TW202041363A - Radiative cooling material, method for manufacturing the same and application thereof - Google Patents

Radiative cooling material, method for manufacturing the same and application thereof Download PDF

Info

Publication number
TW202041363A
TW202041363A TW108131761A TW108131761A TW202041363A TW 202041363 A TW202041363 A TW 202041363A TW 108131761 A TW108131761 A TW 108131761A TW 108131761 A TW108131761 A TW 108131761A TW 202041363 A TW202041363 A TW 202041363A
Authority
TW
Taiwan
Prior art keywords
layer
functional layer
radiation cooling
cooling material
radiation
Prior art date
Application number
TW108131761A
Other languages
Chinese (zh)
Other versions
TWI725533B (en
Inventor
徐紹禹
王明輝
Original Assignee
大陸商寧波瑞凌新能源科技有限公司
大陸商寧波瑞凌新能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商寧波瑞凌新能源科技有限公司, 大陸商寧波瑞凌新能源材料研究院有限公司 filed Critical 大陸商寧波瑞凌新能源科技有限公司
Publication of TW202041363A publication Critical patent/TW202041363A/en
Application granted granted Critical
Publication of TWI725533B publication Critical patent/TWI725533B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

The present disclosure provides a radiative cooling material, a method for manufacturing the same and application thereof. The radiative cooling material includes a first functional layer, an encapsulation layer and a protective layer. The structure of the radiative cooling material can be in a form of a film, a sheet or a coating. The radiative cooling material can achieve radiative cooling under direct sunlight during the day. By a thermal connection between the radiative cooling material and a surface of a heat dissipating body, the temperature of the heat dissipating body can be effectively reduced without consuming additional energy. It can be applied in fields of construction, photovoltaic components and systems, automotive, outdoor products, agriculture, animal husbandry, aerospace, cold chain transportation, outdoor cabinets, textiles, outdoor communications equipment, industrial equipment, utilities, cooling water systems, energy system, energy-saving equipment, and so on.

Description

一種輻射降溫材料及其製備方法和應用Radiation cooling material and preparation method and application thereof

本發明涉及材料科學技術領域,具體涉及一種輻射降溫材料及其製備方法和應用。The invention relates to the field of materials science and technology, in particular to a radiation cooling material and a preparation method and application thereof.

目前,全球變暖的趨勢不斷加劇,尤其在赤道附近低緯度地區,建築物和汽車等在戶外直接暴露於太陽照射下的物體,內部溫度很高,需要消耗大量的能源來降溫。At present, the trend of global warming is increasing, especially in low latitudes near the equator. Objects such as buildings and cars that are directly exposed to the sun outdoors have high internal temperatures and require a lot of energy to cool down.

輻射降溫是一種有效的降溫方法,輻射降溫利用了所有大於絕對零度的物體表面都在以電磁波的形式向外輻射能量的基本物理學原理。大氣層外的外太空溫度接近於絕對零度,因此外太空的溫度接近絕對零度是一種“冷源”,紅外輻射可將地球表面的熱量傳輸到外太空。大量文獻表明,地球的大氣窗在7-14μm波段範圍對紅外輻射(熱輻射)是透明的。Radiation cooling is an effective cooling method. Radiation cooling utilizes the basic physical principle that all surfaces of objects greater than absolute zero radiate energy in the form of electromagnetic waves. The outer space temperature outside the atmosphere is close to absolute zero. Therefore, the temperature of outer space close to absolute zero is a kind of "cold source". Infrared radiation can transmit heat from the earth's surface to outer space. A large number of documents indicate that the earth’s atmospheric window is transparent to infrared radiation (thermal radiation) in the 7-14 μm band.

現有的輻射降溫材料應用至對透光有要求的場合時,難以兼顧透射率以及輻射致冷的效率。When the existing radiation cooling materials are applied to occasions that require light transmission, it is difficult to balance the transmittance and the efficiency of radiation cooling.

本發明旨在提供一種輻射降溫材料及其製備方法和應用。The invention aims to provide a radiation cooling material and its preparation method and application.

本發明提供一種輻射降溫材料,所述輻射降溫材料為複數層結構,包括用於輻射降溫的第一功能層,以及封裝層和保護層,所述第一功能層包括至少一層聚合物層;所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率;所述封裝層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面;其中,第一面是指第一功能層的任一側的表面,第二面是與第一面相對的另一側的表面。The present invention provides a radiation cooling material. The radiation cooling material has a multiple layer structure and includes a first functional layer for radiation cooling, an encapsulation layer and a protective layer, and the first functional layer includes at least one polymer layer; The first functional layer has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7-14 μm/8-13 μm/ The 7-13μm/8-14μm infrared band radiation has an emissivity of not less than 0.8; the encapsulation layer is arranged on the first surface of the first functional layer, and the protective layer is arranged on the opposite side to the first surface. The second surface; wherein the first surface refers to the surface on either side of the first functional layer, and the second surface is the surface on the other side opposite to the first surface.

在一些實施方式中,所述輻射降溫材料還包括第二功能層,所述第二功能層設置於所述第一功能層的第一面,介於所述第一功能層和所述封裝層之間。In some embodiments, the radiation cooling material further includes a second functional layer disposed on the first surface of the first functional layer, between the first functional layer and the encapsulation layer between.

本發明還提供一種輻射降溫材料的製備方法,包括: 製備第一功能層,所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率; 在所述第一功能層的第一面設置封裝層; 在所述第一功能層的第二面設置保護層。 在製備第一功能層的步驟之後,在所述第一功能層的第二面設置保護層的步驟之前,還包括:在所述第一功能層的第一面設置第二功能層,在第二功能層的外面設置封裝層的步驟。The present invention also provides a method for preparing the radiation cooling material, including: Prepare a first functional layer, which has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7 Radiation in the infrared band of -14μm/8-13μm/7-13μm/8-14μm has an emissivity not less than 0.8; Providing an encapsulation layer on the first surface of the first functional layer; A protective layer is provided on the second surface of the first functional layer. After the step of preparing the first functional layer and before the step of providing a protective layer on the second surface of the first functional layer, the method further includes: providing a second functional layer on the first surface of the first functional layer; The step of setting an encapsulation layer outside the second functional layer.

本發明還提供一種如上所述輻射降溫材料的應用方法,包括:將所述輻射降溫材料設於散熱主體,並使所述第一功能層與所述散熱主體熱連通。該應用方法中,熱量從所述散熱主體傳遞給輻射降溫材料,再由所述輻射降溫材料中的第一功能層向外發射熱量,藉此實現輻射降溫。The present invention also provides an application method of the radiation cooling material as described above, including: arranging the radiation cooling material on a heat dissipation body, and thermally connecting the first functional layer and the heat dissipation body. In this application method, heat is transferred from the heat dissipation body to the radiation cooling material, and then the first functional layer in the radiation cooling material emits heat outward, thereby achieving radiation cooling.

本發明還提供一種包含所述輻射降溫材料的複合材料。The present invention also provides a composite material containing the radiation cooling material.

可選地,所述複合材料由所述輻射降溫材料與基材複合而成。該基材可為金屬、塑膠、橡膠、瀝青、玻璃製品、防水材料、紡織物或編織物。Optionally, the composite material is composed of the radiation cooling material and the substrate. The substrate can be metal, plastic, rubber, asphalt, glass, waterproof material, textile or woven fabric.

本發明所述輻射降溫材料具有以下優點:The radiation cooling material of the present invention has the following advantages:

本發明的輻射降溫材料,基於輻射降溫的基本原理,當該種材料在紅外波段(7-14μm/8-13μm/7-13μm/8-14μm)的發射率不低於0.8,就可以實現在白天太陽直射下的輻射降溫。另外,基於對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm的太陽輻射具有不低於0.8的透射率,因此,此材料可實現較好的透射率,可應用至對透射率有特殊要求的領域,如陽光房等,藉此實現透光和輻射致冷的雙重效果。The radiation cooling material of the present invention is based on the basic principle of radiation cooling. When the emissivity of the material in the infrared band (7-14μm/8-13μm/7-13μm/8-14μm) is not less than 0.8, it can be achieved Radiation under direct sunlight during the day cools down. In addition, based on the solar radiation having a wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm with a transmittance of not less than 0.8, this material can achieve better transmittance and can be applied to the transmittance Areas with special requirements, such as the sun room, etc., to achieve the dual effects of light transmission and radiation cooling.

本發明的輻射降溫材料,透過與散熱主體的表面進行熱連通,可以把散熱主體內的熱量以紅外輻射的方式通過大氣窗發射出去,可有效降低散熱主體的溫度,且無需消耗額外的能源,主要應用在需要降溫的散熱主體的外表面,其應用領域廣泛,包括建築、光伏組件、汽車、戶外用品、農牧水產業、航空航太、冷鏈運輸、室外箱櫃罐、紡織、室外通訊設備、工業設備、公用電氣電子設施、冷卻水系統、能源系統(如:空調/致冷/供暖系統)、節能設備裝置等戶外亟需降溫或散熱的設備、設施,輻射降溫材料還可用於提高太陽能電池、傳統電廠甚至水處理的效率。進一步地,在所述第一功能層和所述封裝層之間設置第二功能層。限定該第二功能層在太陽輻射波段(0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm)的反射率為5~100%,在紅外波段(7-14μm/8-13μm/7-13μm/8-14μm)的發射率不低於0.8,此第二功能層可進一步將太陽輻射進行反射。因此,更加提高了所述輻射降溫材料的輻射降溫效果,所述輻射降溫材料在-170℃~200℃的工作溫度下提供從6W/m2 ~2640W/m2 的輻射致冷功率,進一步地所述輻射降溫材料在20℃~200℃的工作溫度下提供從388W/m2 ~2640W/m2 的輻射致冷功率。The radiation cooling material of the present invention, through thermal communication with the surface of the heat dissipating body, can emit the heat in the heat dissipating body through the atmospheric window in the form of infrared radiation, and can effectively reduce the temperature of the heat dissipating body without consuming additional energy. It is mainly used on the outer surface of the heat dissipation body that needs to be cooled. Its application fields are wide, including construction, photovoltaic modules, automobiles, outdoor supplies, agriculture, animal husbandry and aquaculture, aerospace, cold chain transportation, outdoor tanks, textiles, outdoor communications Equipment, industrial equipment, public electrical and electronic facilities, cooling water systems, energy systems (such as air conditioning/refrigeration/heating systems), energy-saving equipment and other outdoor equipment and facilities that urgently need cooling or heat dissipation. Radiation cooling materials can also be used to improve The efficiency of solar cells, traditional power plants and even water treatment. Further, a second functional layer is provided between the first functional layer and the encapsulation layer. Limit the reflectivity of the second functional layer in the solar radiation band (0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm) to 5~100%, and in the infrared band (7-14μm/8-13μm/ The emissivity of 7-13μm/8-14μm) is not less than 0.8, and this second functional layer can further reflect solar radiation. Therefore, the radiation cooling effect of the radiation cooling material is further improved. The radiation cooling material provides a radiation cooling power from 6W/m 2 to 2640W/m 2 at a working temperature of -170°C to 200°C, and further The radiation cooling material provides radiation cooling power from 388W/m 2 to 2640W/m 2 at a working temperature of 20°C to 200°C.

本發明所述輻射降溫材料,所述封裝層設置於所述第一功能層的第一面或者所述第二功能層上用於對所述第一功能層或所述第二功能層進行封裝保護,防止所述第一功能層和所述第二功能層的氧化、變色、腐蝕、老化等,同時所述封裝層產生膠黏劑的作用,將所述輻射降溫材料固定在散熱主體的表面。In the radiation cooling material of the present invention, the encapsulation layer is provided on the first surface of the first functional layer or the second functional layer for encapsulating the first functional layer or the second functional layer Protection to prevent oxidation, discoloration, corrosion, aging, etc. of the first functional layer and the second functional layer, while the packaging layer acts as an adhesive to fix the radiation cooling material on the surface of the heat dissipation body .

所述保護層設置於與所述第一功能層的第一面相對的第二面,用於對所述第一功能層、所述第二功能層和所述封裝層進行保護,尤其當所述輻射降溫材料在戶外使用時,需要經受嚴苛的氣候條件的考驗,本發明所述保護層由於其材料的特殊性,帶有所述保護層的所述輻射降溫材料耐候性好且具有優異的耐熱性、耐氧化性、耐藥品性、耐磨性和防腐性。The protective layer is disposed on a second surface opposite to the first surface of the first functional layer, and is used to protect the first functional layer, the second functional layer and the encapsulation layer, especially when When the radiation cooling material is used outdoors, it needs to withstand the test of harsh climatic conditions. Due to the particularity of the material, the radiation cooling material with the protective layer has good weather resistance and excellent performance. The heat resistance, oxidation resistance, chemical resistance, abrasion resistance and corrosion resistance.

在所述第一功能層和所述第二功能層的外面分別設置所述保護層和所述封裝層,對維持所述第一功能層和所述第二功能層的反射率、透射率和發射率的穩定性有很大的決定作用。The protective layer and the encapsulation layer are respectively arranged on the outer surfaces of the first functional layer and the second functional layer to maintain the reflectance, transmittance, and transmittance of the first functional layer and the second functional layer. The stability of the emissivity plays a very important role.

為了使本技術領域的人員更好地理解本發明方案,下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本發明一部分的實施例,而不是全部的實施例。基於本發明中的實施例,本發明所屬技術領域中具有通常知識者在沒有做出進步性工作前提下所獲得的所有其他實施例,都應當屬於本發明保護的範圍。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is a part of the embodiments of the present invention, not all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by a person with ordinary knowledge in the technical field of the present invention without making progressive work shall fall within the protection scope of the present invention.

本發明的說明書和所附申請專利範圍及上述附圖中的術語“第一”、“第二”、“第三”等是用於區別不同的物件,而不是用於描述特定順序。此外,術語“包括”和“具有”以及它們任何變形,意圖在於覆蓋不排他的包含。例如包含了一系列步驟或單元的過程、方法、系統、產品或設備沒有限定於已列出的步驟或單元,而是可選地還包括沒有列出的步驟或單元,或可選地還包括對於這些過程、方法、產品或設備固有的其它步驟或單元。The terms "first", "second", "third", etc. in the specification of the present invention and the appended patent application and the above-mentioned drawings are used to distinguish different objects, rather than to describe a specific order. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product, or device that includes a series of steps or units is not limited to the listed steps or units, but optionally includes unlisted steps or units, or optionally also includes Other steps or units inherent to these processes, methods, products or equipment.

下面透過具體實施例,分別進行詳細的說明。Detailed descriptions will be given below through specific embodiments.

請參考圖1和圖2,本發明的一個實施例,提供一種輻射降溫材料。Please refer to FIG. 1 and FIG. 2, an embodiment of the present invention provides a radiation cooling material.

該輻射降溫材料為複數層結構,包括用於輻射降溫的第一功能層10,以及封裝層30和保護層40,所述第一功能層10包括至少一層聚合物層。所述第一功能層10對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,且對波長範圍為8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率。所述封裝層30設置於所述第一功能層10的第一面,所述保護層40設置於和第一面相對的第二面。較佳地,所述第一功能層10對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,且對波長範圍為8-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率。The radiation cooling material has a multiple layer structure, including a first functional layer 10 for radiation cooling, an encapsulation layer 30 and a protective layer 40, and the first functional layer 10 includes at least one polymer layer. The first functional layer 10 has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 8-13 μm/7 Radiation in the infrared band of -13μm/8-14μm has an emissivity not lower than 0.8. The encapsulation layer 30 is disposed on the first surface of the first functional layer 10, and the protective layer 40 is disposed on the second surface opposite to the first surface. Preferably, the first functional layer 10 has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and has a transmittance of not less than 0.8 for a wavelength range of 8. Radiation in the infrared band of -13μm/8-14μm has an emissivity not lower than 0.8.

在一些實施例中,所述輻射降溫材料還可包括第二功能層20,所述第二功能層20設置於所述第一功能層10的第一面,介於所述第一功能層10和所述封裝層30之間。可選地,所述第二功能層20對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有0~95%的透射率,對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有5%~100%的反射率。較佳地,所述第二功能層20對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm的太陽輻射具有0~95%的透射率,對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm的太陽輻射具有5%~100%的反射率。更佳地,所述第二功能層對波長範圍為0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太陽輻射具有0~95%的透射率,對波長範圍為0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太陽輻射具有5%~100%的反射率。In some embodiments, the radiation cooling material may further include a second functional layer 20 disposed on the first surface of the first functional layer 10 and interposed between the first functional layer 10 And the encapsulation layer 30. Optionally, the second functional layer 20 has a transmittance of 0-95% for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a transmittance of a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm. The solar radiation of 2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm has a reflectivity of 5% to 100%. Preferably, the second functional layer 20 has a transmittance of 0-95% for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm, and a transmittance of 0-95% for a wavelength range of 0.25-2.5 μm/0.25 -3μm/0.3-2.5μm solar radiation has a reflectivity of 5% to 100%. More preferably, the second functional layer has a transmittance of 0-95% to solar radiation with a wavelength range of 0.4-0.7 μm/0.38-0.78 μm/0.4-0.76 μm, and a transmittance of 0.4-0.7 μm/0.38 to a wavelength range of 0.4-0.7 μm/0.38. -0.78μm/0.4-0.76μm solar radiation has a reflectivity of 5% to 100%.

請參考圖1,一些實施例中,所述第一功能層10的第一面設置有封裝層30,第二面設置有保護層40,構成透射型的輻射降溫材料。如圖1所示,透射型的輻射降溫材料,從上到下依次包括:保護層40、第一功能層10、封裝層30。Please refer to FIG. 1, in some embodiments, the first surface of the first functional layer 10 is provided with an encapsulation layer 30 and the second surface is provided with a protective layer 40, which constitutes a transmissive radiation cooling material. As shown in FIG. 1, the transmissive radiation cooling material includes a protective layer 40, a first functional layer 10, and an encapsulation layer 30 from top to bottom.

