TW202034607A - Stator and rotor design for periodic torque requirements - Google Patents

Stator and rotor design for periodic torque requirements Download PDF

Info

Publication number
TW202034607A
TW202034607A TW108139588A TW108139588A TW202034607A TW 202034607 A TW202034607 A TW 202034607A TW 108139588 A TW108139588 A TW 108139588A TW 108139588 A TW108139588 A TW 108139588A TW 202034607 A TW202034607 A TW 202034607A
Authority
TW
Taiwan
Prior art keywords
stator
magnetic flux
rotor
generator
motor
Prior art date
Application number
TW108139588A
Other languages
Chinese (zh)
Other versions
TWI827721B (en
Inventor
史蒂芬 羅伯特 蕭
喬治 哈迪 米爾漢姆
Original Assignee
美商E電路馬達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/665,763 external-priority patent/US11527933B2/en
Application filed by 美商E電路馬達股份有限公司 filed Critical 美商E電路馬達股份有限公司
Publication of TW202034607A publication Critical patent/TW202034607A/en
Application granted granted Critical
Publication of TWI827721B publication Critical patent/TWI827721B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Disclosed is a motor or generator comprises a rotor and a stator, wherein the rotor has an axis of rotation and is configured to generate first magnetic flux parallel to the axis of rotation, the stator is configured to generate second magnetic flux parallel to the axis of rotation, and at least one of the rotor or the stator is configured to generate a magnetic flux profile that is non-uniformly distributed about the axis of rotation. Also disclosed is a method that involves arranging one or more magnetic flux producing windings of a stator non-uniformly about an axis of rotation of a rotor of an axial flux motor or generator.

Description

符合週期性扭矩要求之定子及轉子設計Stator and rotor design that meets periodic torque requirements

本發明之實施例係關於符合週期性扭矩要求之定子及轉子設計。The embodiments of the present invention are related to stator and rotor designs that meet periodic torque requirements.

由包含美國專利第7,109,625號(「'625專利」之若干專利描述之永磁軸向磁通馬達及發電機以插入於具有交替南北磁極之磁體之間的一大體上平坦印刷電路板定子(PCS)為特徵。此等印刷電路板定子在自定子之外邊緣支撐至固定框架時具有連結轉子之軸件穿過之一孔。一替代實施例係使內半徑及外半徑之角色互換以導致其中支撐定子之內半徑且轉子包封定子之一情境。在此構形中,軸件有效移動至外半徑,有時稱為一「外動輪(out-runner)」。The permanent magnet axial flux motor and generator described in certain patents including U.S. Patent No. 7,109,625 (the "'625 Patent" are inserted between magnets with alternating north and south magnetic poles). A substantially flat printed circuit board stator (PCS ) Is a feature. These printed circuit board stators have a hole through which the shaft connecting the rotor passes when supported from the outer edge of the stator to the fixed frame. An alternative embodiment is to interchange the roles of the inner radius and the outer radius to cause A situation in which the inner radius of the stator is supported and the rotor encloses the stator. In this configuration, the shaft effectively moves to the outer radius, sometimes called an "out-runner."

提供此[發明內容]以依一簡化形式引入將在以下[實施方式]中進一步描述之概念之一選擇。此[發明內容]不意欲識別關鍵特徵或基本特徵,且亦不意欲限制包含於本文中之申請專利範圍之範疇。 在一些所揭示之實施例中,一種馬達或發電機包括一轉子及一定子,其中該轉子具有一旋轉軸且經構形以產生平行於該旋轉軸之第一磁通,該定子經構形以產生平行於該旋轉軸之第二磁通,且該轉子或該定子之至少一者經構形以產生圍繞該旋轉軸不均勻分佈之一磁通外形。 在其他所揭示之實施例中,一種方法涉及圍繞一軸向磁通馬達或發電機之一轉子之一旋轉軸不均勻配置一定子之一或多個磁通產生繞組。 在其他所揭示之實施例中,一種用於一馬達或發電機中之轉子包括一支撐結構及一或多個磁體分段,該一或多個磁體分段由該支撐結構支撐且產生平行於一旋轉軸之第一磁通,該支撐結構在與產生平行於該旋轉軸之第二磁通之一定子組裝時圍繞該旋轉軸旋轉,其中該一或多個磁體分段經構形及配置以產生圍繞該旋轉軸不均勻分佈之一磁通外形。This [Summary of the Invention] is provided to introduce a selection of concepts that will be further described in the following [Embodiments] in a simplified form. This [Summary of the Invention] does not intend to identify key features or basic features, nor does it intend to limit the scope of the patent application included in this article. In some disclosed embodiments, a motor or generator includes a rotor and a stator, wherein the rotor has a rotation axis and is configured to generate a first magnetic flux parallel to the rotation axis, and the stator is configured To generate a second magnetic flux parallel to the rotation axis, and at least one of the rotor or the stator is configured to generate a magnetic flux shape that is unevenly distributed around the rotation axis. In other disclosed embodiments, a method involves unevenly arranging one or more magnetic flux generating windings of stators around a rotation axis of an axial flux motor or a rotor of a generator. In other disclosed embodiments, a rotor used in a motor or generator includes a support structure and one or more magnet segments. The one or more magnet segments are supported by the support structure and generated parallel to A first magnetic flux of a rotating shaft, the support structure rotates around the rotating shaft when assembled with a stator that generates a second magnetic flux parallel to the rotating shaft, wherein the one or more magnet segments are configured and arranged To produce a magnetic flux profile that is unevenly distributed around the axis of rotation.

