個區域於基板W之加熱處理時獲取之溫度變化設為基準波形。
(4)第1~第3實施形態中,熱處理裝置100對基板W進行加熱處理,亦可構成為熱處理裝置100對基板W僅進行冷卻處理。於該情形時,於圖1之熱處理板10,例如代替加熱器11,設置用以使熱處理板10之上表面之溫度降低之冷卻機構21。
於對基板W進行冷卻處理之情形時,熱處理板10於初期狀態下保持於較基板W更低之設定溫度。因此,當冷卻處理開始時將基板W載置於熱處理板10上時,熱處理板10之溫度接受基板W之熱,自設定溫度上升。
於冷卻機構21包含珀爾帖元件之情形時,藉由與上述實施形態之例同樣地控制珀爾帖元件之驅動狀態,可調整熱處理板10上之溫度。於是,於本例中,以使熱處理板10之溫度迅速降低至設定溫度之方式設定初期動作條件。
於該情形時,條件變更部56以將基板W載置於熱處理板10上之時點起熱處理板10之溫度到達設定溫度為止的實測波形之到達時間接近與該到達時間對應之基準波形之設定時間之方式,變更初期動作條件。又,條件變更部56以使冷卻處理中之特定時點之實測波形之溫度值接近基準波形之溫度值之方式變更初期動作條件。進而,條件變更部56以使熱處理板10相對於設定溫度之溫度變化之不足量變小之方式變更初期動作條件。
(5)第1實施形態中,為了使實測波形接近基準波形,變更針對加熱器11之PID控制之參數之值中之比例參數之值,但本發明並不限定於此。為了使實測波形接近基準波形,可變更PID控制之參數之值中之積分參數之值,亦可變更微分參數之值。
(6)第2及第3實施形態之熱處理裝置100中,亦可設置用以將熱處理板10之上表面分別分割為複數個區域,並且以與各區域對應之方式加熱該部分的構成。即,亦可對熱處理板10之複數個區域之各者設置加熱器11及發熱驅動部13。或,亦可構成為對熱處理板10之複數個區域之各者設置加熱器11且發熱驅動部13可獨立驅動複數個加熱器11。
於該情形時,亦可對熱處理板10之複數個區域之各者決定加熱處理應使用之基準波形。又,條件變更部56亦可例如以使加熱處理中熱處理板10之複數個區域之溫度變化接近對每個區域決定之基準波形之方式,變更與至少一部分區域分別對應之初期動作條件之複數個參數。根據此種構成,可對熱處理板10之上表面之複數個區域進行更詳細之溫度調整。
(7)第2及第3實施形態中,為了使實測波形接近基準波形,變更針對加熱器11之PID控制之參數之值中之比例參數之值,但本發明並不限定於此。為了使實測波形接近基準波形,可變更PID控制之參數之值中之積分參數之值,亦可變更微分參數之值。
(8)具備第2實施形態之熱處理裝置100之圖7之基板處理裝置400中,控制部410亦可具有圖8之條件變更部56及決定部57作為功能部,並記憶圖9之複數個候補波形及圖10之複數個初期動作條件。
於該情形時,控制部410之決定部57亦可基於設置於基板處理裝置400之未圖示之操作部之操作,決定應分別對複數個熱處理裝置100之各者設定之基準波形。進而,控制部410之決定部57亦可對各熱處理裝置100賦予應於與選作基準波形之候補波形對應之初期動作條件下動作的指示。
又,控制部410之條件變更部56亦可以使藉由複數個熱處理裝置100之溫度獲取部55獲取之溫度變化接近設定之基準波形之方式,變更與控制部410中記憶之基準波形對應之初期動作條件。
(9)具備第2實施形態之熱處理裝置100之圖7之基板處理裝置400中,複數個熱處理裝置100之控制裝置50或控制部410亦可具有圖13之記憶部801及波形更新部802作為功能部。於該情形時,例如可基於設置於基板處理裝置400之外部之線寬測定裝置700之測定結果,進行複數個熱處理裝置100中加熱處理使用之基準波形之更新。
(10)第3實施形態之熱處理系統900中,管理裝置800亦可進而具有圖8之條件變更部56及決定部57作為功能部,並於記憶部801中記憶圖9之複數個候補波形及圖10之複數個初期動作條件。
於該情形時,管理裝置800之決定部57亦可基於設置於管理裝置800之未圖示之操作部之操作,決定應分別對複數個基板處理裝置400之複數個熱處理裝置100之各者設定之基準波形。進而,管理裝置800之決定部57亦可對各熱處理裝置100賦予應於與選作基準波形之候補波形對應之初期動作條件下動作的指示。
又,管理裝置800之條件變更部56亦可以使藉由複數個熱處理裝置100之溫度獲取部55獲取之溫度變化接近設定之基準波形之方式變更記憶部801中記憶之與基準波形對應之初期動作條件。
