TW202044131A - 即時影響層析序列系統及方法 - Google Patents

即時影響層析序列系統及方法 Download PDF

Info

Publication number
TW202044131A
TW202044131A TW109103846A TW109103846A TW202044131A TW 202044131 A TW202044131 A TW 202044131A TW 109103846 A TW109103846 A TW 109103846A TW 109103846 A TW109103846 A TW 109103846A TW 202044131 A TW202044131 A TW 202044131A
Authority
TW
Taiwan
Prior art keywords
sequence
model
controller
chromatography
measurement point
Prior art date
Application number
TW109103846A
Other languages
English (en)
Inventor
彼得 施萬
艾可 布蘭特
馬丁 洛丹
斯汎 奧利佛 柏契特
馬丁 波格爾
魯賓 希爾
亞歷山德羅斯 帕帕多普洛斯
托馬斯 瑪齊格洛德
Original Assignee
德商拜耳廠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19156367.5A external-priority patent/EP3693732A1/en
Priority claimed from EP19184911.6A external-priority patent/EP3763429A1/en
Application filed by 德商拜耳廠股份有限公司 filed Critical 德商拜耳廠股份有限公司
Publication of TW202044131A publication Critical patent/TW202044131A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/60In silico combinatorial chemistry
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Genetics & Genomics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medical Informatics (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Feedback Control In General (AREA)
  • Hardware Redundancy (AREA)

