JP2006158031A - Motor controller and control method for the same - Google Patents

Motor controller and control method for the same Download PDF

Info

Publication number
JP2006158031A
JP2006158031A JP2004342014A JP2004342014A JP2006158031A JP 2006158031 A JP2006158031 A JP 2006158031A JP 2004342014 A JP2004342014 A JP 2004342014A JP 2004342014 A JP2004342014 A JP 2004342014A JP 2006158031 A JP2006158031 A JP 2006158031A
Authority
JP
Japan
Prior art keywords
speed
motor
command
probability density
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004342014A
Other languages
Japanese (ja)
Inventor
Armel Baloche Noel
アーメル バローチュ ノール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004342014A priority Critical patent/JP2006158031A/en
Publication of JP2006158031A publication Critical patent/JP2006158031A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor controller having a diagnosis function for accurately diagnosing a failure. <P>SOLUTION: The motor controller is provided with a position controlling section 4 for controlling a position and outputting a speed instruction based on the motor position and a position instruction from a motor position detector 5, a speed controlling section 3 for controlling a speed and outputting a torque instruction based on the motor speed found from the motor position and the speed instruction, a current controlling section 2 for outputting a current instruction based on the torque instruction, a position/speed instruction converting section 9 for inputting the position instruction and outputting the speed instruction, a subtractor for finding a difference between the speed instruction and the motor speed, a probability density estimating section 13 for calculating and estimating a probability density function from the difference signal 12, and a failure detecting section 14 for generating a warning if the monitored probability density function is abnormal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主にロボットや工作機械等に用いられるモータ制御装置に関し、特に、異常診断機能を備えたモータ制御装置およびその制御方法に関するものである。   The present invention relates to a motor control apparatus mainly used for robots, machine tools, and the like, and more particularly to a motor control apparatus having an abnormality diagnosis function and a control method thereof.

従来のモータ制御装置において確率密度関数を用いて異常発生を診断する例としては、例えば、特許文献1に開示の「診断機能を備えたモータ制御装置」が挙げられる。図3は従来の診断機能を備えたモータ制御装置のブロック図であり、位置・速度制御部24は、位置検出器(エンコーダ)5で検出されたモータ位置(Pfb)6を入力して、目標位置と位置6が一致するように位置制御、速度制御を行いトルク指令23を電流制御部2へ出力してモータ1を駆動する。
確率密度関数演算部25は、トルク指令23を入力して、トルク指令の確率密度関数の標準偏差を算出する。異常診断部26は標準偏差が一定水準(しきい値)を超えた場合に警報を発するもので、ノイズに影響されない診断が可能になる。
しかし、このモータ制御装置では、トルク指令の確率密度関数により異常診断を行うために、フィードバック制御を用いていない場合やフィードバック制御でのゲインが低い場合に異常振動が発生していても補償トルクが発生されないので異常検出が難しかった。
これを改善した回路が特許文献2に開示の「診断機能を備えたモータ制御装置」である。図4はこの診断機能付きモータ制御装置のブロック図で、確率密度関数演算部35はモータ位置Pfbを入力して、モータ位置の確率密度関数の標準偏差を算出して標準偏差σPfbがしきい値を超えた場合に警報を発するようにしたので、補償トルクが発生されない場合も異常診断が可能となった。
As an example of diagnosing the occurrence of an abnormality using a probability density function in a conventional motor control device, for example, a “motor control device having a diagnosis function” disclosed in Patent Document 1 can be cited. FIG. 3 is a block diagram of a motor control device having a conventional diagnostic function. A position / speed control unit 24 inputs a motor position (Pfb) 6 detected by a position detector (encoder) 5 to obtain a target Position control and speed control are performed so that the position and the position 6 coincide with each other, and a torque command 23 is output to the current control unit 2 to drive the motor 1.
The probability density function calculator 25 receives the torque command 23 and calculates the standard deviation of the probability density function of the torque command. The abnormality diagnosis unit 26 issues an alarm when the standard deviation exceeds a certain level (threshold value), enabling diagnosis that is not affected by noise.
However, in this motor control device, since the abnormality diagnosis is performed by the probability density function of the torque command, the compensation torque can be obtained even when abnormal vibration occurs when feedback control is not used or when the gain in feedback control is low. Abnormality detection was difficult because it was not generated.
A circuit that improves this is the “motor control device having a diagnostic function” disclosed in Patent Document 2. FIG. 4 is a block diagram of the motor controller with a diagnostic function. The probability density function calculation unit 35 inputs the motor position Pfb, calculates the standard deviation of the probability density function of the motor position, and the standard deviation σPfb is a threshold value. Since an alarm is issued when the value exceeds the limit, an abnormality diagnosis can be performed even when no compensation torque is generated.

