TW202040918A - Monitoring device and monitoring method - Google Patents

Monitoring device and monitoring method Download PDF

Info

Publication number
TW202040918A
TW202040918A TW109113040A TW109113040A TW202040918A TW 202040918 A TW202040918 A TW 202040918A TW 109113040 A TW109113040 A TW 109113040A TW 109113040 A TW109113040 A TW 109113040A TW 202040918 A TW202040918 A TW 202040918A
Authority
TW
Taiwan
Prior art keywords
motor
monitoring device
current
mentioned
state
Prior art date
Application number
TW109113040A
Other languages
Chinese (zh)
Other versions
TWI759720B (en
Inventor
周広斌
中村明博
出口見多
金子悟
岩路善尚
Original Assignee
日商日立產機系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立產機系統股份有限公司 filed Critical 日商日立產機系統股份有限公司
Publication of TW202040918A publication Critical patent/TW202040918A/en
Application granted granted Critical
Publication of TWI759720B publication Critical patent/TWI759720B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Numerical Control (AREA)
  • Control Of Multiple Motors (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This monitoring device is provided with: a current sensor for detecting two-phase current information for each of a plurality of drive motors; a motor information calculation unit for calculating the torque current or rotational speed of the corresponding drive motor from the current information; a feature quantity calculation unit for calculating feature quantities for the torque currents or rotational speeds of the plurality of drive motors; a state estimation unit for estimating a device state on the basis of the feature quantity of a drive motor having a correlation from among the plurality of drive motors; a data storage unit for storing reference value data; and an abnormality determination unit for determining an abnormality state on the basis of the estimated device state and the reference value data.

Description

監視裝置、監視方法、伺服放大器、產業用控制器及工具機Monitoring device, monitoring method, servo amplifier, industrial controller, and machine tool

本發明係關於一種監視之技術,尤其關於監視工具機等之機器狀態之裝置。The present invention relates to a monitoring technology, especially to a device for monitoring the state of machine tools and the like.

綜合加工機等工具機具有工具自動更換功能,可結合目的實施於1台中進行銑削、搪孔、開孔、攻絲等異種機加工之數值控制。又,工具機因於工具庫中收納多個切削工具,且可根據電腦數值控制之指令自動地進行加工,故用於各種零件加工。Machine tools such as comprehensive processing machines have the function of automatic tool replacement, which can be combined with the purpose to implement numerical control of milling, boring, drilling, tapping and other heterogeneous machining in one machine. In addition, the machine tool stores a plurality of cutting tools in the tool magazine and can automatically perform processing according to the instructions of the computer numerical control, so it is used for processing various parts.

然而,工具機中使用之工具存在隨著加工使用時間經過,刀尖磨耗,切削阻力增加,最終導致破損之情形。However, the tools used in the machine tool have the situation that the tool tip wears and the cutting resistance increases as the processing time passes, which eventually leads to damage.

於專利文獻1中揭示有如下技術,即,推定、算出作用於主軸馬達或Z軸(進給軸)馬達之電流之擾動轉矩ys與yz並記錄於資料表中,繼而,對ys與yz求出現狀推定值與移動變動閾值,將其等進行比較,判定工具之異常。 [先前技術文獻] [專利文獻]Patent Document 1 discloses the following technology, that is, to estimate and calculate the disturbance torque ys and yz acting on the spindle motor or the Z-axis (feed axis) motor and record them in the data table, and then, compare ys and yz Obtain the estimated appearance value and the threshold of movement variation, compare them, and determine the abnormality of the tool. [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本專利特開2003-326438[Patent Document 1] Japanese Patent Laid-Open No. 2003-326438

[發明所欲解決之問題][The problem to be solved by the invention]

於專利文獻1之段落號0033中記載有「基於主軸馬達之速度信號與對主軸馬達之轉矩指令值,推定作用於主軸馬達之擾動轉矩ys」、及「基於進給軸馬達之速度信號與進給軸馬達之轉矩指令值,推定作用於進給軸馬達之擾動轉矩yz」。Paragraph No. 0033 of Patent Document 1 describes "The disturbance torque ys acting on the spindle motor is estimated based on the speed signal of the spindle motor and the torque command value to the spindle motor" and "The speed signal based on the feed axis motor The torque command value of the feed axis motor is used to estimate the disturbance torque yz acting on the feed axis motor.

即,判定工具之異常需要驅動馬達之速度信號或轉矩指令值之類馬達控制資訊。因此,於專利文獻1中,因必須以某些構件提供馬達控制資訊,故於現有裝置之情形時,存在產生追加佈線等作業之課題。因此,要求基於馬達之電流資訊進行監視之技術,以避免追加佈線等,能夠使用現有裝置。That is, determining the abnormality of the tool requires motor control information such as the speed signal or torque command value of the driving motor. Therefore, in Patent Document 1, since certain components must be used to provide motor control information, in the case of existing devices, there is a problem of additional wiring and other operations. Therefore, a technology for monitoring based on the current information of the motor is required to avoid additional wiring, etc., and to be able to use existing devices.

又,於工具機中,自大徑工具至小徑工具以相同之構成(驅動馬達)實施加工。於大徑工具之加工之情形時,加工負載較大,驅動馬達之電流亦較大。另一方面,於小徑工具之加工之情形時,加工負載較小,驅動馬達之電流亦較小。Moreover, in the machine tool, machining is performed with the same configuration (drive motor) from a large-diameter tool to a small-diameter tool. In the case of processing large-diameter tools, the processing load is larger, and the current driving the motor is also larger. On the other hand, in the case of processing small-diameter tools, the processing load is small, and the current driving the motor is also small.

如專利文獻1所示,若對每一進給軸馬達等各馬達推定擾動轉矩,則尤其於小徑工具之加工之情形時,於驅動主軸之主軸馬達(轉軸馬達)之電流中,由加工引起之馬達電流變化變小。因此,亦淹沒於空轉(不加工)時之電流中,難以進行感度較佳之計測。As shown in Patent Document 1, if the disturbance torque is estimated for each feed axis motor and other motors, especially in the case of machining small diameter tools, the current of the spindle motor (rotating axis motor) driving the spindle is determined by The motor current change caused by processing becomes smaller. Therefore, it is also submerged in the current during idling (no processing), and it is difficult to measure with better sensitivity.

本發明之目的在於提供一種基於複數個驅動馬達之電流資訊,感度較佳地判定機器狀態之異常之監視裝置及監視方法。 [解決問題之技術手段]The purpose of the present invention is to provide a monitoring device and a monitoring method for judging the abnormality of the machine state with better sensitivity based on the current information of a plurality of driving motors. [Technical means to solve the problem]

本發明之較佳一例係一種監視裝置,其具備: 電流感測器,其對複數個驅動馬達之各者,檢測二相之電流資訊; 馬達資訊運算部,其根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度; 特徵量運算部,其運算複數個上述驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量; 狀態推定部,其基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態; 資料記憶部,其記錄基準值資料;及 異常判定部,其基於所推定之上述機器狀態與上述基準值資料,判定異常狀態。A preferred example of the present invention is a monitoring device, which includes: A current sensor, which detects two-phase current information for each of a plurality of driving motors; A motor information calculation unit, which calculates the corresponding torque current or rotation speed of the drive motor according to the current information; A feature quantity calculation unit that computes feature quantities related to the torque current or the rotation speed in a plurality of the drive motors; A state estimating unit, which estimates the machine state based on the above-mentioned characteristic quantities of the above-mentioned driving motors in a correlation relationship among a plurality of the above-mentioned driving motors; Data storage unit, which records the reference value data; and The abnormality determination unit determines the abnormal state based on the estimated state of the machine and the reference value data.

本發明之較佳之另一例係一種監視方法,其係對複數個驅動馬達之各者,檢測二相之電流資訊, 根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度, 運算複數個驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量, 基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態, 基於預先記錄之基準值資料與所推定之上述機器狀態,判定異常狀態。 [發明之效果]Another preferred example of the present invention is a monitoring method that detects two-phase current information for each of a plurality of driving motors, According to the above current information, calculate the corresponding torque current or rotation speed of the above drive motor, Calculate the characteristic quantities related to the above torque current or the above rotation speed in a plurality of drive motors, Based on the above-mentioned characteristic quantities of the above-mentioned driving motors in correlation among the plurality of the above-mentioned driving motors, the machine state is estimated, Determine the abnormal state based on the pre-recorded reference value data and the estimated machine state. [Effects of Invention]

根據本發明,可基於複數個驅動馬達之電流資訊,感度較佳地判定機器狀態之異常。According to the present invention, it is possible to better judge the abnormality of the machine state based on the current information of a plurality of driving motors.

以下,按照圖式對實施例進行說明。再者,於與各實施例對應之圖式中,相同構成物標註相同之數字編號。 [實施例1]Hereinafter, the embodiment will be described in accordance with the drawings. Furthermore, in the drawings corresponding to the respective embodiments, the same components are denoted by the same numerals. [Example 1]

圖1係實施例1之驅動工具機等裝置之工具之雙軸之馬達控制系統101之方塊圖。此處之雙軸馬達係設想鑽孔加工時之加工負載中存在相關關係之主軸馬達與進給軸馬達(Z軸馬達)。1 is a block diagram of a dual-axis motor control system 101 for driving tools such as machine tools in the first embodiment. The dual-axis motor here assumes that there is a correlation between the spindle motor and the feed axis motor (Z-axis motor) during the drilling process.

於圖1中,馬達控制系統101具備馬達1之10-1、馬達2之10-2、驅動裝置20、監視裝置40及電流感測器41。驅動裝置20具備變頻器22、電流感測器24及控制部30。In FIG. 1, the motor control system 101 includes the motor 1 10-1, the motor 2 10-2, the driving device 20, the monitoring device 40, and the current sensor 41. The drive device 20 includes an inverter 22, a current sensor 24 and a control unit 30.

馬達10-1之旋轉軸14經由齒輪或滾珠螺桿等機械零件(未圖示)或直接連接地連接於工具16。又,馬達2亦直接或經由機構驅動工具16(未圖示)。各變頻器22基於各控制部30之控制,對馬達1之10-1或馬達2之10-2施加三相交流電壓。The rotating shaft 14 of the motor 10-1 is directly connected to the tool 16 via mechanical parts (not shown) such as gears or ball screws, or directly connected. In addition, the motor 2 also drives the tool 16 (not shown) directly or via a mechanism. Each inverter 22 applies a three-phase AC voltage to 10-1 of motor 1 or 10-2 of motor 2 based on the control of each control unit 30.