Abstract

本文所揭示者敘述用於影響層析序列的系統和方法。

Description

即時影響層析序列系統及方法
本發明係有關一種即時影響層析序列系統其方法。
針對蛋白質的處理,使用層析序列系統及方法越來越重要,因為層析序列系統及方法允許連續製程具有進入所述層析序列系統之連續輸入、及所述層析序列系統的連續輸出。
然而,至目前為止,針對影響層析序列系統及方法,例如形成包含數個單元操作的蛋白質純化系統之一部分的層析序列系統及方法之選擇有限。這是即使層析序列系統及方法的精確控制將依序允許把重要之製程參數保持在預定操作範圍內的情況。
因此,本發明之目的係提供針對影響層析序列系統之改進方法。
此目的藉由影響層析序列之系統來解決,所述系統至少包含:
˙至少一測量點,於至少一層析序列的上游;
˙至少一致動器;
˙至少一層析序列;
˙至少二單元操作,在至少一層析序列上游,其中所述至少二單元操作的至少一者係異於調節元件之單元操作;
˙至少一製程控制系統,其即時影響至少一致動器;
其中
o 在至少一測量點處,測量對應於至少一實際製程特徵的液體流之至 少一特徵,且
o 其中所述至少一偵測到的製程特徵係以信號之形式傳輸到至少一製程控制系統,
o 其中基於所述液體流的至少一偵測到之製程特徵、亦即所傳輸的信號,建構至少一製程控制系統之至少一數學或建模部件,以計算至少一修改後的致動值,經由直接影響所述層析序列系統之至少一致動器及/或經由影響所述層析序列系統上游的至少一致動器,所述致動值用於即時影響至少一層析序列。
例如,影響層析序列之系統允許保持重要的製程參數、例如關鍵品質屬性、例如要純化之蛋白質的濃度(“目標”C Target )和預定操作範圍內之雜質濃度(C impurity )。
再者,既然即時影響層析序列系統需要滯留槽中的體積較小等,所述系統允許更有效之設定。
另外,本文所敘述的系統允許蛋白質純化中之上游和下游製程的真正連續調節和控制。
如本文所使用,“品質屬性”意指
Figure 109103846-A0202-12-0002-1
亦即感興趣之相應物質的質量或數量。
於下面所敘述之一範例中,在層析序列方法的至少一洗滌步驟期間,經由改變pH和鹽濃度來影響品質屬性。
在如本文所敘述之影響層析序列的系統之一實施例中,所述系統更包含至少一單元操作。
於如本文所敘述的影響層析序列之系統的一實施例中,建構至少一製程控制系統以計算至少一修改之致動值,所述影響層析序列的系統更包含:
a)至少一調節器及/或用作控制至少一機構的控制器之至少一調節器,其中用於至少一機構的至少一調節器包含至少一PID部件,所述PID部件由至少一測量點接收包含至少一偵測到之製程特徵的至少一信號,或其中用作至少一機構之控制器的至少一調節器包含至少一PID部件,所述PID部件基於至少一預測之製程特徵由至少一機構的至少一預測性模型接收至少一預測之反饋信號;
及/或b)至少一調節器及/或用作控制至少一層析序列的控制器之至少一調節器,其中用作控制至少一層析序列的控制器之至少一調節器包含至少一PID部件,所述PID部件基於至少一偵測到的製程特徵從層析序列系統之輸出處的測量點接收至少一反饋信號,或其中用作控制至少一層析序列之控制器的調節器包含至少一PID部件,所述PID部件基於至少一預測之製程特徵從至少一層析序列的至少一預測性模型接收至少一預測之反饋信號;
及/或c)至少一控制器、例如至少一層析序列的非線性模型預測性控制器,其中層析序列系統之控制器從至少一測量點接收包含至少一偵測到的製程特徵之至少一信號,在此案例中,所述測量點係於至少一層析序列的上游,且其中層析序列系統之控制器另外基於至少一偵測到的製程特徵從在層析序列系統之輸出處的至少一個第二測量點接收至少一反饋信號,或其中至少一層析序列之至少一控制器從至少一測量點接收包含至少一偵測到的製程特徵之至少一信號,於此案例中,所述測量點係在至少一層析序列的上游,且其中層析序列系統之控制器另外基於至少一預測的製程特徵從至少一層析序列之至少一預測性模型接收至少一反饋信號;
及/或d)至少一轉換函數,包含考慮至少一信號的至少一經驗模型,所述信號包含來自至少一測量點之至少一偵測到的製程特徵;
其特徵在於,建構在a)-d)之下所敘述的每一數學或建模部件,以計算至少一修正之致動值,所述致動值用於經由至少一致動器即時影響至少一層析序列。
如本文所使用,“層析序列系統”一詞意指至少在一點包含至少二串聯管柱的層析系統。於一實施例中,層析序列系統選自由Chromacon層析系統、BioSC層析系統、多管柱層析序列系統、週期性逆流(PCC)層析系統、CaptureSMB和BioSMB所組成之族群。
在一實施例中,至少一機構選自由閥門、單元操作、例如停留時間裝置、或濃縮單元所組成的族群。
於一實施例中,至少一測量點係取樣出口,所述取樣出口可連接至Baychromat或其他自動取樣裝置或機器人在線分析系統。於此實施例之範例中,所述取樣出口連接至滯留槽。
在如本文所敘述的影響層析序列之系統的一實施例中,a)之預測性模型包含至少一機構的至少一確定性模型或至少一經驗模型,且b)-d)之預測性模型包含至少一層析序列的至少一確定性模型或至少一經驗模型。
如本文所使用,“經驗模型”一詞意指基於經驗觀察而不是基於所建模之系統的基本物理現象之數學模型。
如本文所使用,“確定性模型”一詞與“機械”和“機械模型”等詞同義地使用,且意指經過諸多狀態和部分步驟之間的已知物理關係精確地決定結果之數學模型。
在如本文所敘述的影響層析序列之系統的一實施例中,至少一測量點係連接至滯留槽之取樣出口,且至少一製程控制系統更包含用於控制至少一機構的至少一控制器,其中用於至少一機構之至少一控制器包含至少一PID部件,所述PID部件從至少一測量點接收包含至少一偵測到的製程特徵之至少一信號;
及/或用於控制至少一層析序列的至少一控制器,其中用於控制至少一層析序列之至少一控制器包含至少一PID部件,所述PID部件基於至少一偵測到的製程特徵從在層析序列系統之輸出處的測量點接收至少一反饋信號,其特徵在於建構控制器,以計算至少一修正之致動值,所述致動值使用於經由 至少一致動器即時影響至少一層析序列。
在如本文所敘述的影響層析序列之系統的一實施例中,至少一調節器、用作控制器之至少一調節器及/或用於控制至少一機構的至少一控制器係用於單元操作之調節器或控制器。
在如本文所敘述的影響層析序列之系統的一實施例中,所述系統更包含至少一停留時間裝置或至少一中間袋。
對於本領域技術人員顯而易見的是,至少一單元操作中可包含至少一停留時間裝置或至少一中間袋。
如本文所使用,“停留時間裝置”一詞意指例如盤繞流逆變器(Klutz等人,2016年)、螺旋流逆變器(WO2019063357)、或攪拌槽反應器之裝置,其中液體流的界定部分花費預定之時間段。
在如本文所敘述的影響層析序列之系統的一實施例中,所述系統更包含至少一調節元件,產物流於進入至少一層析序列之前通過所述調節元件。
在如本文所敘述的影響層析序列之系統的一實施例中,至少一測量點選自由至少一偵測器或系統出口(例如三通閥)所組成之族群。
於至少一測量點係至少一偵測器的一實施例中,所述偵測器選自由能夠偵測至少一多變量UV、Vis、螢光、紅外散射光及/或拉曼(Raman)信號之偵測器的族群。
在另一態樣中,本文所敘述者有關影響層析序列之方法,所述方法至少包含:
˙在至少一測量點測量液體流的至少一特徵,所述特徵對應於至少一實際製程特徵;
˙將呈信號形式之至少一偵測到的製程特徵傳輸到至少一製程控制系統;
˙使用至少一建構用於計算之製程控制系統的至少一數學或建模部件,基於液體流之至少一偵測到的製程特徵來計算至少一修正之致動值;
˙經由直接影響層析序列系統的至少一致動器及/或經由影響層析序列系統上游之至少一致動器的任一者,使用至少一修改之致動值來即時影響至少一層析序列。
對於本領域技術人員顯而易見的是,取決於所選擇之數學或建模部件的要求,至少一測量點可為在上述系統內之不同位置。再者,可存在一個以上的測量點,例如,所述系統可包含二個或三個或更多個測量點。
例如,測量點可為坐落於單元操作之前(亦稱為上游)-及/或在單元操作之後(亦稱為下游)-及/或於停留時間裝置之前及/或之後、及/或緩衝袋及/或調理元件內、及/或在至少一層析序列之前及/或之後。
於一實施例中,單元操作選自由層析序列、過濾、用於濃縮的超濾、用於緩衝液交換之滲濾、和用於控制pH、電導率、賦形劑、排放模組(如果材料在後續測試中出乎意料地超出規格範圍)的調節元件所組成之族群。因此,在一實施例中,至少一層析序列上游的至少二單元操作選自以下者:
a)至少一過濾和至少一超濾;或
b)至少一過濾和至少一滲濾;
c)至少二過濾。
於此中,“調節元件”以pH值、電導率、賦形劑之觀點使用於控制液體流,或如果材料在後續測試中出乎意料地超出規格範圍則用作排放模組。於本文所敘述的方法和系統之一實施例中,調節元件選自由至少一滯留槽(亦稱為中間槽/袋)及/或至少一均質化迴路(亦稱為週期迴路)及/或管道的定義長度所組成之族群。
如本文所使用的,“數學或建模部件”一詞意指改變致動值以達到修改之致動值或計算修改的致動值之演算法,所述致動值進而使用於影響至少一致動器並因此即時影響層析序列系統及方法。
如本文所使用,“單元操作”一詞意指生產製程中的方法步驟及/或意指在生產製程中執行所述方法步驟之裝置。
如本文所使用的,“即時”一詞意指於液體流之給定部分(亦即取樣部分)到達層析序列系統之前計算至少一修改的致動值之事實,從而使得其可能影響層析序列系統及方法。
對於本領域技術人員顯而易見的是,從至少一取樣點流向至少一層析序列之液體流的不同體積元件所需之時間取決於數個因素,例如流速、停留時間裝置或緩衝袋的尺寸、和至少一機構之特徵。再者,顯而易見的是,於正常操作條件之下,至少一機構的出口液體流之流速不會改變,而是可調節停留時間或緩衝袋的液位-例如:將其放大以延長液體流之給定取樣部分到達層析序列系統所需的時間。然而,例如,藉由產物品質考量限制停留時間或緩衝袋之尺寸。
如本文所使用,“實際製程特徵”一詞意指在給定情況之下實際存在的液體流之製程特徵的特定值。液體流之可測量的實際製程特徵之範例係電導率、pH值、流速、製程組分進料濃度、及/或溫度。
相比之下,可受到本文所敘述的系統影響之層析序列的製程特徵之範例係進料及/或緩衝液流的電導率、進料及/或緩衝液流之pH值、進料及/或緩衝液流的流速、進料濃度、關鍵品質屬性進料及/或緩衝液流、切割標準、緩衝液組成、管柱體積、載入密度進料及/或緩衝液流、及/或載入時間進料及/或緩衝液流。