次に、以上の図3および図4の制御ブロック図で示した診断装置との比較のために、機械(負荷)の状態をセンサで検出して負荷の故障を検出する制御の例について説明する。 図5は従来のセンサを使用する故障検出システムのブロック図であり、モータに接続して稼動する機械(負荷)の状態をセンサで検出して異常診断を行う制御例であって、振動センサ41を用いた軸受38の振動検出系を示している。負荷37がモータ39によって運転されると、軸受け38における振動は振動センサ41によって検出される。センサ41からの信号を用いて信号の確率密度関数は確率密度推定ブロック42により計算/推定されるが、この場合は、更に、負荷側に特別なセンサ41が必要になる。
図6は特許文献3に開示の「モータを動力源とする機械の動作状態モニタ装置およびモータを動力源とする機械の異常診断法」のブロック図であり、図6も図5の負荷機械の状態をセンサを用いて検出する制御系であって、負荷機械としてプレス機械用搬送装置等の異常診断を行うモニター装置である。このモニター装置は、モータ51の消費電力を測定する電力測定器61と、回転軸53の回転角度を検出する回転角度測定器62と、動作部位(プレス用搬送機械)55の動作量を測定する動作量センサ63を備えて、モニタ装置本体64は消費電力、回転角度、動作量を関連付けたテーブルを記憶装置65へ記憶しておいて、消費電力の確率密度関数を求めて異常測定を行うものである。
特開2003−70287号公報(図1) 特開2003−348886号公報(図1) 特開平9−198123号公報(図1)
Next, for comparison with the diagnostic apparatus shown in the control block diagrams of FIGS. 3 and 4 above, an example of control for detecting a load failure by detecting the state of the machine (load) with a sensor will be described. . FIG. 5 is a block diagram of a failure detection system that uses a conventional sensor. This is a control example in which the state of a machine (load) connected to a motor and operating is detected by the sensor, and an abnormality diagnosis is performed. 2 shows a vibration detection system of the bearing 38 using When the load 37 is driven by the motor 39, the vibration in the bearing 38 is detected by the vibration sensor 41. The probability density function of the signal is calculated / estimated by the probability density estimation block 42 using the signal from the sensor 41. In this case, a special sensor 41 is further required on the load side.
FIG. 6 is a block diagram of “a machine operation state monitoring device using a motor as a power source and a method for diagnosing a machine abnormality using a motor as a power source” disclosed in Patent Document 3, and FIG. 6 is also a diagram of the load machine of FIG. It is a control system that detects a state using a sensor, and is a monitor device that performs an abnormality diagnosis of a transport device for a press machine as a load machine. This monitor device measures the amount of motion of a power measuring device 61 that measures the power consumption of the motor 51, a rotation angle measuring device 62 that detects the rotation angle of the rotating shaft 53, and an operation part (press transport machine) 55. An operation amount sensor 63 is provided, and the monitor device main body 64 stores a table in which the power consumption, the rotation angle, and the operation amount are associated with each other in the storage device 65, and obtains a probability density function of the power consumption and performs anomaly measurement. It is.
Japanese Patent Laying-Open No. 2003-70287 (FIG. 1) JP 2003-348886 A (FIG. 1) Japanese Patent Laid-Open No. 9-198123 (FIG. 1)