控制部30具備CPU(Central Processing Unit,中央處理單元)、DSP(Digital Signal Processor,數位信號處理器)、RAM(Random Access Memory,隨機存取記憶體)、ROM(Read Only Memory,唯讀記憶體)等作為普通電腦之硬體,且ROM中儲存有由CPU執行之控制程式、由DSP執行之微程式及各種資料等。The control unit 30 includes a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a RAM (Random Access Memory), and a ROM (Read Only Memory). ) Is used as the hardware of ordinary computers, and the ROM stores the control program executed by the CPU, the micro program executed by the DSP, and various data.

於圖1中,控制部30之內部係以方塊表示由控制程式及微程式等實現之功能。即,控制部30具備指令產生部32、偏差運算部33、向量控制部34、dq/3Φ轉換部36及3Φ/dq轉換部38。In FIG. 1, the inside of the control unit 30 represents the functions implemented by the control program and the micro program in blocks. That is, the control unit 30 includes a command generation unit 32, a deviation calculation unit 33, a vector control unit 34, a dq/3Φ conversion unit 36, and a 3Φ/dq conversion unit 38.

控制部30係藉由該等構成對馬達10進行向量控制,從而使馬達10-1之響應性提昇。The control unit 30 performs vector control of the motor 10 with these structures, thereby improving the responsiveness of the motor 10-1.

變頻器22對馬達10-1輸出U相、V相、W相之交流電流。電流感測器24檢測其中之二相之電流。即,於圖示之例中,檢測U相、W相之電流,並將其結果作為電流檢測值Ius 、Iws 輸出。The inverter 22 outputs U-phase, V-phase, and W-phase AC currents to the motor 10-1. The current sensor 24 detects the current of two phases. That is, in the example shown in the figure, U-phase and W-phase currents are detected, and the results are output as current detection values I us and I ws .

此處,設想以頻率f旋轉之旋轉座標,將該旋轉座標中正交之軸稱為d軸及q軸,將供給至馬達10-1之電流表現為該旋轉座標中之直流量。Here, suppose that the rotation coordinate rotates at the frequency f, and the orthogonal axes in the rotation coordinate are called the d-axis and the q-axis, and the current supplied to the motor 10-1 is expressed as the direct current in the rotation coordinate.

q軸中之電流係決定馬達10之轉矩之電流分量,以下,將其稱為轉矩電流。又,d軸中之電流係成為馬達10-1之激磁電流之成分,以下,將其稱為激磁電流。The current in the q-axis determines the current component of the torque of the motor 10, and is referred to as the torque current hereinafter. In addition, the current in the d-axis becomes a component of the exciting current of the motor 10-1, and is referred to as the exciting current hereinafter.

3Φ/dq轉換部38基於電流檢測值Ius 、Iws ,輸出激磁電流檢測值Id 與轉矩電流檢測值Iq 。指令產生部32自未圖示之上位裝置接收轉矩指令值τ*,並基於轉矩指令值τ*產生激磁電流指令值Id *與轉矩電流指令值Iq *。The 3Φ/dq conversion unit 38 outputs the excitation current detection value I d and the torque current detection value I q based on the current detection values I us and I ws . The command generation unit 32 receives a torque command value τ* from a higher-level device not shown, and generates an excitation current command value I d * and a torque current command value I q * based on the torque command value τ*.

偏差運算部33基於電流指令值Id *、Iq *及電流檢測值Id 、Iq ,輸出偏差Id *-Id 、Iq *-Iq 。向量控制部34基於偏差Id *-Id 、Iq *-Iq 等,輸出激磁電壓指令值Vd *與轉矩電壓指令值Vq *。Deviation calculation unit 33 based on the current command value I d *, I q * and the detected current value I d, I q, output deviation I d * -I d, I q * -I q. The vector control unit 34 outputs the excitation voltage command value V d * and the torque voltage command value V q * based on the deviations I d *-I d , I q *-I q and the like.

對向量控制部34之動作更詳細地進行說明,向量控制部34係對偏差Id *-Id 、Iq *-Iq 進行比例積分控制,求出相同速度之指令值即頻率指令ω1(未圖示)。The operation of the vector control unit 34 will be described in more detail. The vector control unit 34 performs proportional integral control on the deviations I d *-I d and I q *-I q to obtain the command value of the same speed, that is, the frequency command ω1 ( Not shown).

進而,向量控制部34藉由將頻率指令ω1進行積分運算而求出相位指令θ1(未圖示)。進而,向量控制部34對電流指令值Id *、Iq *構成之向量乘以馬達10-1之阻抗之向量,作為其結果,計算電壓指令值Vd *、Vq *。Furthermore, the vector control unit 34 obtains the phase command θ1 (not shown) by integrating the frequency command ω1. Furthermore, the vector control unit 34 multiplies the vector composed of the current command values I d * and I q * by the vector of the impedance of the motor 10-1, and as a result, calculates the voltage command values V d * and V q *.

dq/3Φ轉換部36基於旋轉座標系統之電壓指令值Vd *、Vq *,輸出用以驅動變頻器22之PWM(Pulse Width Modulation,脈寬調變)信號。變頻器22基於所供給之PWM信號,切換所供給之直流電壓(未圖示),對馬達10-1輸出U相、V相、W相之電壓。The dq/3Φ conversion unit 36 outputs a PWM (Pulse Width Modulation) signal for driving the inverter 22 based on the voltage command values V d * and V q * of the rotary coordinate system. The inverter 22 switches the supplied DC voltage (not shown) based on the supplied PWM signal, and outputs U-phase, V-phase, and W-phase voltages to the motor 10-1.

<監視裝置40之構成> 圖2係監視裝置40之方塊圖。監視裝置40係與上述控制部30同樣地具備CPU、DSP、RAM、ROM等作為普通電腦之硬體,且ROM中儲存有由CPU執行之控制程式、由DSP執行之微程式及各種資料等。<Configuration of Monitoring Device 40> FIG. 2 is a block diagram of the monitoring device 40. The monitoring device 40 is equipped with CPU, DSP, RAM, ROM, etc. as the hardware of an ordinary computer similarly to the above-mentioned control unit 30, and the ROM stores control programs executed by the CPU, micro programs executed by the DSP, various data, etc.

於圖2中,監視裝置40之內部係以方塊表示由控制程式及微程式等實現之功能。即,監視裝置40具備馬達資訊運算部42、特徵量運算部44、狀態推定部45、資料記憶部46及異常判定部47。In FIG. 2, the inside of the monitoring device 40 represents the functions implemented by the control program and the micro program in blocks. That is, the monitoring device 40 includes a motor information calculation unit 42, a feature quantity calculation unit 44, a state estimation unit 45, a data storage unit 46, and an abnormality determination unit 47.

馬達資訊運算部42自分別對應之電流感測器41獲取馬達1之10-1之U相之電流檢測值Iu1 、W相之電流檢測值Iw1 、馬達2之10-2之U相之電流檢測值Iu2 及W相之電流檢測值Iw2The motor information computing unit 42 obtains the U-phase current detection value I u1 of 10-1 of the motor 1, the W-phase current detection value I w1 , and the U-phase 10-2 of the motor 2 from the corresponding current sensors 41. The current detection value I u2 and the W-phase current detection value I w2 .

繼而,馬達資訊運算部42基於該等檢測值,輸出各馬達轉矩電流(實部電流)Ir1 、Ir2 及機械頻率ωrs1 、ωrs2 (旋轉速度)。Then, the motor information calculation unit 42 outputs the respective motor torque currents (real part currents) Ir1 and Ir2 and the mechanical frequencies ω rs1 and ω rs2 (rotation speed) based on the detected values.

此處,參照圖3,對自該等馬達資訊運算部42輸出之信號之意義進行說明。圖3係馬達資訊運算部42之方塊圖。Here, referring to FIG. 3, the meaning of the signals output from the motor information computing unit 42 will be described. FIG. 3 is a block diagram of the motor information computing unit 42.

馬達資訊運算部42具備3Φ/αβ轉換器52、反正切轉換器54(相位檢測部)、減法器56(PLL(Phase Locked Loop,鎖相迴路)運算部)、相位運算器60(PLL運算部、旋轉速度運算部、旋轉速度運算過程)、旋轉座標轉換器70、積分器72(PLL運算部)及乘法器74。進而,相位運算器60具備乘法器62、64、積分器66及加法器68。The motor information computing unit 42 includes a 3Φ/αβ converter 52, an arctangent converter 54 (phase detection unit), a subtractor 56 (PLL (Phase Locked Loop) computing unit), and a phase computing unit 60 (PLL computing unit) , The rotation speed calculation unit, the rotation speed calculation process), the rotation coordinate converter 70, the integrator 72 (PLL calculation unit), and the multiplier 74. Furthermore, the phase calculator 60 includes multipliers 62 and 64, an integrator 66, and an adder 68.

3Φ/αβ轉換器52將電流檢測值Iu 、Iw 轉換為正交之二相之交流電流Iα 、Iβ 。反正切轉換器54基於該等交流電流Iα 、Iβ ,計算交流電流相位角檢測值θi *。The 3Φ/αβ converter 52 converts the current detection values I u and I w into orthogonal two-phase alternating currents I α and I β . The arctangent converter 54 calculates the AC current phase angle detection value θ i * based on the AC currents I α and I β .

減法器56自交流電流相位角θi (詳情下文敍述)中減去交流電流相位角檢測值θi *。於相位運算器60,乘法器62對差值「θi *-θi 」乘以特定之比例增益KpPLL。The subtractor 56 subtracts the AC current phase angle detection value θ i * from the AC current phase angle θ i (described in detail below). In the phase calculator 60, the multiplier 62 multiplies the difference "θ i *-θ i "by a specific proportional gain KpPLL.

乘法器62中之乘法結果成為上述比例信號PLL_P。又,乘法器64對差值「θi *-θi 」乘以特定之積分增益KiPLL,積分器66將該乘法結果進行積分運算。The result of the multiplication in the multiplier 62 becomes the aforementioned proportional signal PLL_P. In addition, the multiplier 64 multiplies the difference "θ i *-θ i "by the specific integral gain KiPLL, and the integrator 66 integrates the result of the multiplication.

將積分器66中之積分結果稱為積分信號PLL_I。加法器68將比例信號PLL_P與積分信號PLL_I進行加法運算,將加法結果作為頻率信號ω1s 輸出。The integration result in the integrator 66 is called the integration signal PLL_I. The adder 68 adds the proportional signal PLL_P and the integral signal PLL_I, and outputs the addition result as the frequency signal ω 1s .

積分器72將頻率信號ω1s 進行積分運算,輸出交流電流相位角θi 。將交流電流相位角θi 供給至減法器56,並且亦供給至旋轉座標轉換器70。The integrator 72 integrates the frequency signal ω 1s , and outputs the alternating current phase angle θ i . The alternating current phase angle θ i is supplied to the subtractor 56 and also to the rotation coordinate converter 70.