(11)圖10之例中,與複數個候補波形分別對應之複數個初期動作條件互不相同,但亦可為複數個初期動作條件之一部分或全部共同。
(12)第3實施形態之熱處理系統900中,作為用以獲取與各熱處理裝置100中進行加熱處理之基板W相關之處理資訊的構成,使用測定阻劑膜之線寬之線寬測定裝置700,但本發明並不限定於此。
作為用以獲取與進行加熱處理之基板W相關之處理資訊的構成,亦可代替線寬測定裝置700,使用測定形成於基板W上之阻劑膜之厚度之裝置、或計數形成於基板W上之缺陷數量之裝置。於該等情形時,將表示阻劑膜之厚度或缺陷數量與複數個候補波形之間之預定之關係的表格記憶於記憶部801中。藉此,可基於阻劑膜之厚度或缺陷數量與記憶部801中記憶之表格,將熱處理裝置100中設定之基準波形更新為更適當之波形。
[5]請求項之各構成要素與實施形態之各要素之對應關係
以下,對請求項之各構成要素與實施形態之各要素之對應之例進行說明。第1實施形態中,熱處理裝置100為熱處理裝置之例,熱處理板10為板構件之例,加熱器11及發熱驅動部13為熱處理部之例,初期動作條件為動作條件之例,記憶部51為記憶部之例,發熱控制部52為動作控制部之例,溫度感測器19為溫度檢測器之例,溫度獲取部55及條件變更部56為條件變更部之例。
第2及第3實施形態中,熱處理裝置100為熱處理裝置之例,熱處理板10為板構件之例,加熱器11及發熱驅動部13為熱處理部之例,初期動作條件為動作條件之例,記憶部51為第1記憶部之例,溫度感測器19為溫度檢測器之例,決定部57為決定部之例。
又,第2及第3實施形態中,發熱控制部52為動作控制部之例,溫度獲取部55及條件變更部56為條件變更部之例,操作部61為操作部之例,顯示部62為顯示部之例,顯示控制部58為顯示控制部之例。
又,第2及第3實施形態中,線寬測定裝置700為資訊獲取部之例,記憶部801為第2記憶部之例,波形更新部802為波形更新部之例,熱處理系統900為熱處理系統之例。
作為請求項之各構成要素,亦可使用具有請求項記載之構成或功能之其他各種要素。
10:熱處理板
11:加熱器
13:發熱驅動部
19:溫度感測器
20:主動冷卻板
21:冷卻機構
22:冷卻驅動部
30:被動冷卻板
40:升降裝置
41:升降驅動部
50:控制裝置
51:記憶部
52:發熱控制部
53:冷卻控制部
54:升降控制部
55:溫度獲取部
56:條件變更部
57:決定部
61:操作部
62:顯示部
62a:溫度輸入欄
62b:時間輸入欄
62c:波形選擇欄
100:熱處理裝置
400:基板處理裝置
410:控制部
420:塗佈處理部
430:顯影處理部
440:熱處理部
450:基板搬送裝置
500:曝光裝置
700:線寬測定裝置
800:管理裝置
801:記憶部
802:波形更新部
900:熱處理系統
990:網路
W:基板
圖1係表示第1實施形態之熱處理裝置之構成之模式性側視圖。
圖2係表示對複數個基板依序進行加熱處理之情形時熱處理板之溫度變化之一例之圖。
圖3係表示對複數個設定溫度各自設定之初期動作條件之一例之圖。
圖4係用以對初期動作條件之具體變更例進行說明之圖。
圖5係表示溫度調整處理之一例之流程圖。
圖6係表示溫度調整處理之一例之流程圖。
圖7係表示具備圖1之熱處理裝置之基板處理裝置之一例的模式性方塊圖。
圖8係表示第2實施形態之熱處理裝置之構成之模式性側視圖。
圖9係表示圖8之記憶部中記憶之複數個候補波形之一例之圖。
圖10係表示與圖9之複數個候補波形分別對應之複數個初期動作條件之一例之圖。
圖11係表示圖8之顯示部所顯示之處理製程配方之設定畫面之一例的圖。
圖12係表示圖8之顯示部所顯示之處理製程配方之設定畫面之一例的圖。
圖13係表示第3實施形態之熱處理系統之構成之方塊圖。
圖14係表示圖13之記憶部中記憶之線寬波形表格之一例之圖。
圖15係表示藉由圖13之波形更新部進行之一連串處理之一例之流程圖。
10:熱處理板
11:加熱器
13:發熱驅動部
19:溫度感測器
20:主動冷卻板
21:冷卻機構
22:冷卻驅動部
30:被動冷卻板
40:升降裝置
41:升降驅動部
50:控制裝置
51:記憶部
52:發熱控制部
53:冷卻控制部
54:升降控制部
55:溫度獲取部
56:條件變更部
100:熱處理裝置
Claims (21)