請參考圖2,另一些實施例中,所述第一功能層10的第一面設置有第二功能層20,所述第二功能層20外面設置有封裝層30,第一功能層10的第二面設置有保護層40,構成反射型/半透型的輻射降溫材料,其吸收率很小,幾乎為0。如圖2所示,反射型/半透型的輻射降溫材料,從上到下依次包括:保護層40、第一功能層10、第二功能層20、封裝層30。可選地,該種反射型的輻射降溫材料,其對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射的反射率不低於0.8。Please refer to FIG. 2, in other embodiments, a second functional layer 20 is provided on the first surface of the first functional layer 10, and an encapsulation layer 30 is provided on the outside of the second functional layer 20. The second surface is provided with a protective layer 40, which constitutes a reflective/semi-transparent radiation cooling material, and its absorption rate is very small, almost zero. As shown in FIG. 2, the reflective/semi-transmissive radiation cooling material includes a protective layer 40, a first functional layer 10, a second functional layer 20, and an encapsulation layer 30 from top to bottom. Optionally, the reflective radiation cooling material has a reflectivity of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm.

可選地,該種半透型的輻射降溫材料,其對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射的透射率為1%-95%,較佳為5%-95%,更佳為20%-70%。Optionally, this semi-transparent radiation cooling material has a transmittance of 1%-95% to solar radiation with a wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm, which is more Preferably it is 5%-95%, more preferably 20%-70%.

所述輻射降溫材料的結構可採取膜、薄片或塗層的形式,其第一功能層10可用來設置成與待降溫的散熱主體相連通。The structure of the radiation cooling material may take the form of a film, a sheet or a coating, and the first functional layer 10 thereof may be used to be configured to communicate with the heat dissipation body to be cooled.

其中,所述第一功能層至少包括聚合物層,可選地,所述聚合物層中包括聚合物和介電粒子50,所述介電粒子分散於所述聚合物中。第一功能層可以僅包括聚合物,也可以包括聚合物以及分散於聚合物中的介電粒子。本文中,所述介電粒子可以是微米級粒子。Wherein, the first functional layer includes at least a polymer layer. Optionally, the polymer layer includes a polymer and dielectric particles 50, and the dielectric particles are dispersed in the polymer. The first functional layer may include only a polymer, or may include a polymer and dielectric particles dispersed in the polymer. Here, the dielectric particles may be micron-sized particles.

可選地,所述聚合物層可包括相互間隔設置的至少一層第一聚合物層和至少一層第二聚合物層,即包括兩個聚合物層。可選地,兩個聚合物層中的任一個聚合物層的聚合物內分散設置有介電粒子,或者兩個聚合物層的聚合物內都分散設置有介電粒子,或者兩個聚合物層的聚合物內可以均不設介電粒子。Optionally, the polymer layer may include at least one first polymer layer and at least one second polymer layer arranged at intervals, that is, two polymer layers. Optionally, dielectric particles are dispersed in the polymer of any one of the two polymer layers, or dielectric particles are dispersed in the polymer of both polymer layers, or two polymers No dielectric particles may be provided in the polymer of the layer.

可選地,所述聚合物層也可以包括相互間隔設置的至少一層第一聚合物層、至少一層第二聚合物層和至少一層第三聚合物層,即包括三個聚合物層。可選地,三個聚合物層中的任一個或任兩個聚合物層的聚合物內分散設置有介電粒子,或者三個聚合物層的聚合物內都分散設置有介電粒子,或者三個聚合物層的聚合物內可以均不設介電粒子。Optionally, the polymer layer may also include at least one first polymer layer, at least one second polymer layer, and at least one third polymer layer arranged at intervals, that is, three polymer layers. Optionally, any one of the three polymer layers or any two polymer layers has dielectric particles dispersed in the polymer, or the three polymer layers have dielectric particles dispersed in the polymer, or There may be no dielectric particles in the polymer of the three polymer layers.

當僅包括第一聚合物層時,為單層結構;至少包括兩個聚合物層時,為複數層結構。複數層結構中的每一個聚合物層中的成分彼此之間可以相同,也可以不同。When only the first polymer layer is included, it has a single-layer structure; when it includes at least two polymer layers, it has a multiple-layer structure. The components in each polymer layer in the plural layer structure may be the same or different from each other.

第一聚合物層、第二聚合物層、第三聚合物層分別用X、Y、Z表示,則聚合物層的結構可以為X、YX、YXY、YXYX、YXYXY、XYZ、YXZ、XZY、XYZXYZ等。所述Y層、Z層可以根據在層狀結構中所屬的位置設置成具有反射、發射、吸收、傳遞、耐候、耐沾汙、疏水、增加上下層附著力、支撐或保護等的作用。The first polymer layer, the second polymer layer, and the third polymer layer are represented by X, Y, and Z, respectively, and the structure of the polymer layer can be X, YX, YXY, YXYX, YXYXY, XYZ, YXZ, XZY, XYZXYZ etc. The Y layer and the Z layer can be set to have the functions of reflection, emission, absorption, transmission, weather resistance, stain resistance, hydrophobicity, increase the adhesion of the upper and lower layers, support or protection according to their positions in the layered structure.

可選地,所述介電粒子與所述第一聚合物層的折射率之差小於0.5。較佳地,所述介電粒子與所述第一聚合物層的折射率之差大於0.1小於0.5。Optionally, the difference in refractive index between the dielectric particles and the first polymer layer is less than 0.5. Preferably, the difference in refractive index between the dielectric particles and the first polymer layer is greater than 0.1 and less than 0.5.

可選地,所述介電粒子的粒徑在1μm到200μm之間,較佳地,所述介電粒子的粒徑在1μm到200μm之間,較佳為5μm到30μm之間,更有選為10μm±2μm。Optionally, the diameter of the dielectric particles is between 1 μm and 200 μm, preferably, the diameter of the dielectric particles is between 1 μm and 200 μm, preferably between 5 μm and 30 μm, and more preferably It is 10μm±2μm.

可選地,所述介電粒子的構型可以是球體、橢球體、正方體、長方體、棒狀、多面體或其他不定形狀等等。Optionally, the configuration of the dielectric particles may be a sphere, an ellipsoid, a cube, a cuboid, a rod, a polyhedron, or other indefinite shapes.

可選地,所述介電粒子在所述第一功能層中所占的質量比不大於30%,例如在0.3%~30%之間。考慮到介電粒子在所述第一功能層中的質量比太小會影響第一功能層的輻射致冷效果,介電粒子在所述第一功能層中的質量比太大會影響第一功能層的透射率和成膜性,所述介電粒子在所述第一功能層中所占的質量比較佳在0.1%到20%之間,更佳地,0.3%到5%。Optionally, the mass ratio of the dielectric particles in the first functional layer is not more than 30%, for example, between 0.3% and 30%. Considering that the mass ratio of dielectric particles in the first functional layer is too small, it will affect the radiation cooling effect of the first functional layer, and the mass ratio of dielectric particles in the first functional layer is too large, which will affect the first function. The transmittance and film-forming properties of the layer, the mass of the dielectric particles in the first functional layer is preferably between 0.1% and 20%, more preferably, 0.3% to 5%.

可選地,所述介電粒子在所述第一功能層中所占的體積比不大於30%。Optionally, the volume ratio of the dielectric particles in the first functional layer is not more than 30%.

可選地,所述介電粒子為有機系粒子或無機系粒子或有機系粒子與無機系粒子的組合。其中,有機系粒子為丙烯酸系樹脂粒子、有機矽系樹脂粒子、尼龍系樹脂粒子、聚苯乙烯系樹脂粒子、聚酯系樹脂粒子和聚氨酯系樹脂粒子中的至少一種;無機系粒子為二氧化矽(SiO2 )、碳化矽(SiC)、氫氧化鋁(Al(OH)3 )、氧化鋁(Al2 O3 )、氧化鋅(ZnO)、硫化鋇(BaS)、矽酸鎂(MgSiO3 )、硫酸鋇(BaSO4 )、碳酸鈣(CaCO3 )和二氧化鈦(TiO2 )中的至少一種。考慮到無機系粒子在聚合物中的分散均勻性,較佳地,該無機系粒子為二氧化矽(SiO2 )、二氧化鈦(TiO2 )和矽酸鎂(MgSiO3 )中的至少一種。Optionally, the dielectric particles are organic particles or inorganic particles or a combination of organic particles and inorganic particles. Among them, the organic particles are at least one of acrylic resin particles, silicone resin particles, nylon resin particles, polystyrene resin particles, polyester resin particles, and polyurethane resin particles; inorganic particles are dioxide Silicon (SiO 2 ), silicon carbide (SiC), aluminum hydroxide (Al(OH) 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), barium sulfide (BaS), magnesium silicate (MgSiO 3) ), at least one of barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and titanium dioxide (TiO 2 ). Considering the uniformity of the dispersion of inorganic particles in the polymer, the inorganic particles are preferably at least one of silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), and magnesium silicate (MgSiO 3 ).

可選地,所述聚合物層的聚合物為熱塑性聚合物、熱固性聚合物、或熱塑性聚合物與熱固性聚合物的組合。Optionally, the polymer of the polymer layer is a thermoplastic polymer, a thermosetting polymer, or a combination of a thermoplastic polymer and a thermosetting polymer.

其中,熱塑性聚合物可採用以下材料中的至少一種:聚4-甲基-1-戊烯(TPX)、聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚對苯二甲酸1,4-環己烷二甲醇酯(PCT)、聚對苯二甲酸乙二醇酯-1,4-環己烷二甲醇酯(PETG和PCTG)、聚對苯二甲酸乙二醇-醋酸酯(PCTA)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、丙烯腈苯乙烯共聚物(SAN)、丙烯腈-丁二烯-苯乙烯的三元共聚物(ABS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)、三元乙丙橡膠(EPDM)、聚烯烴彈性體(POE)、聚醯胺(PA)、乙烯-醋酸乙烯共聚物(EVA)、乙烯-丙烯酸甲酯共聚物(EMA)、聚甲基丙烯酸羥乙酯(HEMA)、聚四氟乙烯(PTFE)、全氟(乙烯丙烯)共聚物(FEP)、聚全氟烷氧基樹脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-三氟氯乙烯共聚物(ECTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚偏氟乙烯(PVDF)和聚氟乙烯(PVF)、熱塑性聚氨酯(TPU)、聚苯乙烯(PS)。Among them, the thermoplastic polymer can use at least one of the following materials: poly-4-methyl-1-pentene (TPX), polyethylene terephthalate (PET), polyethylene naphthalate ( PEN), polyethylene terephthalate-1,4-cyclohexanedimethanol (PCT), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG and PCTG), poly Polyethylene phthalate-acetate (PCTA), polymethyl methacrylate (PMMA), polycarbonate (PC), acrylonitrile-styrene copolymer (SAN), acrylonitrile-butadiene-styrene Terpolymer (ABS), polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), ethylene propylene diene rubber (EPDM), polyolefin elastomer (POE), polyamide (PA) , Ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), polyhydroxyethyl methacrylate (HEMA), polytetrafluoroethylene (PTFE), perfluoro (ethylene propylene) copolymer ( FEP), polyperfluoroalkoxy resin (PFA), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF), thermoplastic polyurethane (TPU), polystyrene (PS).

其中,熱固性聚合物可採用以下材料中的至少一種:聚醚碸衍生共聚物(PES)、雙烯丙基二甘醇碳酸酯聚合物(CR-39)、雙組分聚氨酯(PU)。Among them, the thermosetting polymer may use at least one of the following materials: polyether sulfide derivative copolymer (PES), diallyl diethylene glycol carbonate polymer (CR-39), two-component polyurethane (PU).

進一步可選地,聚合物層的材料可以為PVC、PMMA、PC、PS、EVA、POE、PP、PE、TPX、PETG、PCTG、PET中的至少一種的組合。Further optionally, the material of the polymer layer may be a combination of at least one of PVC, PMMA, PC, PS, EVA, POE, PP, PE, TPX, PETG, PCTG, and PET.

可選地,聚合物層的顏色可以是透明的。Optionally, the color of the polymer layer may be transparent.

進一步可選地,聚合物層的材料可以為聚4-甲基-1-戊烯(TPX)、聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚對苯二甲酸1,4-環己烷二甲醇酯(PCT)、聚對苯二甲酸乙二醇酯-1,4-環己烷二甲醇酯(PETG和PCTG)、聚對苯二甲酸乙二醇-醋酸酯(PCTA)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)中的至少一種的混合物。Further optionally, the material of the polymer layer may be poly-4-methyl-1-pentene (TPX), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) , Poly 1,4-cyclohexanedimethanol terephthalate (PCT), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG and PCTG), polyterephthalate A mixture of at least one of ethylene glycol formate-acetate (PCTA), polymethyl methacrylate (PMMA), and polycarbonate (PC).

從成本、程序及結構的穩定性方面考慮,較佳地,所述聚合物層的層狀結構為YXY,這種特殊的層狀結構,賦予了聚合物層性能的穩定,其中的Y層還產生了支撐及保護X層的作用。即所述聚合物層從上到下包括第二聚合物層、第一聚合物層、第二聚合物層,該第一聚合物層的材料為PET/PEN,第一聚合物層的厚度為50μm ~150μm,第二聚合物層的材料為PET/ PEN,第二聚合物層的厚度為5μm ~20μm。In terms of cost, process and structural stability, preferably, the layered structure of the polymer layer is YXY. This special layered structure gives the polymer layer performance stability, and the Y layer is also Produced the role of supporting and protecting the X layer. That is, the polymer layer includes a second polymer layer, a first polymer layer, and a second polymer layer from top to bottom. The material of the first polymer layer is PET/PEN, and the thickness of the first polymer layer is 50μm ~ 150μm, the material of the second polymer layer is PET/PEN, the thickness of the second polymer layer is 5μm ~ 20μm.

從降低成本及優化結構方面考慮,更佳地,所述聚合物層的層狀結構可選為YX,即包括相互間隔設置的第一聚合物層和第二聚合物層,該第一聚合物層的材料為PET/ PEN,第一聚合物層的厚度為30μm~60μm,第二聚合物層的材料為 PET/ PEN,第二聚合物層的厚度為5μm~10μm。From the perspective of cost reduction and structural optimization, it is more preferable that the layered structure of the polymer layer may be YX, which includes a first polymer layer and a second polymer layer spaced apart from each other. The first polymer layer The material of the layer is PET/PEN, the thickness of the first polymer layer is 30 μm-60 μm, the material of the second polymer layer is PET/PEN, and the thickness of the second polymer layer is 5 μm-10 μm.

可選地,所述封裝層的主要成分包括聚氨酯類膠黏劑、丙烯酸類膠黏劑、環氧樹脂中的至少一種,較佳聚氨酯類壓敏膠和丙烯酸類壓敏膠,更佳為雙組分聚氨酯類壓敏膠、丙烯酸類壓敏膠,用於對所述第一功能層或所述第二功能層進行封裝保護,同時產生膠黏劑的作用。也就是說,封裝層具有保護第二功能層和/或第一功能層和黏結的雙重作用。Optionally, the main component of the encapsulation layer includes at least one of polyurethane adhesives, acrylic adhesives, and epoxy resins, preferably polyurethane pressure-sensitive adhesives and acrylic pressure-sensitive adhesives, and more preferably double The component polyurethane pressure-sensitive adhesive and acrylic pressure-sensitive adhesive are used to encapsulate and protect the first functional layer or the second functional layer, and at the same time produce the effect of an adhesive. In other words, the encapsulation layer has the dual functions of protecting the second functional layer and/or the first functional layer and bonding.

所述封裝層可以是透過貼合的方式或者塗布的方式設置在第二功能層或功能層上。The encapsulation layer may be arranged on the second functional layer or the functional layer by means of bonding or coating.

可選地,所述第二功能層包括至少一層金屬層,或至少一層陶瓷材料層,或至少一層金屬層和至少一層陶瓷材料層的組合。金屬層和陶瓷材料層的混合設置可以同時具有提高反射率和防止金屬層被氧化的作用。Optionally, the second functional layer includes at least one metal layer, or at least one ceramic material layer, or a combination of at least one metal layer and at least one ceramic material layer. The mixed arrangement of the metal layer and the ceramic material layer can simultaneously improve the reflectivity and prevent the metal layer from being oxidized.

可選地,所述金屬層的材料選自銀、鋁、鉻、鈦、銅或鎳的金屬層,或包括銀、鋁、鉻、鈦、銅和鎳中至少一種元素的金屬合金層。Optionally, the material of the metal layer is selected from a metal layer of silver, aluminum, chromium, titanium, copper, or nickel, or a metal alloy layer including at least one element of silver, aluminum, chromium, titanium, copper, and nickel.

可選地,所述陶瓷材料層的材料包括氧化鋁、氧化鈦、氧化矽、氧化鈮、氧化鋅、氧化銦、氧化錫、氮化矽、氮化鈦、矽化鋁、硫化鋅、硫化銦、硫化錫、氟化鎂、氟化鈣中的至少一種。Optionally, the material of the ceramic material layer includes aluminum oxide, titanium oxide, silicon oxide, niobium oxide, zinc oxide, indium oxide, tin oxide, silicon nitride, titanium nitride, aluminum silicide, zinc sulfide, indium sulfide, At least one of tin sulfide, magnesium fluoride, and calcium fluoride.

一些實施例中,第二功能層的結構(從上到下)可包括:銀、鋁、銀+鋁、銀+矽、銀+鈦、鋁+矽、鋁+鈦、銀+鋁+鈦、銀+鋁+矽、銀+氧化矽、鋁+氧化矽、氧化矽+銀+矽、氧化矽+鋁+矽、氧化矽+銀、氧化矽+鋁、氧化矽+銀+鋁+氮化矽、銀+矽鋁合金、氧化矽+銀+氧化矽+銀+氧化矽、氧化矽+銀+氧化鋁+鋁+矽鋁合金等。In some embodiments, the structure of the second functional layer (from top to bottom) may include: silver, aluminum, silver + aluminum, silver + silicon, silver + titanium, aluminum + silicon, aluminum + titanium, silver + aluminum + titanium, Silver + aluminum + silicon, silver + silicon oxide, aluminum + silicon oxide, silicon oxide + silver + silicon, silicon oxide + aluminum + silicon, silicon oxide + silver, silicon oxide + aluminum, silicon oxide + silver + aluminum + silicon nitride , Silver + silicon aluminum alloy, silicon oxide + silver + silicon oxide + silver + silicon oxide, silicon oxide + silver + aluminum oxide + aluminum + silicon aluminum alloy, etc.