相關申請案之交叉參考 本申請案根據35 U.S.C. § 119(e)主張2018年11月1日申請之名稱為「planar stator and rotor design for periodic torque requirements」之美國臨時申請案第62/754,051號之權利。本申請案亦為一部分接續案且根據35 U.S.C. § 120主張2019年4月8日申請之名稱為「STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS」之美國專利申請案第16/378,294號之權利,美國專利申請案第16/378,294號係2018年10月19日申請之名稱為「STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS」之美國專利申請案第16/165,745號及現美國專利第10,256,690號之一接續案且根據35 U.S.C. § 120主張其權利,美國專利第10,256,690號係2017年12月22日申請之名稱為「PLANAR COMPOSITE STRUCTURES AND ASSEMBLIES FOR AXIAL FLUX MOTORS AND GENERATORS」之美國專利申請案第15/852,972號及現美國專利第10,170,953號之一接續案且根據35 U.S.C. § 120主張其權利,美國專利第10,170,953號根據35 U.S.C. § 119(e)主張2017年7月10日申請之名稱為「Structures and Methods of Stacking Subassemblies in Planar Composite Stators to Obtain Higher Working Voltages」之美國臨時申請案第62/530,552號之權利,且美國專利第10,170,953號亦為2017年6月1日申請之名稱為「STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS」之美國專利申請案第15/611,359號及現美國專利第9,859,763號之一部分接續案且根據35 U.S.C. § 120主張其權利,美國專利第9,859,763號:(A)係2016年9月30日申請之名稱為「STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS」之美國專利申請案第15/283,088號及現美國專利第9,800,109號之一部分接續案且根據35 U.S.C. § 120主張其權利,美國專利第9,800,109號係一部分接續案且根據35 U.S.C. § 120主張2016年6月30日申請之名稱為「STRUCTURES AND METHODS FOR THERMAL MANAGEMENT IN PRINTED CIRCUIT BOARD STATORS」之美國專利申請案第15/199,527號及現美國專利第9,673,684號之權利,且美國專利第9,800,109號亦根據35 U.S.C. § 119(e)主張(1) 2015年10月2日申請之名稱為「STRUCTURES TO REDUCE LOSSES IN PRINTED CIRCUIT BOARD WINDINGS」之美國臨時專利申請案第62/236,407及(2) 2015年10月2日申請之名稱為「STRUCTURES FOR THERMAL MANAGEMENT IN PRINTED CIRCUIT BOARD STATORS」之美國臨時專利申請案第62/236,422號之各者之權利;及(B)係2016年7月12日申請之名稱為「APPARATUS AND METHOD FOR FORMING A MAGNET ASSEMBLY」之美國專利申請案第15/208,452號及現美國專利第9,673,688號之一部分接續案且根據35 U.S.C. § 120主張其權利,美國專利第9,673,688號根據35 U.S.C. § 119(e)主張2016年1月6日申請之名稱為「ALIGNMNET OF MAGNETIC COMPONENTS IN AXIAL FLUX MACHINES WITH GENERALLY PLANAR WINDINGS」之美國臨時專利申請案第62/275,653號之權利。本申請案亦為一部分接續案且根據35 U.S.C. § 120主張2018年5月18日申請且公開為美國專利公開申請案第US 2018/0351441號之名稱為「PRE-WARPED ROTORS FOR CONTROL OF MAGNET-STATOR GAP IN AXIAL FLUX MACHINES」之美國專利申請案第15/983,985號之權利,美國專利公開申請案第US 2018/0351441號根據35 U.S.C. § 119(e)主張(1) 2017年6月5日申請之名稱為「Pre-Warped Rotors for Control of Magnet-Stator Gap in Axial Flux Machines」之美國臨時專利申請案第62/515,251及(2) 2017年6月5日申請之名稱為「AIR CIRCULATION IN AXIAL FLUX MACHINES」之美國臨時專利申請案第62/515,256之各者之權利。上述申請案、公開案及專利之各者之全部內容以引用的方式併入本文中用於所有目的。Cross reference of related applications This application claims the rights of the U.S. Provisional Application No. 62/754,051 named "planar stator and rotor design for periodic torque requirements" filed on November 1, 2018 under 35 U.S.C. § 119(e). This application is also a part of the continuation and claims the rights of U.S. Patent Application No. 16/378,294 filed on April 8, 2019 under the name "STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS" under 35 USC § 120, U.S. Patent Application No. 16/378,294 is one of U.S. Patent Application No. 16/165,745 and current U.S. Patent No. 10,256,690 filed on October 19, 2018 under the title ``STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS'' A continuation of the case and claiming its rights under 35 USC § 120, U.S. Patent No. 10,256,690 is a U.S. patent application filed on December 22, 2017 entitled "PLANAR COMPOSITE STRUCTURES AND ASSEMBLIES FOR AXIAL FLUX MOTORS AND GENERATORS" No. 15/ No. 852,972 and one of the current U.S. Patent No. 10,170,953 and claims its rights under 35 USC § 120, U.S. Patent No. 10,170,953 claims under 35 USC § 119(e) that the name of the application on July 10, 2017 is "Structures and Methods of Stacking Subassemblies in Planar Composite Stators to Obtain Higher Working Voltages" in the United States Provisional Application No. 62/530,552 rights, and U.S. Patent No. 10,170,953 is also filed on June 1, 2017 under the title "STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS" U.S. Patent Application No. 15/611,359 and a partial continuation of the current U.S. Patent No. 9,859,763 and its rights are claimed under 35 USC § 120, U.S. Patent No. 9,859,763: (A) is 2016 U.S. Patent Application No. 15/283,088 and Xianmei filed on September 30 named "STRUCTURES AND METHODS FOR CONTROLLING LOSSES IN PRINTED CIRCUIT BOARDS" National Patent No. 9,800,109 is a partial continuation case and its rights are claimed under 35 USC § 120. US Patent No. 9,800,109 is a partial continuation case and is claimed under 35 USC § 120 that the name of the application on June 30, 2016 is "STRUCTURES AND METHODS FOR THERMAL MANAGEMENT IN PRINTED CIRCUIT BOARD STATORS" U.S. Patent Application No. 15/199,527 and current U.S. Patent No. 9,673,684, and U.S. Patent No. 9,800,109 is also claimed under 35 USC § 119(e) (1) October 2015 U.S. Provisional Patent Application No. 62/236,407 filed on 2nd October 2015 entitled "STRUCTURES TO REDUCE LOSSES IN PRINTED CIRCUIT BOARD WINDINGS" and (2) The title filed on 2nd October 2015 is STRUCTURES FOR THERMAL MANAGEMENT IN PRINTED CIRCUIT BOARD STATORS" U.S. Provisional Patent Application No. 62/236,422; and (B) is a U.S. patent application filed on July 12, 2016 entitled "APPARATUS AND METHOD FOR FORMING A MAGNET ASSEMBLY" No. 15/208,452 and a partial continuation of the current US Patent No. 9,673,688 and claiming its rights under 35 USC § 120, US Patent No. 9,673,688 claims the name filed on January 6, 2016 under 35 USC § 119(e) "ALIGNMNET OF MAGNETIC COMPONENTS IN AXIAL FLUX MACHINES WITH GENERALLY PLANAR WINDINGS" US Provisional Patent Application No. 62/275,653. This application is also a part of the continuation and it is claimed under 35 USC § 120 that it was filed on May 18, 2018 and published as U.S. Patent Publication Application No. US 2018/0351441. The name is ``PRE-WARPED ROTORS FOR CONTROL OF MAGNET-STATOR GAP IN AXIAL FLUX MACHINES" U.S. Patent Application No. 15/983,985 rights, U.S. Patent Publication Application No. US 2018/0351441 claims under 35 USC § 119(e) (1) Filed on June 5, 2017 U.S. Provisional Patent Application No. 62/515,251 and (2) filed on June 5, 2017 named "Pre-Warped Rotors for Control of Magnet-Stator Gap in Axial Flux Machines" named "AIR CIRCULATION IN AXIAL FLUX MACHINES" The rights of each of the US Provisional Patent Application No. 62/515,256. The entire contents of each of the above-mentioned applications, publications and patents are incorporated herein by reference for all purposes.