又,乘法器74將頻率信號ω1s 乘以「2/P」(此處,P為馬達10之極數),將乘法結果作為機械頻率ωrs 輸出。此處,機械頻率ωrs 成為與馬達10(參照圖1)之實際速度(於感應馬達之情形時包含打滑之速度)對應之信號。Furthermore, the multiplier 74 multiplies the frequency signal ω 1s by "2/P" (here, P is the number of poles of the motor 10), and outputs the multiplication result as the mechanical frequency ω rs . Here, the mechanical frequency ω rs becomes a signal corresponding to the actual speed of the motor 10 (refer to FIG. 1) (including the speed of slipping in the case of an induction motor).

旋轉座標轉換器70將二相之交流電流Iα 、Iβ 轉換為以頻率信號ω1s 旋轉之旋轉座標系統中之二軸之直流量Ir 、IiThe rotary coordinate converter 70 converts the two-phase alternating currents I α and I β into the two-axis direct currents I r and I i in the rotating coordinate system rotating with the frequency signal ω 1s .

以此方式,減法器56、相位運算器60及積分器72作為PLL(Phase Locked Loop)運算部發揮功能,輸出如減法器56輸出之差值「θi *-θi 」接近「0」之類的頻率信號ω1s 及交流電流相位角θiIn this way, the subtractor 56, the phase calculator 60, and the integrator 72 function as a PLL (Phase Locked Loop) arithmetic unit, and outputs such as the difference "θ i *-θ i "output by the subtractor 56 close to "0". Class frequency signal ω 1s and alternating current phase angle θ i .

特徵量運算部44擷取馬達之轉矩電流Ir 之最大值、平均值、FFT(fast Fourier transform,快速傅立葉轉換)及馬達旋轉速度ωrs 之最大值、平均值、FFT等特徵量。The feature quantity calculation unit 44 extracts the maximum value, average value, FFT (fast Fourier transform) of the motor torque current Ir , and the maximum value, average value, FFT, etc. of the motor rotation speed ω rs .

狀態推定部45基於馬達轉矩電流Ir 之最大值、平均值、FFT及馬達旋轉速度ωrs 之最大值、平均值、FFT等特徵量,推定機器狀態。The state estimating unit 45 estimates the state of the machine based on characteristic quantities such as the maximum value and average value of the motor torque current Ir, the maximum value, average value, and FFT of the FFT and the motor rotation speed ω rs .

推定狀態量與記錄於資料記憶部46之基準值資料進行比較,由異常判定部47檢測該狀態量是否異常。又,異常判定部47向外部輸出各種警報信號。The estimated state quantity is compared with the reference value data recorded in the data storage unit 46, and the abnormality determination unit 47 detects whether the state quantity is abnormal. In addition, the abnormality determination unit 47 outputs various alarm signals to the outside.

再者,警報信號為燈之點亮、警報器之鳴叫、或無線通信方法之電波發送等能夠通知管理者之方法即可。Furthermore, the alarm signal may be a method capable of notifying the manager, such as lighting of a lamp, buzzing of an alarm, or radio wave transmission of a wireless communication method.

本實施例中之監視裝置40於設置於苛刻之環境之情形時,較佳為收納於已實施防塵防水對策之監視裝置殼體。進而,將監視裝置40設置於變頻器22等產生雜訊之裝置之附近之情形時,較佳為對監視裝置40實施雜訊對策。When the monitoring device 40 in this embodiment is installed in a harsh environment, it is preferably stored in the housing of the monitoring device that has implemented dust and waterproof measures. Furthermore, when the monitoring device 40 is installed near a noise-generating device such as the inverter 22, it is preferable to implement noise countermeasures on the monitoring device 40.

如上所述,監視裝置40可使用獨自之座標,僅根據流入存在相關關係之驅動馬達之電流資訊,藉由簡單之演算法,由交流轉換為直流,因此,用於判斷為異常之邊緣處理亦可於監視裝置內執行。藉此,其結果,資料量可大幅度削減,分析/診斷作業亦變得容易。As described above, the monitoring device 40 can use its own coordinates, and use a simple algorithm to convert AC to DC based on the current information flowing into the driving motor that has a correlation. Therefore, edge processing for judging abnormalities is also possible. Can be executed in the monitoring device. As a result, as a result, the amount of data can be drastically reduced, and analysis/diagnosis operations become easier.

<工具磨耗度之推定> 圖4表示綜合加工機等工具機之工具驅動軸之一例。綜合加工機之種類根據主軸(轉軸)之方向大致分為臥式與立式,臥式係主軸安裝於水平方向上,立式係主軸安裝於垂直方向上。<Estimation of tool wear degree> Fig. 4 shows an example of a tool drive shaft of a machine tool such as an integrated processing machine. The types of integrated processing machines are roughly divided into horizontal and vertical according to the direction of the spindle (rotating shaft). The horizontal spindle is installed in the horizontal direction, and the vertical spindle is installed in the vertical direction.

主軸係安裝實施加工之加工品或工具且使之旋轉之該工具機中最主要之軸。基本構造之立式綜合加工機一般進行3軸加工。The main shaft is the most important shaft in the machine tool that installs and rotates the processed product or tool to be processed. The basic structure of the vertical integrated processing machine generally performs 3-axis processing.

動作與自正面觀察機械時主軸於上下方向(Z軸)上動作且固定有加工品之工作台朝前後(Y軸)與左右(X軸)動作的床式之銑床相同。The action is the same as that of a bed-type milling machine in which the spindle moves in the up and down direction (Z axis) when the machine is viewed from the front, and the worktable with the processed product moves forward and backward (Y axis) and left and right (X axis).

進給軸因加工種類而變。例如,於鑽孔加工之情形時,Z軸成為進給軸,於銑削加工之情形時,不僅Z軸,而且X軸或Y軸亦成為進給軸。另一方面,5軸加工之立式綜合加工機可使用除了XYZ之3軸之軸向動作以外亦帶有工作台之旋轉(C軸)與傾斜角(B軸)的分度台,進行5軸加工(未圖示)。The feed axis changes depending on the type of processing. For example, in the case of drilling, the Z axis becomes the feed axis. In the case of milling, not only the Z axis but also the X or Y axis becomes the feed axis. On the other hand, a 5-axis vertical machining center can use an indexing table with rotation (C-axis) and tilt angle (B-axis) of the table in addition to the 3-axis axial motion of XYZ, and perform 5 Shaft machining (not shown).

即,加工中存在相關關係之馬達數因機器或加工內容而變。例如,於鑽孔加工之情形時,存在相關關係之馬達為主軸馬達與進給軸馬達(Z軸馬達),於銑削加工之情形時,存在相關關係之馬達為主軸馬達、進給軸馬達(X軸馬達、Y軸馬達、Z軸馬達)。That is, the number of motors that have a correlation in processing varies depending on the machine or processing content. For example, in the case of drilling, the related motors are the spindle motor and the feed axis motor (Z-axis motor). In the case of milling, the related motors are the spindle motor and the feed axis motor ( X-axis motor, Y-axis motor, Z-axis motor).

圖5表示伴隨工具磨耗之加工品質下降及工具破損產生之過程。存在工具隨著加工時間經過而刀尖磨耗,切削阻力增加,最終導致破損之情形。又,若工具磨耗繼續進行則加工精度變差,無法維持加工品所要求之特定之加工精度。Figure 5 shows the process of deterioration of processing quality and tool breakage accompanied by tool wear. There is a situation where the tool tip wears as the machining time passes, and the cutting resistance increases, which eventually leads to damage. In addition, if the tool wear continues, the machining accuracy deteriorates, and the specific machining accuracy required for the processed product cannot be maintained.

圖6係伴隨工具磨耗之主軸及進給軸之力與各軸中之馬達轉矩電流之變化。隨著工具磨耗繼續進行,工具之刀刃變得容易打滑,因此,主軸馬達之負載減少,其結果,主軸馬達之轉矩電流減少。另一方面,工具之刀刃變得難以切入,因此,進給軸馬達之負載增大,其結果,進給軸馬達之轉矩電流增大。即,若監視主軸及進給軸馬達電流之變化,則可推定工具磨耗狀態。Figure 6 shows the changes in the force of the main shaft and the feed shaft and the motor torque current in each shaft accompanied by tool wear. As the wear of the tool continues, the blade of the tool becomes easy to slip. Therefore, the load on the spindle motor is reduced. As a result, the torque current of the spindle motor is reduced. On the other hand, the cutting edge of the tool becomes difficult to cut, so the load of the feed axis motor increases, and as a result, the torque current of the feed axis motor increases. That is, by monitoring the changes in the spindle and feed axis motor currents, the tool wear state can be estimated.

圖7係擷取每一特定之加工區間中之主軸及進給軸之馬達轉矩電流及馬達旋轉速度之特徵量之概略圖。例如,隨著加工時間經過,擷取每一加工區間中之特定加工區間之轉矩電流之最大值、標準偏差、平均值、FFT及馬達旋轉速度之最大值、標準偏差、平均值、FFT等特徵量。Fig. 7 is a schematic diagram of extracting the characteristic quantities of the motor torque current and the motor rotation speed of the main shaft and the feed shaft in each specific processing interval. For example, as the processing time elapses, capture the maximum value, standard deviation, average value, FFT and maximum value of motor rotation speed, standard deviation, average value, FFT, etc. of the torque current in a specific processing section in each processing section Feature amount.

又,將特定1台馬達或存在相關關係之複數台馬達之轉矩電流值或旋轉速度值設為特徵量擷取之觸發點,運算指定區間之特徵量,藉此,可視需要調整取樣頻率或運算量。藉此,其結果,資料量可大幅度削減,分析/診斷作業亦變得容易。進而,可根據進給軸馬達之電流波形,判別加工動作種類,因此,可進行更準確之特徵量擷取。In addition, the torque current value or the rotation speed value of a specific motor or a plurality of motors with related relationships is set as the trigger point of feature quantity extraction, and the feature quantity of the specified interval is calculated, thereby, the sampling frequency or the rotation speed can be adjusted as needed. Computation. As a result, as a result, the amount of data can be drastically reduced, and analysis/diagnosis operations become easier. Furthermore, the type of machining action can be judged based on the current waveform of the feed axis motor, so that more accurate feature quantity extraction can be performed.

進而,若根據工具徑或加工負載之變化,改變基於主軸馬達電流資訊及進給軸馬達電流資訊推定工具磨耗度之特徵量之組合,則可更準確地推定工具磨耗度。Furthermore, if the combination of the characteristic quantities for estimating the degree of tool wear based on the spindle motor current information and the feed axis motor current information is changed according to changes in the tool diameter or machining load, the tool wear degree can be estimated more accurately.