可選地,對於反射型的輻射降溫材料,第二功能層的厚度可以在1nm以上調節,較佳5nm到500nm之間,更佳為50nm到200nm之間。Optionally, for the reflective radiation cooling material, the thickness of the second functional layer can be adjusted above 1 nm, preferably between 5 nm and 500 nm, more preferably between 50 nm and 200 nm.

較佳方案中,所述第二功能層至少包括一層金屬層,該金屬層的材料為鋁、銀或鈦,可選地,金屬層至少一個面設置有至少一層陶瓷材料層。陶瓷材料較佳為類金屬氧化物層,比如:氧化矽、氮化矽或氟化鎂,陶瓷材料層可以同時產生提高反射率和耐候耐磨耐氧化防腐的功能。In a preferred solution, the second functional layer includes at least one metal layer, and the metal layer is made of aluminum, silver or titanium. Optionally, at least one surface of the metal layer is provided with at least one ceramic material layer. The ceramic material is preferably a metal-like oxide layer, such as silicon oxide, silicon nitride, or magnesium fluoride. The ceramic material layer can simultaneously produce the functions of improving reflectivity and weather resistance, wear resistance, oxidation and corrosion resistance.

進一步,所述保護層包括有機氟聚合物(Organofluorine Polymer)層、有機矽聚合物(Resistant Silicone Polymers)層、氟矽共聚物樹脂(Fluorosilicone Copolymer Resin)層、聚乙烯-尼龍(PE/PA)複合膜層、乙烯-乙烯醇共聚物(EVOH)層、聚丙烯-尼龍(PP/PA)複合膜層中的至少一種。所述保護層材料因具有優良的光學性能、耐候性能和阻隔性能,進而具有優異的透明度、耐熱性、耐氧化性、耐藥品性、和防腐性。所述有機氟聚合物層包括以下材料中的至少一種:聚四氟乙烯(PTFE)層、全氟(乙烯丙烯)共聚物(FEP)層、聚全氟烷氧基樹脂(PFA)層、聚三氟氯乙烯(PCTFE)層、乙烯-三氟氯乙烯共聚物(ECTFE)層、乙烯-四氟乙烯共聚物(ETFE)層、聚偏氟乙烯(PVDF)層和聚氟乙烯(PVF)層。考慮到氣候條件的多樣化及使用場所的複雜化,選擇耐熱性、耐氧化性、耐藥品性和防腐性更好的材料,較佳地,所述有機氟聚合物層的材料為聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)和乙烯-三氟氯乙烯共聚物(ECTFE)中的至少一種。Further, the protective layer includes an organic fluorine polymer (Organofluorine Polymer) layer, an organic silicon polymer (Resistant Silicone Polymers) layer, a fluorosilicone copolymer resin (Fluorosilicone Copolymer Resin) layer, and a polyethylene-nylon (PE/PA) composite layer. At least one of a film layer, an ethylene-vinyl alcohol copolymer (EVOH) layer, and a polypropylene-nylon (PP/PA) composite film layer. The protective layer material has excellent optical properties, weather resistance and barrier properties, and further has excellent transparency, heat resistance, oxidation resistance, chemical resistance, and corrosion resistance. The organic fluoropolymer layer includes at least one of the following materials: polytetrafluoroethylene (PTFE) layer, perfluoro (ethylene propylene) copolymer (FEP) layer, polyperfluoroalkoxy resin (PFA) layer, poly Chlorotrifluoroethylene (PCTFE) layer, ethylene-chlorotrifluoroethylene copolymer (ECTFE) layer, ethylene-tetrafluoroethylene copolymer (ETFE) layer, polyvinylidene fluoride (PVDF) layer and polyvinyl fluoride (PVF) layer . Taking into account the diversification of climatic conditions and the complexity of the place of use, materials with better heat resistance, oxidation resistance, chemical resistance and corrosion resistance are selected. Preferably, the material of the organic fluoropolymer layer is polytetrafluoroethylene At least one of ethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene-chlorotrifluoroethylene copolymer (ECTFE).

可選地,保護層包括聚四氟乙烯(PTFE)層、聚偏氟乙烯(PVDF)層、聚氟乙烯(PVF)層、乙烯-四氟乙烯共聚物(ETFE)層、乙烯-三氟氯乙烯共聚物(ECTFE)層、聚乙烯-尼龍(PE/PA)複合膜層、乙烯-乙烯醇共聚物(PE/PA or EVOH)層、聚丙烯-尼龍(PP/PA)複合膜層。Optionally, the protective layer includes a polytetrafluoroethylene (PTFE) layer, a polyvinylidene fluoride (PVDF) layer, a polyvinyl fluoride (PVF) layer, an ethylene-tetrafluoroethylene copolymer (ETFE) layer, and an ethylene-trifluorochloroethylene layer. Ethylene copolymer (ECTFE) layer, polyethylene-nylon (PE/PA) composite film layer, ethylene-vinyl alcohol copolymer (PE/PA or EVOH) layer, polypropylene-nylon (PP/PA) composite film layer.

可選地,所述封裝層的厚度在1μm到500μm之間,較佳5μm到100μm之間。Optionally, the thickness of the encapsulation layer is between 1 μm and 500 μm, preferably between 5 μm and 100 μm.

可選地,所述保護層的厚度在1μm到300μm之間,較佳5~150μm或者2~50μm。Optionally, the thickness of the protective layer is between 1 μm and 300 μm, preferably 5 to 150 μm or 2 to 50 μm.

可選地,所述第一功能層的厚度在5μm到500μm之間,較佳10μm到200μm之間。Optionally, the thickness of the first functional layer is between 5 μm and 500 μm, preferably between 10 μm and 200 μm.

當所述輻射降溫材料包含第二功能層時,根據輻射降溫材料對透明性的不同要求,所述第二功能層的厚度可在1nm以上調節,例如在5nm到500nm之間。根據第二功能層的厚度及材質的不同,輻射降溫材料對於太陽光的透射率可以實現在0~95%之間調整,形成反射型/半透型的輻射降溫材料。When the radiation cooling material includes a second functional layer, the thickness of the second functional layer can be adjusted above 1 nm, for example, between 5 nm and 500 nm, according to different requirements for transparency of the radiation cooling material. According to the thickness and material of the second functional layer, the transmittance of the radiation cooling material to sunlight can be adjusted between 0-95%, forming a reflective/semi-transparent radiation cooling material.

進一步地,本發明實施例的輻射降溫材料,可在-170℃~200℃的工作溫度下提供從6W/m2 ~2640W/m2 的輻射降溫致冷功率。Further, the radiation cooling material of the embodiment of the present invention can provide radiation cooling power from 6W/m 2 to 2640W/m 2 at an operating temperature of -170°C to 200°C.

進一步地,本發明實施例的輻射降溫材料,可以與金屬、塑膠、橡膠、瀝青、玻璃製品、防水材料、紡織物、編織物等材料複合而形成複合材料。Further, the radiation cooling material of the embodiment of the present invention can be combined with metal, plastic, rubber, asphalt, glass products, waterproof materials, textiles, braids and other materials to form composite materials.

如上,本發明實施例公開了一種輻射降溫材料,該材料可以薄膜的方式存在,即,輻射降溫薄膜;也可以以薄片或塗層等形式存在。As above, the embodiment of the present invention discloses a radiation cooling material, which can exist in the form of a thin film, that is, a radiation cooling film; it can also exist in the form of a sheet or a coating.

根據工作方式的不同,該輻射降溫材料可分為反射型輻射降溫薄膜、透射型的輻射降溫薄膜和半透型的輻射降溫薄膜。下面分別進一步說明:According to different working methods, the radiation cooling material can be divided into a reflective radiation cooling film, a transmissive radiation cooling film and a semi-transparent radiation cooling film. The following are further instructions:

1.1 反射型的輻射降溫薄膜1.1 Reflective radiation cooling film

反射型的輻射降溫薄膜同時具有反射和輻射降溫致冷的功能,反射型的輻射降溫薄膜包括第一功能層,還包括與所述第一功能層相接觸的用於反射太陽光的第二功能層,該第二功能層包括金屬層、金屬襯底和/或陶瓷材料層。The reflective radiation cooling film has the functions of reflection and radiation cooling at the same time. The reflective radiation cooling film includes a first functional layer and a second function for reflecting sunlight in contact with the first functional layer. The second functional layer includes a metal layer, a metal substrate and/or a ceramic material layer.

第一功能層的特徵在於對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外光發射率為0.8至1.0,更佳為0.9-1.0。反射型的輻射降溫薄膜對波長範圍0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽光的反射率為0.8至1,較佳為0.9至1。The first functional layer is characterized by having an infrared light emissivity of 0.8 to 1.0, and more preferably 0.9-1.0, for the infrared wavelength range of 7-14 μm/8-13 μm/7-13 μm/8-14 μm. The reflective radiation cooling film has a reflectivity of 0.8 to 1, preferably 0.9 to 1, for sunlight in the wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm.

1.2 透射型的輻射降溫薄膜1.2 Transmissive radiation cooling film

透射型的輻射降溫薄膜同時具有透光和輻射降溫致冷的功能,透射型的輻射降溫薄膜包括第一功能層。The transmissive radiation cooling film has the functions of both light transmission and radiation cooling, and the transmissive radiation cooling film includes a first functional layer.

第一功能層的特徵在於對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外光發射率為0.8至1.0,較佳為0.9-1.0。The first functional layer is characterized by having an infrared light emissivity in the infrared wavelength range of 7-14 μm/8-13 μm/7-13 μm/8-14 μm, preferably 0.8 to 1.0, preferably 0.9-1.0.

透射型的輻射降溫薄膜對波長範圍為0.25-2.5μm /0.25-3μm/0.3-2.5μm/0.3-3μm的太陽光的吸收率為0至0.3。The transmissive radiation cooling film has an absorption rate of 0 to 0.3 for the wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm.

1.3半透型的輻射降溫薄膜1.3 Semi-transparent radiation cooling film

半透型的輻射降溫薄膜同時具有透光、反射和輻射降溫致冷的功能,半透型的輻射降溫薄膜包括第一功能層,還包括與所述第一功能層相接觸的用於反射太陽光的第二功能層,該第二功能層包括金屬層、金屬襯底和/或陶瓷材料層。The semi-transmissive radiation cooling film has the functions of light transmission, reflection, and radiation cooling and cooling. The semi-transmissive radiation cooling film includes a first functional layer and a contact with the first functional layer for reflecting the sun. The second functional layer of light, the second functional layer includes a metal layer, a metal substrate and/or a ceramic material layer.

第一功能層的特徵在於對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外光發射率為0.8至1.0,較佳為0.9-1.0。The first functional layer is characterized by having an infrared light emissivity in the infrared wavelength range of 7-14 μm/8-13 μm/7-13 μm/8-14 μm, preferably 0.8 to 1.0, preferably 0.9-1.0.

半透型的輻射降溫薄膜對於太陽能的透射率可以實現在1%-95%之間調整,較佳為5%-95%,更佳為20%-70%。The transmissivity of the semi-permeable radiation cooling film to solar energy can be adjusted between 1%-95%, preferably 5%-95%, more preferably 20%-70%.

下面,結合若干具體實施例,具體說明不同類型的輻射降溫材料中,不同材料層的參數變化與性能的關係。In the following, in combination with several specific embodiments, the relationship between the parameter changes and performance of different material layers in different types of radiation cooling materials will be specifically described.

本發明提供一個實施例,該輻射降溫材料包括第一功能層、封裝層和保護層。所述封裝層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。所述第一功能層包括一個聚合物層。該實施例中,第一功能層的材料為PET,厚度為150μm,介電粒子為SiO2 ,介電粒子的粒徑為6μm。該封裝層的材料為雙組分聚氨酯類壓敏膠;該保護層的材料為聚偏氟乙烯(PVDF)。圖4為該實施例中,含有不同質量比的介電粒子的第一功能層中波長與發射率的關係圖。SiO2 在第一功能層中所占的質量比分別為2%、4%、6%和8%時,含有不同質量比SiO2 的第一功能層中波長與發射率的關係如圖4所示,由圖4可得知,含有SiO2 的第一功能層,較多質量比的SiO2 的含量增加了7~14μm紅外線的發射率,而在太陽光譜中沒有顯著的吸收效果。請參考圖5,是本該實施例中第一功能層中波長與反射率和透射率關係的曲線圖(其中介電粒子SiO2 在第一功能層中所占的質量比為4%)。由圖5可得知,第一功能層在300~2500nm的透射率平均在90%左右,反射率平均在10%左右,在太陽光譜中沒有顯著的吸收效果。此時,將此實施例中介電粒子SiO2 在第一功能層中所占的質量比為4%的材料定義為透射型的輻射降溫材料A。The present invention provides an embodiment. The radiation cooling material includes a first functional layer, an encapsulation layer and a protective layer. The encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. The first functional layer includes a polymer layer. In this embodiment, the material of the first functional layer is PET, the thickness is 150 μm, the dielectric particles are SiO 2 , and the diameter of the dielectric particles is 6 μm. The material of the encapsulation layer is two-component polyurethane pressure-sensitive adhesive; the material of the protective layer is polyvinylidene fluoride (PVDF). FIG. 4 is a diagram showing the relationship between wavelength and emissivity in the first functional layer containing dielectric particles with different mass ratios in this embodiment. When the mass ratio of SiO 2 in the first functional layer is 2%, 4%, 6%, and 8%, the relationship between wavelength and emissivity in the first functional layer with different mass ratios of SiO 2 is shown in Figure 4. It can be seen from Fig. 4 that the first functional layer containing SiO 2 has a higher mass ratio of SiO 2 with an increase in the infrared emissivity of 7-14 μm, but there is no significant absorption effect in the solar spectrum. Please refer to FIG. 5, which is a graph of the relationship between wavelength and reflectance and transmittance in the first functional layer in this embodiment (the mass ratio of dielectric particles SiO 2 in the first functional layer is 4%). It can be seen from Figure 5 that the average transmittance of the first functional layer at 300~2500nm is about 90%, and the average reflectance is about 10%, and there is no significant absorption effect in the solar spectrum. At this time, in this embodiment, the material in which the dielectric particles SiO 2 occupies a mass ratio of 4% in the first functional layer is defined as the transmissive radiation cooling material A.

本發明還提供一個實施例,該輻射降溫材料包括第一功能層、第二功能層、封裝層和保護層。所述第二功能層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。所述封裝層設置於所述第二功能層。所述第一功能層包括一個聚合物層。該實施例中,第一功能層的材料為PET,厚度為150μm,介電粒子為SiO2 ,介電粒子的粒徑為6μm,介電粒子SiO2 在第一功能層中所占的質量比為4%。所述封裝層的材料為丙烯酸類壓敏膠;所述保護層的材料為氟矽共聚物樹脂。請參考圖6,其為該實施例中,不同厚度的第二功能層中波長與反射率關係的曲線圖。所述第二功能層的結構(從上到下)為鋁+氧化矽,鋁層和氧化矽層的厚度比為1:1,當所述第二功能層的厚度為30nm、50nm、80nm、100nm、150nm時,第二功能層中波長與反射率關係的曲線圖如圖6所示,第二功能層在300~2500nm的反射率隨著第二功能層厚度的增加而增加。請參考圖7,其為該實施例中,不同厚度的第二功能層中波長與透射率關係的曲線圖。當第二功能層的厚度為30nm、50nm時,第二功能層中波長與透射率關係的曲線圖如圖7所示,第二功能層在300~2500nm的透射率隨著第二功能層厚度的增加而減小。其中第二功能層的厚度為30nm、50nm時由於其透射率為5%以上,定義為半透型的輻射降溫材料。其中該實施例第二功能層的厚度為30nm作為半透型的輻射降溫材料B。當選擇性功能層的厚度為80nm、100nm、150nm時由於其透射率為5%以下,定義為反射型的輻射降溫材料。其中該實施例第二功能層的厚度為80nm作為反射型的輻射降溫材料C。The present invention also provides an embodiment. The radiation cooling material includes a first functional layer, a second functional layer, an encapsulation layer and a protective layer. The second functional layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. The packaging layer is disposed on the second functional layer. The first functional layer includes a polymer layer. In this embodiment, the material of the first functional layer is PET, the thickness is 150 μm, the dielectric particles are SiO 2 , the diameter of the dielectric particles is 6 μm, and the mass ratio of the dielectric particles SiO 2 in the first functional layer Is 4%. The material of the encapsulation layer is acrylic pressure-sensitive adhesive; the material of the protective layer is fluorosilicone copolymer resin. Please refer to FIG. 6, which is a graph of the relationship between wavelength and reflectivity in the second functional layer of different thicknesses in this embodiment. The structure of the second functional layer (from top to bottom) is aluminum + silicon oxide, and the thickness ratio of the aluminum layer to the silicon oxide layer is 1:1. When the thickness of the second functional layer is 30nm, 50nm, 80nm, At 100nm and 150nm, the graph of the relationship between wavelength and reflectivity in the second functional layer is shown in FIG. 6, the reflectivity of the second functional layer at 300-2500nm increases as the thickness of the second functional layer increases. Please refer to FIG. 7, which is a graph of the relationship between wavelength and transmittance in the second functional layer of different thicknesses in this embodiment. When the thickness of the second functional layer is 30nm and 50nm, the graph of the relationship between wavelength and transmittance in the second functional layer is shown in Figure 7. The transmittance of the second functional layer at 300~2500nm increases with the thickness of the second functional layer. Increase and decrease. When the thickness of the second functional layer is 30nm and 50nm, since its transmittance is above 5%, it is defined as a semi-transmissive radiation cooling material. The thickness of the second functional layer in this embodiment is 30 nm as the semi-transmissive radiation cooling material B. When the thickness of the selective functional layer is 80nm, 100nm, 150nm, the transmittance is less than 5%, so it is defined as a reflective radiation cooling material. The thickness of the second functional layer of this embodiment is 80 nm as the reflective radiation cooling material C.