しかしながら、特許文献2記載の発明は、トルク指令の確率密度関数を用いた特許文献1記載の発明の欠点を改善してモータ位置Pfbを基に確率密度関数を演算するので、異常に対して制御装置が補償トルクを発生しない場合でも、一時的なノイズ等による誤検出が少ない異常診断が可能であるが、負荷条件又は位置指令の速度換算値の形状が変化すると、確率密度関数も変化してしまうので正確な故障状態の検知が難しいという問題があった。
また、図5記載の装置や図6に示す特許文献3記載の発明の場合は、負荷機械の稼動システム全体のモニター装置であって、特別なセンサーを必要とする装置なので、特許文献1および2の装置とは制御系が異なり装置および制御が複雑化するという問題があった。
そこで本発明は、これらの課題を解決するためになされたもので、特別なセンサー等を必要としない簡単な構成によって、モータ位置の代わりに位置/速度指令と速度の差異を用いて確率密度関数を求めることによって、負荷条件又は速度プロフィールの変化に影響されず、異常に対して制御装置が補償トルクを発生しない場合でも、一時的なノイズ等による誤検出の少ない異常診断機能付きのモータ制御装置を提供することを目的としている。
However, the invention described in Patent Document 2 calculates the probability density function based on the motor position Pfb by improving the drawbacks of the invention described in Patent Document 1 using the probability density function of the torque command. Even if the device does not generate compensation torque, it is possible to perform abnormality diagnosis with few false detections due to temporary noise, etc., but if the load condition or the speed conversion value of the position command changes, the probability density function also changes. As a result, there is a problem that it is difficult to accurately detect the failure state.
In the case of the device shown in FIG. 5 or the invention described in Patent Document 3 shown in FIG. 6, since it is a monitor device for the entire operating system of the load machine and requires a special sensor, Patent Documents 1 and 2 are used. There is a problem that the control system is different from this device and the device and control are complicated.
Accordingly, the present invention has been made to solve these problems, and a probability density function using a difference between a position / speed command and a speed instead of a motor position by using a simple configuration that does not require a special sensor or the like. Therefore, even if the control device does not generate a compensation torque for an abnormality without being affected by changes in the load condition or speed profile, the motor control device with an abnormality diagnosis function is less likely to be erroneously detected due to temporary noise or the like. The purpose is to provide.

上記目的を達成するため、請求項1記載の発明はモータ制御装置に係り、モータ位置検出器からのモータ位置と位置指令により位置制御を行い速度指令を出力する位置制御部と、前記速度指令とモータ位置より求めたモータ速度より速度制御を行ってトルク指令を出力する速度制御部と、前記トルク指令より電流指令を出力する電流制御部を備えたモータ制御装置において、前記位置指令を入力して速度指令を出力する位置/速度指令変換部と、前記速度指令と前記モータ速度の差異を求める減算器と、前記差異信号より確率密度関数を演算・推定する確率密度推定部と、前記確率密度関数を監視して異常な場合は警報を発する故障検出部と、を有することを特徴としている。
また、請求項2記載の発明はモータ制御方法に係り、モータ位置検出器からのモータ位置と位置指令より位置制御を行い速度指令を出力し、前記速度指令とモータ速度より速度制御によりトルク指令を出力し、前記トルク指令より電流指令を出力してモータを駆動するモータ制御方法において、位置/速度指令変換部において位置指令を入力して速度指令を出力し、減算器により前記速度指令と前記モータ速度との差異を求め、前記差異より確率密度関数を推定・演算して故障検出を行う際に、速度が一定となる区間において前記確率密度関数を推定・演算して故障検出を行うことを特徴としている。
In order to achieve the above object, an invention according to claim 1 relates to a motor control device, a position control unit for performing position control by a motor position and a position command from a motor position detector and outputting a speed command, and the speed command In a motor control device including a speed control unit that outputs a torque command by performing speed control from a motor speed obtained from a motor position, and a current control unit that outputs a current command from the torque command, the position command is input. A position / speed command conversion unit that outputs a speed command; a subtractor that determines a difference between the speed command and the motor speed; a probability density estimation unit that calculates and estimates a probability density function from the difference signal; and the probability density function And a failure detection unit that issues an alarm if abnormal.
According to a second aspect of the present invention, there is provided a motor control method, wherein position control is performed based on a motor position and position command from a motor position detector, a speed command is output, and a torque command is transmitted by speed control based on the speed command and motor speed. In the motor control method of driving and driving the motor by outputting a current command from the torque command, a position command is input and a speed command is output in a position / speed command conversion unit, and the speed command and the motor are output by a subtractor. Obtaining a difference from the speed, and estimating and calculating a probability density function from the difference and performing failure detection, the failure density is detected by estimating and calculating the probability density function in a section where the speed is constant. It is said.