圖8係對使用一般線性模型方法之工具磨耗度(上述機器狀態量)之推定方法進行說明之圖。作為一例,對磨耗度為工具刀刃之磨耗寬度之情形時之推定方法進行說明。Fig. 8 is a diagram for explaining the estimation method of the tool wear degree (the above-mentioned machine state quantity) using the general linear model method. As an example, the estimation method when the degree of wear is the wear width of the tool blade will be described.

可對於計測工具磨耗寬度,基於自上述馬達電流資訊中擷取之特徵量,利用多變量分析等方法構築推定模型式。此處,推定模型式係表示複數個驅動馬達之上述中例示之特徵量與工具磨耗度之對應關係之運算式。一般線性模型所示之推定模型之一例如以下之(式1)所述。For the measurement tool wear width, based on the feature quantity extracted from the above-mentioned motor current information, an estimation model formula can be constructed using methods such as multivariate analysis. Here, the estimated model formula is an arithmetic formula representing the correspondence relationship between the characteristic quantities exemplified above and the degree of tool wear of the plurality of drive motors. One of the estimated models shown in the general linear model is as described in (Equation 1) below.

Y=a+b×進給軸馬達轉矩電流之平均值+c×進給軸馬達旋轉速度之最大值d×主軸馬達轉矩電流之平均值+e×主軸馬達旋轉速度之標準偏差+…(式1) 此處,Y為根據推定模型式推定之工具磨耗度,a、b、c、d、e為常數。即,可基於存在相關關係之馬達電流資訊,推定工具磨耗度Y。Y = a + b × the average value of the torque current of the feed axis motor + c × the maximum value of the feed axis motor rotation speed d × the average value of the spindle motor torque current + e × the standard deviation of the spindle motor rotation speed +... (Equation 1) Here, Y is the degree of tool wear estimated based on the estimated model formula, and a, b, c, d, and e are constants. In other words, the tool wear degree Y can be estimated based on the motor current information having a correlation.

又,藉由根據加工負載之變化調整上述常數b、c、d、e(加權:貢獻度),可改變對目標變數Y之支配度,因此,可提昇推定精度。In addition, by adjusting the above-mentioned constants b, c, d, and e (weighting: contribution degree) according to changes in the processing load, the degree of dominance over the target variable Y can be changed, and therefore the estimation accuracy can be improved.

例如,於圖7之鑽孔加工中,於大徑鑽孔器(加工負載大)之情形時,主軸馬達之轉矩電流及旋轉速度明顯地呈現磨耗之程度。因此,於大徑鑽孔器(加工負載大)之情形時,對主軸馬達之轉矩電流及旋轉速度進一步附進行加權(貢獻度)。For example, in the drilling process of FIG. 7, in the case of a large-diameter drill (large processing load), the torque current and rotation speed of the spindle motor obviously show a degree of wear. Therefore, in the case of a large-diameter drill (large machining load), the torque current and rotation speed of the spindle motor are further weighted (contribution).

另一方面,於小徑鑽孔器(加工負載小)之情形時,進給軸馬達電流及旋轉速度明顯地呈現磨耗之程度。因此,於小徑鑽孔器(加工負載小)之情形時,若對進給軸馬達電流及旋轉速度進一步進行加權(貢獻度),則可更高精度地推定鑽孔器磨耗。以此方式,根據作為對象機器之鑽孔器改變推定模型式,藉此,可感度較佳地推定機器之狀態。On the other hand, in the case of a small-diameter drill (small processing load), the current and rotation speed of the feed shaft motor are obviously worn. Therefore, in the case of a small-diameter drill (small processing load), if the feed shaft motor current and rotation speed are further weighted (contribution), the drill wear can be estimated with higher accuracy. In this way, the estimation model formula is changed according to the drill as the target machine, whereby the state of the machine can be estimated with better sensitivity.

若將推定模型之(式1)改寫為一般之函數式,則成為以下之(式2)。 Y(I、w、L)=g1 (I1 、w1 )×k1 (L)+g2 (I2 、w2 )×k2 (L)+…(式2) 此處,I為馬達轉矩電流,w為馬達旋轉速度,L為加工負載,g1 為將馬達1之轉矩電流及旋轉速度設為變數之函數,g2 為將馬達2之轉矩電流及旋轉速度設為變數之函數,k1 為將加工負載設為變數之馬達1之函數,k2 為將加工負載設為變數之馬達2之函數。If (Equation 1) of the estimated model is rewritten as a general functional formula, it becomes the following (Equation 2). Y(I, w, L) = g 1 (I 1 , w 1 ) × k 1 (L) + g 2 (I 2 , w 2 ) × k 2 (L) +... (Equation 2) where I is Motor torque current, w is the motor rotation speed, L is the processing load, g 1 is the function of setting the torque current and rotation speed of motor 1 as variables, and g 2 is the function of setting the torque current and rotation speed of motor 2 as As a function of variables, k 1 is a function of motor 1 with machining load as a variable, and k 2 is a function of motor 2 with machining load as a variable.

可使用基於存在相關關係之複數個馬達之電流資訊之複數個特徵量及根據負載L改變之係數(貢獻度),精度較佳地推定機器狀態。It is possible to use a plurality of characteristic quantities based on current information of a plurality of motors having a correlation and a coefficient (contribution degree) that changes according to the load L to estimate the machine state with better accuracy.

又,此處之k1 (L)、k2 (L)、…亦可根據機器加工負載或加工模式,預先計測後保存於資料記憶部;根據機械學習等累積之資料提昇精度。In addition, k 1 (L), k 2 (L), ... can also be pre-measured and stored in the data memory according to the machining load or machining mode; the accuracy can be improved based on accumulated data such as machine learning.

於實際運用時,工具磨耗度之極限M0 由加工品質等決定。若不存在推定誤差或偏差,則推定工具磨耗度Y之上限成為與M0 對應之Y1 ,若考慮推定偏差,則推定工具磨耗度之上限成為Y2In actual use, the limit M 0 of tool wear is determined by the processing quality. If there is no estimated error or deviation, the upper limit of the estimated tool wear degree Y becomes Y 1 corresponding to M 0 , and if the estimated deviation is considered, the upper limit of the estimated tool wear degree becomes Y 2 .

即,若推定工具磨耗度Y超過Y2 ,則加工品成為不良品。藉由監視該推定工具磨耗度Y,可準確地掌握工具更換時期。又,此處,以一般線性模型方法為例進行了說明。只要為表示工具磨耗度與自馬達電流中擷取之特徵量之關係之模型構築方法,則不必限於使用統計方法之模型等一般線性模型方法。That is, if the estimated tool wear degree Y exceeds Y 2 , the processed product becomes a defective product. By monitoring the estimated tool wear degree Y, the tool replacement time can be accurately grasped. Also, here, the general linear model method is used as an example for explanation. As long as it is a model construction method that expresses the relationship between the degree of tool wear and the feature quantity extracted from the motor current, it does not need to be limited to general linear model methods such as models using statistical methods.

進而,藉由對累積所得之資料導入機械學習等,可實現更準確之工具磨耗度推定。根據以上內容,可基於存在相關關係之馬達電流資訊推定工具磨耗度,因此,可更準確地掌握工具之更換時期。又,藉由監視工具磨耗度,亦可防止工具破損之產生。Furthermore, by introducing machine learning to the accumulated data, a more accurate estimation of tool wear can be achieved. Based on the above content, the tool wear can be estimated based on the related motor current information. Therefore, the tool replacement time can be grasped more accurately. In addition, by monitoring the degree of tool wear, it is also possible to prevent tool breakage.

<實施例1之動作> 圖9係監視裝置40中執行之工具磨耗偵測例行程序之流程圖。該工具磨耗偵測例行程序係於每一特定之取樣週期執行。<Action of Example 1> FIG. 9 is a flowchart of the tool wear detection routine executed in the monitoring device 40. The tool wear detection routine is executed in each specific sampling period.

於圖9中,工具磨耗偵測例行程序開始(START),執行馬達電流計測之處理(步驟S2)。繼而,監視裝置40(參照圖2)之馬達資訊運算部42自主軸等各軸之馬達之電流感測器41(參照圖1)獲取第1軸之馬達之電流檢測值IU1 、IW1 及第2軸之馬達之電流檢測值IU2 、IW2In FIG. 9, the tool wear detection routine is started (START), and the motor current measurement process is executed (step S2). Then, the motor information computing unit 42 of the monitoring device 40 (refer to FIG. 2) acquires the current detection values I U1 , I W1 and the current sensor 41 (refer to FIG. 1) of the motor of each axis such as the main axis. The current detection values I U2 and I W2 of the second axis motor.

繼而,收到第1軸之馬達及第2軸之馬達之電流檢測值,馬達資訊運算部42運算對應之第1軸之馬達10-1之轉矩電流Ir1 及旋轉速度ωrs1 、第2軸之馬達10-2之轉矩電流Ir2 及旋轉速度ωrs2 。 即,將各軸之馬達之轉矩電流Ir 、機械頻率ωrs 輸出(步驟S3)。Then, after receiving the current detection values of the first axis motor and the second axis motor, the motor information calculation unit 42 calculates the torque current Ir1 and the rotation speed ω rs1 of the corresponding first axis motor 10-1, the second axis The torque current Ir2 and the rotation speed ω rs2 of the shaft motor 10-2. That is, the torque current I r and the mechanical frequency ω rs of the motor of each axis are output (step S3).

繼而,特徵量運算部44擷取特定區間之轉矩電流之最大值、標準偏差、平均值、FFT及馬達旋轉速度之最大值、標準偏差、平均值、FFT等特徵量(步驟S4)。Then, the feature quantity calculation unit 44 extracts the maximum value, standard deviation, average value, FFT and the maximum value, standard deviation, average value, and FFT of the torque current in the specific interval (step S4).

繼而,狀態推定部45基於上述之推定模型,使用自資料記憶部46獲取之特徵量及與負載對應之相關馬達之貢獻度,執行(式1)之運算,算出工具磨耗度。(步驟S5) 將狀態推定部45之推定時使用之與負載對應之相關馬達之貢獻度或異常判定部47中使用之基準值預先記憶於資料記憶部46(步驟S6)。貢獻度或基準值亦可基於轉矩電流Ir進行更新。Then, the state estimating unit 45 uses the feature quantity acquired from the data storage unit 46 and the contribution of the related motor corresponding to the load based on the above-mentioned estimation model to perform the calculation of (Equation 1) to calculate the tool wear. (Step S5) The contribution degree of the related motor corresponding to the load used in the estimation of the state estimation unit 45 or the reference value used in the abnormality determination unit 47 is stored in the data storage unit 46 in advance (step S6). The contribution degree or the reference value may also be updated based on the torque current Ir.