本發明還提供以下實施例:The present invention also provides the following embodiments:

本發明還提供另一實施例,該輻射降溫材料包括第一功能層、封裝層和保護層。所述第一功能層包括兩個聚合物層。所述封裝層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。該實施例中,第一功能層的材料為PEN,厚度為100μm,介電粒子為有機矽系樹脂粒子,介電粒子的粒徑為10μm,介電粒子有機矽系樹脂粒子在第一功能層中所占的質量比為5%。該封裝層的材料為雙組分聚氨酯類壓敏膠;該保護層的材料為乙烯-乙烯醇共聚物(EVOH)。所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽光的透射率為92%,且對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外線的發射率為0.94。The present invention also provides another embodiment. The radiation cooling material includes a first functional layer, an encapsulation layer and a protective layer. The first functional layer includes two polymer layers. The encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. In this embodiment, the material of the first functional layer is PEN, the thickness is 100 μm, the dielectric particles are organic silicon resin particles, and the diameter of the dielectric particles is 10 μm. The organic silicon resin particles of the dielectric particles are in the first functional layer. The mass ratio of 5% is 5%. The material of the encapsulation layer is a two-component polyurethane pressure-sensitive adhesive; the material of the protective layer is ethylene-vinyl alcohol copolymer (EVOH). The first functional layer has a transmittance of 92% to sunlight with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7-14 μm/8-13 μm/ The infrared emissivity of the infrared band of 7-13μm/8-14μm is 0.94.

本發明還提供另一實施例,該輻射降溫材料包括第一功能層、封裝層和保護層。所述第一功能層包括兩個聚合物層。所述封裝層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。該實施例中,第一功能層的材料為PC,厚度為80μm,介電粒子為MgSiO3 ,介電粒子的粒徑為11μm,介電粒子MgSiO3 在第一功能層中所占的質量比為9%。該封裝層的材料為雙組分聚氨酯類壓敏膠;該保護層的材料為有機矽聚合物。所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽光的透射率為90%,且對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外線的發射率為0.91。The present invention also provides another embodiment. The radiation cooling material includes a first functional layer, an encapsulation layer and a protective layer. The first functional layer includes two polymer layers. The encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. In this embodiment, the material of the first functional layer is PC, the thickness is 80 μm, the dielectric particles are MgSiO 3 , the diameter of the dielectric particles is 11 μm, and the mass ratio of the dielectric particles MgSiO 3 in the first functional layer is Is 9%. The material of the encapsulation layer is a two-component polyurethane pressure sensitive adhesive; the material of the protective layer is an organic silicon polymer. The first functional layer has a transmittance of 90% to sunlight with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7-14 μm/8-13 μm/ The infrared emissivity of the infrared band of 7-13 μm/8-14 μm is 0.91.

本發明還提供另一實施例,該輻射降溫材料包括第一功能層、第二功能層、封裝層和保護層。所述第二功能層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。所述封裝層設置於所述第二功能層上。所述第一功能層包括兩層聚合物層。該實施例中,第一功能層的材料為PMMA,厚度為70μm,介電粒子為尼龍系樹脂粒子,介電粒子的粒徑為5μm,介電粒子尼龍系樹脂粒子在第一功能層中所占的質量比為4%。所述第二功能層為氟化鎂,所述第二功能層的厚度為20nm,該封裝層的材料為環氧樹脂;該保護層的材料為聚乙烯-尼龍(PE/PA)複合膜。所述輻射降溫材料對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽光的透射率為55%,且對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外光的發射率為0.93。The present invention also provides another embodiment. The radiation cooling material includes a first functional layer, a second functional layer, an encapsulation layer and a protective layer. The second functional layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. The packaging layer is disposed on the second functional layer. The first functional layer includes two polymer layers. In this embodiment, the material of the first functional layer is PMMA, the thickness is 70μm, the dielectric particles are nylon-based resin particles, the diameter of the dielectric particles is 5μm, and the nylon-based resin particles are formed in the first functional layer. The quality ratio is 4%. The second functional layer is magnesium fluoride, the thickness of the second functional layer is 20 nm, the material of the encapsulation layer is epoxy resin; the material of the protective layer is a polyethylene-nylon (PE/PA) composite film. The radiation cooling material has a transmittance of 55% to sunlight with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7-14 μm/8-13 μm/7 The emissivity of infrared light in the infrared band of -13μm/8-14μm is 0.93.

本發明還提供另一實施例,該輻射降溫材料包括第一功能層、第二功能層、封裝層和保護層。所述第二功能層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。所述封裝層設置於所述第二功能層上。所述第一功能層包括兩層聚合物層。該實施例中,第一功能層的材料為PETG/PCTG,厚度為35μm,介電粒子為聚苯乙烯系樹脂粒子,介電粒子的粒徑為15μm,介電粒子聚苯乙烯系樹脂粒子在第一功能層中所占的質量比為10%。所述第二功能層為氮化矽,所述第二功能層的厚度為25nm,該封裝層的材料為丙烯酸類壓敏膠;該保護層的材料為聚乙烯-尼龍(PE/PA)複合膜。所述輻射降溫材料對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽光的透射率為40%,且對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的紅外光的發射率為0.92。The present invention also provides another embodiment. The radiation cooling material includes a first functional layer, a second functional layer, an encapsulation layer and a protective layer. The second functional layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. The packaging layer is disposed on the second functional layer. The first functional layer includes two polymer layers. In this embodiment, the material of the first functional layer is PETG/PCTG, the thickness is 35μm, the dielectric particles are polystyrene resin particles, the diameter of the dielectric particles is 15μm, and the dielectric particles are polystyrene resin particles. The mass ratio in the first functional layer is 10%. The second functional layer is silicon nitride, the thickness of the second functional layer is 25nm, the material of the encapsulation layer is acrylic pressure sensitive adhesive; the material of the protective layer is polyethylene-nylon (PE/PA) composite membrane. The radiation cooling material has a transmittance of 40% to sunlight with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7-14 μm/8-13 μm/7 The emissivity of infrared light in the infrared band of -13μm/8-14μm is 0.92.

請參考圖3,本發明的一個實施例,還提供一種如上文所述輻射降溫材料的製備方法。該輻射降溫材料可分為反射型的輻射降溫薄膜、半透型的輻射降溫薄膜和透射型的輻射降溫薄膜。Please refer to FIG. 3, an embodiment of the present invention also provides a method for preparing the radiation cooling material as described above. The radiation cooling material can be divided into a reflection type radiation cooling film, a semi-transmission type radiation cooling film and a transmission type radiation cooling film.

對於透射型的輻射降溫薄膜,製備方法可包括:For transmissive radiation cooling films, the preparation method may include:

製備第一功能層,所述第一功能層包括至少一層聚合物層,所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率;Prepare a first functional layer, the first functional layer includes at least one polymer layer, the first functional layer has a wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm solar radiation The transmittance is not less than 0.8, and the emissivity is not less than 0.8 for radiation in the infrared band with the wavelength range of 7-14μm/8-13μm/7-13μm/8-14μm;

在所述第一功能層的第一面設置封裝層;Providing an encapsulation layer on the first surface of the first functional layer;

在所述第一功能層的第二面設置保護層。A protective layer is provided on the second surface of the first functional layer.

對於半透型的輻射降溫薄膜,製備方法可包括:For the semi-transparent radiation cooling film, the preparation method may include:

製備第一功能層,所述第一功能層包括至少一層聚合物層,所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率;Prepare a first functional layer, the first functional layer includes at least one polymer layer, the first functional layer has a wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm solar radiation The transmittance is not less than 0.8, and the emissivity is not less than 0.8 for radiation in the infrared band with the wavelength range of 7-14μm/8-13μm/7-13μm/8-14μm;

在所述第一功能層的第一面設置第二功能層,在第二功能層的外面設置封裝層;A second functional layer is provided on the first surface of the first functional layer, and an encapsulation layer is provided on the outside of the second functional layer;

在所述第一功能層的第二面設置保護層。A protective layer is provided on the second surface of the first functional layer.

也就是說,可以根據輻射降溫材料的透明性要求,選擇或不選擇設置第二功能層的步驟。不設置第二功能層,可以提高材料的透明性,製成透射型的輻射降溫材料,此時要求透射型的輻射降溫材料對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射的透射率不低於0.8。設置第二功能層,可以提高材料的反射性,製成反射型/半透型的輻射降溫材料,此時對於反射型的輻射降溫材料要求第二功能層的材料對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射的反射率不低於0.8,對於半透型的輻射降溫材料要求第二功能層的材料對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射的透射率為1%-95%,較佳為5%-95%,更佳為20%-70%。That is to say, the step of providing the second functional layer can be selected or not selected according to the transparency requirements of the radiation cooling material. Without the second functional layer, the transparency of the material can be improved, and a transmission type radiation cooling material can be made. At this time, the transmission type radiation cooling material is required to have a wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm/ The transmittance of solar radiation of 0.3-3μm is not less than 0.8. Setting the second functional layer can improve the reflectivity of the material and make a reflective/semi-transparent radiation cooling material. At this time, for the reflective radiation cooling material, the material of the second functional layer is required to have a wavelength range of 0.25-2.5μm /0.25-3μm/0.3-2.5μm/0.3-3μm, the reflectivity of solar radiation is not less than 0.8. For semi-transparent radiation cooling materials, the material of the second functional layer is required to have a wavelength range of 0.25-2.5μm/0.25- The transmittance of solar radiation of 3 μm/0.3-2.5 μm/0.3-3 μm is 1%-95%, preferably 5%-95%, more preferably 20%-70%.

可選地,製備第一功能層包括:將介電粒子分散於聚合物中形成所述聚合物層。其中,所述介電粒子可以採用無機系粒子或有機系粒子或兩者的組合。Optionally, preparing the first functional layer includes: dispersing dielectric particles in a polymer to form the polymer layer. Wherein, the dielectric particles may be inorganic particles or organic particles or a combination of both.

一些實施例中,製備第一功能層可具體包括:In some embodiments, preparing the first functional layer may specifically include:

採用單層擠塑、複數層共擠、熔融成膜或雙向拉伸的方式,將聚合物與介電粒子加工成層狀結構的聚合物層,作為第一功能層。Using single-layer extrusion, multiple-layer co-extrusion, melt-forming film or biaxial stretching, the polymer and dielectric particles are processed into a layered polymer layer as the first functional layer.

其中,單層擠塑或複數層共擠或熔融成膜的製備方式,其製備過程可包括:聚合物原料輸送→50~150℃乾燥→220~280℃熔融擠出→流延→冷卻(冷輥溫度設置為20~150℃)→牽引→收卷製得。Among them, the preparation method of single-layer extrusion or multiple-layer co-extrusion or melt film formation can include: polymer raw material conveying→50~150℃ drying→220~280℃melting extrusion→casting→cooling (cold) The temperature of the roll is set to 20~150℃) → traction → winding.

所述熔融成膜方法的主要步驟包括流延和吹膜程序。吹膜程序可包括上吹風冷程序或下吹水冷程序。The main steps of the melt film forming method include casting and film blowing procedures. The film blowing program may include an upward blowing cooling program or a downward blowing water cooling program.

雙向拉伸的製備方式,其製備過程可包括:原料輸送→150~180℃乾燥→250~280℃熔融擠出→流延→冷卻(冷輥溫度設置為15~30℃)→縱向拉伸(紅外線加熱溫度為200~300℃,縱向拉伸比為1.5:1~4.5:1)→橫向拉伸(定型溫度為150~190℃,橫向拉伸比為1.5:1~4.5:1)→牽引→收卷製得。The preparation method of biaxial stretching, the preparation process can include: raw material conveying→150~180℃ drying→250~280℃ melt extrusion→casting→cooling (cold roll temperature is set to 15~30℃)→longitudinal stretching ( Infrared heating temperature is 200~300℃, longitudinal stretch ratio is 1.5:1~4.5:1)→transverse stretch (setting temperature is 150~190℃, transverse stretch ratio is 1.5:1~4.5:1)→traction →It is made by rewinding.

雙向拉伸的製備方式也可以縱向拉伸和橫向拉伸同時進行,一步完成。The preparation method of biaxial stretching can also be carried out at the same time of longitudinal stretching and transverse stretching, which can be completed in one step.

可選地,製備第一功能層還包括:對製成的聚合物層進行單層或複數層塗覆或溶液成膜。Optionally, preparing the first functional layer further includes: single-layer or multiple-layer coating or solution film formation on the prepared polymer layer.

即,可採用單層擠塑或複數層共擠或熔融成膜或雙向拉伸+單層或複數層塗覆或溶液成膜的方式,將準備好的聚合物加工成聚合物層,作為第一功能層的基材;然後將所述聚合物和所述介電粒子混合形成內部分散有介電粒子的聚合物層;再透過單層或複數層塗覆或溶液成膜的方式,塗覆在所述基材上,作為第一功能層。採用該種方式製備的第一功能層,可包括至少一層分散有介電粒子的聚合物層。That is, single-layer extrusion or multiple-layer co-extrusion or melt-forming film or biaxial stretching + single-layer or multiple-layer coating or solution film-forming methods can be used to process the prepared polymer into a polymer layer as the first A functional layer substrate; then the polymer and the dielectric particles are mixed to form a polymer layer with dielectric particles dispersed therein; and then through single layer or multiple layer coating or solution film formation, coating On the substrate, it serves as the first functional layer. The first functional layer prepared in this way may include at least one polymer layer dispersed with dielectric particles.

單層或複數層塗覆或溶液成膜的主要步驟可包括:放卷→表面處理(表面處理主要為除塵、電暈,作用為保持基材清潔度和提高黏接力)→塗布→乾燥→收卷。所說的塗布是在基材上塗布聚合物與介電粒子的混合物。The main steps of single-layer or multiple-layer coating or solution film formation can include: unwinding→surface treatment (surface treatment is mainly for dust removal and corona, which is used to maintain the cleanliness of the substrate and improve adhesion)→coating→drying→rewinding volume. The coating is to coat a mixture of polymer and dielectric particles on the substrate.

一些實施例中,在所述第一功能層的第一面設置第二功能層可具體包括: 透過磁控濺射程序、蒸發鍍膜程序、離子濺射程序、電鍍程序或電子束鍍膜程序,將第二功能層沉積在第一功能層的第二面。In some embodiments, disposing the second functional layer on the first surface of the first functional layer may specifically include: The second functional layer is deposited on the second surface of the first functional layer through a magnetron sputtering process, an evaporation coating process, an ion sputtering process, an electroplating process or an electron beam coating process.

其中磁控濺射程序的主要步驟可包括:抽真空至真空度為10-2 ~10-6 Pa→放卷(放卷速度為1~500m/min)→充入氣體(氣體為氬氣、氮氣、氧氣或空氣)→離子清潔→真空室鍍膜(鍍膜功率為1~100KW)→收卷。The main steps of the magnetron sputtering program can include: vacuuming to a vacuum of 10 -2 ~10 -6 Pa → unwinding (unwinding speed is 1~500m/min) → filling gas (gas is argon, Nitrogen, oxygen or air)→ion cleaning→coating in vacuum chamber (coating power is 1~100KW)→winding.

蒸發鍍膜程序的主要步驟可包括:抽真空至真空度為10-2 ~10-6 Pa→放卷(放卷速度為1~500m/min)→充入氣體(氣體為氬氣、氮氣、氧氣或空氣)→離子清潔→預蒸發→蒸發鍍膜→收卷。The main steps of the evaporation coating procedure can include: vacuuming to a vacuum of 10 -2 ~10 -6 Pa → unwinding (unwinding speed is 1~500m/min) → filling gas (gas is argon, nitrogen, oxygen Or air) → ion cleaning → pre-evaporation → evaporation coating → winding.

離子濺射程序的主要步驟可包括:抽真空至真空度為10-2 ~10-6 Pa→放卷(放卷速度為1~500m/min)→充入氣體(氣體為氬氣、氮氣、氧氣或空氣)→離子清潔→鍍膜(鍍膜功率為1~100KW)→收卷。The main steps of the ion sputtering program can include: vacuuming to a vacuum of 10 -2 ~10 -6 Pa→unwinding (unwinding speed is 1~500m/min)→gas filling (gas is argon, nitrogen, Oxygen or air)→ion cleaning→coating (coating power is 1~100KW)→winding.

一些實施例中,在第二功能層的外面設置封裝層可具體包括:透過貼合的方式或者透過塗布的方式,將封裝層設置在第二功能層或第一功能層上。封裝層可以產生對第二功能層和/或功能層進行封裝保護的作用,同時可產生膠黏劑的作用。其主要成分可包括聚氨酯類壓敏膠、丙烯酸類壓敏膠、環氧樹脂等材料中的至少一種。In some embodiments, disposing the encapsulation layer outside the second functional layer may specifically include: disposing the encapsulation layer on the second functional layer or the first functional layer by bonding or coating. The encapsulation layer can encapsulate and protect the second functional layer and/or the functional layer, and can also produce an adhesive. The main component may include at least one of polyurethane pressure sensitive adhesive, acrylic pressure sensitive adhesive, epoxy resin and other materials.

一些實施例中,在所述第一功能層的第一面設置封裝層可具體包括:透過塗布或貼合或複數層共擠的方式,在所述第一功能層的第二面製備、形成保護層。In some embodiments, disposing an encapsulation layer on the first surface of the first functional layer may specifically include: preparing and forming an encapsulation layer on the second surface of the first functional layer by coating or bonding or co-extrusion of multiple layers. The protective layer.

可選地,可以透過塗布的方式將聚四氟乙烯(PTFE)層、全氟(乙烯丙烯)共聚物(FEP)層、聚全氟烷氧基樹脂(PFA)層、聚三氟氯乙烯(PCTFE)層、乙烯-三氟氯乙烯共聚物(ECTFE)層、乙烯-四氟乙烯共聚物(ETFE)層、聚偏氟乙烯(PVDF)層、聚氟乙烯(PVF)層、有機矽聚合物(Resistant Silicone Polymers)層、氟矽共聚物樹脂(Fluorosilicone Copolymer Resin)層、聚乙烯-尼龍(PE/PA)複合膜層、聚乙烯-乙烯醇共聚物(EVOH)層、聚丙烯-尼龍(PP/PA)複合膜層的塗布液塗在第一功能層的第二面,形成保護層,主要步驟可包括:放卷→表面處理(表面處理主要為除塵、電暈,作用為保持基材清潔度和提高黏接力)→塗布→乾燥→收卷。Optionally, a polytetrafluoroethylene (PTFE) layer, a perfluoro (ethylene propylene) copolymer (FEP) layer, a polyperfluoroalkoxy resin (PFA) layer, and a polychlorotrifluoroethylene (PTFE) layer can be applied by coating. PCTFE) layer, ethylene-chlorotrifluoroethylene copolymer (ECTFE) layer, ethylene-tetrafluoroethylene copolymer (ETFE) layer, polyvinylidene fluoride (PVDF) layer, polyvinyl fluoride (PVF) layer, organic silicon polymer (Resistant Silicone Polymers) layer, Fluorosilicone Copolymer Resin layer, polyethylene-nylon (PE/PA) composite film layer, polyethylene-vinyl alcohol copolymer (EVOH) layer, polypropylene-nylon (PP) /PA) The coating solution of the composite film layer is coated on the second surface of the first functional layer to form a protective layer. The main steps can include: unwinding→surface treatment (surface treatment is mainly for dust removal and corona, which is used to keep the substrate clean Degree and improve adhesion)→coating→drying→winding.