上記構成により、負荷条件又は速度プロフィールの変化に影響されること無く、異常に対して制御装置の補償トルクが発生しない場合でも、一時的なノイズなどによる誤検出の少ない正確な異常検出が可能になりシステムの安全が保証されるという効果がある。   With the above configuration, it is possible to accurately detect an abnormality with few false detections due to temporary noise, etc., even when the compensation torque of the control device does not occur for the abnormality without being affected by changes in load conditions or speed profiles. The safety of the system is guaranteed.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明のモータ制御装置のブロック図である。
図1において、サーボ制御部は、モータ1、電流制御部2、速度制御部3、位置制御部4によって構成される。エンコーダ5からのフィードバック6(Pfb)は、位置制御部4及びそれを速度制御部3へ転送するフィードバック位置/速度変換部7へ転送される。
確率密度推定部13は、フィードバック速度(Sfb)11と位置/速度指令10との差異の差異信号12の密度分布を計算/推定する。位置/速度指令10は位置指令8を位置/速度指令変換部9により変換して得られる。確率密度関数は差異信号12の他の統計情報と共に、故障検出部14による故障検出に使用される。
FIG. 1 is a block diagram of a motor control device of the present invention.
In FIG. 1, the servo control unit includes a motor 1, a current control unit 2, a speed control unit 3, and a position control unit 4. Feedback 6 (Pfb) from the encoder 5 is transferred to the position control unit 4 and the feedback position / speed conversion unit 7 that transfers it to the speed control unit 3.
The probability density estimation unit 13 calculates / estimates the density distribution of the difference signal 12 of the difference between the feedback speed (Sfb) 11 and the position / speed command 10. The position / speed command 10 is obtained by converting the position command 8 by the position / speed command conversion unit 9. The probability density function is used for failure detection by the failure detection unit 14 together with other statistical information of the difference signal 12.

図2は図1に示す速度指令とフィードバック速度のプロットを示す図である。 図2において、X軸15は時間を秒単位で表しており、Y軸16は速度を回転/秒で表している。これらの速度指令17(図1の10相当)及び速度18(11相当)の差異が、確率密度関数を計算/推定し生成するために使用される。
故障検出のために、確率密度関数は、差異信号12の標準偏差、平均、尖り度、歪度といった他のパラメータと共に計算される。差異信号の分析(又は確率密度関数の計算)は、図2に示す、A19からB20までの、又はA´21からB´22までの区間で実行される。図2から、この区間は、位置指令の速度換算値17が一定になるデータの範囲を表していることが分かる。この区間の差異信号12が、区間A〜B(又はA´〜B´)についてのサンプルデータの確率密度関数および他の統計パラメータを計算するために使用され、安定な計算が可能になる。
従って、分布パラメータを安定領域A19〜B20(又はA´21〜B´22)区間で監視すれば故障検出部14による確率密度関数やその他のパラメータにしきい値を設定することにより確実な故障検出が可能になる。
FIG. 2 is a diagram showing a plot of the speed command and the feedback speed shown in FIG. In FIG. 2, the X-axis 15 represents time in seconds, and the Y-axis 16 represents speed in rotations / second. The difference between these speed commands 17 (equivalent to 10 in FIG. 1) and speed 18 (equivalent to 11) is used to calculate / estimate and generate a probability density function.
For fault detection, the probability density function is calculated along with other parameters such as standard deviation, average, kurtosis, skewness of the difference signal 12. The analysis of the difference signal (or calculation of the probability density function) is performed in the section from A19 to B20 or from A′21 to B′22 shown in FIG. It can be seen from FIG. 2 that this section represents a data range in which the speed conversion value 17 of the position command is constant. The difference signal 12 of this interval is used to calculate the probability density function and other statistical parameters of the sample data for intervals A to B (or A ′ to B ′), allowing stable calculation.
Therefore, if the distribution parameter is monitored in the stable region A19 to B20 (or A′21 to B′22), reliable failure detection is performed by setting a threshold value for the probability density function and other parameters by the failure detection unit 14. It becomes possible.