進而,異常判定部47與基準值資料進行比較,判定轉矩電流Ir 較設定極限值Ir0 更低,且判定處於馬達旋轉狀態(ωrs >0)時(步驟S7為是),異常判定部47將表示工具為破損狀態之警報信號輸出至外部(步驟S9)。Furthermore, the abnormality determination unit 47 compares with the reference value data, determines that the torque current Ir is lower than the set limit value Ir0 , and determines that it is in the motor rotation state (ω rs > 0) (YES in step S7), the abnormality determination The section 47 outputs an alarm signal indicating that the tool is in a damaged state to the outside (step S9).

異常判定部47判定磨耗度Y超過設定極限值Y2 ,且判定處於馬達旋轉狀態(ωrs >0)時(步驟S8為是),異常判定部47將表示工具為磨耗狀態之警報信號輸出至外部(步驟S10)。When the abnormality determination unit 47 determines that the degree of wear Y exceeds the set limit value Y 2 and that it is in the motor rotation state (ω rs > 0) (YES in step S8), the abnormality determination unit 47 outputs an alarm signal indicating that the tool is in a worn state to Outside (step S10).

又,於與兩者中之任一者均不相符之情形(步驟S7或步驟S8為否)時,本例行程序之處理結束(END)。In addition, when it does not match either of the two (No in step S7 or step S8), the processing of this routine is ended (END).

<實施例1之效果> 如上所述,根據本實施例,可基於存在相關關係之複數個馬達之至少各2相之電流值IU 、IW 偵測工具磨耗狀態。即,可延長工具平均使用壽命而不追加加速度感測器或AE(Acoustic Emission,聲頻發射)感測器等。<Effects of Embodiment 1> As described above, according to this embodiment, the tool wear state can be detected based on the current values I U and I W of each of at least two phases of a plurality of motors in correlation. That is, the average service life of the tool can be extended without adding an acceleration sensor or an AE (Acoustic Emission) sensor.

又,藉由使工具磨耗度可視化,可一面實現工具維護之人工節省化,一面防止工具破損於未然。又,異常判定部47偵測到工具磨耗狀態時,輸出警報信號。藉此,可對管理者報告各種異常。In addition, by visualizing the degree of tool wear, it is possible to save labor for tool maintenance and prevent damage to the tool beforehand. In addition, the abnormality determination unit 47 outputs an alarm signal when it detects the tool wear state. In this way, various abnormalities can be reported to the manager.

根據實施例1,可基於複數個驅動馬達之電流資訊,感度較佳地判定機器狀態之異常。According to the first embodiment, based on the current information of a plurality of driving motors, the sensitivity can better determine the abnormality of the machine state.

又,若工具之磨耗繼續進行則加工精度變差,從而無法維持加工品所要求之特定之加工精度,因此,切削加工中使用之工具因其個體差異導致甚至破損之壽命變動較大。因此,如將平均壽命設為目標以固定之加工數進行更換之類先前之壽命管理方法般,存在若為較平均壽命短之工具,則因加工性能降低導致產生製品不良之情形,但於本實施例中,可避免此種製品不良。In addition, if the wear of the tool continues, the machining accuracy will deteriorate, and the specific machining accuracy required by the processed product cannot be maintained. Therefore, the tool used in the cutting process has a large change in life or even breakage due to individual differences. Therefore, like the previous life management methods such as setting the average life as the target and replacing it with a fixed number of processing, if the tool is shorter than the average life, the product may be defective due to reduced processing performance. In the embodiment, such product defects can be avoided.

又,於本實施例中,若為較平均壽命長之工具,則可防止達到壽命之前進行更換導致之損失成本。Moreover, in this embodiment, if it is a tool with a longer than average life, it can prevent the loss of cost caused by replacement before the end of the life.

又,於馬達設置場所存在尺寸限制之情形或苛刻之環境條件下,難以追加設置偵測工具磨耗之加速度感測器或AE(Acoustic Emission)感測器等,但根據本實施例,可不需要此種感測器。In addition, it is difficult to add an acceleration sensor or an AE (Acoustic Emission) sensor to detect tool wear in situations where the size of the motor installation site is restricted or under harsh environmental conditions. However, according to this embodiment, this is not necessary. Kind of sensor.

進而,存在感測器之數量越增加,越難確保感測器群之可靠性,從而監視精度下降之問題,但根據本實施例,因不使用感測器,故可解決此種問題。Furthermore, the more the number of sensors increases, the more difficult it is to ensure the reliability of the sensor group, thereby reducing the monitoring accuracy. However, according to this embodiment, no sensors are used, so this problem can be solved.

又,因不使用感測器,故維護性、可靠性大幅度提昇。具體而言,不僅可削減感測器之保養檢查作業,而且可防止伴隨感測器故障之系統失效於未然。又,可削減感測器用系統裝配佈線,因此,可削減作業成本,而且可消除佈線干擾等困擾。 [實施例2]In addition, since sensors are not used, maintainability and reliability are greatly improved. Specifically, it can not only reduce the maintenance and inspection work of the sensor, but also prevent the failure of the system that accompanies the sensor failure. In addition, the system assembly wiring for the sensor can be reduced, and therefore, the operating cost can be reduced, and troubles such as wiring interference can be eliminated. [Example 2]

圖10係實施例2之馬達控制系統102之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號,且省略其說明之情形。FIG. 10 is a block diagram of the motor control system 102 of the second embodiment. In addition, in the following description, the parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description may be omitted.

於圖10中,馬達控制系統102具備N台(N為3以上之自然數)馬達10-1~10-N、及經由旋轉軸14結合於該等馬達10-1~10-N之工具16。In FIG. 10, the motor control system 102 includes N (N is a natural number of 3 or more) motors 10-1 to 10-N, and a tool 16 coupled to the motors 10-1 to 10-N via a rotating shaft 14. .

又,於各馬達10-1~10-N之U相、W相安裝各2個(合計3N個)電流感測器41,其等之電流檢測值Iu1 ~IuN 、Iw1 ~IwN 供給至監視裝置150(工具磨耗度之監視裝置)。In addition, two (3N in total) current sensors 41 are attached to the U-phase and W-phase of each motor 10-1 to 10-N, and the current detection values I u1 to I uN and I w1 to I wN are It is supplied to the monitoring device 150 (a monitoring device for the degree of tool wear).

對於監視裝置150之構成,如圖11所示,與實施例1之監視裝置40(參照圖2)中設置N個存在相關關係之馬達資訊運算部代替2個存在相關關係之馬達資訊運算部42之構成相同。Regarding the configuration of the monitoring device 150, as shown in FIG. 11, the monitoring device 40 of the first embodiment (refer to FIG. 2) is provided with N motor information computing units having a correlation instead of two motor information computing units 42 having a correlation. The composition is the same.

例如,亦存在將上述銑削加工之情形時之作為進給軸之Z軸、X軸或Y軸中之驅動馬達設為存在相關關係之驅動馬達之情形。For example, there is also a case where the drive motor in the Z-axis, X-axis, or Y-axis as the feed axis in the case of the above-mentioned milling processing is set as a drive motor with a correlation.

又,可將5軸加工之立式綜合加工機中之工作台之旋轉(C軸)與傾斜角(B軸)之驅動馬達包含於存在相關關係之驅動馬達中。本實施例之上述以外之構成及動作與實施例1大致相同。In addition, the drive motor for the rotation (C axis) and the inclination angle (B axis) of the worktable in the 5-axis vertical integrated processing machine can be included in the related drive motor. The structure and operation of this embodiment other than the above are substantially the same as those of the first embodiment.

圖12係對自複數個馬達之電流資訊中擷取與機器狀態相關之特徵量之情形進行說明之圖。與實施例1之圖8同樣地,例如可推定利用特徵量之一般線性模型等方法之機器狀態。於複雜加工之情形時,藉由使用存在利於加工負載之相關關係之複數個馬達電流資訊,可提昇機器狀態之推定精度。 [實施例3]FIG. 12 is a diagram for explaining the situation of extracting the feature quantity related to the machine state from the current information of a plurality of motors. As in Fig. 8 of the first embodiment, for example, it is possible to estimate the state of the machine using a method such as a general linear model of feature quantities. In the case of complex processing, by using multiple motor current information that is beneficial to the processing load, the estimation accuracy of the machine state can be improved. [Example 3]

圖13係實施例3之馬達控制系統103之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號,且省略其說明之情形。FIG. 13 is a block diagram of the motor control system 103 of the third embodiment. In addition, in the following description, the parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description may be omitted.

於圖13中,馬達控制系統103具備監視裝置160(機器狀態之監視裝置)代替實施例1之監視裝置40(參照圖2)。監視裝置160之構成與監視裝置40之構成大致相同,但異常判定部47輸出工具磨耗警報信號(參照圖2),並且對驅動裝置20內之指令產生部32視需要輸出控制指令。In FIG. 13, the motor control system 103 includes a monitoring device 160 (a monitoring device for the state of the equipment) instead of the monitoring device 40 of the first embodiment (see FIG. 2). The configuration of the monitoring device 160 is substantially the same as that of the monitoring device 40, but the abnormality determination unit 47 outputs a tool wear warning signal (see FIG. 2), and outputs control commands to the command generation unit 32 in the drive device 20 as necessary.

此處,控制指令係例如指示馬達10-1之停止或加速減速者,藉此,例如可實施最適合工具使用壽命延長或加工品質維持之運轉。Here, the control command is, for example, instructing the motor 10-1 to stop or accelerate or decelerate, so that, for example, an operation that is most suitable for extending the service life of the tool or maintaining the processing quality can be implemented.

以此方式,根據本實施例,異常判定部47偵測到機器狀態之異常(工具之過度磨耗、破損等)後,對控制部30輸出使控制狀態變更之控制指令。作為該情形時之控制指令,存在驅動馬達之停止或降低旋轉速度之類控制指令。藉此,可將控制部30中之控制狀態變更為合適之狀態。 [實施例4]In this way, according to the present embodiment, after the abnormality determination unit 47 detects an abnormality in the machine state (excessive wear and tear of the tool, etc.), it outputs a control command to the control unit 30 to change the control state. As a control command in this case, there are control commands such as stopping the drive motor or reducing the rotation speed. Thereby, the control state in the control unit 30 can be changed to an appropriate state. [Example 4]

圖14係實施例4之馬達控制系統104之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。FIG. 14 is a block diagram of the motor control system 104 of the fourth embodiment. In addition, in the following description, parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description thereof may be omitted.