- 一種熱處理裝置,其係對基板進行熱處理者,具備: 板構件,其供載置基板; 熱處理部,其通過上述板構件對載置於上述板構件上之基板進行熱處理; 記憶部,其記憶將基板載置於上述板構件上之時點起固定期間內上述熱處理部之動作條件; 動作控制部,其使上述熱處理部依照上述記憶部中記憶之動作條件動作; 溫度檢測器,其檢測上述板構件之溫度;及 條件變更部,其以使上述熱處理部依照上述動作條件動作時藉由上述溫度檢測器檢測出之溫度變化接近預定之基準波形的方式變更上述記憶部中記憶之動作條件。
- 如請求項1之熱處理裝置,其中上述動作條件包含一個或複數個控制參數之值, 上述條件變更部以使上述檢測出之溫度變化接近上述基準波形之方式變更上述記憶部中記憶之上述一個或複數個控制參數中至少1個之值。
- 如請求項2之熱處理裝置,其中上述熱處理部構成為可進行PID控制, 上述一個或複數個控制參數包含上述PID控制之比例參數、積分參數及微分參數中之至少1個,上述PID控制係用以自將基板載置於上述板構件上之時點起使上述板構件之溫度恢復為用於對基板進行處理之處理溫度。
- 如請求項2或3之熱處理裝置,其中上述一個或複數個控制參數包含上述熱處理部之輸出之上限。
- 如請求項1至3中任一項之熱處理裝置,其中上述條件變更部以如下方式進行上述動作條件之變更,即,使將基板載置於上述板構件上之時點起至藉由上述溫度檢測器檢測出之溫度恢復為用於對基板進行處理之處理溫度之時點為止的到達時間接近預先設定之設定時間。
- 如請求項1至3中任一項之熱處理裝置,其中上述條件變更部以如下方式進行上述動作條件之變更,即,使將基板載置於上述板構件上之時點起上述固定期間內之特定時點藉由上述溫度檢測器檢測出之溫度之值接近上述基準波形中與上述特定時點對應之部分之溫度之值。
- 如請求項1至3中任一項之熱處理裝置,其中上述條件變更部以如下方式進行上述動作條件之變更,即,使上述檢測出之溫度之波形產生的相對於用以對基板進行熱處理之設定溫度的超越量或不足量變小。
- 一種熱處理裝置,其係對基板進行熱處理者,具備: 板構件,其供載置基板; 熱處理部,其通過上述板構件對載置於上述板構件上之基板進行熱處理; 第1記憶部,其記憶表示將基板載置於上述板構件上之時點起固定期間內上述板構件之虛擬溫度變化的複數個候補波形,並且記憶與上述複數個候補波形分別對應之上述熱處理部之複數個動作條件; 溫度檢測器,其檢測上述板構件之溫度; 決定部,其自上述第1記憶部中記憶之複數個候補波形中將一個候補波形決定為基準波形; 動作控制部,其使上述熱處理部依照上述第1記憶部中記憶之複數個動作條件中與決定為上述基準波形之上述一個候補波形對應之動作條件動作;及 條件變更部,其以使上述熱處理部依照與上述一個候補波形對應之動作條件動作時藉由上述溫度檢測器檢測出之溫度變化接近上述基準波形之方式,變更上述第1記憶部中記憶之與上述一個候補波形對應之動作條件。
- 如請求項8之熱處理裝置,其進而具備操作部,上述操作部係由使用者進行操作,用以自上述第1記憶部中記憶之複數個候補波形中選擇一個候補波形; 上述決定部回應於使用者對上述操作部之操作,將藉由上述操作部自上述第1記憶部中記憶之上述複數個候補波形中選擇之一個候補波形決定為上述基準波形。
- 如請求項9之熱處理裝置,其進而具備顯示控制部,上述顯示控制部使顯示部可選擇地顯示上述複數個候補波形中之至少一部分。
- 如請求項10之熱處理裝置,其中上述第1記憶部中記憶之複數個候補波形包含與複數個溫度區域分別對應之複數個候補波形群, 上述決定部構成為可將用以對基板進行熱處理之溫度決定為設定溫度, 上述顯示控制部於已藉由上述決定部決定上述設定溫度之情形時,使上述顯示部可選擇地顯示與所決定之處理溫度所屬之溫度區域對應的候補波形群之複數個候補波形。
- 如請求項8至11中任一項之熱處理裝置,其中上述第1記憶部中記憶之複數個動作條件之各者包含一個或複數個控制參數之值, 上述條件變更部以使上述檢測出之溫度變化接近上述基準波形之方式變更上述第1記憶部中記憶之與上述一個候補波形對應之動作條件之一個或複數個控制參數中至少1個之值。
- 一種熱處理系統,其具備: 如請求項8之熱處理裝置; 資訊獲取部,其獲取與已藉由上述熱處理裝置進行熱處理之基板相關之處理資訊; 第2記憶部,其記憶上述處理資訊與上述複數個候補波形間之預定之對應關係;及 波形更新部,其基於藉由上述資訊獲取部獲取之處理資訊與上述第2記憶部中記憶之上述對應關係,以使與藉由上述資訊獲取部獲取之處理資訊對應之候補波形成為基準波形之方式更新基準波形。