以上の構成であるので、負荷条件又は速度プロフィールの変化に影響されること無く、異常に対して制御装置の補償トルクが発生しない場合でも、一時的なノイズなどによる誤検出の少ない正確な異常検出が可能になりシステムの安全が保たれるため、本発明は、ロボットや工作機械等のモータ制御装置に、正確な故障の診断機能付きモータ制御装置として用いて好適となる。   Because of the above configuration, it is not affected by changes in load conditions or speed profiles, and accurate abnormality detection with few false detections due to temporary noise even when control device compensation torque does not occur for abnormality. Therefore, the present invention is suitable for use in a motor control device such as a robot or a machine tool as a motor control device with an accurate failure diagnosis function.

本発明に係るータ制御装置のブロック図である。It is a block diagram of the data control device concerning the present invention. 図1に示す速度指令とフィードバック速度とのプロットを示す図である。It is a figure which shows the plot of the speed instruction | command shown in FIG. 1, and a feedback speed. 従来の診断機能を備えたモータ制御装置のブロック図である。It is a block diagram of the motor control apparatus provided with the conventional diagnostic function. 従来の診断機能付きモータ制御装置のブロック図である。It is a block diagram of the conventional motor control apparatus with a diagnostic function. 従来のセンサを用いた故障検出システムのブロック図である。It is a block diagram of the failure detection system using the conventional sensor. 従来のモータを動力源とする機械の動作状態モニタ装置およびモータを動力源とする機械の異常診断方法のブロック図である。It is a block diagram of the operation state monitoring apparatus of the machine which uses the conventional motor as a power source, and the abnormality diagnosis method of the machine which uses a motor as a power source.

符号の説明Explanation of symbols

1 モータ
2 電流制御部
3 速度制御部
4 位置制御部
5 エンコーダ
6 フィードバック信号
7 フィードバック位置/速度変換部
8 位置指令
9 位置に/速度指令変換部
10 位置/速度指令
11、18 フィードバック速度
12 差異信号
13 確率密度推定部
14 故障検出部
17 速度指令
DESCRIPTION OF SYMBOLS 1 Motor 2 Current control part 3 Speed control part 4 Position control part 5 Encoder 6 Feedback signal 7 Feedback position / speed conversion part 8 Position command 9 To position / speed command conversion part 10 Position / speed command 11, 18 Feedback speed 12 Difference signal 13 Probability density estimation unit 14 Failure detection unit 17 Speed command

Claims (2)