於圖14中,馬達控制系統104具備監視裝置170(機器狀態之監視裝置)代替實施例2之監視裝置40(參照圖11)。監視裝置170之構成與監視裝置150之構成大致相同,但異常判定部47輸出機器狀態異常警報信號(參照圖11),並且對驅動裝置20內之指令產生部32視需要輸出控制指令。In FIG. 14, the motor control system 104 is provided with a monitoring device 170 (a monitoring device for the state of the machine) instead of the monitoring device 40 of the second embodiment (see FIG. 11). The configuration of the monitoring device 170 is substantially the same as that of the monitoring device 150, but the abnormality determination unit 47 outputs a machine state abnormality alarm signal (see FIG. 11), and outputs control commands to the command generation unit 32 in the drive device 20 as necessary.

此處,控制指令係例如指示馬達10-1之停止或加速減速者,藉此,可實施最適合工具使用壽命延長或加工品質維持之運轉。Here, the control command is, for example, instructing the motor 10-1 to stop or accelerate or decelerate, so that an operation that is most suitable for extending the service life of the tool or maintaining the processing quality can be implemented.

以此方式,根據本實施例,異常判定部47偵測到機器狀態之異常(工具之過度磨耗、破損等)後,對控制部30輸出使控制狀態變更之控制指令。藉此,可將控制部30中之控制狀態變更為合適之狀態。 [實施例5]In this way, according to the present embodiment, after the abnormality determination unit 47 detects an abnormality in the machine state (excessive wear and tear of the tool, etc.), it outputs a control command to the control unit 30 to change the control state. Thereby, the control state in the control unit 30 can be changed to an appropriate state. [Example 5]

圖15係實施例5之馬達控制系統105之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。FIG. 15 is a block diagram of the motor control system 105 of the fifth embodiment. In addition, in the following description, parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description thereof may be omitted.

於圖15中,馬達控制系統105具備驅動、監視裝置180、馬達10-1~10-N、及經由旋轉軸14結合之工具16。驅動、監視裝置180具備控制部30、變頻器22及監視裝置190(機器狀態異常之偵測)。In FIG. 15, the motor control system 105 includes a driving and monitoring device 180, motors 10-1 to 10-N, and a tool 16 coupled via a rotating shaft 14. The driving and monitoring device 180 includes a control unit 30, an inverter 22, and a monitoring device 190 (detection of abnormal machine status).

控制部30、變頻器22之構成與實施例1(參照圖1)相同,監視裝置190之構成與實施例4之監視裝置170(參照圖14)之構成相同。因此,本實施例之驅動、監視裝置180具有將實施例4中之驅動裝置20及監視裝置170之功能合併而成之功能。再者,本實施例亦可藉由對現有之驅動裝置20(參照圖14)增設監視裝置190而構成。 [實施例6]The configuration of the control unit 30 and the inverter 22 is the same as that of the first embodiment (see FIG. 1), and the configuration of the monitoring device 190 is the same as that of the monitoring device 170 (see FIG. 14) of the fourth embodiment. Therefore, the driving and monitoring device 180 of this embodiment has the function of combining the functions of the driving device 20 and the monitoring device 170 in the fourth embodiment. Furthermore, this embodiment can also be constructed by adding a monitoring device 190 to the existing driving device 20 (refer to FIG. 14). [Example 6]

圖16係實施例6之馬達驅動伺服放大器106之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。FIG. 16 is a block diagram of the motor-driven servo amplifier 106 of the sixth embodiment. In addition, in the following description, parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description thereof may be omitted.

於圖16中,伺服放大器106具備馬達10-1、旋轉軸14、工具16、伺服放大器106及監視裝置210。又,對馬達10-1之U相、W相安裝電流感測器41,將其等之電流檢測值Iu1 、Iw1 及來自伺服放大器2之馬達10-2之電流檢測值Iu2 、Iw2 供給至監視裝置210(機器狀態之監視裝置)。In FIG. 16, the servo amplifier 106 includes a motor 10-1, a rotating shaft 14, a tool 16, a servo amplifier 106, and a monitoring device 210. Furthermore, current sensors 41 are installed on the U-phase and W-phase of the motor 10-1, and the current detection values I u1 and I w1 of the motor 10-1 and the current detection values I u2 and I of the motor 10-2 from the servo amplifier 2 w2 is supplied to the monitoring device 210 (the monitoring device of the machine state).

就監視裝置210之構成而言,與如圖2所示於實施例1之監視裝置40(參照圖2)中設置有2個馬達資訊運算部42之構成相同。本實施例之上述以外之構成及動作與實施例1大致相同。The configuration of the monitoring device 210 is the same as the configuration in which the monitoring device 40 of the first embodiment (refer to FIG. 2) is provided with two motor information computing units 42 as shown in FIG. The structure and operation of this embodiment other than the above are substantially the same as those of the first embodiment.

又,於本實施例中,說明了於對馬達供給電流之伺服放大器中組入偵測機器狀態異常之功能之實施例,但若於對馬達供給電流之變頻器中組入偵測機器異常之功能,則可同樣地構築偵測工具磨耗狀態之變頻器(未圖示)。In addition, in this embodiment, the embodiment in which the function of detecting abnormal state of the machine is incorporated in the servo amplifier that supplies current to the motor is described, but if the function of detecting abnormal state of the machine is incorporated into the inverter that supplies current to the motor Function, it can also construct an inverter (not shown) for detecting the wear status of tools.

根據以上內容,可基於存在相關關係之複數個馬達電流資訊推定機器狀態,因此,可更準確地掌握機器之工具之更換時期或維護時期。 [實施例7]Based on the above content, the state of the machine can be estimated based on multiple motor current information related to each other. Therefore, it is possible to more accurately grasp the time of replacement or maintenance of the machine's tools. [Example 7]

圖17係實施例7之馬達驅動伺服放大器107之方塊圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。FIG. 17 is a block diagram of the motor-driven servo amplifier 107 of the seventh embodiment. In addition, in the following description, parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description thereof may be omitted.

於圖17中,伺服放大器107具備N台(N為3以上之自然數)馬達10-1~10-N、旋轉軸14、工具16、伺服放大器107及監視裝置220。In FIG. 17, the servo amplifier 107 includes N (N is a natural number of 3 or more) motors 10-1 to 10-N, a rotating shaft 14, a tool 16, a servo amplifier 107, and a monitoring device 220.

就監視裝置220之構成而言,與如圖11所示設置N個馬達資訊運算部之構成相同。本實施例之上述以外之構成及動作與實施例1大致相同。The configuration of the monitoring device 220 is the same as the configuration in which N motor information calculation units are provided as shown in FIG. 11. The structure and operation of this embodiment other than the above are substantially the same as those of the first embodiment.

根據以上所述,可基於存在相關關係之複數個馬達之電流資訊推定機器狀態,因此,可更準確地掌握機器之工具之更換時期或維護時期。 [實施例8]According to the above, the state of the machine can be estimated based on the current information of a plurality of motors that have a correlation. Therefore, it is possible to more accurately grasp the time of replacement or maintenance of the tools of the machine. [Example 8]

圖18係實施例8之產業用控制器108之方塊圖。產業用控制器108係與網路化之工廠之生產線或設備聯合,實現機器人控制或來自各種感測器之設備機器資料之收集與上位之資訊系統之無縫之垂直整合。而且,產業用控制器108係將產業用電腦之功能與PLC(programmable logic controller,可程式化邏輯控制器)之開放整合開發環境聚合於一台。不僅控制工廠內之設備機器,而且藉由收集、分析資訊而實現工廠整體或供應鏈整體之最佳化。FIG. 18 is a block diagram of the industrial controller 108 of the eighth embodiment. The industrial controller 108 is combined with the production line or equipment of the networked factory to realize the seamless vertical integration of robot control or collection of equipment and machine data from various sensors with the upper information system. Moreover, the industrial controller 108 combines the functions of an industrial computer and the open integrated development environment of a PLC (programmable logic controller) into one. Not only control the equipment in the factory, but also realize the optimization of the whole factory or the whole supply chain by collecting and analyzing information.

再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。In addition, in the following description, parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description thereof may be omitted.

於圖18中,產業用控制器108具備資訊收集部240與監視裝置230。又,各馬達10-1~10-N之電流檢測值Iu1 ~IuN 、Iw1 ~IwN 自變頻器或伺服放大器供給至資訊收集部240。In FIG. 18, the industrial controller 108 includes an information collection unit 240 and a monitoring device 230. In addition, the current detection values I u1 to I uN and I w1 to I wN of the motors 10-1 to 10 -N are supplied to the information collection unit 240 from the inverter or the servo amplifier.

就監視裝置230之構成而言,與如圖11所示設置N個馬達資訊運算部之構成相同。本實施例之上述以外之構成及動作與實施例1大致相同。The configuration of the monitoring device 230 is the same as the configuration in which N motor information calculation units are provided as shown in FIG. 11. The structure and operation of this embodiment other than the above are substantially the same as those of the first embodiment.

根據以上所述,可根據連接於網路之複數個馬達之電流資訊,於產業用控制器中推定複數個機器之狀態,因此,可更有效率地實現各個工具更換時期之最佳化或維護之人工節省化。 [實施例9]According to the above, the state of multiple machines can be estimated in the industrial controller based on the current information of multiple motors connected to the network. Therefore, the optimization or maintenance of each tool replacement period can be realized more efficiently. The labor saving. [Example 9]

圖19係實施例9之工具機之概略圖。再者,於以下之說明中,存在對與上述其他實施例之各部對應之部分標註相同之符號並省略其說明之情形。Figure 19 is a schematic diagram of the machine tool of the ninth embodiment. In addition, in the following description, parts corresponding to the parts of the other embodiments described above may be denoted by the same reference numerals, and the description thereof may be omitted.

於圖19中,工具機109係於其控制部中具備Z軸馬達伺服放大器、主軸馬達變頻器、X軸馬達伺服放大器、Y軸馬達伺服放大器、及監視裝置250。又,各軸馬達之電流檢測值自伺服放大器或變頻器供給至監視裝置。亦可自監視裝置將工具磨耗資訊輸出至工具機之控制操作畫面(面板),顯示警報或警告訊息(未圖示)。In FIG. 19, the machine tool 109 is equipped with a Z-axis motor servo amplifier, a spindle motor inverter, an X-axis motor servo amplifier, a Y-axis motor servo amplifier, and a monitoring device 250 in its control section. In addition, the current detection value of each axis motor is supplied to the monitoring device from the servo amplifier or the inverter. It can also output tool wear information from the monitoring device to the control operation screen (panel) of the machine tool, and display an alarm or warning message (not shown).

根據以上所述,可基於工具機之存在相關關係之複數軸之馬達之電流資訊推定工具之磨耗度,因此,可更有效率地實現各個工具更換時期之最佳化或維護之人工節省化。According to the above, the wear degree of the tool can be estimated based on the current information of the motors of the multiple axes of the machine tool. Therefore, the optimization of each tool replacement period or the labor saving of maintenance can be realized more efficiently.