在既有軸向磁通馬達或發電機(諸如美國專利第7,109,625號、第9,673,688號、第9,800,109號、第9,673,684號及第10,170,953號及美國專利公開申請案第2018-0351441 A1號(「'441公開案」)中所揭示之軸向磁通馬達或發電機,該等案之各者之全部內容以引用的方式併入本文中)中,定子之磁通產生組件(無論由一單一連續印刷電路板或多個印刷電路板分段組成)經配置使得在定子之繞組由電流激勵之任何給定時間,由定子產生之峰值磁通之位置相對於圍繞轉子之旋轉軸之角度均勻分佈。類似地,在此等機器中,轉子之磁通產生組件(無論由一環形磁體或安置於凹穴中之個別磁體組成)亦經配置使得在任何給定時間點,由轉子產生之峰值磁通之位置亦相對於圍繞轉子之旋轉軸之角度均勻分佈。因此,在所有此等機器中,在機器操作之任何給定時間,由轉子及定子之各者產生之峰值磁通之位置依據圍繞機器之旋轉軸之角度而均勻分佈。換言之,針對此等機器中之轉子及定子之各者,相同角度分離圍繞旋轉軸之峰值磁通之各位置與峰值磁通之下一相鄰位置,使得轉子及定子之各者之磁通外形圍繞旋轉軸均勻分佈。In existing axial flux motors or generators (such as U.S. Patent Nos. 7,109,625, 9,673,688, 9,800,109, 9,673,684 and 10,170,953, and U.S. Patent Publication No. 2018-0351441 A1 (``'441 The axial flux motor or generator disclosed in the “publication case”), the entire contents of each of these cases are incorporated herein by reference), the stator’s magnetic flux generation component (whether by a single continuous printing The circuit board or multiple printed circuit board segments are configured so that at any given time when the windings of the stator are excited by current, the position of the peak magnetic flux generated by the stator is evenly distributed with respect to the angle around the axis of rotation of the rotor. Similarly, in these machines, the rotor's magnetic flux generating components (whether composed of a ring magnet or individual magnets placed in a cavity) are also configured so that at any given point in time, the peak magnetic flux generated by the rotor The position is also evenly distributed with respect to the angle around the axis of rotation of the rotor. Therefore, in all these machines, at any given time during the operation of the machine, the position of the peak magnetic flux generated by each of the rotor and the stator is evenly distributed according to the angle around the rotation axis of the machine. In other words, for each of the rotor and stator in these machines, the positions of the peak magnetic flux around the rotating shaft are separated by the same angle from an adjacent position below the peak magnetic flux, so that the magnetic flux profile of each of the rotor and stator Evenly distributed around the axis of rotation.