可選地,可以透過貼合的方式將聚四氟乙烯(PTFE)層、全氟(乙烯丙烯)共聚物(FEP)層、聚全氟烷氧基樹脂(PFA)層、聚三氟氯乙烯(PCTFE)層、乙烯-三氟氯乙烯共聚物(ECTFE)層、乙烯-四氟乙烯共聚物(ETFE)層、聚偏氟乙烯(PVDF)層、聚氟乙烯(PVF)層、有機矽聚合物(Resistant Silicone Polymers)層、氟矽共聚物樹脂(Fluorosilicone Copolymer Resin)層、聚乙烯-尼龍(PE/PA)複合膜層、乙烯-乙烯醇共聚物(EVOH)層或聚丙烯-尼龍(PP/PA)複合膜層設置在第一功能層的第二面,形成保護層中。Optionally, the polytetrafluoroethylene (PTFE) layer, the perfluoro(ethylene propylene) copolymer (FEP) layer, the polyperfluoroalkoxy resin (PFA) layer, and the polychlorotrifluoroethylene (PTFE) layer can be laminated (PCTFE) layer, ethylene-chlorotrifluoroethylene copolymer (ECTFE) layer, ethylene-tetrafluoroethylene copolymer (ETFE) layer, polyvinylidene fluoride (PVDF) layer, polyvinyl fluoride (PVF) layer, silicone polymer (Resistant Silicone Polymers) layer, Fluorosilicone Copolymer Resin layer, polyethylene-nylon (PE/PA) composite film layer, ethylene-vinyl alcohol copolymer (EVOH) layer or polypropylene-nylon (PP) /PA) The composite film layer is arranged on the second surface of the first functional layer to form the protective layer.

可選地,將聚四氟乙烯(PTFE)層、全氟(乙烯丙烯)共聚物(FEP)層、聚全氟烷氧基樹脂(PFA)層、聚三氟氯乙烯(PCTFE)層、乙烯-三氟氯乙烯共聚物(ECTFE)層、乙烯-四氟乙烯共聚物(ETFE)層、聚偏氟乙烯(PVDF)層、聚氟乙烯(PVF)層、有機矽聚合物(Resistant Silicone Polymers)層、氟矽共聚物樹脂(Fluorosilicone Copolymer Resin)層、聚乙烯-尼龍(PE/PA)複合膜層、乙烯-乙烯醇共聚物(EVOH)層或聚丙烯-尼龍(PP/PA)複合膜層,與功能層原料一起透過複數層共擠的方式形成在第一功能層表面,製備過程可包括:原料輸送→50~150℃乾燥→220~280℃熔融擠出→流延→冷卻(冷輥溫度設置為20~150℃)→牽引→收卷製得。Optionally, a polytetrafluoroethylene (PTFE) layer, a perfluoro(ethylene propylene) copolymer (FEP) layer, a polyperfluoroalkoxy resin (PFA) layer, a polychlorotrifluoroethylene (PCTFE) layer, an ethylene -Trifluorochloroethylene copolymer (ECTFE) layer, ethylene-tetrafluoroethylene copolymer (ETFE) layer, polyvinylidene fluoride (PVDF) layer, polyvinyl fluoride (PVF) layer, organic silicon polymer (Resistant Silicone Polymers) Layer, Fluorosilicone Copolymer Resin layer, polyethylene-nylon (PE/PA) composite film layer, ethylene-vinyl alcohol copolymer (EVOH) layer or polypropylene-nylon (PP/PA) composite film layer , Together with the functional layer raw materials, are formed on the surface of the first functional layer through multiple layers of co-extrusion. The preparation process can include: raw material conveying→50~150℃drying→220~280℃melting extrusion→casting→cooling (cold roll The temperature is set to 20~150℃)→towing→rewinding.

本發明的一個實施例,還提供一種複合材料,該複合材料包含如上文所述的輻射降溫材料,由所述輻射降溫材料與其它材料複合而成。An embodiment of the present invention also provides a composite material, which includes the radiation cooling material as described above, and is formed by a composite of the radiation cooling material and other materials.

可選地,所述複合材料可以由所述輻射降溫材料與金屬、塑膠、橡膠、瀝青、玻璃製品、防水材料、紡織物或編織物材料複合而成。但需要理解,這裡所述金屬、塑膠、橡膠、瀝青、玻璃製品、防水材料、紡織物或編織物材料並非窮舉,所述複合材料還可以由所述輻射降溫材料與其它材料複合而成。Optionally, the composite material may be composited by the radiation cooling material and metal, plastic, rubber, asphalt, glass products, waterproof materials, textiles or braids. However, it needs to be understood that the metal, plastic, rubber, asphalt, glass products, waterproof material, textile or braid materials mentioned here are not exhaustive, and the composite material may also be a composite of the radiation cooling material and other materials.

舉例說明如下:Examples are as follows:

1)與織物的結合1) Combination with fabric

將輻射降溫材料與織物相結合,製備出具有輻射降溫致冷功能的織物,應用於服裝、帽子、窗簾、天幕簾、天棚簾、帳篷、傘、手套、鞋、特種服裝(高空、野外作業的特種服裝)等。Combining radiation cooling materials and fabrics to prepare fabrics with radiation cooling and cooling functions, which are used in clothing, hats, curtains, canopy curtains, canopy curtains, tents, umbrellas, gloves, shoes, special clothing (high altitude, field operations) Special clothing) etc.

2)與戶外膜材的結合2) Combination with outdoor membrane materials

將輻射降溫材料與戶外膜材相結合,戶外膜材可以為高強度柔性薄膜材料,製備出具有輻射降溫致冷功能的複合膜材,應用於膜結構建築、帳篷、陽傘等,可以大幅降低戶外無空調配備設施內的溫度水準。Combining radiation cooling materials with outdoor membrane materials, outdoor membrane materials can be high-strength flexible film materials to prepare composite membrane materials with radiation cooling and cooling functions, which can be used in membrane structure buildings, tents, parasols, etc., which can greatly reduce outdoor The temperature level in the facilities without air conditioning.

3)與防水卷材的結合3) Combination with waterproof membrane

將輻射降溫材料與防水卷材相結合,製備出具有輻射降溫致冷功能的防水卷材,應用於屋頂、路面等。The radiation cooling material is combined with the waterproof membrane to prepare the waterproof membrane with radiation cooling and cooling function, which is applied to the roof, road surface, etc.

4)與玻璃的結合4) Combination with glass

輻射降溫材料與玻璃相結合,製備出具有輻射降溫致冷功能的玻璃,應用於建築物、太陽能光伏元件及系統、汽車等。Radiation cooling materials are combined with glass to prepare glass with radiation cooling and cooling functions, which are used in buildings, solar photovoltaic elements and systems, automobiles, etc.

5)與金屬的結合5) Combination with metal

將輻射降溫材料與金屬相結合,製備出具有輻射降溫致冷功能的金屬,應用於冷收集器、陰涼庫屋頂、水箱等。The radiation cooling material is combined with metal to prepare metal with radiation cooling and refrigeration functions, which can be used in cold collectors, roofs of shaded warehouses, water tanks, etc.

6)與其他產品相結合的應用方式6) Application method combined with other products

將輻射降溫材料與其他需要降溫環境的產品相結合,所製備的產品具有被動的輻射降溫致冷功能,熱量直接傳遞給輻射降溫材料,從輻射降溫材料的功能層輻射熱量。Combining the radiant cooling material with other products requiring a cooling environment, the prepared product has a passive radiant cooling and cooling function, and the heat is directly transferred to the radiant cooling material, and the heat is radiated from the functional layer of the radiant cooling material.

本發明還提供一種如上文所述輻射降溫材料用於降溫的應用方法。該方法可包括:將所述輻射降溫材料中的第一功能層設置成與散熱主體相連通,特別是與散熱主體的表面進行熱連通;將熱量從所述散熱主體傳遞給輻射降溫材料;由所述輻射降溫材料中的第一功能層向外發射熱量,特別的,從輻射降溫材料中功能層輻射熱量。The present invention also provides an application method of the radiation cooling material as described above for cooling. The method may include: arranging the first functional layer in the radiation cooling material to communicate with the heat dissipation body, especially in thermal communication with the surface of the heat dissipation body; transferring heat from the heat dissipation body to the radiation cooling material; The first functional layer in the radiation cooling material emits heat outward, in particular, the functional layer in the radiation cooling material radiates heat.

這樣,太陽向所述散熱主體輻射的熱量或者所述散熱主體內/上的熱量,就可以傳遞至所述輻射降溫材料進而發射出去,實現降溫的效果。In this way, the heat radiated by the sun to the heat dissipating body or the heat in/on the heat dissipating body can be transferred to the radiation cooling material and then emitted out to achieve the effect of cooling.

所述輻射降溫材料可以設置於建築物的屋頂、視窗或外牆上,光伏元件中的某一部件上,汽車的車頂、視窗或車身上,戶外複合膜材上如膜結構建築、帳篷、陽傘等,戶外用品上如服裝、帽子、手套、鞋、特種服裝/頭盔(高空、野外作業的特種服裝)等,農牧水產業所用的普通大棚、溫室大棚或智慧大棚上等,航空航太領域中太空船儀器散熱面外面、暴露於空間環境的結構件外面、複數層隔熱元件外面等,冷鏈運輸所用運輸工具外面,室外箱櫃上如室外綜合櫃、通信櫃、配電櫃、電氣櫃、集裝箱(包括普通集裝箱、需要保持恒溫及冷鏈物流的集裝箱)等,存儲罐體上例如液化天然氣存儲罐,窗及窗簾上,室外通訊設備如室外機櫃、基站或射頻單元上等,工業設備例如工業用儀器儀錶及其機櫃上等、公用設施例如路燈及其散熱器件上、空調例如空調室外機的外面、冷卻水系統上、能源系統上(如:空調/致冷/供暖系統)、節能設備裝置上,以及戶外極需降溫或散熱的設備、設施,輻射降溫材料還可用於提高太陽能電池、傳統電廠甚至水處理的效率。The radiation cooling material can be set on the roof, windows or external walls of buildings, on a certain part of the photovoltaic element, on the roof, windows or body of automobiles, and on outdoor composite membrane materials such as membrane structure buildings, tents, etc. Parasols, outdoor products such as clothing, hats, gloves, shoes, special clothing/helmets (special clothing for high-altitude and field operations), etc., ordinary greenhouses, greenhouses or smart greenhouses used in agriculture, animal husbandry and aquaculture, etc., aviation and aerospace In the field, the outside of the heat dissipation surface of spacecraft instruments, the outside of structural parts exposed to the space environment, the outside of multiple layers of thermal insulation elements, etc., the outside of transportation tools used in cold chain transportation, and outdoor cabinets such as outdoor integrated cabinets, communication cabinets, power distribution cabinets, and electrical Cabinets, containers (including ordinary containers, containers that need to maintain constant temperature and cold-chain logistics), etc., storage tanks such as LNG storage tanks, windows and curtains, outdoor communication equipment such as outdoor cabinets, base stations or radio frequency units, etc., industrial Equipment such as industrial instruments and their cabinets, public facilities such as street lights and their radiator components, air conditioners such as outside the outdoor unit of air conditioners, cooling water systems, energy systems (such as air conditioning/refrigeration/heating systems), On energy-saving equipment installations, as well as outdoor equipment and facilities that require cooling or heat dissipation, radiation cooling materials can also be used to improve the efficiency of solar cells, traditional power plants and even water treatment.

如上所述,本發明實施例提供了一種輻射降溫材料、其製備方法、其複合材料及其應用方法。As described above, the embodiments of the present invention provide a radiation cooling material, its preparation method, its composite material and its application method.

本發明的輻射降溫材料,基於輻射降溫的基本原理,在紅外波段(7-14μm/8-13μm/7-13μm/8-14μm)的發射率高於0.8,可以實現在白天太陽直射下的輻射降溫,並且基於應用領域的不同,在一些需要透光的應用場所,可以透過調節輻射降溫材料的透射率實現透光和輻射致冷的雙重效果。進一步地,引入第二功能層,使該種材料在太陽輻射波段(0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm)的反射率盡可能高,在紅外波段(7-14μm/8-13μm/7-13μm/8-14μm)的發射率也盡可能高,因此,其輻射降溫效果更好。The radiation cooling material of the present invention, based on the basic principle of radiation cooling, has an emissivity higher than 0.8 in the infrared band (7-14μm/8-13μm/7-13μm/8-14μm), which can achieve radiation under direct sunlight during the day Cooling, and based on different application areas, in some applications where light transmission is required, the dual effects of light transmission and radiation cooling can be achieved by adjusting the transmittance of the radiation cooling material. Furthermore, the second functional layer is introduced to make the reflectance of this material in the solar radiation band (0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm) as high as possible, and in the infrared band (7-14μm) /8-13μm/7-13μm/8-14μm) emissivity is also as high as possible, so its radiation cooling effect is better.

本發明的輻射降溫材料,透過與散熱主體的表面進行熱連通,可以把散熱主體內的熱量以紅外輻射的方式通過大氣窗發射出去,可有效降低散熱主體的溫度,且無需消耗額外的能源。The radiation cooling material of the present invention communicates with the surface of the heat dissipation main body, can emit the heat in the heat dissipation main body through the atmospheric window in the manner of infrared radiation, and can effectively reduce the temperature of the heat dissipation main body without consuming additional energy.

本發明的輻射降溫材料,其應用領域廣泛,包括建築、光伏元件及系統、汽車、戶外用品、農牧水產業、航空航太、冷鏈運輸、室外箱櫃罐、紡織行業、室外通訊設備、工業設備、公用設施、冷卻水系統、能源系統(如:空調/致冷/供暖系統結合)、節能設備裝置等,以及戶外極需降溫或散熱的設備、設施。The radiation cooling material of the present invention has a wide range of applications, including construction, photovoltaic elements and systems, automobiles, outdoor supplies, agriculture, animal husbandry and aquaculture, aviation and aerospace, cold chain transportation, outdoor tanks, textile industry, outdoor communication equipment, Industrial equipment, public facilities, cooling water systems, energy systems (such as: air conditioning/refrigeration/heating systems combined), energy-saving equipment, etc., as well as outdoor equipment and facilities that require cooling or heat dissipation.

進一步地,所述輻射降溫材料可以應用於建築領域包括工業建築、商業建築、居民住宅建築和公共建築。Further, the radiation cooling material can be applied to construction fields including industrial buildings, commercial buildings, residential buildings and public buildings.

進一步地,所述輻射降溫材料可以應用於工業設備,例如戶外配電櫃。Further, the radiation cooling material can be applied to industrial equipment, such as outdoor power distribution cabinets.

進一步地,所述輻射降溫材料可以應用於公用設施,例如路燈及其散熱器件、廁所屋頂牆面、場館的路面。Further, the radiation cooling material can be applied to public facilities, such as street lamps and their radiators, toilet roof walls, and the road surface of stadiums.

進一步地,所述輻射降溫材料可以應用於戶外極需降溫或散熱的設備、設施。Further, the radiation cooling material can be applied to outdoor equipment and facilities that require cooling or heat dissipation.

本發明還可透過下列非限制性示例來進一步理解。The present invention can be further understood through the following non-limiting examples.

示例 1:建築Example 1: Building

為了說明輻射致降溫材料的降溫致冷效果,下面以所述輻射降溫材料應用於建築為例進行說明。In order to illustrate the cooling effect of the radiation-induced cooling material, the application of the radiation cooling material in a building will be taken as an example for description below.

實施例1-1Example 1-1

將不銹鋼材質,內部長寬高分別為5m、4m、3m的展示屋,放置在某一地區室外空曠的地方,在屋頂和四面牆的外面都貼上反射型的輻射降溫材料C(0.25~2.5μm反射率為90.2%,7~14μm發射率為92.2%)。這裡將貼上反射型的輻射降溫材料的室外展示屋定義為展示屋A,用帶有資料記錄儀的熱電偶測量和記錄展示屋A表面和內部共9個測試點在某一天內24個小時內的溫度變化。Place stainless steel display houses with internal length, width and height of 5m, 4m, and 3m in an open outdoor area in a certain area, and paste reflective radiation cooling material C (0.25~2.5) on the outside of the roof and four walls. μm reflectivity is 90.2%, 7~14μm emissivity is 92.2%). Here, the outdoor exhibition room pasted with reflective radiation cooling materials is defined as exhibition room A, and a thermocouple with a data recorder is used to measure and record 9 test points on the surface and inside of exhibition room A for 24 hours in a day The temperature changes inside.

比較例1-2Comparative example 1-2

將同樣大小、材質、結構和形狀的展示屋,放置在與展示屋A環境一致的地方,但屋頂和四面牆的外面都不貼輻射降溫材料,這裡將未貼輻射降溫材料的展示屋定義為展示屋B,用帶有資料記錄儀的熱電偶測量和記錄展示屋B表面和內部共9個測試點在與展示屋A同一天同一時間段內的溫度變化。展示屋A和展示屋B測試點的分佈相同,如圖8a和圖8b所示。Place the display house of the same size, material, structure and shape in a place consistent with the environment of display house A, but no radiation cooling materials are attached to the roof and four walls. Here, the display house without radiation cooling materials is defined as Show room B, use a thermocouple with a data recorder to measure and record the temperature changes of 9 test points on the surface and inside of show room B in the same day and time period as show room A. The distribution of test points in the display room A and the display room B is the same, as shown in Figure 8a and Figure 8b.