- 一種熱處理方法,其係對基板進行熱處理者,包含以下步驟: 於板構件上載置基板; 藉由熱處理部通過上述板構件對上述載置之基板進行熱處理; 於記憶部中記憶將基板載置於上述板構件上之時點起固定期間內上述熱處理部之動作條件; 使上述熱處理部依照上述記憶部中記憶之動作條件動作; 藉由溫度檢測器檢測上述板構件之溫度;及 以使上述熱處理部依照上述動作條件動作時藉由上述溫度檢測器檢測出之溫度變化接近預定之基準波形之方式變更上述記憶部中記憶之動作條件。
- 如請求項14之熱處理方法,其中上述動作條件包含一個或複數個控制參數之值, 變更上述動作條件之步驟包含:以使上述檢測出之溫度變化接近上述基準波形之方式變更上述記憶部中記憶之上述一個或複數個控制參數中至少1個之值。
- 一種熱處理方法,其係對基板進行熱處理者,包含以下步驟: 於板構件上載置基板; 藉由熱處理部通過上述板構件對上述載置之基板進行熱處理; 記憶表示將基板載置於上述板構件上之時點起固定期間內上述板構件之虛擬溫度變化之複數個候補波形,並且將與上述複數個候補波形分別對應之上述熱處理部之複數個動作條件記憶於第1記憶部中; 藉由溫度檢測器檢測上述板構件之溫度; 自上述第1記憶部中記憶之複數個候補波形中將一個候補波形決定為基準波形; 使上述熱處理部依照上述第1記憶部中記憶之複數個動作條件中與決定為上述基準波形之上述一個候補波形對應之動作條件動作;及 以使上述熱處理部依照與上述一個候補波形對應之動作條件動作時藉由上述溫度檢測器檢測出之溫度變化接近上述基準波形之方式,變更上述第1記憶部中記憶之與上述一個候補波形對應之動作條件。
- 如請求項16之熱處理方法,其中將上述一個候補波形決定為基準波形之步驟包含:回應於使用者對操作部之操作,將藉由上述操作部自上述第1記憶部中記憶之上述複數個候補波形中選擇之一個候補波形決定為上述基準波形。
- 如請求項17之熱處理方法,其進而包含如下步驟:使顯示部可選擇地顯示上述複數個候補波形中之至少一部分。
- 如請求項18之熱處理方法,其中上述第1記憶部中記憶之複數個候補波形包含與複數個溫度區域分別對應之複數個候補波形群, 上述熱處理方法 進而包含將用以對基板進行熱處理之溫度決定為設定溫度的步驟, 使顯示部可選擇地顯示上述複數個候補波形中之至少一部分之步驟包含:於已決定上述設定溫度之情形時,使上述顯示部可選擇地顯示與所決定之處理溫度所屬之溫度區域對應之候補波形群之複數個候補波形。
- 如請求項16至19中任一項之熱處理方法,其中上述第1記憶部中記憶之複數個動作條件之各者包含一個或複數個控制參數之值, 變更與上述一個候補波形對應之動作條件之步驟包含:以使上述檢測出之溫度變化接近上述基準波形之方式,變更上述第1記憶部中記憶之與上述一個候補波形對應之動作條件之一個或複數個控制參數中至少1個之值。
- 如請求項16至19中任一項之熱處理方法,其進而包含以下步驟:獲取與已進行上述熱處理之基板相關之處理資訊; 將處理資訊與上述複數個候補波形間之預定之對應關係記憶於第2記憶部中;及 基於藉由上述獲取步驟所獲取之處理資訊與上述第2記憶部中記憶之上述對應關係,以使與上述所獲取之處理資訊對應之候補波形成為基準波形之方式更新基準波形。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019085951A JP7198718B2 (ja) | 2019-04-26 | 2019-04-26 | 熱処理装置および熱処理方法 |
JP2019-085951 | 2019-04-26 | ||
JP2019172443A JP7376294B2 (ja) | 2019-09-24 | 2019-09-24 | 熱処理装置、熱処理システムおよび熱処理方法 |
JP2019-172443 | 2019-09-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202044411A true TW202044411A (zh) | 2020-12-01 |
TWI753401B TWI753401B (zh) | 2022-01-21 |
Family
ID=73571292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112261A TWI753401B (zh) | 2019-04-26 | 2020-04-10 | 熱處理裝置、熱處理系統及熱處理方法 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102388244B1 (zh) |