モータ位置検出器からのモータ位置と位置指令により位置制御を行い速度指令を出力する位置制御部と、前記速度指令とモータ位置より求めたモータ速度より速度制御を行ってトルク指令を出力する速度制御部と、前記トルク指令より電流指令を出力する電流制御部を備えたモータ制御装置において、
前記位置指令を入力して速度指令を出力する位置/速度指令変換部と、前記速度指令と前記モータ速度の差異を求める減算器と、前記差異信号より確率密度関数を演算・推定する確率密度推定部と、前記確率密度関数を監視して異常な場合は警報を発する故障検出部と、を有することを特徴とするモータ制御装置。
A position control unit that performs position control based on the motor position and position command from the motor position detector and outputs a speed command, and a speed control that performs speed control based on the motor speed obtained from the speed command and the motor position and outputs a torque command And a motor control device including a current control unit that outputs a current command from the torque command,
A position / speed command conversion unit that inputs the position command and outputs a speed command, a subtractor that obtains a difference between the speed command and the motor speed, and a probability density estimation that calculates and estimates a probability density function from the difference signal And a failure detection unit that monitors the probability density function and issues an alarm if abnormal, a motor control device.
モータ位置検出器からのモータ位置と位置指令より位置制御を行い速度指令を出力し、前記速度指令とモータ速度より速度制御によりトルク指令を出力し、前記トルク指令より電流指令を出力してモータを駆動するモータ制御方法において、位置/速度指令変換部において位置指令を入力して速度指令を出力し、減算器により前記速度指令と前記モータ速度との差異を求め、前記差異より確率密度推定部において確率密度関数を推定・演算して故障検出を行う際に、速度が一定となる区間において前記確率密度関数を推定・演算して故障検出を行うことを特徴とするモータ制御方法。   Position control is performed based on the motor position and position command from the motor position detector, a speed command is output, torque command is output based on speed control based on the speed command and motor speed, current command is output based on the torque command, and the motor is In the driving motor control method, the position / speed command conversion unit inputs the position command and outputs the speed command, the subtractor obtains the difference between the speed command and the motor speed, and the probability density estimation unit calculates the difference from the difference. A motor control method characterized by estimating and calculating the probability density function and performing failure detection in a section where the speed is constant when performing failure detection by estimating and calculating a probability density function.
JP2004342014A 2004-11-26 2004-11-26 Motor controller and control method for the same Abandoned JP2006158031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342014A JP2006158031A (en) 2004-11-26 2004-11-26 Motor controller and control method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342014A JP2006158031A (en) 2004-11-26 2004-11-26 Motor controller and control method for the same

Publications (1)

Publication Number Publication Date
JP2006158031A true JP2006158031A (en) 2006-06-15

Family

ID=36635646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342014A Abandoned JP2006158031A (en) 2004-11-26 2004-11-26 Motor controller and control method for the same

Country Status (1)