圖8a和圖8b中A1為展示屋A屋頂外表面正中間位置處、輻射降溫材料下表面溫度的測試點,A6為展示屋A東側牆外表面正中間位置處、輻射降溫材料下表面溫度的測試點,A7為展示屋A西側牆外表面正中間位置處、輻射降溫材料下表面溫度的測試點、A8為展示屋A南側牆外表面正中間位置處、輻射降溫材料下表面溫度的測試點、A9為展示屋A北側牆外表面正中間位置處、輻射降溫材料下表面溫度的測試點,A2、A3、A4、A5為展示屋A內與地面垂直的同一豎直線上,離地面不同高度地方空氣溫度的測試點。如圖8b所示,還測試了戶外的環境溫度。In Figures 8a and 8b, A1 is the test point of the lower surface temperature of the radiation cooling material at the middle position of the roof of the display house A, and A6 is the test point of the lower surface temperature of the radiation cooling material at the middle position of the outer surface of the east wall of the display house A Test point, A7 is the test point at the middle of the outer surface of the west wall of display house A and the test point of the lower surface temperature of the radiation cooling material, and A8 is the test point of the lower surface temperature of the lower surface of the radiation cooling material at the middle of the outer surface of the south wall of display house A , A9 is the test point of the lower surface temperature of the radiation cooling material at the middle of the outer surface of the north wall of the display room A, A2, A3, A4, A5 are the same vertical line perpendicular to the ground in the display room A, and different heights from the ground Test point for local air temperature. As shown in Figure 8b, the outdoor ambient temperature was also tested.

圖8a和圖8b中B1、B6、B7、B8、B9分別為展示屋B的屋頂外表面正中間位置處、東側牆外表面正中間位置處、西側牆外表面正中間位置處、南側牆外表面正中間位置處、北側牆外表面正中間位置處溫度的測試點,B2、B3、B4、B5為展示屋B內與地面垂直的同一豎直線上,離地面不同高度地方空氣溫度的測試點。In Figure 8a and Figure 8b, B1, B6, B7, B8, and B9 are the middle position of the outer surface of the roof of the display house B, the middle position of the outer surface of the east wall, the middle position of the outer surface of the west wall, and the outside of the south wall. The temperature test points at the center of the surface and the center of the outer surface of the north wall. B2, B3, B4, and B5 are the test points of the air temperature at different heights from the ground on the same vertical line in the display room B. .

請參考圖8c,室外及展示屋A表面不同位置的測溫點曲線圖。由圖8c可知,將輻射降溫材料貼在展示屋A外表面上時,展示屋A外表面、輻射降溫材料下表面(包括屋頂和東南西北四個方向)的溫度均比戶外環境溫度低,溫度最高下降了10℃左右。Please refer to Figure 8c, the temperature measurement point curve diagram of different positions on the surface of outdoor and display house A. It can be seen from Figure 8c that when the radiant cooling material is pasted on the outer surface of the display room A, the temperature of the outer surface of the display room A and the lower surface of the radiant cooling material (including the roof and the four directions of south, east, north and west) are lower than that of the outdoor environment. The highest drop is about 10°C.

由圖8d可知,貼了輻射降溫材料的展示屋A,全天24h其室內縱向上不同點的溫度均低於環境溫度,與戶外相比溫度最高下降了10℃左右;且隨著日照時間增加,逐步出現距離屋頂越近溫度越低的現象,說明輻射降溫材料具有明顯的被動式輻射致冷效果。It can be seen from Figure 8d that the indoor temperature at different points in the longitudinal direction of the display room A with the radiation cooling material is lower than the ambient temperature for 24 hours a day, and the maximum temperature drops by about 10℃ compared with the outdoor temperature; and with the increase of sunshine time , Gradually appearing that the closer to the roof, the lower the temperature, indicating that the radiation cooling material has an obvious passive radiation cooling effect.

由圖8e可知,未貼輻射降溫材料的展示屋B外表面(包括屋頂和東南西北四個方向)的溫度比戶外溫度最高高30℃左右。由圖8c和圖8e可知,貼了輻射降溫材料的展示屋A比未貼輻射降溫材料的展示屋B表面溫度最高低37℃左右。It can be seen from Figure 8e that the temperature of the outer surface (including the roof and the four directions of southeast, southeast, northwest) of the display room B without radiation cooling materials is about 30°C higher than the outdoor temperature. It can be seen from Fig. 8c and Fig. 8e that the surface temperature of the display room A with the radiation cooling material is about 37°C lower than that of the display room B without the radiation cooling material.

由圖8f可知,未貼輻射降溫材料的展示屋B,其縱向上不同點的溫度差較大,且越接近展示屋的屋頂,溫度越高,溫度分層較明顯。It can be seen from Figure 8f that the display room B without the radiation cooling material has a larger temperature difference at different points in the longitudinal direction, and the closer to the roof of the display room, the higher the temperature and the more obvious temperature stratification.

示例 2:光伏組件Example 2: PV modules

將輻射降溫材料應用於太陽能光伏領域,可以解決太陽能電池工作溫度過高問題,提高太陽能光伏元件的光電轉化率。The application of radiation cooling materials in the field of solar photovoltaics can solve the problem of excessively high working temperature of solar cells and improve the photoelectric conversion rate of solar photovoltaic elements.

為了說明輻射降溫材料的降溫致冷效果,下面舉例說明。In order to illustrate the cooling effect of radiation cooling materials, an example is given below.

實施例2-1Example 2-1

將透射型的輻射降溫材料A(可見光透射率為91.2%、8~13μm的紅外發射率為93.1%),設置在光伏元件正面玻璃的外表面。The transmissive radiation cooling material A (visible light transmittance 91.2%, 8-13μm infrared emissivity 93.1%) is set on the outer surface of the front glass of the photovoltaic element.

比較例2-2Comparative example 2-2

同樣的光伏元件(保證元件出廠I-V性能高度一致),光伏元件正面玻璃的外表面不做任何處理。For the same photovoltaic element (to ensure that the I-V performance of the element is highly consistent), the outer surface of the front glass of the photovoltaic element is not treated in any way.

測試實施例2-1和比較例2-2在同一地方同一天不同時刻的溫度和輸出功率,試驗元件為P型單晶矽元件,選取八月某一典型日進行試驗,試驗地點在北緯29°附近,測溫點置於元件背板下方中間位置,且不受光照影響,測試資料見下表:Test the temperature and output power of Example 2-1 and Comparative Example 2-2 in the same place at different times on the same day. The test element is a P-type single crystal silicon element. A typical day in August is selected for the test. The test site is at latitude 29 north. Near °, the temperature measurement point is placed in the middle position under the component backplane, and is not affected by light. The test data is shown in the following table:

表1-1 實施例2-1和比較例2-2溫度和輸出功率對比 時間/h 實施例2-1/℃ 比較例2-2/℃ 差值/℃ 實施例2-1/W 比較例2-2/W 差值/W 8:00 41.9 45.1 3.2 213.2 210.7 2.5 9:00 43.2 49.3 6.1 217.2 212.4 4.8 10:00 49.6 58.5 8.9 221.8 214.7 7.1 11:00 50.5 61.3 10.8 227.3 218.5 8.8 12:00 54.1 65.9 11.8 232.8 222.9 9.9 13:00 53.3 63.7 10.4 228.5 219.7 8.8 14:00 54.4 63.4 9.0 225.7 218.4 7.3 15:00 47.0 53.8 6.8 220.0 214.6 5.4 16:00 46.5 52.6 6.1 213.4 208.5 4.9 17:00 43.2 47.7 4.5 210.1 206.7 3.4 18:00 39.2 42.1 2.9 205.6 203.5 2.1 Table 1-1 Comparison of temperature and output power between Example 2-1 and Comparative Example 2-2 Time/h Example 2-1/℃ Comparative example 2-2/℃ Difference/℃ Example 2-1/W Comparative example 2-2/W Difference/W 8:00 41.9 45.1 3.2 213.2 210.7 2.5 9:00 43.2 49.3 6.1 217.2 212.4 4.8 10:00 49.6 58.5 8.9 221.8 214.7 7.1 11:00 50.5 61.3 10.8 227.3 218.5 8.8 12:00 54.1 65.9 11.8 232.8 222.9 9.9 13:00 53.3 63.7 10.4 228.5 219.7 8.8 14:00 54.4 63.4 9.0 225.7 218.4 7.3 15:00 47.0 53.8 6.8 220.0 214.6 5.4 16:00 46.5 52.6 6.1 213.4 208.5 4.9 17:00 43.2 47.7 4.5 210.1 206.7 3.4 18:00 39.2 42.1 2.9 205.6 203.5 2.1

由表1-1可知,①正面設置了輻射降溫材料的元件,背板表面溫度明顯比沒貼膜的元件更低;②設置輻射降溫材料元件的輸出功率比沒設置輻射降溫材料元件的輸出功率高;③設置輻射降溫材料元件的輸出功率與沒設置輻射降溫材料元件的輸出功率的差值在中午時達到最大,輻射降溫材料在中午時的致冷效果最好;④透過輻射降溫材料可長久有效地降低光伏元件的表面溫度,提高光電轉化率,增加輸出功率。It can be seen from Table 1-1 that ① the components with radiant cooling materials are installed on the front, and the surface temperature of the backplane is significantly lower than the components without film; ② the output power of components with radiant cooling materials is higher than that of components without radiant cooling materials ③The difference between the output power of the component with radiation cooling material and the output power of the component without radiation cooling material reaches the maximum at noon, and the cooling effect of radiation cooling material is the best at noon; ④The radiation cooling material can be effective for a long time Reduce the surface temperature of the photovoltaic element, improve the photoelectric conversion rate, and increase the output power.

示例 3:汽車Example 3: Car

輻射降溫材料應用於汽車領域時,具有以下的應用方式:①直接將輻射降溫材料設置在汽車的車頂、天窗、車身或車身玻璃等部位上;②在生產汽車時將輻射降溫材料與原來的部件相結合,製備出具有輻射致冷功能的部件。如:將天窗製備成具有輻射降溫功能的天窗;將玻璃製備成具有輻射致冷功能的玻璃等。When radiation cooling materials are used in the automotive field, they have the following application methods: ① directly install the radiation cooling materials on the roof, sunroof, body or body glass of the car; ② combine the radiation cooling materials with the original The parts are combined to produce a part with radiation cooling function. For example, the skylight is made into a skylight with radiation cooling function; the glass is made into glass with radiation cooling function, etc.

將輻射降溫材料應用於汽車,具有以下的效果: 1、大幅降低車頂、天窗、車身或車身玻璃等部位和車內的溫度,解決太陽暴曬下駐車升溫問題,藉此延長了汽車壽命和安全性,增加了汽車內部的舒適度; 2、降低空調能耗,延長續航里程。Applying radiation cooling materials to automobiles has the following effects: 1. Significantly reduce the temperature of the roof, sunroof, body or body glass and other parts and the interior of the car, solve the problem of parking heating under sun exposure, thereby extending the life and safety of the car, and increasing the comfort of the car; 2. Reduce air conditioning energy consumption and extend the cruising range.

為了說明輻射降溫材料產品的效果,下面舉例說明。In order to illustrate the effect of radiation cooling material products, the following examples are given.

實施例3-1Example 3-1

現有廣汽傳祺GS8的汽車C,在玻璃外面貼上透射型的輻射降溫材料A(透明的輻射降溫材料的透射率為91.2%,7~14μm的平均發射率為92.2%),在汽車裡面設置5個測溫點,測溫點C1:前座齊肩高空氣溫度;測溫點C2:中座齊肩高空氣溫度;測溫點C3:後座齊肩高空氣溫度;測溫點C4:前車身頂部內表面溫度;測溫點C5:中車身頂部內表面溫度。每隔30min測試一次溫度資料,測試持續時間為24h,測試結果如圖9b。Existing GAC Trumpchi GS8 car C has a transmissive radiation cooling material A attached to the outside of the glass (transparent radiation cooling material has a transmittance of 91.2%, and an average emissivity of 7~14μm is 92.2%), which is installed inside the car 5 temperature measurement points, temperature measurement point C1: front seat shoulder-to-shoulder high air temperature; temperature measurement point C2: middle seat shoulder-to-shoulder high air temperature; temperature measurement point C3: rear seat shoulder-to-shoulder high air temperature; temperature measurement point C4: front The temperature of the inner surface of the top of the car body; temperature measurement point C5: the temperature of the inner surface of the top of the middle car body. The temperature data is tested every 30 minutes, the test duration is 24h, and the test result is shown in Figure 9b.

比較例3-2Comparative example 3-2

現有與汽車C同樣型號的汽車D,汽車D在玻璃上不做任何處理,在汽車D內部分別設置與汽車C內部位置相同的測溫點,分別為D1、D2、D3、D4、D5,將汽車D放置在與汽車C環境一致的地方,每隔30min測試一次溫度資料,測試持續時間為24h,測試結果如圖9c。Existing car D of the same model as car C, car D does not do any treatment on the glass, set the same temperature measurement points inside car D as inside car C, respectively D1, D2, D3, D4, D5, Car D is placed in a place consistent with the environment of car C, and the temperature data is tested every 30 minutes. The test duration is 24 hours. The test results are shown in Figure 9c.

圖9a是汽車C和D內測溫點的示意圖。Figure 9a is a schematic diagram of the temperature measurement points in cars C and D.

圖9b是汽車C內測溫點的溫度曲線圖。Figure 9b is the temperature curve of the temperature measurement point in the car C.

圖9c是汽車D內測溫點的溫度曲線圖。Figure 9c is the temperature curve diagram of the temperature measurement point in the car D.

圖9d是汽車C和D內同樣位置測溫點溫差的曲線圖。Figure 9d is a graph of the temperature difference between the temperature measurement points in the same position in the cars C and D.

由圖9b、9c、9d可得: 在同一時刻,貼了透射的輻射致冷材料的汽車C的5個測溫點溫度比汽車D中對應的5個測溫點的溫度低。其中測溫點C1與D1的最大溫差可達9℃、測溫點C2與D2的最大溫差可達10℃、測溫點C3與D3的最大溫差可達9℃、測溫點C4與D4的最大溫差可達18℃、測溫點C5與D5的最大溫差可達13℃。說明輻射降溫材料應用到汽車玻璃上對車內空間產生了一定的降溫效果,且降溫效果顯著。From Figures 9b, 9c, and 9d, we can get: At the same moment, the temperature of the five temperature measurement points of car C with the transmitted radiation refrigeration material is lower than the temperature of the corresponding five temperature measurement points of car D. Among them, the maximum temperature difference between temperature measurement points C1 and D1 can reach 9℃, the maximum temperature difference between temperature measurement points C2 and D2 can reach 10℃, the maximum temperature difference between temperature measurement points C3 and D3 can reach 9℃, and the maximum temperature difference between temperature measurement points C4 and D4 The maximum temperature difference can reach 18℃, and the maximum temperature difference between the temperature measuring points C5 and D5 can reach 13℃. It shows that the application of radiation cooling materials to automobile glass has a certain cooling effect on the interior space of the car, and the cooling effect is significant.

結論: ①  輻射致冷材料應用於汽車,可大幅降低車頂、天窗、車身或車身玻璃等部位和車內溫度,解決太陽暴曬下駐車升溫問題,藉此延長汽車壽命和安全性,增加汽車內部的舒適度; ②  輻射致冷材料應用於汽車,可達到一定的節能效果,降低汽車空調能耗,延長續航里程,減少CO2 的排放。Conclusion: ① The application of radiant cooling materials to automobiles can greatly reduce the temperature of the roof, sunroof, body or body glass and other parts and the interior of the car, solve the problem of heating up under the sun exposure, thereby prolonging the life and safety of the car, and increasing the interior of the car ② The application of radiant refrigeration materials to automobiles can achieve a certain energy saving effect, reduce the energy consumption of automobile air conditioning, extend the cruising range, and reduce CO 2 emissions.

示例 4:窗簾領域Example 4: Curtain field

將輻射致冷技術應用於窗簾領域時,具有以下的應用方式:①將具有輻射致冷功能的薄膜或塗料附著在窗簾上;②將輻射致冷技術與市場上普通的窗簾原材料相結合,製備出具有輻射致冷作用的窗簾。When radiant cooling technology is applied to the field of curtains, it has the following application methods: ①Attach a film or paint with radiant cooling function to the curtain; ②Combine radiant cooling technology with ordinary curtain raw materials on the market to prepare Out of curtains with radiation cooling effect.

為了說明輻射降溫材料的效果,下面舉例說明。In order to illustrate the effect of radiation cooling materials, an example is given below.

實施例4-1Example 4-1

將塗料形式的反射型的輻射降溫材料C(反射率為90.2%,在8~13μm的紅外發射率為93.1%)塗布於捲簾E的表面,將捲簾E安裝在XXX型號汽車1的天窗內,塗布面朝向天窗,測試安裝捲簾E的汽車1內E1、E2、E3,3個測溫點的溫度變化。Coat the reflective radiation cooling material C (reflectivity 90.2%, infrared emissivity 93.1% at 8~13μm) in the form of paint on the surface of the roller blind E, and install the roller blind E on the sunroof of the XXX model car 1 Inside, the coated surface faces the sunroof, and the temperature changes at the three temperature measuring points E1, E2, E3 in the car 1 with the roller blind E are tested.

測溫點的溫度變化。The temperature change at the temperature measurement point.

比較例4-2Comparative example 4-2

現有與捲簾E同樣大小、材質和款式的捲簾F,在捲簾F的表面不做任何處理,將捲簾F安裝在與汽車1同樣型號的汽車2的天窗內,測試安裝捲簾F的汽車2內F1、F2、F3,3個測溫點的溫度變化。Existing roller blind F with the same size, material and style as roller blind E, without any treatment on the surface of roller blind F, install roller blind F in the sunroof of car 2 of the same model as car 1, test and install roller blind F The temperature changes of F1, F2, F3, 3 temperature measurement points in the car 2.

其中,測溫點E1、E2、E3分別為:汽車天窗內表面、捲簾表面(朝向天窗一側)、室內空氣測溫點;F1、F2、F3為與E1、E2、E3相對應相同位置的3個測溫點。Among them, the temperature measuring points E1, E2 and E3 are respectively: the inner surface of the car sunroof, the roller shutter surface (toward the sunroof), and the indoor air temperature measuring point; F1, F2, F3 are the same positions corresponding to E1, E2, and E3 3 temperature measurement points.

圖10a是安裝捲簾E的汽車1和安裝捲簾F的汽車2內測溫點示意圖。Fig. 10a is a schematic diagram of temperature measurement points in the car 1 with the roller blind E and the car 2 with the roller blind F.