如本文所使用,“設定值”一詞係可與“設定點值”和“目標值”等詞互換地使用,且意指液體流之製程特徵的特定值或層析序列系統及方法之製程特徵,因其將在給定的情況之下及/或於特定的時間點。
如本文所使用,亦稱為“操縱值”之“修改的致動值”一詞意指藉由至少一製程控制系統使用數學或建模部件計算出並採用來影響至少一致動器之值。
如本文所使用,“致動器”一詞意指能夠經由影響層析序列系統及方法的實際製程特徵及/或製程特色及/或經由調整流體流動來影響層析序列系統及方法之裝置。致動器的範例係泵浦、閥門及/或從屬控制器。從屬控制器 可以是用於在線調節進料液流或層析序列緩衝液之PID控制器。
於替代實施例中,與轉換函數對應的經驗模型包含複雜之資料驅動演算法、例如神經網路。藉由考慮代表性輸入-輸出資料的訓練資料組來訓練此類系統以施行任務。例如,輸入意指進入層析序列系統之液體流的實際製程特徵,而輸出係藉由最佳化層析序列系統及方法之可用高逼真度決定模型所獲得,並具有層析序列系統及方法的產物流之偵測到的製程特徵係在所期望之操作範圍內的目標。
在本申請案內,控制(德語為“Regeln”)意指要影響之值(控制變數)的測量及所述值與期望值(目標值)之連續比較。控制器根據控制變數和目標值之間的偏差來計算使偏差最小化所需之值,從而導致控制變數接近目標值。因此,範例係反饋或閉環控制。
相比之下,調節(Steuern)意指在給定的時間段內將給定之製程特徵及/或製程特色(例如泵浦速率)設定為特定值,而沒有影響所述特定值的外部或製程內部因素。一範例係正向控制或開環控制。
於系統之一實施例中,數學或建模部件使用於生成製程反饋信號。換句話說,數學或建模部件使得能夠使用調節器(“Steuerer”)作為控制器(“Regler”),且因此稱為“用作控制器的調節器”。
在一範例中,數學或建模部件使用作狀態估計器(德語為“Zustandsschätzer”),從而能夠使用調節器(“Steuerer”)作為控制器(“Regler”),且因此稱為“用作控制器之調節器”。
反饋信號意指作為輸入被路由回到至少一製程控制系統的輸出信號之一部分。
因此,“基於來自至少一層析序列及方法及/或至少一機構的至少一預測性模型之至少一預測製程特徵的預測性反饋信號”之表述意指一情況,在此至少一層析序列及方法及/或至少一機構的至少一預測性模型使用於產生預測性製程特色及/或製程特徵。
至少一製程控制系統使用所述預測性製程特色及/或製程特徵而不是所測量之實際反饋信號。
相比之下,“基於來自在層析序列系統的輸出處之測量點的至少一偵測到之製程特徵的反饋信號”之表述意指一情況,於此反饋信號不是藉由數學或建模部件所預測而是被測量。
在一實施例中,反饋信號可使用於適應預測性模型,例如,改變操作條件,例如獲得用於老化層析樹脂的不同參數。
如本文所使用,“液體流”或“液體流動”一詞意指液體及/或氣體之流動。在當前敘述的意義上,通常意指於至少一取樣點和至少一層析序列之間的液體流動。液體流可包含溶解或部分溶解之物質,像感興趣的蛋白質或其沉澱物、病毒顆粒、鹽、糖和細胞組分及/或鹽、絮凝物、沉積物及/或晶體。
如本文所使用,“產物流”一詞係可與“產物流”等詞互換地使用,且“製程流”意指來自包含所感興趣之蛋白質的異質細胞培養液混合物之無細胞液體。為了清楚起見,於本說明書的意義上,產物流亦是“液體流”或“液體流動”。因此,輸入之產物流進入單元操作,反之輸出的產物流離開單元操作。
在本文所敘述之方法的一實施例中,至少一修改之致動值係藉由至少一製程控制系統使用至少一建構的數學或建模部件來計算,其特徵在於數學或建模部件包含至少一代理模型。
如本文所使用,“代理模型”一詞係可與“降階模型”互換地使用,且與機械模型相比,意指細節程度降低之數學或建模部件。其盡可能接近地模仿機械模型的行為,同時在計算上評估起來更便宜,例如因為其需要較少之計算能力。
令人驚訝地發現,於許多情況下,代理模型可代替機械模型,同時仍然確保輸出預測的足夠準確值。換句話說,當採用至少一代理模型時,與採用機械模型之情況相比,沒有計算出關於一些系統狀態的動力學之大量資訊。然而,代理模型針對目標輸出的足夠準確之預測能力仍然能夠計算出修正的致 動值,所述致動值使用於即時影響至少一層析序列及方法。
從理論上講,可使用機械作用之BioSMB製程模型在BioSMB製程循環期間隨時計算所有液體中的所有組分之濃度及層析樹脂的固定相。然而,機械模型需要於達到最終解決方案之前以一定的時間間隔(藉由積分器步長所給予)計算每一相中所有組分之濃度。這在計算上是昂貴的,且因此對於在數學或建模部件中之應用而言可能太慢,使得無法計算修改的致動值,所述致動值使用於即時影響至少一層析序列。
整個BioSMB之單一代理模型(例如人工神經網路(ANN))只能夠鏈接輸入信號和輸出信號組。因此,其不能使用於預測BioSMB的製程(部分)步驟之間具有顯著物理相關性的狀態。例如,如果使用單一代理模型將BioSMB之入口濃度鏈接至目標產量和雜質負擔,則將不可能評估用於諸多事件的管柱條件,例如在第二次1.2事件之後的管柱載入(請參見下面之詳細範例)之間。再者,代理模型只能以足夠的準確性和堅固性應用至用於校準之範圍內側的資料。因此,決定所需之訓練資料構成開發代理模型以逼近複雜行為的高度重要之態樣。因此,如果僅只一參數的值移出訓練範圍,則代理模型之輸出可為顯著偏離。
相對於代理模型,“訓練”一詞意指使用適當的演算法來調整模型參數,以建立在每一輸出與其各自的輸入之間的數學關係。
於一實施例中,代理模型選自由迴歸、部分最小平方(PLS)迴歸、神經網路、反應表面模型、支援向量機、克立更統計法、徑向基函數、空間映射所組成的族群。
生成訓練代理模型所需之資料的方式係例如藉由使用機械模型來模擬特定問題或類似問題以生成輸入資料之初步範圍,或藉由使用製程知識、或二方式的組合來生成。其他方式對技術人員係已知的。不管所選擇之方式,特定步驟的輸入信號之所有相關軌跡理想地使用於訓練代理模型,因為這實踐上允許對所有相關輸入的輸出進行準確之預測。
如本文所使用,“輸入信號”一詞意指進入給定製程步驟的液體流之 組分的濃度、亦即給定製程步驟之輸入的濃度。
如本文所使用,“輸入資料”一詞意指在一定時段內之輸入信號的範圍,且亦可意指於給定製程步驟之前的管柱條件。
管柱條件之範例係例如單體、孔隙和固定相的濃度分佈曲線。
再者,可使用機械模型決定給定之特定輸入分佈曲線、訓練代理模型所需的對應輸出。
大致上藉由使用者選擇輸出資料之類型-例如管柱條件或出口濃度-因此確保至少一代理模型得到訓練,以將最相關類型的輸出資料鏈接至輸入資料。
於訓練程序之後,代理模型因此建構為在所考慮(訓練)的範圍內將輸入鏈接至對應之輸出。因此,可能以足夠的精度直接快速地計算所期望之輸出軌跡。換句話說,本文所敘述的用於生成代理模型之方法使得能夠高效地計算經修改的致動值,所述致動值進而使用於例如經由啟用更快之計算而使用更少的計算能力來即時影響至少一層析序列及方法。
在數學或建模部件包含至少一代理模型之方法的一實施例中,對至少一代理模型之輸入及/或輸出資料進行參數化。
經由對資料進行參數化,可能採用資料組,其中原始資料太大而無法由代理模型(例如ANN)所直接使用。進行參數化的可能方法係曲線配適、部分曲線配適、主成分分析(PCA)、資料取樣。
“子-模型”或“子模型”為整個製程循環之特定部分建模。子模型的本質可為多種多樣的、例如機械模型或代理模型。
於數學或建模部件包含至少一代理模型之方法的一實施例中,將二或更多代理子模型鏈接在一起,或將代理子模型與機械子模型結合。因此,於此實施例中,一子模型之輸出可變成另一子模型用之輸入。
在另一方面,可與“子步驟”一詞互換地使用的“子-步驟”一詞意指於藉由使用者所預定之層析序列製程期間的時間量。
因此,在一範例中,於給定之子步驟期間,將預定體積的液體流施加至給定之管柱,或在所述子步驟期間沒有液體流施加至管柱。於隨後的子步驟期間,流速、所施加液體流之含量/組成、或施加的方式-例如梯度或步驟-可改變。所界定之子步驟可進一步細分,以便最佳化至少一製程控制系統中的實際子步驟之再現,因此子步驟載入1.1和載入1.2可為正好相同,除了其持續時間以外。使用子步驟允許對ANN進行更精確的訓練。
換句話說,藉由採用至少二代理子模型,於此一代理子模型生成第二代理子模型用之輸入,因此其可能對不同的製程步驟使用不同之代理子模型,以便使所需精度和可用/預期的計算能力之間的比率最大化。例如,可藉由人工神經網路對製程之載入步驟進行建模,反之藉由線性迴歸對相同的通用製程之洗滌步驟進行建模,而藉由機械模型對相同的通用製程之溶析進行建模。使用此方式,確保對每一製程步驟使用理想的模型。總體模型之此模組化組件可在諸多情況下實現高度靈活的應用,且最終更快及更省錢地計算修改後之致動值,所述致動值使用於即時影響至少一層析序列及方法。
如本文所使用,“總體模型”一詞意指包含至少二子模型的模型。
在此方式之一範例中,一次考慮BioSMB製程循環的每一步驟。因此,其係可能經由為各個製程步驟採用子模型,專門針對所述製程循環之各個步驟定製機械模型(請參見下面的詳細範例)。其結果是,可精確地離散化子步驟之此定製的機械模型,而與完整BioSMB之機械模型相比,其計算速度仍然更快。因此,使用給定的定製模型,可於給定之時間範圍中模擬特定製程步驟的更多製程情況(管柱條件??),同時與整個BioSMB之機械模型相比,具有更高的準確性。再者,與整個BioSMB製程之機械模型相比,由連接的代理子模型所組成之整體代理模型亦可更準確,這些子模型使用由定製的機械子模型所生成之資料進行訓練。因此,此方式導致準確性中的增加,同時降低計算成本。於所敘述之範例中,遍及BioSMB製程循環的大部分步驟,鹽濃度和pH值係恆定。因此,在分開之BioSMB製程步驟的各個詳細子模型中,省略二部件,從而簡 化模型之複雜性。例如藉由不同程度的空間和製程循環步驟之時間離散化、或甚至藉由改變管柱/孔隙模型或等溫線,給出針對各個製程步驟定製各個機械模型的其他範例。另外,可根據要在給定狀況下建模之特定製程來選擇用於輸入和輸出資料的參數化技術以及代理模型之類型。
再者,於方法的一實施例中,在此數學或建模部件包含至少一子模型,並將二或更多子模型鏈接(亦即連接)在一起,於給定子模型之輸出使用作為另一子模型的輸入之前,施行一或更多附加的計算。