Country Link
JP (1) JP2006158031A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033459A (en) * 2011-06-29 2013-02-14 Jfe Steel Corp Abnormality monitoring system and abnormality monitoring method
CN105785961A (en) * 2016-05-17 2016-07-20 中国科学技术大学 Forging press machine operation condition information acquisition and analysis system based on the internet of things technology
JP2016197040A (en) * 2015-04-03 2016-11-24 三菱電機株式会社 Diagnostic apparatus for electric motor
WO2018020545A1 (en) * 2016-07-25 2018-02-01 三菱電機株式会社 Electric motor diagnosis device
JP2020143591A (en) * 2019-03-05 2020-09-10 ヤンマーパワーテクノロジー株式会社 Failure diagnosis device of hydraulic pump, construction machine comprising failure diagnosis device, failure diagnosis method and failure diagnosis program
WO2021014670A1 (en) 2019-07-23 2021-01-28 オムロン株式会社 Abnormality detecting device, abnormality detecting method, and abnormality detecting program
WO2021117459A1 (en) * 2019-12-13 2021-06-17 株式会社安川電機 Power conversion device, conveyance system, power conversion method, program, and diagnostic device
CN113567857A (en) * 2021-07-19 2021-10-29 首钢京唐钢铁联合有限责任公司 Motor encoder fault detection method and device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033459A (en) * 2011-06-29 2013-02-14 Jfe Steel Corp Abnormality monitoring system and abnormality monitoring method
JP2016197040A (en) * 2015-04-03 2016-11-24 三菱電機株式会社 Diagnostic apparatus for electric motor
CN105785961A (en) * 2016-05-17 2016-07-20 中国科学技术大学 Forging press machine operation condition information acquisition and analysis system based on the internet of things technology
CN105785961B (en) * 2016-05-17 2019-07-23 中国科学技术大学 The information collection of forging machine tool operating condition and analysis system based on technology of Internet of things
CN109477869B (en) * 2016-07-25 2021-02-26 三菱电机株式会社 Diagnostic device for motor
WO2018020545A1 (en) * 2016-07-25 2018-02-01 三菱電機株式会社 Electric motor diagnosis device
KR20190014074A (en) * 2016-07-25 2019-02-11 미쓰비시덴키 가부시키가이샤 Diagnostic equipment of motors
CN109477869A (en) * 2016-07-25 2019-03-15 三菱电机株式会社 The diagnostic device of motor
EP3489700A4 (en) * 2016-07-25 2019-07-31 Mitsubishi Electric Corporation Electric motor diagnosis device
KR102104117B1 (en) * 2016-07-25 2020-04-23 미쓰비시덴키 가부시키가이샤 Diagnostic device of electric motor
JP2020143591A (en) * 2019-03-05 2020-09-10 ヤンマーパワーテクノロジー株式会社 Failure diagnosis device of hydraulic pump, construction machine comprising failure diagnosis device, failure diagnosis method and failure diagnosis program
WO2021014670A1 (en) 2019-07-23 2021-01-28 オムロン株式会社 Abnormality detecting device, abnormality detecting method, and abnormality detecting program
JP2021018753A (en) * 2019-07-23 2021-02-15 オムロン株式会社 Abnormality detector, abnormality detection method, and abnormality detection program
CN113924207A (en) * 2019-07-23 2022-01-11 欧姆龙株式会社 Abnormality detection device, abnormality detection method, and abnormality detection program
JP7367366B2 (en) 2019-07-23 2023-10-24 オムロン株式会社 Anomaly detection device, anomaly detection method, and anomaly detection program
CN113924207B (en) * 2019-07-23 2024-04-05 欧姆龙株式会社 Abnormality detection device, abnormality detection method, and storage medium
WO2021117459A1 (en) * 2019-12-13 2021-06-17 株式会社安川電機 Power conversion device, conveyance system, power conversion method, program, and diagnostic device
US12088217B2 (en) 2019-12-13 2024-09-10 Kabushiki Kaisha Yaskawa Denki Power conversion device, transport system, power conversion method, non-transitory computer-readable storage medium with a program stored thereon, and diagnosis device
CN113567857A (en) * 2021-07-19 2021-10-29 首钢京唐钢铁联合有限责任公司 Motor encoder fault detection method and device
CN113567857B (en) * 2021-07-19 2024-02-09 首钢京唐钢铁联合有限责任公司 Motor encoder fault detection method and device

Similar Documents

Publication Publication Date Title
US11241792B2 (en) Method and device for detecting abnormality of encoder, and robot control system
JP5014391B2 (en) Numerical control device having a function of determining a machine abnormality based on signals from a plurality of sensors
US8847529B2 (en) Electric motor control
JP2006281421A (en) Robot and abnormality detection method of robot
US9110451B2 (en) Motor control system and safety monitoring system therefor
US9274516B2 (en) Collision detection method for a drive unit
JP2008097363A (en) Abnormality diagnosis method and device thereof
CN110174873B (en) Servo control device
JP2009154274A (en) Method and apparatus for diagnosing machine
TW202040918A (en) Monitoring device and monitoring method
TWI452822B (en) Apparatus for controlling a motor
JP2006301761A (en) Machine tool
JP7275008B2 (en) Diagnostic device, motor drive device and diagnostic method
US20170106487A1 (en) Main spindle failure detection device for machine tool and method of detecting main spindle failure
JP2006158031A (en) Motor controller and control method for the same
JP2010188504A (en) Robot control device, and robot
JP4228965B2 (en) Robot control method
US8393264B2 (en) Press machine
JP2011063404A (en) Door control device of elevator
US10639759B2 (en) Load state diagnosis device and load state diagnosis method for servomotor
JP6940820B2 (en) Robot control device, maintenance management method, and maintenance management program
JP4538730B2 (en) Motor control device
KR101421997B1 (en) Embedded system and method for detecting fault thereof
JP2020040137A (en) Abnormality determination device and abnormality determination method
JPH09140175A (en) Motor controller

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090908