本文中揭示替代設計,其具有相對於特定負載及機器構形之習知設計之成本優勢,其中定子及/或轉子可代以經構形以具有圍繞轉子之旋轉軸不均勻分佈之一磁通外形。例如,在一些實施例中,一定子可經構形使得其描述包圍機器之主軸之一弧部分。若可定位此一定子分段,則歸因於機器與附接負載整合,在大於圍繞相同軸均勻分佈之相等面積之一定子的一半徑處,所產生之扭矩可與其中安置定子分段之半徑之增大成正比,假定間隙中之等效磁通及電流密度限制定子。然而,維持一「偏心」定子分段之間隙中之等效磁通之代價係增大與由該分段對向之角度成反比之磁體體積。在大多數情況中,不期望此一權衡。然而,在其中期望一特定角或軸件角範圍處之峰值扭矩的一應用中,磁體材料可相對於轉子不均勻分佈,使得定子暴露於期望峰值扭矩之軸件角處之峰值磁通密度。針對其中電源具有週期性扭矩生產能力之發電機應用,根據此原理所設計之一機器可提供類似優點。An alternative design is disclosed herein, which has a cost advantage relative to the conventional design of a specific load and machine configuration, where the stator and/or the rotor can be configured to have a magnetic flux that is unevenly distributed around the axis of rotation of the rotor. shape. For example, in some embodiments, the stator may be configured such that it describes an arc portion surrounding the main shaft of the machine. If this stator segment can be positioned, it is due to the integration of the machine and the attached load. At a radius larger than a stator of equal area evenly distributed around the same axis, the torque generated can be the same as the stator segment placed in it. The increase in radius is proportional to the assumption that the equivalent magnetic flux and current density in the gap limit the stator. However, the cost of maintaining the equivalent magnetic flux in the gap of an "off-center" stator segment is to increase the volume of the magnet inversely proportional to the angle subtended by the segment. In most cases, this trade-off is not expected. However, in an application where peak torque at a specific angle or range of shaft angles is desired, the magnet material may be unevenly distributed relative to the rotor, so that the stator is exposed to the peak magnetic flux density at the shaft angle at the desired peak torque. For generator applications where the power source has periodic torque production capacity, a machine designed based on this principle can provide similar advantages.