因此,這些附加之計算允許修改給定子模型的輸出、例如在將所述輸出用作另一子模型的輸入之前的代理模型。例如,給定代理模型之輸出係目標組分的管柱濃度。所述管柱係以50個點離散化,因此,所述代理模型之輸出由50個資料點(從x=0cm至x=管柱長度)所組成,其中每一資料點對應一目標濃度值。然而,於此範例中,針對100個資料點的離散化來訓練下一(亦即第二)代理模型。因此,必須經由附加之計算來修改50個目標濃度值(亦即第一代理模型的輸出),以生成100個目標濃度值作為第二代理模型之輸入。
附加計算的範例係基於所選擇之製程的參數化之線性內插或轉換。這些附加的一或更多計算增加所述方法之靈活性,以便使其適應不同的情況,例如允許如上所述之管柱離散化中的改變。
總的來說,採用附加的計算允許在諸多情況下實現高度靈活之應用,並最終可更快及更便宜地計算修正的致動值,所述致動值可使用於即時影響至少一層析序列及方法。
在此方法之較佳實施例中,其中數學或建模部件包含至少一代理模型,至少一代理模型包含至少一人工神經網路。
於另一態樣中,上述方法使用於在至少一製程控制系統的至少一數學或建模部件中最佳化層析序列製程之再現。
在用於影響層析序列的方法之一實施例中,至少一製程控制系統包含至少一數學或建模部件,且建構為計算至少一修正的致動值,其中所述方法 包含以下步驟:
˙界定控制情節;
˙界定已界定之控制情節的子步驟;
˙界定每一子步驟之相關輸入資料;
˙使用至少一機械模型來決定至相關輸入資料的每一輸入信號之準確輸出;
˙使用上面生成的輸入資料和輸出資料來訓練至少一代理模型;
˙計算修正之致動值,所述致動值係使用受過訓練的至少一代理模型,經由直接影響層析序列系統之至少一致動器及/或經由影響層析序列系統上游的至少一致動器來即時影響至少一層析序列。
本領域技術人員理解,相關之輸入資料可為多方面的,並可包括寬廣範圍之可能的分佈曲線,因為其不僅必需限於特定子步驟所期望之輸入資料,而且亦可包括通用輸入資料以努力提高模型的通用性。輸入資料亦可例如包括常數值、線性形狀或指數函數之輸入。這些形狀對於子步驟典型不可預期,但是將其包含在輸入資料中可生成經過訓練的ANN,這些ANN能夠於寬廣之輸入資料範圍內堅定地施行。
對於本領域技術人員顯而易見的是,可採用訓練ANN之不同演算法,其可選自例如由反向傳播或方式所組成的族群,所述方式迭代用於精確學習之可溶性條件、例如藉由Bärmann等人所開發的方法(F.Bärmann和F.Biegler-König。關於神經網路用的有效學習演算法之一類,5(1):139-144,1992年)。再者,可利用在訓練製程期間用於ANN網路參數調整的多數演算法、例如梯度下降、共軛梯度、牛頓法、Quasi Newton、Levenberg-Marquardt、進化演算法、和遺傳演算法。
在較佳實施例中,上面方法包含至少二代理子模型之訓練或至少一機械子模型的生成、及至少一代理子模型之訓練,以及鏈接各個子模型以生成可使用於預測或控制目的、或同時使用於兩者之總體模型。如果將其使用於控 制目的,則製程控制系統將計算修改之致動值,所述致動值使用於經由直接影響層析序列系統的至少一致動器及/或經由影響層析序列系統上游之至少一致動器而使用整體模型來即時影響至少一層析序列。
對於本領域技術人員顯而易見的是,可例如藉由以下方式界定子步驟以及輸入資料:
˙模擬類似之示範情節並推斷結果;
˙製程知識;
˙兩者之結合。
示範情節中的訓練資料之生成代表可定製的步驟。大致上,初步輸入資料可使用於藉由按恆定因數進行縮放來生成相似形狀。對於給定之子步驟,另一方式係以可能的輸入軌跡創建具有高方差之資料組。這些輸入資料形狀可例如是恆定分佈曲線、線性分佈曲線、或完全任意的分佈曲線。形狀典型可能不期待用於各個子步驟,但是將其包括在輸入資料中會生成經過訓練之ANN,這些ANN能夠於更寬廣的輸入資料範圍內堅定地施行。
再者,本領域技術人員理解到,所考慮到之子步驟數量中的增加與更詳細之製程模型密切相關,但是於模型開發中也需要付出更大的努力。
例如,藉由利用進料流中之雜質濃度的洗滌步驟之控制對應於所界定的控制情節。在此範例中,系統之子步驟界定為載入階段、清洗階段、第二遍(等等,請參見下面的詳細範例)。這些階段之每一階段(亦即子步驟)需要個別的代理子模型。因此,必須為每一階段決定相關之製程參數及其值。於進料流的突破口到達管柱之“第二遍”階段的案例中,針對相關之第二遍濃度對替代子模型進行訓練。因此,所選擇的輸入係目標和雜質進料濃度。為了建立這些相關製程參數的值,重要的是考慮以下範例:如果具有8g/l和100.000ppm雜質之目標濃度的進料流連續到達BioSMB,則計算出第一管柱突破口之時間點以及第二遍中的目標濃度和雜質濃度之值。結果的值對應於初步之輸入範圍。然而,已建立雜質濃度不是恆定在100.000ppm,而是可於200至200.000ppm之間波 動。使用情節外推法及/或製程知識導致將第二遍的雜質輸入參數最終設定為500至150.000ppm之值。由於雜質濃度在沒有第二遍階段的情況下亦有所不同,因此會生成機械模型輸入範圍。於此示範性情節中,藉由機械模型計算第二遍期間之1200種不同的雜質濃度分佈曲線,以獲得每一案例用之輸出雜質濃度。隨後,對第二遍的輸入雜質濃度值進行參數化,且接著鏈接至計算出之輸出值、或直接鏈接至計算出的輸出值。
範例
下面之範例敘述如何獲得使用於即時影響至少一層析序列及方法的修正之致動值。對於本領域技術人員顯而易見的是,由於層析序列系統及方法之本質,計算出許多修改的致動值以即時影響層析序列系統及方法。這些範例係模擬範例。
I)概述:
假定層析序列系統及方法將連續運行達至少三天。
所採用之層析序列系統及方法係具有如圖6中所描述的周期性逆流層析製程循環之BioSMB,包括以下7個子步驟:
1)載入;
2)洗滌1;
3)洗滌2;
4)溶析;
5)就地清洗(CIP)和重新平衡;
6)第二遍1;
7)第二遍2。
在即時影響至少一致動器的至少一製程控制系統之所採用的至少一數學或建模部件中,這些子步驟並未以1:1的形式表示。而是拆分一些子步驟,從而導致以下子步驟:
1)載入1.1;
2)載入1.2;
3)洗滌1.1;
4)洗滌1.2;
5)洗滌2;
6)溶析1;
7)溶析2;
8)CIP和重新平衡;
9)第二遍1.1;
10)第二遍1.2;
11)第二階段2.1;
12)第二遍2.2。
使用子步驟允許對ANN進行更精確之訓練。
此外,界定一控制循環、亦即使用於控制情節的BioSMB製程循環之一部分。控制循環包括:第二遍1.1、第二遍1.2、第二遍2.1、第二遍2.2、載入1.1、載入1.2、洗滌1.1、洗滌1.2、和洗滌2。
在流出物表示為“第二遍”的洗滌1子步驟之一部分中,第二遍1.1、第二遍2.1、載入1.1、和洗滌1.1子步驟的持續時間相等及可視化(參見圖6)。各個子步驟時間之其餘部份都獲得“.2”-後綴。溶析子步驟分為二個等長的子步驟“溶析1”和“溶析2”。因此,第2管柱在溶析2子步驟之開始處啟動。切換時間係藉由載入子步驟的長度可視化。
對於本領域技術人員顯而易見的是,確切之模型組構對於所考慮的問題係高度特定的,且需要藉由使用者針對每一案例個別地決定。在此範例中,載入步驟由第一遍中之一管柱和第二遍中的二管柱所組成。管柱尺寸之設計主要取決於所考慮情節的最大流速、傳質係數、靜態結合能力、和所期望之捕獲效率。
在BioSMB製程循環的不同起點啟動管柱並將所述循環重複幾次。 對於本領域技術人員顯而易見的是,進入管柱之液體流的組成和流速不同,以便完成所期望之分離效果。
在此示範性製程循環中,分別於第二遍1.1、第二遍2.1、載入、洗滌1.1、和溶析2的開始處啟動五個管柱Col 1-5。在載入期間,Col 4之入口由流速Qin,BioSMB和每一特定組分cin,BioSMB的各自濃度所控制。於完成載入階段之後,Col 4進入洗滌1.1。在此,藉由施加平衡緩衝液來置換填隙液體的體積。洗滌1.2係製程循環中之主要雜質減少步驟。在此,高鹽濃度和低pH值的組合導致組分與層析樹脂之結合親和力降低。由於所有組分均受到此影響,因此製程參數的有利組合之特徵在於,針對雜質的結合親和力大大降低,而目標分子之結合親和力卻大部份保留。洗滌2期間的洗滌緩衝液獲得與洗滌1.2期間所採用之緩衝液相同的pH,但是鹽濃度降低。隨後施加之溶析緩衝液係相對較低的pH,導致目標組分之溶析。在CIP/重新平衡期間,將清潔和中和溶液的組合施加至Col 4,並保證用於即將來臨之結合子步驟的清潔及預處理之管柱。第二遍1.1和2.1的入口液體流係洗滌1.1和載入1.1之混合流出物。在第二遍1.2和2.2期間,管柱入口液體流係載入1.2中的管柱之流出物。因此,於第二遍1.1中,僅在Col 2的流出物載入第二遍1.2之前,首先將洗滌1.1中的Col 1和載入1.1和洗滌1.1中之Col 2的混合流出物分別載入Col 4。以此類推,於第二遍2子步驟期間,僅在切換至管柱3的流出物之前,首先藉由Col 3和2的流出物之混合來決定至Col 4的入口。後來,重複所述循環。
如本文所使用,“切換時間”一詞意指BioSMB製程循環中之一管柱抵達上游起始管柱的起始點之持續時間。此持續時間典型係載入、第二遍1、和第二遍2子步驟的持續時間。
於一些特定範例中,目標蛋白質和雜質之濃度可作為來自在BioSMB、亦即離開BioSMB的“溶析液流”之輸出處的測量點之反饋信號。二值都使用於決定質量保證(QAs)。
可藉由在洗滌1步驟期間操縱pH值和鹽濃度來影響目標蛋白質和雜 質的濃度。
應當注意的是,於諸多範例中,如至少一數學或建模部件中所代表之層析管柱併入三相:單體、孔隙、和固定相。
為了計算使用於即時影響至少一層析序列及方法的修正致動值,假定以下基本設定:
1.具有恆定流速Qharvest=2000 l/d之連續液體流,且目標組分濃度為:
C harvest,target =a+b.e -d.t
在此模型係數給與為a=1.057g/l,b=7.509g/l,且d=8.303 x 10-3 l/min。再者,假設於模擬時間內具有charvest,impurity=1.45e-8mol/l的濃度恆定之雜質。二濃度都組合在向量charvest中。
2.使用穿膜過濾模組的連續濃縮裙部(CCS),並藉由以下者所調節:
Figure 109103846-A0202-12-0019-2