TW (1) | TWI753401B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4033809B2 (ja) * | 2003-06-16 | 2008-01-16 | 東京エレクトロン株式会社 | 熱処理装置及び熱処理方法 |
JP4384538B2 (ja) * | 2003-06-16 | 2009-12-16 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
JP4531778B2 (ja) * | 2007-02-09 | 2010-08-25 | 東京エレクトロン株式会社 | 温度制御方法、温度調節器および加熱処理装置 |
KR20190011611A (ko) * | 2017-07-25 | 2019-02-07 | 주식회사 나래나노텍 | 개선된 기판 열처리 온도 제어 장치 및 방법, 및 이를 구비한 기판 열처리 챔버 및 장치 |
-
2020
- 2020-04-10 TW TW109112261A patent/TWI753401B/zh active
- 2020-04-24 KR KR1020200050069A patent/KR102388244B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
TWI753401B (zh) | 2022-01-21 |
KR20200125519A (ko) | 2020-11-04 |
KR102388244B1 (ko) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11622419B2 (en) | Azimuthally tunable multi-zone electrostatic chuck | |
JP4699283B2 (ja) | 熱処理板の温度制御方法、プログラム及び熱処理板の温度制御装置 | |
JP4531778B2 (ja) | 温度制御方法、温度調節器および加熱処理装置 | |
JP4033809B2 (ja) | 熱処理装置及び熱処理方法 | |
TW200917402A (en) | Heat processing apparatus, method of automatically tuning control constants, and storage medium | |
TW201616575A (zh) | 電漿蝕刻系統 | |
TWI381453B (zh) | Heat treatment apparatus, heat treatment method and memory medium | |
TWI644342B (zh) | 熱處理裝置及熱處理方法 | |
JP4781931B2 (ja) | 熱処理方法および熱処理装置 | |
TWI753401B (zh) | 熱處理裝置、熱處理系統及熱處理方法 | |
JP7198718B2 (ja) | 熱処理装置および熱処理方法 | |
JP7376294B2 (ja) | 熱処理装置、熱処理システムおよび熱処理方法 | |
JP7256034B2 (ja) | 熱処理装置および熱処理方法 | |
WO2024034355A1 (ja) | パラメータ推定システム、パラメータ推定方法、コンピュータプログラム及び基板処理装置 | |
JP2807844B2 (ja) | 基板加熱装置 | |
US20240055281A1 (en) | Substrate processing method, method for controlling substrate processing method and substrate processing apparatus | |
JP6872914B2 (ja) | 熱処理装置および熱処理方法 | |
JP7441724B2 (ja) | 熱処理装置および熱処理方法 | |
JP2022139247A (ja) | 熱処理装置および熱処理方法 | |
JP2000183071A (ja) | 基板加熱処理装置 | |
JPH11243046A (ja) | 目標温度決定方法及び基板熱処理装置 |