圖10b是安裝捲簾E的汽車1和安裝捲簾F的汽車2內測溫點的溫度曲線圖。Fig. 10b is a graph of temperature measurement points in the car 1 with roller blind E and the car 2 with roller blind F.

圖10c是安裝捲簾E的汽車1和安裝捲簾F的汽車2內同樣位置測溫點溫差的曲線圖。Fig. 10c is a graph of the temperature difference between the car 1 with the roller blind E and the car 2 with the roller blind F at the same location.

由圖10c可知: ①  塗布了輻射致冷材料的捲簾E表面溫度相對於捲簾F表面溫度最高可下降35℃。 ②  塗布了輻射致冷材料的捲簾可使汽車1內的空氣溫度相對於汽車2內的空氣溫度最高可下降15℃。 ③  汽車1與汽車2內的溫差與汽車內溫度成正比,溫度越高,溫差越大。It can be seen from Figure 10c: ① The surface temperature of roller blind E coated with radiant refrigeration material can be reduced by up to 35℃ relative to the surface temperature of roller blind F. ② Roller blinds coated with radiant cooling materials can reduce the air temperature in car 1 by up to 15°C relative to the air temperature in car 2. ③ The temperature difference between car 1 and car 2 is proportional to the temperature inside the car. The higher the temperature, the greater the temperature difference.

結論: ①  說明透過輻射致冷材料反射的太陽輻照的可見光與近紅外部分能量仍然能夠有效穿透白玻璃,向外部環境排散。輻射致冷材料佈置於白玻璃內側仍能夠發揮可觀的輻射致冷功效。 ②  輻射降溫材料塗布在捲簾上具有明顯的被動式降溫效果。in conclusion: ① It means that the visible light and near-infrared part of the energy reflected by the radiant cooling material can still effectively penetrate the white glass and be discharged to the external environment. Radiation refrigeration materials arranged inside the white glass can still exert considerable radiation refrigeration effects. ② The radiation cooling material coated on the roller blind has an obvious passive cooling effect.

示例5:農牧水產業Example 5: Agriculture, Animal Husbandry and Fishery Industry

將輻射降溫材料與農牧水產業大棚結合,可減緩夏天及熱帶地區高溫對農作物的損害,提高產量和品質,減少牲畜因高溫引起的疾病發病率,提高出欄率,綜合經濟效益高。Combining radiation cooling materials with agricultural, animal husbandry and aquaculture greenhouses can reduce the damage of high temperature in summer and tropical areas to crops, increase yield and quality, reduce the incidence of diseases caused by high temperature in livestock, increase the slaughter rate, and have high comprehensive economic benefits.

原理是透過輻射降溫材料將大棚內的熱量以紅外輻射的方式透過大氣窗向外太空(-270℃)源源不斷傳遞。透過調節超材料裡面的微奈結構設計與尺寸控制調控電磁波輻射波長,使紅外發射率提高,增強熱輻射效率。The principle is that the heat in the greenhouse is continuously transferred to the outer space (-270℃) through the atmospheric window in the form of infrared radiation through the radiation cooling material. By adjusting the microstructure design and size control in the metamaterial, the electromagnetic wave radiation wavelength is adjusted to increase the infrared emissivity and enhance the heat radiation efficiency.

將輻射降溫材料運用在農業大棚上:①可以保證可見光範圍內的高透射率,滿足農牧水產業生長所需的充足陽光;②降低紫外透過率,減少紫外線對農牧水產業的危害;③降低大棚內的溫度,促進農牧水產業的生長。The use of radiation cooling materials in agricultural greenhouses: ① It can ensure high transmittance in the visible light range to meet the sufficient sunlight required for the growth of the agriculture, animal husbandry and aquatic industries; ② Reduce the ultraviolet transmittance and reduce the harm of ultraviolet rays to the agriculture, animal husbandry and aquatic industries; ③ Reduce the temperature in the greenhouse and promote the growth of agriculture, animal husbandry and aquaculture.

為了說明農牧水產業用輻射降溫材料的效果,下面舉例說明。In order to illustrate the effect of radiation cooling materials used in the agriculture, animal husbandry and aquaculture industries, the following is an example.

實施例5-1Example 5-1

將模擬溫室大棚G放置於空曠的地方,將透射型的輻射降溫材料A黏貼在大棚G的外表面,透明的輻射降溫材料透射率在91.2%,8~10μm的紅外平均發射率為93.8%。Place the simulated greenhouse G in an open place, and stick the transmissive radiation cooling material A on the outer surface of the greenhouse G. The transmittance of the transparent radiation cooling material is 91.2%, and the average infrared emissivity of 8-10μm is 93.8%.

對其內部的溫度選取不同的測溫點進行測試。Select different temperature measurement points to test the internal temperature.

比較例5-2Comparative example 5-2

將與模擬溫室大棚G同樣大小、形狀、材質、結構的大棚H放置在與大棚G環境一致的地方,對其內部的溫度選取與大棚G同樣的測溫點進行對比測試。Place the greenhouse H with the same size, shape, material and structure as the simulated greenhouse G in a place consistent with the environment of the greenhouse G, and select the same temperature measurement point as that of the greenhouse G for comparison testing.

圖11a是大棚G和H內測溫點的示意圖。Figure 11a is a schematic diagram of temperature measurement points in greenhouses G and H.

其中,G1、G2、G3分別為模擬溫室大棚G內正南面玻璃的內表面、玻璃溫室內中心位置空氣、玻璃溫室內頂部內表面的測溫點;H1、H2、H3為與模擬溫室大棚G相對應位置的測溫點;Among them, G1, G2, and G3 are the inner surface of the glass on the south side of the simulated greenhouse G, the air at the center of the glass greenhouse, and the temperature measurement points on the top inner surface of the glass greenhouse; H1, H2, and H3 are the same as the simulated greenhouse G The temperature measurement point at the corresponding location;

圖11b是大棚G和H內測溫點的溫度曲線圖。Figure 11b is the temperature curve diagram of the temperature measurement points in the greenhouse G and H.

圖11c是大棚G和H內同樣位置測溫點溫差的曲線圖。Figure 11c is a graph of the temperature difference between the temperature measurement points in the greenhouse G and H at the same position.

由圖11b可知,①貼了透射型的輻射降溫材料的大棚G內部溫度比未貼透射型的輻射降溫材料的大棚H內的溫度低;It can be seen from Figure 11b that ① the temperature inside the greenhouse G with the transmissive radiation cooling material is lower than the temperature in the greenhouse H without the transmissive radiation cooling material;

由圖11c可知,實驗大棚與對比大棚溫差與大棚內溫度成正比,大棚內溫度越高,溫差越大,溫差最大可達到7℃。It can be seen from Figure 11c that the temperature difference between the experimental greenhouse and the comparative greenhouse is proportional to the temperature in the greenhouse. The higher the temperature in the greenhouse, the greater the temperature difference, and the maximum temperature difference can reach 7°C.

由以上結論可知,貼了透射型的輻射降溫材料的大棚具有明顯的被動式降溫效果。降溫效果與大棚內溫度成正比,大棚內溫度越高,降溫效果越明顯。From the above conclusions, it can be seen that the greenhouse with the transmissive radiation cooling material has obvious passive cooling effect. The cooling effect is proportional to the temperature in the greenhouse. The higher the temperature in the greenhouse, the more obvious the cooling effect.

在上述實施例中,對各個實施例的描述都各有側重,某個實施例中沒有詳細描述的部分,可以參見其它實施例的相關描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in an embodiment, reference may be made to related descriptions of other embodiments.

上述實施例僅用以說明本發明的技術方案,而非對其限制;本發明所屬技術領域中具有通常知識者應當理解:其依然可以對上述各實施例所記載的技術方案進行修改,或者對其中部分技術特徵進行等同替換;而這些修改或者替換,並不使相應技術方案的本質脫離本發明各實施例技術方案的精神和範圍。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, not to limit them; those with ordinary knowledge in the technical field to which the present invention belongs should understand that they can still modify the technical solutions described in the above-mentioned embodiments, or modify Some of the technical features are equivalently replaced; and these modifications or replacements do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.

10:第一功能層 20:第二功能層 30:封裝層 40:保護層 50:介電粒子 S1:步驟 S2:步驟 S3:步驟 S4:步驟 A1:測試點 A2:測試點 A3:測試點 A4:測試點 A5:測試點 A6:測試點 A7:測試點 A8:測試點 A9:測試點 B1:測試點 B2:測試點 B3:測試點 B4:測試點 B5:測試點 B6:測試點 B7:測試點 B8:測試點 B9:測試點 C1:測溫點 C2:測溫點 C3:測溫點 C4:測溫點 C5:測溫點 D1:測溫點 D2:測溫點 D3:測溫點 D4:測溫點 D5:測溫點 E1:測溫點 E2:測溫點 E3:測溫點 F1:測溫點 F2:測溫點 F3:測溫點 G1:測溫點 G2:測溫點 G3:測溫點 H1:測溫點 H2:測溫點 H3:測溫點10: The first functional layer 20: Second functional layer 30: Encapsulation layer 40: protective layer 50: Dielectric particles S1: Step S2: Step S3: steps S4: steps A1: Test point A2: Test point A3: Test point A4: Test point A5: Test point A6: Test point A7: Test point A8: Test point A9: Test point B1: Test point B2: Test point B3: Test point B4: Test point B5: test point B6: Test point B7: Test point B8: Test point B9: Test point C1: Temperature measurement point C2: Temperature measurement point C3: Temperature measurement point C4: Temperature measurement point C5: Temperature measurement point D1: Temperature measurement point D2: Temperature measurement point D3: Temperature measurement point D4: Temperature measurement point D5: Temperature measurement point E1: Temperature measurement point E2: Temperature measurement point E3: Temperature measurement point F1: Temperature measurement point F2: Temperature measurement point F3: Temperature measurement point G1: Temperature measurement point G2: Temperature measurement point G3: Temperature measurement point H1: Temperature measurement point H2: Temperature measurement point H3: Temperature measurement point

為了更清楚地說明本發明實施例技術方案,下面將對實施例描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本發明所屬技術領域中具有通常知識者而言,在不付出進步性工作的前提下,還可以根據這些附圖獲得其它的附圖。In order to explain the technical solutions of the embodiments of the present invention more clearly, the following will briefly introduce the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those with ordinary knowledge in the technical field of the invention, other drawings can be obtained based on these drawings without making progressive work.

圖1是本發明實施例提供的一種透射型的輻射降溫材料的結構示意圖;FIG. 1 is a schematic structural diagram of a transmissive radiation cooling material provided by an embodiment of the present invention;

圖2是本發明實施例提供的一種反射型/半透型的輻射降溫材料的結構示意圖;FIG. 2 is a schematic structural diagram of a reflective/semi-transparent radiation cooling material provided by an embodiment of the present invention;

圖3是本發明實施例提供的一種輻射降溫材料的製備方法的流程示意圖;3 is a schematic flow chart of a method for preparing a radiation cooling material provided by an embodiment of the present invention;

圖4是含有不同質量比的介電粒子的第一功能層中波長與發射率的關係圖;Figure 4 is a graph showing the relationship between wavelength and emissivity in the first functional layer containing dielectric particles with different mass ratios;

圖5是第一功能層中波長與反射率和透射率關係的曲線圖;Fig. 5 is a graph of the relationship between wavelength and reflectance and transmittance in the first functional layer;

圖6是不同厚度的第二功能層中波長與反射率關係的曲線圖;Fig. 6 is a graph of the relationship between wavelength and reflectivity in second functional layers of different thicknesses;

圖7是不同厚度的第二功能層中波長與透射率關係的曲線圖;Fig. 7 is a graph of the relationship between wavelength and transmittance in second functional layers of different thicknesses;

圖8a是展示屋A和B的測溫點圖;Figure 8a is a diagram showing the temperature measurement points of houses A and B;

圖8b是展示屋A和B的另一個測溫點圖;Figure 8b is another temperature measurement point diagram showing houses A and B;

圖8c是室外及展示屋A表面不同位置的測溫點曲線圖;Figure 8c is a graph of temperature measurement points at different positions on the surface of outdoor and display room A;

圖8d是展示屋A縱向不同測溫點曲線圖;Figure 8d is a graph showing different longitudinal temperature measurement points of house A;

圖8e是室外及展示屋B表面不同位置的測溫點曲線圖;Figure 8e is a graph of temperature measurement points at different positions on the surface of outdoor and display room B;

圖8f是展示屋B縱向不同測溫點曲線圖;Figure 8f is a graph showing different longitudinal temperature measurement points of house B;

圖9a是汽車C和D內測溫點的示意圖;Figure 9a is a schematic diagram of temperature measurement points in cars C and D;

圖9b是汽車C內測溫點的溫度曲線圖;Figure 9b is the temperature curve diagram of the temperature measurement point in the car C;

圖9c是汽車D內測溫點的溫度曲線圖;Figure 9c is a temperature curve diagram of the temperature measurement point in the car D;

圖9d是汽車C和D內同樣位置測溫點溫差的曲線圖;Figure 9d is a curve diagram of the temperature difference between the temperature measurement points in the same position in cars C and D;

圖10a是安裝捲簾E的汽車1和安裝捲簾F的汽車2內測溫點示意圖;Figure 10a is a schematic diagram of temperature measurement points in the car 1 with the roller shutter E and the car 2 with the roller shutter F;

圖10b是安裝捲簾E的汽車1和安裝捲簾F的汽車2內測溫點的溫度曲線圖;Figure 10b is a graph of temperature measurement points in the car 1 with the roller shutter E and the car 2 with the roller shutter F;

圖10c是安裝捲簾E的汽車1和安裝捲簾F的汽車2內同樣位置測溫點溫差的曲線圖;Figure 10c is a graph of the temperature difference between the car 1 with the roller shutter E and the car 2 with the roller shutter F at the same location;

圖11a是大棚G和H內測溫點的示意圖;Figure 11a is a schematic diagram of temperature measurement points in greenhouses G and H;

圖11b是大棚G和H內測溫點的溫度曲線圖;Figure 11b is the temperature curve diagram of the temperature measurement points in the greenhouse G and H;

圖11c是大棚G和H內同樣位置測溫點溫差的曲線圖。Figure 11c is a graph of the temperature difference between the temperature measurement points in the greenhouse G and H at the same position.

no

10:第一功能層 10: The first functional layer

30:封裝層 30: Encapsulation layer

40:保護層 40: protective layer

50:介電粒子 50: Dielectric particles

Claims (21)