在此VCCS表示CCS之體積。Qin,CCS和Qout,CCS分別構成流入和流出模組的液體流之流速。藉由cin,CCS和cout,CCS表示液體流的濃度之向量。Qfiltrate代表離開CCS的無組分濾液之流速。假定沒有任何洩漏。
3.理想的連續攪拌式滯留槽藉由以下者所建模:
Figure 109103846-A0202-12-0019-17
其中ctank構成滯留槽內側之液體的濃度和體積Vtank之向量。流入和流出滯留槽的液體流之流速分別用Qin,tank和Qout,tank表示。再者,cin,tank敘述進入滯留槽的液體流中之濃度的向量。
4.將流出具有恆定流速Qin,BioSMB和濃度cin,BioSMB隨時間變動之向量的系統之離開液體流係連接至周期性逆層析系統(BioSMB)模型。
既然模組(1.-4.)係連續地連接,因此流入每一模組的液體流之流速和 濃度等於上游模組的輸出,亦即cin,tank=cout,CCS。假定製程操作之間沒有時間延遲。滯留槽內側的液體之初始體積設定為30ml。所有體積和液體流均以0g/l的組分濃度開始。所有流速之下限藉由0ml/min所給與。
假設離開包含目標、亦即收穫流的層析序列系統之液體流的雜質濃度在製程情節運行期間為恆定。既然將目標濃度設定為隨時間降低,因此將越來越多的緩衝液丟棄在CCS中,以獲得ctank之恆定目標濃度。其結果是,離開CCS的液體流之雜質濃度在製程時間期間增加。
利用機械BioSMB製程模型來模擬製程行為,且使用平行處理來針對5個管柱同時求解特定模型的偏微分方程(PDE)。其採用集總速率模型,所述模型採取軸向分散、線性膜轉移、和孔隙液之平衡組分濃度。再者,模型等溫線包括鹽和pH相依性、競爭性結合、動力學效應、和無組分置換效應。
出於建模目的,管柱沿著其長度離散化。對於這些離散點之每一者,評估每一個別相中的每一組分之濃度。例如,如果管柱長為50cm,且在6個點處離散,所述點於0cm、10cm、20cm、30cm、40cm、及在50cm的管柱出口處隔開。由於考慮了2種組分,這導致6 x 2 x 3之濃度。因此,這些36個資料點敘述整個管柱狀態、亦即“管柱條件”。在計算使用於即時影響至少一層析序列及方法的修正致動值期間,管柱條件可隨時間改變。因此,在特定時間點保存管柱條件允許於給定時間點重新啟動模擬。
嚴格的機械模型使用於獲得整個BioSMB製程之準確代表。為了即時控制和最佳化目的,利用代理模型,與機械模型相比,所述模型能夠在BioSMB之出口處更快地計算製程特徵,進而允許有效地計算修改後的致動值,所述致動值使用於即時影響BioSMB。於此範例中,使用ANN來實現代理模型,而ANN係使用機械BioSMB製程模型來進行訓練。其結果是,ANN獨立地模擬所有相關之BioSMB製程循環步驟,並能夠計算BioSMB製程模型的輸出。
詳細地,在從第二遍1.1至洗滌2的每一子步驟之後,使用ANN來計算管柱條件。再者,載入1.1-1.2和洗滌1.1的流出物濃度亦很重要,因為其 構成步驟第二遍1.1-2.2之入口液體流的組分濃度。沒有顯示使用於訓練ANN之特定輸入和輸出資料。
在決定用於訓練ANN的機械模型之輸入信號的範圍之後,使用機械BioSMB模型決定每一輸入的輸出。
隨後,在訓練ANN之後使用經參數化的分佈曲線來適當地參數設定輸入和輸出資料。
於訓練之後,ANN能夠將訓練範圍內的輸入軌跡與其對應之輸出分佈曲線相關聯。因此,可能以高精度直接地評估所期望的特徵。遵循此程序,為BioSMB製程循環之每一步驟生成代理模型。因此,一代理模型的輸出利用作後續子模型之輸入、例如管柱條件。在其間,施行數個附加的計算。例如,對第一ANN之參數化輸出進行反參數化,以便執行線性內插以將資料調整至後續ANN的離散化。然後依次對下一ANN之輸入資料適當地參數化。此程序允許數個ANN的靈活互連,以實現整個BioSMB製程之數學敘述。最後,所構造並鏈接的ANN使用進料液體流之組分濃度,並將洗滌緩衝液的鹽濃度和pH值作為輸入,且返回溶析液之對應目標濃度和雜質濃度作為輸出。
因此,如上所述,令人驚訝地發現,可省略藉由機械模型所計算的大量資料,且因此不包括在代理模型(此處為ANN)之訓練中,而仍確保即時精確計算修正的致動值。
於A1和A2中,添加PID控制器來控制滯留槽(參見上面“理想之連續攪拌滯留槽”)內側的液體濃度,作為數學或建模部件。藉由操縱CCS之濃度因數F==Qin,CCS/Qout,CCS獲得PID控制器的設定濃度。控制變數受限於CCS之最大可能濃度因數、亦即Fmax=8、及20g/l的任何液體流之最大組分濃度兩者。既然CCS不允許稀釋進來的液體流,其下限設定為Fmin=1。
針對A1和A2所概述之此設定使恆定流動能夠流入BioSMB-從而能夠使滯留槽最小化-且對於其餘的特定範例亦有效。
在A1中,基於至少一測量點在CCS之輸出處藉由濃度ctank給與至 少一反饋信號。
於A2中,使用製程模型和入口液體流的測量信號charvest決定至少一預測之反饋信號ctank
在B1和C1中,基於至少一測量點,在BioSMB的輸出、亦即離開BioSMB的“溶析液流”之至少一反饋信號使用於所述控制。假定在至少一測量點從至少一BioSMB出口所偵測到的製程特徵係目標蛋白質濃度和雜質濃度。這是藉由模擬機械模型作為工廠模型在電腦中達成。
於B2和C2中,假定不能在BioSMB出口處測量控制至少一BioSMB所需之製程特徵,但需要使用製程模型進行在線預測。模型預測需要比製程本身更快,亦即可應用能於藉由一製程步驟所需的時間內模擬之最準確的模型。
在B1和B2中,數學或建模部件採用至少一PID控制器。相比之下,於C1和C2中,數學或建模部件採用至少一非線性模型預測性控制器。控制目標給與為:
Figure 109103846-A0202-12-0022-4
從屬於
Figure 109103846-A0202-12-0022-8
在此c表示於整個製程循環期間的相關組分之時變濃度的向量,而θ表示使用機械模型來訓練之代理模型f(.)的參數組。pHWash及cWash,Salt代表利用於影響目標之可操縱的變數。再者,tElution,begin及tElution,end分別是溶析之開始時間和結束時間。ε表示每百萬分(ppm)之2000的雜質含量之預定上限。因此,得出的最佳化輸入變數係洗滌步驟之pH和鹽濃度,其將雜質程度降低至給定的閾值,使所期望之產物的損失最小。既然可針對每一控制循環個別考慮非線性模型預測性控制器之結果,且於後續結果上的預測係與系統之當前狀態無關,因此可將非線性模型預測性控制器的預測和控制範圍設定為1。對於熟練的使用者來說, 很清楚的是可將目標擴展至包括超過一製程循環,這將導致大於一之預測和控制範圍。
II)特定範例
應當注意,根據附圖敘述這些範例。
A1)UOP控制
PID控制器(10)的設定點(9)等於8g/l。假定在滯留槽出口處測量到反饋值ctank(8),而修改後之致動值(11)係最終的濃度因數F。
A2)UOP控制
PID控制器(15)之設定點(9)等於8g/l。再者,使用與上面針對A1所述的設定相同之設定,所不同的是,使用上面給定之製程模型(13)來預測ctank(14)的反饋值,所述製程模型接收修改後之致動值(11)和入口液體流charvest(12)的測量值。因此,當不增加模型誤差時,ctank之模型預測係理想的。
B1)使用BioSMB反饋信號之離散PID控制
如上所述,於此範例中,在至少一測量點(圖1中的5c)從至少一 BioSMB出口偵測製程特徵。如上所述,可藉由操縱洗滌液1緩衝液之pH和鹽濃度來變動目標蛋白質和雜質的濃度,而能夠控制所期望之監控QAs(16)。作為兩者,鹽濃度和pH值對目標蛋白質和雜質都有影響,因此對於本領域技術人員顯而易見的是,這導致2x2耦合控制問題。使用二PID控制器作為製程控制系統之數學或建模部件(17),一部件用於控制QA1,且,第二部件用於控制QA2。洗滌1中的緩衝液之pH和鹽濃度中的界定步驟使用於決定控制器設計用之工廠模型和擾動模型,和控制問題的消除。最後,應用二個離散之PID控制器以將QAs驅動至所期望的設定點值(22)。由於工廠操作在離散之步驟中出現,因此於管柱相切換之後實現一組新的修改後之pH和鹽濃度的致動值。這是藉由對控制器出口(18)施加零階保持條件來達成。
B2)使用反饋模擬用之機械BioSMB模型的離散PID控制
使用與上面針對B1所述之設定相同的設定,不同之處在於,藉由機 械模型(21)基於前饋方式的製程特徵之預測及在BioSMB(19)上游偵測到的製程特徵來計算所期望之受監控QAs(20),所述機械模型(21)接收修改後的致動值(18)。如於B1中一樣,使用步驟測試分別針對QA1和QA2用之2x2控制問題設計二PID控制器(23),而將目標蛋白質和雜質濃度控制在設定點值(22)附近,並於PID控制器出口使用零階保持條件來實現。
C1)使用BioSMB反饋信號進行基於模型的控制
模型預測性控制器(24)利用代理模型作為最佳化控制器,以決定藉由洗滌1子步驟用之鹽濃度和pH值所給出的最佳修改之致動值(18)。再者,藉由在BioSMB出口(26)處使用偵測到的製程特徵來進行偏向校正係可能的,而(19)係例如用於模型初始化之BioSMB上游的偵測到之製程特徵。模型預測性控制器首先採用試探最佳化演算法,以在使用局部求解器找到每一有希望之候選者的局部最小值之前,為全球解決方案找到有希望的候選者。對於本領域技術人員顯而易見的是,亦可使用許多其他最佳化演算法。
C2)使用反饋模擬用之機械BioSMB模型進行基於模型的控制
除了藉由機械模型(21)以前饋方式計算製程特徵(25)之外,使用與上面針對C1所述的設定相同之設定,機械模型(21)接收修改後的致動值(18)和BioSMB(19)上游之偵測到的製程特徵。所決定之製程特徵使用在模型預測性控制器(27)中用於偏差校正,而在BioSMB上游的偵測到之製程特徵係使用於模型初始化。
D)使用轉換函數的基於模型之控制
與先前的範例相比,此控制器(28)中所使用的ANN模型將每一載入體積之目標濃度和雜質濃度直接與最佳修正致動值(18)、亦即洗液1子步驟用的鹽濃度和pH值相關聯。可使用在BioSMB(19)上游偵測到之製程特徵作為輸入、及如針對C1中當作目標所應用的基於模型之控制器所敘述的對應模型最佳化問題之解決方法來訓練ANN。因此,可藉由模擬應用至範例C1的幾種情節、或藉由使用將C1應用至BioSMB工廠所獲得之實驗資料來生成所需的訓練資料。 因此,在此範例D中,所應用之控制器係前饋控制器,其使用BioSMB輸入上游的偵測到之製程特徵來直接計算針對此製程條件的最佳控制器輸出。