不限於上述實施例,可進行各種變化。上述實施例係為了容易理解地說明本發明而例示者,不必限於具備所說明之所有構成者。It is not limited to the above-mentioned embodiment, and various changes can be made. The above-mentioned embodiments are exemplified in order to easily understand the present invention, and are not necessarily limited to those having all the constitutions described.

又,可將某實施例之構成之一部分置換為其他實施例之構成,亦可對某實施例之構成添加其他實施例之構成。又,可對各實施例之構成之一部分進行刪除或進行其他構成之追加、置換。In addition, a part of the configuration of a certain embodiment may be replaced with a configuration of another embodiment, or a configuration of another embodiment may be added to the configuration of a certain embodiment. In addition, it is possible to delete a part of the configuration of each embodiment, add or replace other configurations.

又,圖中所示之控制線或資訊線係表示考慮到說明所需者,並非表示製品上所需之所有控制線或資訊線。實際上亦可考慮將幾乎所有構成相互連接。對於上述實施例而言可能之變化係例如以下所述者。In addition, the control lines or information lines shown in the figure represent what is required for explanation, and do not represent all the control lines or information lines required on the product. In fact, it is also possible to consider connecting almost all components to each other. The possible changes to the above-mentioned embodiment are, for example, those described below.

(1)上述實施例中之控制部30、監視裝置40、150、160、170、190、210、220、230、250之硬體可由普通電腦實現,因此,亦可將圖2、圖3所示之演算法、與圖9所示之流程圖對應之程式等儲存於記憶媒體或經由傳輸路徑發佈。(1) The hardware of the control unit 30 and the monitoring devices 40, 150, 160, 170, 190, 210, 220, 230, and 250 in the above-mentioned embodiment can be realized by an ordinary computer. The algorithm shown, the program corresponding to the flowchart shown in Fig. 9, etc. are stored in a memory medium or distributed via a transmission path.

(2)圖2、圖3所示之演算法或圖9所示之流程圖係於各實施例中作為使用程式之軟體處理進行了說明。然而,亦可將其一部分或全部置換為使用ASIC(Application Specific Integrated Circuit(特殊應用積體電路),面向特定用途之IC(Integrated Circuit,積體電路))或FPGA(field-programmable gate array,場域可程式化閘陣列)等之硬體處理。(2) The algorithm shown in Fig. 2 and Fig. 3 or the flowchart shown in Fig. 9 are described as software processing of the program in each embodiment. However, part or all of it can be replaced with ASIC (Application Specific Integrated Circuit), IC (Integrated Circuit) for specific purposes, or FPGA (field-programmable gate array). Domain programmable gate array) and other hardware processing.

(3)於圖10等之構成中設置有複數個變頻器,但變頻器22亦可僅設置1台。(3) A plurality of inverters are installed in the configuration of Fig. 10 and the like, but only one inverter 22 may be installed.

於上述實施例中,主要說明了對使用工具之加工適應之情形,但不僅於工具之加工時,於進行機器人之操作之情形時,亦可有效使用於偵測包括機器人之機器之狀態之異常。In the above-mentioned embodiments, the situation of adapting to the processing of the use of tools is mainly explained, but not only in the processing of tools, but also in the operation of robots, it can also be effectively used to detect abnormalities in the state of machines including robots. .

於上述實施例中,以對變頻器、伺服放大器之適應例進行了說明,但亦可適應於DCBL(Direct Current Brushless,直流無刷)控制器等之電力轉換裝置。In the above embodiments, the application examples of the inverter and the servo amplifier are described, but it can also be applied to power conversion devices such as DCBL (Direct Current Brushless) controllers.

10:馬達 10-1~10-N:馬達 14:旋轉軸 16:工具 20:驅動裝置 22:變頻器 24:電流感測器 30:控制部 32:指令產生部 33:偏差運算部 34:向量控制部 36:dq/3Φ轉換部 38:3Φ/dq轉換部 40,150,160,170,190,210,220,230,250:監視裝置 41:電流感測器 42:馬達資訊運算部 42-1~42-N:馬達資訊運算部 44:特徵量運算部 45:狀態推定部 46:資料記憶部 47:異常判定部 52:3Φ/αβ轉換器 54:反正切轉換器 56:減法器 60:相位運算器 62:乘法器 64:乘法器 66:積分器 68:加法器 70:旋轉座標轉換器 72:積分器 74:乘法器 101:馬達控制系統 102:馬達控制系統 103:馬達控制系統 104:馬達控制系統 105:馬達控制系統 106:馬達驅動伺服放大器 107:馬達驅動伺服放大器 108:產業用控制器 109:工具機 180:監視裝置 240:資訊收集部 τ*:轉矩指令值 Iα,Iβ:交流電流 Id:激磁電流檢測值 Iq:轉矩電流檢測值 Ir1,Ir2:馬達轉矩電流 IrN:轉矩電流 ω1s:頻率信號 ωrs:機械頻率 ωrs1rs2:機械頻率 Id*:激磁電流指令值 Iq*:轉矩電流指令值 Ir:直流量 IU,IW:電流檢測值 IU1,IW1:電流檢測值 IU2,IW2:電流檢測值 IUs:電流檢測值 IUN:電流檢測值 IWN:電流檢測值 IWs:電流檢測值 KiPLL:積分增益 KpPLL:比例增益 M0:工具磨耗度之極限 PLL_I:積分信號 PLL_P:比例信號 Vd*:激磁電壓指令值 Vq*:轉矩電壓指令值 θi:交流電流相位角 θi*:交流電流相位角檢測值10: Motor 10-1~10-N: Motor 14: Rotating shaft 16: Tool 20: Drive 22: Inverter 24: Current sensor 30: Control part 32: Command generation part 33: Deviation calculation part 34: Vector Control unit 36: dq/3Φ conversion unit 38: 3Φ/dq conversion unit 40, 150, 160, 170, 190, 210, 220, 230, 250: Monitoring device 41: Current sensor 42: Motor information calculation unit 42-1~42-N: Motor information calculation unit 44: Feature quantity calculation unit 45: State estimation unit 46: Data storage unit 47: Abnormality determination unit 52: 3Φ/αβ converter 54: Arctangent converter 56: Subtractor 60: Phase calculator 62: Multiplier 64: Multiplier 66: Integrator 68 : Adder 70: Rotational coordinate converter 72: Integrator 74: Multiplier 101: Motor control system 102: Motor control system 103: Motor control system 104: Motor control system 105: Motor control system 106: Motor drive servo amplifier 107: Motor drive servo amplifier 108: Industrial controller 109: Machine tool 180: Monitoring device 240: Information collection unit τ*: Torque command value I α , I β : AC current I d : Excitation current detection value I q : Torque Current detection values I r1 , I r2 : Motor torque current I rN : Torque current ω 1s : Frequency signal ω rs : Mechanical frequency ω rs1 , ω rs2 : Mechanical frequency I d *: Excitation current command value I q *: Rotation Moment current command value I r : Direct current I U , I W : Current detection value I U1 , I W1 : Current detection value I U2 , I W2 : Current detection value I Us : Current detection value I UN : Current detection value I WN : Current detection value I Ws : Current detection value KiPLL: Integral gain KpPLL: Proportional gain M 0 : Tool wear limit PLL_I: Integral signal PLL_P: Proportional signal V d *: Excitation voltage command value V q *: Torque voltage command Value θ i : AC current phase angle θ i *: AC current phase angle detection value

圖1係實施例1中之馬達控制系統之方塊圖。 圖2係實施例1中之監視裝置之方塊圖。 圖3係實施例1中之馬達資訊運算部之方塊圖。 圖4係表示實施例1中之工具機之構成例之圖。 圖5係表示實施例1中之因工具磨耗導致之加工品質下降及工具破損產生之機制之圖。 圖6係表示實施例1中之伴隨工具磨耗之馬達電流變化之圖。 圖7係實施例1中之來自馬達資訊之特徵量擷取之概略圖。 圖8係實施例1中之關於根據馬達電流資訊推定工具磨耗之方法之圖。 圖9係實施例1中之工具磨耗偵測例行程序之流程圖。 圖10係實施例2中之馬達控制系統之方塊圖。 圖11係實施例2中之監視裝置之方塊圖。 圖12係實施例2中使用複數個加工軸馬達之情形時之特徵量擷取之概略圖。 圖13係實施例3中之馬達控制系統之方塊圖。 圖14係實施例4中之馬達控制系統之方塊圖。 圖15係實施例5中之馬達控制系統之方塊圖。 圖16係實施例6中之馬達驅動伺服放大器之方塊圖。 圖17係實施例7中之馬達驅動伺服放大器之方塊圖。 圖18係實施例8中之產業用控制器之方塊圖。 圖19係實施例9中之工具機之概略圖。Figure 1 is a block diagram of the motor control system in the first embodiment. Figure 2 is a block diagram of the monitoring device in the first embodiment. FIG. 3 is a block diagram of the motor information computing unit in the first embodiment. Fig. 4 is a diagram showing a configuration example of the machine tool in the first embodiment. FIG. 5 is a diagram showing the mechanism of the deterioration of processing quality and tool damage caused by tool wear in Example 1. FIG. FIG. 6 is a graph showing changes in motor current accompanying tool wear in Example 1. FIG. FIG. 7 is a schematic diagram of feature quantity extraction from motor information in Embodiment 1. FIG. 8 is a diagram of the method of estimating tool wear based on motor current information in Embodiment 1. FIG. 9 is a flowchart of the routine for detecting tool wear in the first embodiment. Fig. 10 is a block diagram of the motor control system in the second embodiment. Fig. 11 is a block diagram of the monitoring device in the second embodiment. FIG. 12 is a schematic diagram of feature quantity extraction when a plurality of machining axis motors are used in the second embodiment. FIG. 13 is a block diagram of the motor control system in the third embodiment. FIG. 14 is a block diagram of the motor control system in the fourth embodiment. Fig. 15 is a block diagram of the motor control system in the fifth embodiment. Fig. 16 is a block diagram of the motor-driven servo amplifier in the sixth embodiment. Fig. 17 is a block diagram of the motor-driven servo amplifier in the seventh embodiment. Fig. 18 is a block diagram of the industrial controller in the eighth embodiment. Figure 19 is a schematic diagram of the machine tool in the ninth embodiment.