用於產生特定角處之峰值扭矩之定子及磁體系統之設計不限於為一個定子分段及/或轉子上之磁體材料之一個集中度,但此係最簡單實施例。包含一或多個不均勻分佈之定子分段及/或一或多個不均勻分佈之磁體分段的實施例可提供依據角度而變化之扭矩能力之有用組合。應瞭解,可使用一或多個不均勻分佈之定子分段及一或多個不均勻分佈之磁體分段的不同組合來達成依據角度而變化之相同或類似扭矩能力。例如,可藉由使定子分段之分佈與轉子磁體位置互換來達成依據角度而變化之相同或類似扭矩能力。此可允許設計者實現磁體材料成本與定子面積之權衡,同時達成依據角度而變化之相同或類似扭矩能力。The design of the stator and magnet system used to generate the peak torque at a specific angle is not limited to a stator segment and/or a concentration of magnet material on the rotor, but this is the simplest embodiment. Embodiments that include one or more non-uniformly distributed stator segments and/or one or more non-uniformly distributed magnet segments can provide a useful combination of angle-dependent torque capabilities. It should be understood that different combinations of one or more non-uniformly distributed stator segments and one or more non-uniformly distributed magnet segments can be used to achieve the same or similar torque capabilities that vary depending on the angle. For example, the same or similar torque capacity can be achieved by changing the stator segment distribution and the rotor magnet position. This allows the designer to achieve a trade-off between the cost of the magnet material and the area of the stator, while achieving the same or similar torque capacity that varies depending on the angle.

用於產生一特定角處之峰值扭矩的一機器之設計不排除連續旋轉。當期望連續旋轉時,根據本文揭示之原理所設計之一機器可依一系列脈衝(在峰值扭矩角處)供應扭矩,該系列脈衝由附接負載之慣性矩平滑化以提供大致恆定速度。此設計之一優點係:當定子不與磁體重疊時,歸因於渦電流之定子損耗可為零。連續旋轉之另一可能性係分佈磁體使得定子分段始終看見磁通,但依小於「峰值扭矩」角之量值。The design of a machine for generating peak torque at a specific angle does not preclude continuous rotation. When continuous rotation is desired, a machine designed according to the principles disclosed herein can supply torque in a series of pulses (at the peak torque angle) that are smoothed by the moment of inertia of the attached load to provide a substantially constant speed. One advantage of this design is that when the stator does not overlap the magnet, the stator loss due to eddy current can be zero. Another possibility for continuous rotation is to distribute the magnets so that the stator segment always sees the magnetic flux, but at a value smaller than the "peak torque" angle.

本文中所描述之一些實施例可特別有利於其中可相對於一習知設計顯著增大機器半徑之應用。在此等應用中,依大於一均勻平坦電路板定子之一半徑安置之一平坦電路板定子(PCS)分段可達成每單位定子面積之更高峰值扭矩。此外,與具有一大半徑之一薄環形定子相比,定子分段可「拼裝」或配置於標準大小之一印刷電路板「面板」上。此可允許更高效利用印刷電路板材料且降低相關聯機器之成本。Some of the embodiments described herein can be particularly advantageous for applications in which the radius of the machine can be significantly increased relative to a conventional design. In these applications, placing a flat circuit board stator (PCS) segment with a radius larger than a uniform flat circuit board stator can achieve higher peak torque per unit stator area. In addition, compared to a thin ring-shaped stator with a large radius, the stator segments can be "assembled" or arranged on a printed circuit board "panel" of a standard size. This can allow more efficient use of printed circuit board materials and reduce the cost of associated machinery.