1:製程控制系統
2:灌注製程
3:單元操作
4:層析序列系統
5a:測量點
5b:測量點
5c:測量點
6:數學或建模部件
7:數學或建模部件
8:反饋信號
9:設定值
10:PID組部件
11:修改之致動值
12:製程特徵
13:預測性模型
14:反饋值
15:PID部件
16:反饋信號
17:PID部件
18:修改的致動值
19:製程特徵
20:反饋信號
21:預測性模型
22:設定點值
23:數學或建模部件
24:最佳化控制器
25:反饋信號
26:製程特徵
27:最佳化調節器
28:轉換函數
29:平衡管柱
30:第二遍1.1載入區
31:第二遍1.2載入區
32:第二遍2.1載入區
33:第二遍2.2載入區
34:載入1.1載入區
35:載入1.2載入區
36:洗滌區1.1
37:洗滌區1.2
38:洗滌區2
39:溶析之前的調節區(元件)
40:相組成之計算
41:溶析液組成
42:無關的出口組成
43:洗滌緩衝液1
44:洗滌緩衝液2
45:洗滌1.1置換
46:載入區
47:洗滌區
48:進料組成
該些圖式顯示代表性範例。
圖1係顯示本發明一實施例相關之即時影響層析序列系統的示意圖;
圖2係顯示本發明另一實施例相關之即時影響層析序列系統的示意圖;
圖3係顯示本發明另一實施例相關之即時影響層析序列系統的示意圖;
圖4係顯示本發明另一實施例相關之即時影響層析序列系統的示意圖;
圖5係顯示本發明另一實施例相關之即時影響層析序列系統的示意圖;
圖6係顯示本發明一實施例相關之BioSMB製程的圓形計時圖;
圖7係顯示本發明一實施例相關之用於生成ANN代理模型的流程圖;
圖8係顯示本發明一實施例相關之ANN的鏈接的示意圖。
圖1描繪如本文所敘述之系統的示意圖。在此範例中,系統包含灌注製程(2)、單元操作(3)、亦即過濾。使用BioSMB裝置進行層析序列(4),且於層析序列之後,如藉由箭頭所指示的進一步處理液體流。再者,包含即時影響至少一致動器之至少一數學或建模部件的至少一製程控制系統(1)包含二個數學或建模部件(6)和(7)。於此範例中,至少一數學或建模部件(7)控制過濾單元操作,且至少一數學或建模部件(6)取決於至少一製程控制系統之組構來控制或調節BioSMB。在此範例中,顯示數個可能的測量點(5a,5b和5c),亦即,第一可能之測量點(5a)坐落於灌注製程(2)和單元操作(3)之間。替代地或另外,第二測量點(5b)可坐落在單元操作(3)和層析序列系統(4)之間。替代地或另外,第三測量點(5c)可坐落於層析序列系統(4)的下游。在這些測量點(5a-5c)之任一點
Figure 109103846-A0202-12-0025-20
、亦即也於所有測量點或在這些測量點的其中一或二點,測量液體流之至少一製程特徵。至少一偵測到的製程特徵以信號之形式傳輸到至少一製程控制系統的數學或建模部件(6)及/或(7),所述信號藉由虛線箭頭所描述(取決於使用哪個測量 點),其中基於液體流之至少一製程特徵,所述至少一數學或建模部件(6)及/或(7)計算修正的致動值,經由直接影響層析序列系統之至少一致動器(未示出)、或經由影響層析序列系統上游的至少一致動器(未示出),所述致動值使用於即時影響至少一層析序列。在一範例中,所述系統包含至少二測量點,一測量點於至少一層析序列之上游(例如,在5a或5b處),於此所述製程控制系統接收所有可用的製程特徵;及在層析序列系統之輸出處的第二測量點。
圖2概要地描繪二情況,其中至少一製程控制系統包含不同之控制結構。
於情況A1中,至少一製程控制系統包含至少一數學或建模部件,此處是用於控制至少一機構的控制器-對應於圖1中之(3)-所述控制器包含至少一PID部件(10)-對應於圖1中的(7)-基於至少一偵測到之製程特徵(8)從圖(1)中的測量點(5b)在至少一層析序列之上游及至少一機構的下游接收至少一反饋信號。再者,設定點值(9)亦影響數學或建模部件(10),且製程控制系統輸出修改之致動值(11)。
於情況A1的一示範情節中,至少一製程控制系統之至少一建模部件接收關於收穫濃度的資訊,所述資訊進入滯留槽上游之連續濃縮單元操作,其中滯留槽本身係緊接在至少一層析序列的上游。再者,製程控制系統接收有關進入滯留槽之液體流的累計體積、滯留槽中之流體的體積、以及滯留槽中之抗體濃度、和至層析序列系統的流動之資訊。
於情況A2中,至少一製程控制系統包含至少一數學或建模部件,在此為用作控制器的調節器-對應於圖1中之(7)-用於控制包含至少一PID部件(15)的至少一機構,所述PID部件基於來自至少一機構之至少一預測性模型(13)的至少一預測製程特徵來接收至少一反饋信號,其中至少一機構之預測性模型由圖1中的至少一測量點(5a)或(5b)接收至少一偵測到之製程特徵(12)。再者,設定點值(9)亦影響數學或建模部件(15),且製程控制系統輸出修改的致動值(11)。
圖3概要地描繪二情況,其中本文所敘述之系統包含不同的數學或 建模部件。
於情況B1中,製程控制系統包含至少一數學或建模部件-對應於圖1中之(6)-這裡是用於控制至少一層析序列的控制器-對應於圖1中之(4)-其包含至少一PID部件(17),所述PID部件在層析序列系統的輸出處基於至少一偵測到之製程特徵從圖(1)中的至少一測量點(5c)接收至少一反饋信號(16)。再者,設定點值(22)亦影響數學或建模部件(17),且製程控制系統輸出修改之致動值(18)。
於情況B2中,製程控制系統包含至少一數學或建模部件-對應於圖1中的(6)-這裡是用作控制至少一層析序列之控制器的調節器-對應於圖1中之(4)-其包含至少一PID部件(23),所述PID部件基於來自至少一層析序列的至少一預測性模型(21)之至少一預測的製程特徵接收至少一反饋信號(20),其中至少一層析序列之預測性模型從圖(1)中的至少一測量點(5a)或(5b)接收至少一偵測到之製程特徵(19)。再者,設定點值(22)影響數學或建模部件(23),且製程控制系統輸出修改的致動值(18)。
圖4概要地描繪二情況,其中本文所敘述之系統包含不同的數學或建模部件。
於情況C1中,至少一製程控制系統包含至少一數學或建模部件-對應於圖1中之(6)-這裡是一最佳化控制器、例如非線性模型預測性控制器(24),用於控制至少一層析序列-對應於圖1中的(4)-所述控制器在層析序列系統之輸出處從圖(1)中的至少一測量點(5c)接收至少一偵測到之製程特徵(26)作為反饋信號。再者,其可從層析序列系統、例如用於模型初始化的上游之圖(1)中的至少一測量點(5a或5b)接收至少一偵測到之製程特徵(19)。
製程控制系統輸出修改的致動值(18)。
在情況C2中,至少一製程控制系統包含至少一數學或建模部件-對應於圖1中之(6)-在此將調節器用作控制器,於此將最佳化調節器用作非線性模型預測性控制器(27),用於控制至少一層析序列-對應於圖1中的(4)-其基於至少一層析序列之至少一預測性模型(21)接收至少一預測製程特徵作為反饋信號(25), 其中在至少一層析序列的上游,至少一層析序列之預測性模型從圖(1)中的至少一測量點(5a)或(5b)接收至少一偵測到之製程特徵(19)。再者,此外在例如用於模型初始化的層析序列系統之上游,使用作非線性模型預測性控制器的最佳化調節器亦可從圖1中之至少一測量點(5a或5b)接收至少一偵測到的製程特徵(19)。製程控制系統輸出修改之致動值(18)。
圖5概要地描述一情況,其中至少一製程控制系統包含至少一數學或建模部件-對應於圖1中的(6)-這裡是轉換函數(28),其中至少一轉換函數(28)從圖1中之至少一測量點(5a)或(5b)接收至少一偵測到的製程特徵(19),且其中至少一轉換函數計算出操縱至少一層析序列之修改的致動值(18)-對應於圖1中之(4)。
圖6描繪BioSMB製程的圓形計時圖。外環片段表示進入管柱C1-C5之流體,內環片段表示從管柱出來的流體。管柱之位置描繪在開始計算修改的致動值時之初始起動位置。於運行時間期間,管柱入口開關轉換為管柱標記線的順時針循環。
圖7概要地描繪用於生成ANN代理模型之工作流程。首先,界定控制情節、亦即包括所界定的控制情節之子步驟的示範性情節。隨後,界定相關之輸入資料(“初步輸入範圍”),並施行情節外推。然後將外推的相關輸入資料與製程知識一起使用作機械模型之輸入資料,以及進行參數化以獲得使用作ANN代理模型的輸入之資料。機械模型決定輸入資料的每一輸入信號之準確輸出。然後,分別使用生成的參數化輸入和輸出資料對ANN進行訓練,從而得到訓練後之ANN。
圖8概要地描繪ANN的鏈接,並使用於基於層析序列系統之控制循環的進料濃度和所述控制循環之洗滌步驟的鹽濃度和pH來計算溶析目標和雜質濃度。這些方塊說明子步驟之ANN。詳細的子步驟如下:
˙第二遍1.1載入區(30)
˙第二遍1.2載入區(31)
˙第二關2.1載入區(32)
˙第二關2.2載入區(33)
˙載入1.1載入區(34)
˙載入1.2載入區(35)
˙洗滌區1.1(36)
˙洗滌區1.2(37)
˙洗滌區域2(38)。
以及以下輸入和輸出資料:
˙溶析之前的調節區(元件)(39)
˙相組成之計算(40)
˙溶析液組成(41)
˙無關的出口組成(42)
˙洗滌緩衝液1(43)
˙洗滌緩衝液2(44)
˙洗滌1.1置換(45)
˙載入區(46)
˙洗滌區(47)
˙進料組成(48)
至每一ANN之輸入資料描述為進入方塊的箭頭,輸出資料描述為離開方塊之箭頭。首先,採用平衡管柱(29)。所考慮的子步驟之液體流的組成以及輸入資料都被視為第一ANN“第二遍1.1”(30)用之輸入資料。此ANN計算所有階段中所考慮的組分之管柱濃度、亦即管柱組成。這是ANN的輸出資料。下一個ANN使用此資料作為輸入資料以及所考慮之子步驟的液體流。於此圖解中省略ANN之間的輸出資料輸入資料鏈接之計算。對於一些ANN,例如“載入1.1”(34),輸出資料不僅由管柱組成(離開ANN方塊的水平箭頭)、而且亦由出口流體濃度所構成。這被描繪為離開ANN方塊之垂直箭頭。此輸出資料在多數 ANN中用作輸入資料。於計算的最後,決定溶析液組成(41)、亦即目標和雜質濃度以及溶析液之產量。
1:製程控制系統
2:灌注製程
3:單元操作
4:層析序列系統
5a:測量點
5b:測量點
5c:測量點
6:數學或建模部件
7:數學或建模部件