一種輻射降溫材料,其改良在於,所述輻射降溫材料為複數層結構,包括用於輻射降溫的第一功能層,以及封裝層和保護層,所述第一功能層包括至少一層聚合物層; 所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,且對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率; 所述封裝層設置於所述第一功能層的第一面,所述保護層設置於和第一面相對的第二面。A radiation cooling material, the improvement is that the radiation cooling material has a multiple layer structure, including a first functional layer for radiation cooling, an encapsulation layer and a protective layer, and the first functional layer includes at least one polymer layer; The first functional layer has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 μm/0.25-3 μm/0.3-2.5 μm/0.3-3 μm, and a wavelength range of 7-14 μm/8- The 13μm/7-13μm/8-14μm infrared band radiation has an emissivity not lower than 0.8; The encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface. 如請求項1所述的輻射降溫材料,其中,所述輻射降溫材料還包括第二功能層,所述第二功能層設置於所述第一功能層的第一面,介於所述第一功能層和所述封裝層之間; 所述第二功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有0~95%的透射率,對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有5%~100%的反射率。The radiation cooling material according to claim 1, wherein the radiation cooling material further comprises a second functional layer, and the second functional layer is disposed on the first surface of the first functional layer and is located between the first functional layer. Between the functional layer and the encapsulation layer; The second functional layer has a transmittance of 0-95% to solar radiation with a wavelength range of 0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm, and a wavelength range of 0.25-2.5μm/0.25- Solar radiation of 3μm/0.3-2.5μm/0.3-3μm has a reflectivity of 5% to 100%. 如請求項1所述的輻射降溫材料,其中,所述輻射降溫材料還包括第二功能層,所述第二功能層設置於所述第一功能層的第一面,介於所述第一功能層和所述封裝層之間; 所述第二功能層對波長範圍為0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太陽輻射具有0~95%的透射率,對波長範圍為0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太陽輻射具有5~100%的反射率。The radiation cooling material according to claim 1, wherein the radiation cooling material further comprises a second functional layer, and the second functional layer is disposed on the first surface of the first functional layer and is located between the first functional layer. Between the functional layer and the encapsulation layer; The second functional layer has a transmittance of 0-95% to solar radiation with a wavelength range of 0.4-0.7μm/0.38-0.78μm/0.4-0.76μm, and a wavelength range of 0.4-0.7μm/0.38-0.78μm/ The solar radiation of 0.4-0.76μm has a reflectivity of 5-100%. 如請求項1或2或3所述的輻射降溫材料,其中, 所述聚合物層包括聚合物和介電粒子,所述介電粒子分散於所述聚合物中,所述介電粒子與所述聚合物層中的聚合物的折射率之差大於0.1小於0.5。The radiation cooling material according to claim 1 or 2 or 3, wherein: The polymer layer includes a polymer and dielectric particles, the dielectric particles are dispersed in the polymer, and the difference in refractive index between the dielectric particles and the polymer in the polymer layer is greater than 0.1 and less than 0.5 . 如請求項4所述的輻射降溫材料,其中, 所述介電粒子的粒徑在1μm到200μm之間; 所述介電粒子在所述第一功能層中所占的質量比不大於30%。The radiation cooling material according to claim 4, wherein: The diameter of the dielectric particles is between 1 μm and 200 μm; The mass ratio of the dielectric particles in the first functional layer is not more than 30%. 如請求項4所述的輻射降溫材料,其中, 所述介電粒子為有機系粒子或無機系粒子或有機系粒子與無機系粒子的組合;其中, 有機系粒子為丙烯酸系樹脂粒子、有機矽系樹脂粒子、尼龍系樹脂粒子、聚苯乙烯系樹脂粒子、聚酯系樹脂粒子和聚氨酯系樹脂粒子中的至少一種; 無機系粒子為二氧化矽、碳化矽、氫氧化鋁、氧化鋁、氧化鋅、硫化鋇、矽酸鎂、硫酸鋇、碳酸鈣和二氧化鈦中的至少一種。The radiation cooling material according to claim 4, wherein: The dielectric particles are organic particles or inorganic particles or a combination of organic particles and inorganic particles; wherein, The organic particles are at least one of acrylic resin particles, silicone resin particles, nylon resin particles, polystyrene resin particles, polyester resin particles, and polyurethane resin particles; The inorganic particles are at least one of silicon dioxide, silicon carbide, aluminum hydroxide, aluminum oxide, zinc oxide, barium sulfide, magnesium silicate, barium sulfate, calcium carbonate, and titanium dioxide. 如請求項1或2或3所述的輻射降溫材料,其中,所述聚合物層為熱塑性聚合物、或熱固性聚合物、或熱塑性聚合物與熱固性聚合物的組合,其中, 熱塑性聚合物採用以下材料中的至少一種:聚4-甲基-1-戊烯、聚對苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚對苯二甲酸1,4-環己烷二甲醇酯、聚對苯二甲酸乙二醇酯-1,4-環己烷二甲醇酯、聚對苯二甲酸乙二醇-醋酸酯、聚甲基丙烯酸甲酯、聚碳酸酯、丙烯腈苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯的三元共聚物、聚氯乙烯、聚丙烯、聚乙烯、三元乙丙橡膠、聚烯烴彈性體、聚醯胺、乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物、聚甲基丙烯酸羥乙酯、聚四氟乙烯、全氟(乙烯丙烯)共聚物、聚全氟烷氧基樹脂、聚三氟氯乙烯、乙烯-三氟氯乙烯共聚物、乙烯-四氟乙烯共聚物、聚偏氟乙烯和聚氟乙烯、熱塑性聚氨酯、聚苯乙烯; 熱固性聚合物採用以下材料中的至少一種:聚醚碸衍生共聚物、雙烯丙基二甘醇碳酸酯聚合物、雙組分聚氨酯。The radiation cooling material according to claim 1 or 2 or 3, wherein the polymer layer is a thermoplastic polymer, or a thermosetting polymer, or a combination of a thermoplastic polymer and a thermosetting polymer, wherein, The thermoplastic polymer uses at least one of the following materials: poly-4-methyl-1-pentene, polyethylene terephthalate, polyethylene naphthalate, and polyethylene terephthalate 1,4- Cyclohexanedimethanol, polyethylene terephthalate-1,4-cyclohexanedimethanol, polyethylene terephthalate-acetate, polymethyl methacrylate, polycarbonate , Acrylonitrile styrene copolymer, acrylonitrile-butadiene-styrene terpolymer, polyvinyl chloride, polypropylene, polyethylene, ethylene propylene diene monomer, polyolefin elastomer, polyamide, ethylene- Vinyl acetate copolymer, ethylene-methyl acrylate copolymer, polyhydroxyethyl methacrylate, polytetrafluoroethylene, perfluoro(ethylene propylene) copolymer, polyperfluoroalkoxy resin, polychlorotrifluoroethylene, ethylene -Trifluorochloroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride and polyvinyl fluoride, thermoplastic polyurethane, polystyrene; The thermosetting polymer adopts at least one of the following materials: polyether sulfide derivative copolymer, bisallyl diethylene glycol carbonate polymer, and two-component polyurethane. 如請求項1或2或3所述的輻射降溫材料,其中, 所述保護層包括有機氟聚合物層、有機矽聚合物層、氟矽共聚物樹脂層、聚乙烯-尼龍複合膜層、乙烯-乙烯醇共聚物層、聚丙烯-尼龍複合膜層中的至少一種。The radiation cooling material according to claim 1 or 2 or 3, wherein: The protective layer includes at least one of an organic fluoropolymer layer, an organosilicon polymer layer, a fluorosilicon copolymer resin layer, a polyethylene-nylon composite film layer, an ethylene-vinyl alcohol copolymer layer, and a polypropylene-nylon composite film layer. One kind. 如請求項8所述的輻射降溫材料,其中, 所述有機氟聚合物層包括以下材料中的至少一種:聚四氟乙烯層、全氟(乙烯丙烯)共聚物層、聚全氟烷氧基樹脂層、聚三氟氯乙烯層、乙烯-三氟氯乙烯共聚物層、乙烯-四氟乙烯共聚物層、聚偏氟乙烯層和聚氟乙烯層。The radiation cooling material according to claim 8, wherein: The organic fluoropolymer layer includes at least one of the following materials: a polytetrafluoroethylene layer, a perfluoro(ethylene propylene) copolymer layer, a polyperfluoroalkoxy resin layer, a polychlorotrifluoroethylene layer, an ethylene-trifluoroethylene layer Fluorochloroethylene copolymer layer, ethylene-tetrafluoroethylene copolymer layer, polyvinylidene fluoride layer and polyvinyl fluoride layer. 如請求項1或2或3所述的輻射降溫材料,其中,所述封裝層包括聚氨酯類壓敏膠、丙烯酸類壓敏膠、環氧樹脂中的至少一種。The radiation cooling material according to claim 1 or 2 or 3, wherein the encapsulation layer includes at least one of polyurethane pressure sensitive adhesive, acrylic pressure sensitive adhesive, and epoxy resin. 如請求項2或3所述的輻射降溫材料,其中,所述第二功能層包括至少一層金屬層,或至少一層陶瓷材料層,或至少一層金屬層和至少一層陶瓷材料層的組合。The radiation cooling material according to claim 2 or 3, wherein the second functional layer includes at least one metal layer, or at least one ceramic material layer, or a combination of at least one metal layer and at least one ceramic material layer. 如請求項11所述的輻射降溫材料,其中,所述金屬層為銀、鋁、鉻、鈦、銅或鎳的金屬層,或包括銀、鋁、鉻、鈦、銅和鎳中至少一種元素的金屬合金層; 所述陶瓷材料層的材料包括氧化鋁、氧化鈦、氧化矽、氧化鈮、氧化鋅、氧化銦、氧化錫、氮化矽、氮化鈦、矽化鋁、硫化鋅、硫化銦、硫化錫、氟化鎂、氟化鈣中的至少一種。The radiation cooling material according to claim 11, wherein the metal layer is a metal layer of silver, aluminum, chromium, titanium, copper, or nickel, or includes at least one element of silver, aluminum, chromium, titanium, copper, and nickel的metal alloy layer; The material of the ceramic material layer includes aluminum oxide, titanium oxide, silicon oxide, niobium oxide, zinc oxide, indium oxide, tin oxide, silicon nitride, titanium nitride, aluminum silicide, zinc sulfide, indium sulfide, tin sulfide, fluorine At least one of magnesium fluoride and calcium fluoride. 如請求項1所述的輻射降溫材料,其中,所述封裝層的厚度在1μm到500μm之間;所述保護層的厚度在1μm到300μm之間;所述第一功能層的厚度在5μm到500μm之間。The radiation cooling material according to claim 1, wherein the thickness of the encapsulation layer is between 1 μm and 500 μm; the thickness of the protective layer is between 1 μm and 300 μm; the thickness of the first functional layer is between 5 μm and Between 500μm. 如請求項2所述的輻射降溫材料,其中,所述第二功能層的厚度在1nm到500nm之間。The radiation cooling material according to claim 2, wherein the thickness of the second functional layer is between 1 nm and 500 nm. 一種輻射降溫材料的製備方法,其改良在於,包括:製備第一功能層,所述第一功能層包括至少一層聚合物層,所述第一功能層對波長範圍為0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太陽輻射具有不低於0.8的透射率,對波長範圍為7-14μm/8-13μm/7-13μm/8-14μm的紅外波段的輻射具有不低於0.8的發射率; 在所述第一功能層的第一面設置封裝層;以及 在所述第一功能層的第二面設置保護層。A method for preparing a radiation cooling material, which is improved in that it comprises: preparing a first functional layer, the first functional layer includes at least one polymer layer, and the wavelength range of the first functional layer is 0.25-2.5 μm/0.25- The solar radiation of 3μm/0.3-2.5μm/0.3-3μm has a transmittance of not less than 0.8, and the radiation of the infrared band with a wavelength range of 7-14μm/8-13μm/7-13μm/8-14μm is not less than 0.8 emissivity; Providing an encapsulation layer on the first surface of the first functional layer; and A protective layer is provided on the second surface of the first functional layer. 如請求項15所述的方法,其中,在製備所述第一功能層的步驟之後,在所述第一功能層的第二面設置保護層的步驟之前,還包括:在所述第一功能層的第一面設置第二功能層,在第二功能層的外面設置封裝層的步驟,具體包括: 透過磁控濺射程序、蒸發鍍膜程序、離子濺射程序、電鍍程序或電子束鍍膜程序,將第二功能層沉積在第一功能層的第一面。The method according to claim 15, wherein after the step of preparing the first functional layer and before the step of providing a protective layer on the second surface of the first functional layer, the method further comprises: The step of arranging a second functional layer on the first surface of the layer, and arranging an encapsulation layer outside the second functional layer, specifically includes: The second functional layer is deposited on the first surface of the first functional layer through a magnetron sputtering procedure, an evaporation coating procedure, an ion sputtering procedure, an electroplating procedure or an electron beam coating procedure. 如請求項15所述的方法,其中,在所述第一功能層的第一面設置封裝層具體包括: 透過貼合的方式,或者透過塗布的方式,將所述封裝層設置於第一功能層上。The method according to claim 15, wherein, providing an encapsulation layer on the first surface of the first functional layer specifically includes: The encapsulation layer is arranged on the first functional layer by bonding or coating. 如請求項15所述的方法,其中,在所述第一功能層的第二面設置保護層包括: 透過塗布、貼合或複數層共擠的方式,將所述保護層設置於所述第一功能層的第二面。The method according to claim 15, wherein providing a protective layer on the second surface of the first functional layer includes: The protective layer is arranged on the second surface of the first functional layer through coating, bonding or co-extrusion of multiple layers. 一種如請求項1-14中任一所述的輻射降溫材料的應用方法,其改良在於,包括:將所述輻射降溫材料設於散熱主體,並使所述第一功能層與所述散熱主體熱連通。An application method of a radiation cooling material according to any one of claims 1-14, wherein the improvement includes: arranging the radiation cooling material on a heat dissipation body, and making the first functional layer and the heat dissipation body Thermal connection. 一種包含如請求項1-14中任一所述的輻射降溫材料的複合材料,其改良在於,所述複合材料由所述輻射降溫材料與基材複合而成。A composite material containing the radiation cooling material according to any one of claims 1-14, wherein the improvement is that the composite material is formed by a composite of the radiation cooling material and a substrate. 如請求項20所述的複合材料,其中,所述基材為金屬、塑膠、橡膠、瀝青、防水材料、紡織物、編織物中的至少一種。The composite material according to claim 20, wherein the substrate is at least one of metal, plastic, rubber, asphalt, waterproof material, textile, and braid.
TW108131761A 2019-05-13 2019-09-03 Radiative cooling material, method for manufacturing the same and application thereof TWI725533B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNCN201910395714.X 2019-05-13
CN201910395714.XA CN110103559A (en) 2019-05-13 2019-05-13 A kind of radiation cooling material and its preparation method and application
WOPCT/CN2019/092486 2019-06-24
PCT/CN2019/092486 WO2020228098A1 (en) 2019-05-13 2019-06-24 Radiation cooling material, preparation method therefor and application thereof

Publications (2)

Publication Number Publication Date
TW202041363A true TW202041363A (en) 2020-11-16
TWI725533B TWI725533B (en) 2021-04-21

Family

ID=67489710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131761A TWI725533B (en) 2019-05-13 2019-09-03 Radiative cooling material, method for manufacturing the same and application thereof

Country Status (3)

Country Link
CN (1) CN110103559A (en)
TW (1) TWI725533B (en)
WO (1) WO2020228098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747794B (en) * 2021-06-07 2021-11-21 鄭立銘 Coating for curtain, and honeycomb curtain including the same
TWI789897B (en) * 2021-07-07 2023-01-11 香港商王氏港建移動科技有限公司 Effective polymer-metal thermal interface of use in electronic circuitry

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751916A (en) * 2019-12-30 2020-10-09 宁波瑞凌新能源科技有限公司 Barrier layer film structure and application thereof
AU2020210219B2 (en) 2019-07-31 2022-04-07 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Solar reflecting film and preparation method thereof
CN110744900A (en) * 2019-10-29 2020-02-04 厦门银蚁新能源科技有限公司 Radiation refrigeration film and preparation method and application thereof
JP6944013B2 (en) * 2019-11-06 2021-10-06 寧波瑞凌新能源科技有限公司Ningbo Radi−Cool Advanced Energy Technologies Co., Ltd. Radiative cooling fabrics and products
CN112984836A (en) * 2019-12-17 2021-06-18 南京工业大学 Passive cold and hot double-effect material
CN111733390A (en) * 2019-12-30 2020-10-02 宁波瑞凌新能源科技有限公司 Composite barrier material for double-reflection layer film and application thereof
JP7149983B2 (en) * 2019-12-31 2022-10-07 寧波瑞凌新能源科技有限公司 Products containing base films, composite films, and composite films
CN111421906A (en) * 2020-04-03 2020-07-17 中国建筑股份有限公司 Fluorescent refrigeration TPO waterproof coiled material and preparation method thereof
CN111483200A (en) * 2020-04-15 2020-08-04 武汉大学 Composite film combining radiation refrigeration and sweating cooling
CN111877963B (en) * 2020-07-09 2023-05-02 河南五方合创建筑设计有限公司 Radiation refrigeration printing opacity solar protection devices
CN111730920B (en) * 2020-07-30 2020-11-17 宁波瑞凌新能源科技有限公司 Functional membrane structure, preparation method thereof, refrigeration membrane and refrigeration product
KR102225794B1 (en) * 2020-08-11 2021-03-11 고려대학교 산학협력단 Multilayered radiative cooling device
KR102271456B1 (en) * 2020-11-24 2021-07-02 고려대학교 산학협력단 Radiative cooling device including paint coating layer composed of nano or micro particles
WO2022114673A1 (en) * 2020-11-24 2022-06-02 롯데케미칼 주식회사 Radiative cooling multilayer films
CN112724436A (en) * 2020-12-28 2021-04-30 陕西科技大学 Super-hydrophobic radiation self-cooling material and preparation method thereof
CN112693190A (en) * 2021-01-04 2021-04-23 东风柳州汽车有限公司 Surface structure and preparation method thereof
CN113025219B (en) * 2021-03-10 2022-08-12 南开大学 Stretchable radiation cooling adhesive tape and preparation method and application thereof
TWI808520B (en) * 2021-10-29 2023-07-11 國立清華大學 Radiation cooling device and its preparation method and application
CN114838520B (en) * 2022-04-28 2023-06-06 武汉理工大学 Temperature-sensitive radiation cooling device based on functional memory material and preparation method
CN116301091B (en) * 2023-05-19 2023-08-04 浙江农林大学 Temperature control intelligent management system suitable for radiation cold and warm window
CN116813961B (en) * 2023-08-25 2023-12-22 南京助天中科科技发展有限公司 Radiation refrigeration film for enhancing emissivity of atmospheric window and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287014B (en) * 2013-06-27 2015-05-13 裴刚 Selective absorption emission composite material meeting requirements of solar heat collection and radiation refrigeration
EP3423298B1 (en) * 2016-02-29 2021-07-28 The Regents of the University of Colorado, a body corporate Selective radiative cooling structure
CN105957912B (en) * 2016-07-01 2017-08-29 中国科学技术大学 A kind of multi-functional spectral selection encapsulating material
CN205900562U (en) * 2016-07-01 2017-01-18 中国科学技术大学 Multi -functional spectral selectivity encapsulating material
CN106590456A (en) * 2016-11-24 2017-04-26 浙江歌瑞新材料有限公司 Fluorine-containing functional weather-proofing film and preparation technology thereof
CN108891115A (en) * 2018-08-24 2018-11-27 宁波瑞凌节能环保创新与产业研究院 A kind of radiation refrigeration film of achievable passive cooling
CN109651973A (en) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 A kind of high reflectance radiation refrigeration film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747794B (en) * 2021-06-07 2021-11-21 鄭立銘 Coating for curtain, and honeycomb curtain including the same
TWI789897B (en) * 2021-07-07 2023-01-11 香港商王氏港建移動科技有限公司 Effective polymer-metal thermal interface of use in electronic circuitry

Also Published As

Publication number Publication date
TWI725533B (en) 2021-04-21
CN110103559A (en) 2019-08-09
WO2020228098A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
TWI725533B (en) Radiative cooling material, method for manufacturing the same and application thereof
JP7023978B2 (en) Radiative cooling function paint and its applications
Li et al. Fundamentals, materials, and applications for daytime radiative cooling
Chen et al. Development of radiative cooling and its integration with buildings: A comprehensive review
Zeyghami et al. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
Farooq et al. Emerging radiative materials and prospective applications of radiative sky cooling-A review
Zhang et al. Cover shields for sub-ambient radiative cooling: A literature review
JP2021529680A (en) Composite radiative cooling membrane, composite radiative cooling membrane material and its applications
Chan et al. Potential passive cooling methods based on radiation controls in buildings
KR101949541B1 (en) Energy-shielding plastics film
CN210617539U (en) Radiation cooling material and composite material thereof
AU2019246842B1 (en) Radiative cooling material, method for making the same and application thereof
Mandal et al. Radiative cooling and thermoregulation in the earth's glow
Zhou et al. Radiative cooling for energy sustainability: Materials, systems, and applications
Laatioui et al. Zinc monochalcogenide thin films ZnX (X= S, Se, Te) as radiative cooling materials
US20220381524A1 (en) Systems and Methods for Spectrally Selective Thermal Radiators with Partial Exposures to Both the Sky and the Terrestrial Environment
CN109906840A (en) A kind of radiation refrigeration curtain
KR102225804B1 (en) Radiative cooling device utilizing optical properties of substrate
CN209918250U (en) Radiation refrigerating curtain
CN103640302B (en) A kind of 3 layer co-extruding biaxial stretched functional polyester membrane structures
CN113388305B (en) Radiation refrigeration composite coating with structural color, application and preparation method
CN212837341U (en) Novel thermal discoloration intelligent window with adjustable emissivity
CN114801403A (en) Radiation refrigeration composite flexible membrane with structural color
KR20230112470A (en) Radiative cooling device including plastic composite sheet with daytime radiative cooling function
CN210094176U (en) Radiation refrigeration curtain