40:監視裝置 40: Monitoring device

42:馬達資訊運算部 42: Motor Information Computing Department

44:特徵量運算部 44: Feature calculation unit

45:狀態推定部 45: State Estimation Department

46:資料記憶部 46: Data Memory Department

47:異常判定部 47: Abnormality Judgment Department

Ir1,Ir2:馬達轉矩電流 I r1 , I r2 : motor torque current

ωrs1rs2:機械頻率 ω rs1rs2 : mechanical frequency

IU1,IW1:電流檢測值 I U1 , I W1 : current detection value

IU2,IW2:電流檢測值 I U2 , I W2 : current detection value

Claims (12)

一種監視裝置,其特徵在於具備: 電流感測器,其對複數個驅動馬達之各者檢測二相之電流資訊; 馬達資訊運算部,其根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度; 特徵量運算部,其運算複數個上述驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量; 狀態推定部,其基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態; 資料記憶部,其記錄基準值資料;及 異常判定部,其基於所推定之上述機器狀態與上述基準值資料,判定異常狀態。A monitoring device, characterized by having: A current sensor, which detects two-phase current information for each of a plurality of driving motors; A motor information calculation unit, which calculates the corresponding torque current or rotation speed of the drive motor according to the current information; A feature quantity calculation unit that computes feature quantities related to the torque current or the rotation speed in a plurality of the drive motors; A state estimating unit, which estimates the machine state based on the above-mentioned characteristic quantities of the above-mentioned driving motors in a correlation relationship among a plurality of the above-mentioned driving motors; Data storage unit, which records the reference value data; and The abnormality determination unit determines the abnormal state based on the estimated state of the machine and the reference value data. 如請求項1之監視裝置,其中 上述機器狀態係表示上述驅動馬達驅動之工具之磨耗度。Such as the monitoring device of claim 1, where The above-mentioned machine state indicates the degree of wear of the tool driven by the above-mentioned drive motor. 如請求項1之監視裝置,其中 上述特徵量係上述驅動馬達之上述轉矩電流或上述驅動馬達之上述旋轉速度之最大值、標準偏差、平均值或FFT。Such as the monitoring device of claim 1, where The characteristic quantity is the maximum value, standard deviation, average value, or FFT of the torque current of the drive motor or the rotation speed of the drive motor. 如請求項1之監視裝置,其中 上述狀態推定部係 基於複數個上述驅動馬達之上述特徵量中與上述機器狀態處於相關關係中之複數個上述特徵量、及對上述特徵量進行加權之貢獻度,算出上述機器狀態。Such as the monitoring device of claim 1, where The above state estimation department The machine state is calculated based on a plurality of the feature quantities in a correlation relationship with the machine state among the plurality of the feature quantities of the drive motors, and a weighted contribution to the feature quantity. 如請求項4之監視裝置,其中 上述驅動馬達係 包含主軸馬達與進給軸馬達, 上述狀態推定部係 基於處於上述相關關係中之上述主軸馬達與上述進給軸馬達之上述特徵量,算出上述機器狀態。Such as the monitoring device of claim 4, where The above drive motor system Including spindle motor and feed axis motor, The above state estimation department The machine state is calculated based on the characteristic quantities of the spindle motor and the feed axis motor in the correlation relationship. 如請求項1之監視裝置,其中 上述異常判定部係 於檢測到異常之情形時,對控制上述驅動馬達之控制部輸出控制指令。Such as the monitoring device of claim 1, where The above-mentioned abnormality determination department When an abnormal situation is detected, a control command is output to the control unit that controls the above-mentioned drive motor. 如請求項1之監視裝置,其中 上述特徵量運算部係 將1台或存在相關關係之複數台上述驅動馬達之電流值或旋轉速度值設為擷取上述特徵量之觸發點,運算指定區間之上述特徵量。Such as the monitoring device of claim 1, where The above-mentioned feature amount calculation unit Set the current value or the rotation speed value of one or a plurality of the above-mentioned driving motors with a correlation relationship as a trigger point for capturing the above-mentioned characteristic quantity, and calculate the above-mentioned characteristic quantity in a specified interval. 如請求項4之監視裝置,其中 上述狀態推定部係 將固定加工品之工作台之旋轉軸之上述驅動馬達及傾斜角之軸之上述驅動馬達之上述特徵量包括在內地算出上述機器狀態。Such as the monitoring device of claim 4, where The above state estimation department The above-mentioned machine state is calculated by including the above-mentioned characteristic quantities of the above-mentioned drive motor of the rotating shaft of the worktable of the fixed processed product and the above-mentioned drive motor of the axis of the tilt angle. 一種伺服放大器,其特徵在於具有輸入來自其他伺服放大器之上述電流資訊之如請求項1之監視裝置。A servo amplifier is characterized by having a monitoring device such as claim 1 for inputting the above-mentioned current information from other servo amplifiers. 一種產業用控制器,其特徵在於具有: 資訊收集部,其收集來自複數個伺服放大器或變頻器之上述電流資訊;及 如請求項1之監視裝置。An industrial controller characterized by: An information collection unit, which collects the above-mentioned current information from a plurality of servo amplifiers or inverters; and Such as the monitoring device of claim 1. 一種工具機,其特徵在於: 於其控制部具備: 複數軸之馬達用之變頻器或伺服放大器;及 如請求項1之監視裝置。A machine tool characterized by: In its control department: Inverters or servo amplifiers for motors with multiple axes; and Such as the monitoring device of claim 1. 一種監視方法,其特徵在於: 對複數個驅動馬達之各者,檢測二相之電流資訊, 根據上述電流資訊,運算對應之上述驅動馬達之轉矩電流或旋轉速度, 運算複數個上述驅動馬達中之與上述轉矩電流或上述旋轉速度相關之特徵量, 基於複數個上述驅動馬達中處於相關關係中之上述驅動馬達之上述特徵量,推定機器狀態, 基於預先記錄之基準值資料與所推定之上述機器狀態,判定異常狀態。A monitoring method characterized by: For each of a plurality of drive motors, detect two-phase current information, According to the above current information, calculate the corresponding torque current or rotation speed of the above drive motor, Calculate the characteristic quantities related to the torque current or the rotation speed in the plurality of drive motors, Based on the above-mentioned characteristic quantities of the above-mentioned driving motors in correlation among the plurality of the above-mentioned driving motors, the machine state is estimated, Determine the abnormal state based on the pre-recorded reference value data and the estimated machine state.
TW109113040A 2019-04-18 2020-04-17 Monitoring device, monitoring method, servo amplifier, industrial controller, and machine tool TWI759720B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019079449A JP7194069B2 (en) 2019-04-18 2019-04-18 Monitoring device and monitoring method
JP2019-079449 2019-04-18

Publications (2)

Publication Number Publication Date
TW202040918A true TW202040918A (en) 2020-11-01
TWI759720B TWI759720B (en) 2022-04-01

Family

ID=72838227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113040A TWI759720B (en) 2019-04-18 2020-04-17 Monitoring device, monitoring method, servo amplifier, industrial controller, and machine tool

Country Status (3)

Country Link
JP (1) JP7194069B2 (en)
TW (1) TWI759720B (en)
WO (1) WO2020213265A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031521A (en) * 2021-03-08 2021-06-25 西门子工厂自动化工程有限公司 Cutter monitoring system and method of numerical control machine tool
TWI796948B (en) * 2021-05-14 2023-03-21 日商日立產機系統股份有限公司 power conversion device
TWI805093B (en) * 2021-11-24 2023-06-11 台中精機廠股份有限公司 User interface machine control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255427B2 (en) * 2019-09-02 2023-04-11 株式会社プロテリアル machine tool monitoring system
NL2029491B1 (en) * 2021-10-22 2023-05-19 Univ Twente Motor system, stepper motor and rotor
KR102534207B1 (en) * 2021-12-03 2023-05-17 이희관 Apparatus and method for detecting tool fracture and tool wear in adaptive feedrate control of CNC machine tool
JP7181440B1 (en) * 2022-04-25 2022-11-30 ファナック株式会社 Diagnostic data collection device, diagnostic data collection method, recording medium, and control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695941A (en) * 1985-07-29 1987-09-22 General Electric Company Loss of electrical feedback detector
JP2003326438A (en) * 2002-02-28 2003-11-18 Fanuc Ltd Tool anomaly detector
CH706473A1 (en) * 2012-05-04 2013-11-15 Erowa Ag Überwachugungseinrichtung to monitor positions of a robot and production line with a monitoring device.
JP5643372B2 (en) * 2013-03-28 2014-12-17 株式会社トーエネック Rotating machine pass / fail diagnosis system
EP3226406B1 (en) * 2014-11-28 2022-05-04 Hitachi Industrial Equipment Systems Co., Ltd. Monitoring device and monitoring method, and control device and control method provided with same
JP6099852B2 (en) * 2014-12-10 2017-03-22 三菱電機株式会社 Diagnostic equipment for electric motors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031521A (en) * 2021-03-08 2021-06-25 西门子工厂自动化工程有限公司 Cutter monitoring system and method of numerical control machine tool
TWI796948B (en) * 2021-05-14 2023-03-21 日商日立產機系統股份有限公司 power conversion device
TWI805093B (en) * 2021-11-24 2023-06-11 台中精機廠股份有限公司 User interface machine control system

Also Published As

Publication number Publication date
JP7194069B2 (en) 2022-12-21
WO2020213265A1 (en) 2020-10-22
TWI759720B (en) 2022-04-01
JP2020178454A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
TWI759720B (en) Monitoring device, monitoring method, servo amplifier, industrial controller, and machine tool
JP5536611B2 (en) Method and apparatus for monitoring machine tool, machine tool
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
US10029340B2 (en) Machine tool
US9110451B2 (en) Motor control system and safety monitoring system therefor
CN111148609B (en) Method for estimating abnormal site and recording medium for recording program for executing estimation of abnormal site
JP2019148971A (en) Abnormality factor specifying apparatus
US10396699B2 (en) Anomaly diagnosing device and anomaly diagnosing method
JP3566014B2 (en) Processing equipment
JP2006083928A (en) Method and device for diagnosing irregularity and deterioration of electric valve device
US11913992B2 (en) Current measuring system for machine tool and current measuring method thereof
Miura et al. A method of cutting power monitoring for feed axes in milling by power measurement device
JP2006158031A (en) Motor controller and control method for the same
JP5049084B2 (en) Load abnormality diagnosis device and load abnormality diagnosis program
JP6781845B2 (en) Machine tool monitoring system
JPWO2018083746A1 (en) Equipment diagnostic device and method of equipment diagnostic
JP7255427B2 (en) machine tool monitoring system
JP6020752B1 (en) Diagnostic equipment
JP2004215455A (en) Resonance frequency detector for multi-axis motor controller
US10663943B2 (en) Parameter determination support device, and non-transitory computer-readable medium encoded with program
JP2011259579A (en) Health warning device for servo motor and calculation method therefor
JP2013086196A (en) Cutting tool diagnostic device
CN110161971B (en) Parameter determination support device and computer-readable medium having program recorded thereon
JP4240208B2 (en) Motor control device
JP4756464B2 (en) AC motor drive inverter device and operation method thereof