Claims (14)

  1. 一種影響層析序列之系統,至少包含:
    ˙至少一測量點,於至少一層析序列的上游;
    ˙至少一致動器;
    ˙至少一層析序列;
    ˙至少二單元操作,在該至少一層析序列上游,其中該至少二單元操作之至少一者係異於調節元件的單元操作;
    ˙至少一製程控制系統,其即時影響至少一致動器;
    其中,
    o 在該至少一測量點處,測量對應於至少一實際製程特徵之液體流的至少一特徵,及
    o 其中該至少一偵測到之製程特徵係以信號形式傳輸到該至少一製程控制系統,
    o 其中基於該液體流的至少一偵測到之製程特徵,建構該至少一製程控制系統的至少一數學或建模部件,以經由直接影響該層析序列系統之至少一致動器及/或經由影響該層析序列系統上游的至少一致動器計算至少一修改之致動值,該致動值用於即時影響至少一層析序列。
  2. 如請求項1之系統,其中該至少一測量點係
    a)至少一調節器及/或用作控制至少一機構的控制器之至少一調節器,其中用於該至少一機構的至少一調節器包含至少一PID部件,該PID部件由該至少一測量點接收包含至少一偵測到之製程特徵的至少一信號,或其中用作至少一機構之控制器的至少一調節器包含至少一PID部件,該PID部件基於至少一預測之製程特徵由至少一機構的至少一預測性模型接收至少一預測性反饋信號;
    及/或
    b)至少一調節器及/或用作控制該至少一層析序列的控制器之至少一調節器,其中用作控制該至少一層析序列的控制器之至少一調節器包含至少一PID部件,該PID部件基於至少一偵測到的製程特徵從在該層析序列系統之輸出處的測量點 接收至少一反饋信號,或其中用作控制該至少一層析序列之控制器的調節器包含至少一PID部件,該PID部件基於至少一預測之製程特徵從該至少一層析序列的至少一預測性模型接收至少一預測性反饋信號;
    及/或
    c)至少一控制器、例如該至少一層析序列的非線性模型預測性控制器,其中該層析序列系統之控制器從該至少一測量點接收包含該至少一偵測到的製程特徵之至少一信號,在此案例中,該測量點係於該至少一層析序列的上游,且其中該層析序列系統之控制器另外基於至少一偵測到的製程特徵從在該層析序列系統之輸出處的至少一個第二測量點接收至少一反饋信號,或其中該至少一層析序列之至少一控制器從該至少一測量點接收包含該至少一偵測到的製程特徵之至少一信號,於此案例中,該測量點係在該至少一層析序列的上游,且其中該層析序列系統之控制器另外基於至少一預測的製程特徵從該至少一層析序列之至少一預測性模型接收至少一反饋信號;
    及/或
    d)至少一轉換函數,包含考慮該至少一信號的至少一經驗模型,該信號包含來自該至少一測量點之至少一偵測到的製程特徵;
    其特徵在於,建構在a)-d)之下所敘述的每一數學或建模部件,以計算至少一修正之致動值,該致動值用於經由該至少一致動器即時影響該至少一層析序列。
  3. 如請求項1之系統,其中該至少一測量點係連接至滯留槽的取樣出口,且該至少一製程控制系統更包含用於控制該至少一機構的至少一控制器,其中用於該至少一機構之至少一控制器包含至少一PID部件,該PID部件從該至少一測量點接收包含該至少一偵測到的製程特徵之至少一信號;
    及/或
    用於控制該至少一層析序列的至少一控制器,其中用於控制該至少一層析序列之至少一控制器包含至少一PID部件,該PID部件基於至少一偵測到的製程特徵從在該層析序列系統之輸出處的測量點接收至少一反饋信號,其中建構該控制 器,以計算至少一修正之致動值,該致動值使用於經由該至少一致動器即時影響該至少一層析序列。
  4. 如請求項2或3之系統,其中該至少一調節器、使用作控制器的該至少一調節器、或用於控制該至少一機構之該至少一控制器係用於單元操作的調節器或控制器。
  5. 如請求項1-4之系統,更包含至少一停留時間裝置或至少一中間袋。
  6. 如請求項1-5之系統,其中該至少一測量點係選自由偵測器或系統出口、例如三通閥所組成的族群。
  7. 如請求項3-5之系統,其中反饋信號使用於適應該至少一機構或該至少一層析序列的預測性模型、例如使用於改變之操作條件。
  8. 一種即時影響層析序列之方法,至少包含:
    ˙在至少一測量點測量液體流的至少一特徵,該特徵對應於至少一實際製程特徵;
    ˙將呈信號形式之該至少一偵測到的製程特徵傳輸到至少一製程控制系統;
    ˙使用至少一建構用於該計算之製程控制系統的至少一數學或建模部件,基於該液體流之至少一偵測到的製程特徵來計算至少一修正之致動值;
    ˙經由直接影響該層析序列系統的至少一致動器及/或經由影響該層析序列系統上游之至少一致動器的任一者,使用該至少一修改之致動值來即時影響該至少一層析序列。
  9. 如請求項8之方法,其中使用該至少一製程控制系統的至少一建構之數學或建模部件來計算該至少一修正的致動值,其中該數學或建模部件包含至少一代理模型。
  10. 如請求項9之方法,其中該數學或建模部件包含至少一代理子模型,且二或更多代理子模型鏈接在一起,或將代理子模型與機械子模型組合。
  11. 如請求項10之方法,其中該數學或建模部件包含至少一子模型,並將二或更多子模型鏈接在一起,其中於將給定子模型之輸出使用作另一子模型的輸入之前,施行一或更多附加計算。
  12. 如請求項9-11的任一項之方法,其中至少一代理模型或至少一代理子模型包含至少一人工神經網路。
  13. 如請求項8之方法,其中該至少一製程控制系統包含至少一數學或建模部件,且建構為計算該至少一修正的致動值,其中該方法更包含以下步驟:
    ˙界定該控制情節;
    ˙界定該已界定之控制情節的子步驟;
    ˙界定每一子步驟之相關輸入資料;
    ˙使用至少一機械模型來決定至該相關輸入資料的每一輸入信號之準確輸出;
    ˙使用上面生成的輸入資料和輸出資料來訓練至少一代理模型;
    ˙計算修正之致動值,該致動值使用受過訓練的至少一代理模型,經由直接影響該層析序列系統之至少一致動器及/或經由影響該層析序列系統上游的至少一致動器來即時影響該至少一層析序列。
  14. 一種如請求項10至13的任一項之方法的應用,供生成可使用於預測或控制目的或兩者之總體模型。
TW109103846A 2019-02-11 2020-02-07 即時影響層析序列系統及方法 TW202044131A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP19156367.5A EP3693732A1 (en) 2019-02-11 2019-02-11 Influencing a sequential chromatography in real-time
EP19156367.5 2019-02-11
EP19184911.6 2019-07-08
EP19184911.6A EP3763429A1 (en) 2019-07-08 2019-07-08 Influencing a sequential chromatography in real-time

Publications (1)

Publication Number Publication Date
TW202044131A true TW202044131A (zh) 2020-12-01

Family

ID=69326543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109103846A TW202044131A (zh) 2019-02-11 2020-02-07 即時影響層析序列系統及方法

Country Status (12)

Country Link
US (1) US20220099638A1 (zh)
EP (1) EP3924082A1 (zh)
KR (1) KR20210127702A (zh)
CN (1) CN113382793A (zh)
AU (1) AU2020223413A1 (zh)
BR (1) BR112021013056A2 (zh)
CA (1) CA3129330A1 (zh)
IL (1) IL285138A (zh)
MX (1) MX2021009549A (zh)
SG (1) SG11202107699QA (zh)
TW (1) TW202044131A (zh)
WO (1) WO2020164956A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3977115A1 (en) * 2019-05-24 2022-04-06 Sartorius Stedim Biotech GmbH Chromatography method, method of determining the concentration of at least one compound in a chromatography method, method of obtaining an adsorption isotherm, method of obtaining at least one stationary phase and method of evaluating the accuracy of a predetermined adsorption isotherm

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004018518D1 (de) * 2003-09-12 2009-01-29 Volvo Aero Corp Optimierung sequentieller kombinatorischer prozesse
US9527010B2 (en) * 2009-09-25 2016-12-27 Ge Healthcare Bio-Sciences Corp. Separation system and method
EP3173782A1 (de) * 2015-11-26 2017-05-31 Karlsruher Institut für Technologie Verfahren zur steuerung kontinuierlicher chromatographie und multisäulen-chromatographie-anordnung
MX2020006183A (es) 2017-12-13 2020-09-03 Bayer Ag Unidad de operacion y su uso.
US11308413B2 (en) * 2019-01-25 2022-04-19 Baker Hughes Oilfield Operations Llc Intelligent optimization of flow control devices

Also Published As

Publication number Publication date
CN113382793A (zh) 2021-09-10
US20220099638A1 (en) 2022-03-31
EP3924082A1 (en) 2021-12-22
MX2021009549A (es) 2021-09-08
IL285138A (en) 2021-09-30
BR112021013056A2 (pt) 2021-11-23
SG11202107699QA (en) 2021-08-30
CA3129330A1 (en) 2020-08-20
AU2020223413A1 (en) 2021-07-22
KR20210127702A (ko) 2021-10-22
WO2020164956A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
Pistikopoulos et al. PAROC—An integrated framework and software platform for the optimisation and advanced model-based control of process systems
Engell Feedback control for optimal process operation
Hou et al. Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems
Nagy et al. Worst-case and distributional robustness analysis of finite-time control trajectories for nonlinear distributed parameter systems
Arunshankar Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order PI-D sliding surface
EP3828651B1 (en) Apparatus, method and program
Chopda et al. Recent advances in integrated process analytical techniques, modeling, and control strategies to enable continuous biomanufacturing of monoclonal antibodies
WO2008048442A2 (en) Adaptive multivariable mpc controller with lp constraints
Fikar et al. Dynamic optimization of batch diafiltration processes
JP2018536871A (ja) 細胞培養に基づく生物製剤の生産を調節するためのシステムおよび方法
CN103038714A (zh) 跟踪模拟方法
Zhang et al. Batch-to-batch control of particle size distribution in cobalt oxalate synthesis process based on hybrid model
TW202044131A (zh) 即時影響層析序列系統及方法
Ghosh et al. Model predictive control embedding a parallel hybrid modeling strategy
CN113568379A (zh) 控制辅助装置、控制辅助方法、计算机可读介质及控制系统
Lu et al. Control systems technology in the advanced manufacturing of biologic drugs
EP3763429A1 (en) Influencing a sequential chromatography in real-time
RU2767009C1 (ru) Система поддержки установки условий работы завода, устройство обучения и устройство поддержки установки условий работы
Honc et al. State-Space Constrained Model Predictive Control.
Zheng et al. Opportunities of Hybrid Model-based Reinforcement Learning for Cell Therapy Manufacturing Process Control
Brand-Rihm et al. Data-driven modelling of full batch distillation cycles based on recurrent neuronal networks
Gohil Development of Control Strategy for Bioreactor and Refill Strategy of Feeding System
Kirubakaran et al. Fuzzy aggregation based multiple models explicit multi parametric MPC design for a quadruple tank process
Abbas et al. DCS implementation of optimal operational policies: a crystallisation case study
Mitchell et al. Software integration for online dynamic simulation applications