應用領域之實例包含可具有一週期性扭矩要求之往復式活塞或隔膜式泵。此外,為了平衡,此等機器通常包含可由一不對稱設計轉子替換之一偏心質量。類似地,耦合至單活塞引擎之發電機可受益於平衡質量與一定子分段式發電機中之磁性材料之協同設計。其他潛在應用包含洗衣機或其中馬達或發電機移動通過一受限角之其他應用及週期性或「反向」型負載。Examples of application areas include reciprocating piston or diaphragm pumps that may have a periodic torque requirement. In addition, for balance, these machines usually contain an eccentric mass that can be replaced by an asymmetrically designed rotor. Similarly, a generator coupled to a single-piston engine can benefit from the co-design of the balance mass and the magnetic materials in the stator segmented generator. Other potential applications include washing machines or other applications where a motor or generator moves through a restricted angle and periodic or "reverse" type loads.

本文中所揭示之新穎概念之一基本觀察可基於設計之基本考量來減小至原本等距定子或定子分段之一「縮放」引數,其無關於定子之內部組織及連接。在符合'625專利中之描述之一習知環形PCS中,扭矩可表示如下:

Figure 02_image001
One of the basic observations of the novel concept disclosed in this article can be reduced to a "zoom" parameter of the originally equidistant stator or stator segment based on the basic design considerations, which is not related to the internal organization and connection of the stator. In one of the conventional annular PCS described in the '625 patent, the torque can be expressed as follows:
Figure 02_image001

此表式之分量包含自一第一半徑r1至一第二半徑r2之積分,其包括定子之有效面積。積分藉由限制θ之積分來覆蓋整個環形。項

Figure 02_image003
係一微分面積元素,且
Figure 02_image005
係對應於方程式
Figure 02_image007
之扭矩密度量值。力密度歸因於軸向磁通及徑向電流密度而θ定向,即:
Figure 02_image009
The components of this expression include the integral from a first radius r1 to a second radius r2, which includes the effective area of the stator. The integral covers the entire ring by limiting the integral of θ. item
Figure 02_image003
Is a differential area element, and
Figure 02_image005
Corresponds to the equation
Figure 02_image007
The torque density value. The force density is θ-oriented due to the axial magnetic flux and radial current density, namely:
Figure 02_image009

在此,力密度係由定子支援之電流密度與由轉子磁體電路及該電流密度處之定子反應導致之磁通密度的乘積。為了說明,假定B係徑向的。在根據'625專利所設計之定子中,發散徑向跡線有效引入自內半徑r1之使電流密度之一1/r減小。擷取此效應之一模型係:

Figure 02_image011
Here, the force density is the product of the current density supported by the stator and the magnetic flux density caused by the rotor magnet circuit and the stator reaction at the current density. For illustration, assume that B is radial. In the stator designed according to the '625 patent, divergent radial traces are effectively introduced from the inner radius r1 to reduce one of the current densities 1/r. One model system to extract this effect:
Figure 02_image011

其中

Figure 02_image013
係符合內半徑處之大小及間隙要求之基於一給定銅重量處之特徵干擾的最大支援電流密度。就此模型而言,
Figure 02_image015
由定子支援之電流密度取決於可安置於r1處之內通路之數目(其取決於特徵大小及相關聯間隙)及r1處之圓周,且取決於該圓周是否適應接近製造限制之一間距處之特徵。因此,不能將
Figure 02_image013
嚴格視作常數。例如,若r1=0,則無法容納通路,且
Figure 02_image018
。然而,針對實際關注之馬達,
Figure 02_image013
將接近主要取決於熱考量及間隙要求之一值。為了比較原本等距定子而將
Figure 02_image013
視作一常數傾向於使圍繞中心軸件定位之一習知定子具有一較小r1,表現得比依一較大半徑之一定子更有競爭力。among them
Figure 02_image013
The maximum supported current density based on characteristic interference at a given copper weight that meets the size and gap requirements at the inner radius. For this model,
Figure 02_image015
The current density supported by the stator depends on the number of internal paths that can be placed at r1 (which depends on the feature size and associated gap) and the circumference at r1, and depends on whether the circumference is suitable for a distance close to the manufacturing limit feature. Therefore,
Figure 02_image013
Strictly regarded as a constant. For example, if r1=0, the passage cannot be accommodated, and
Figure 02_image018
. However, for the motor of actual concern,
Figure 02_image013
Will be close mainly depends on one of thermal considerations and gap requirements. In order to compare the original equidistant stator
Figure 02_image013
Treating as a constant tends to make a conventional stator positioned around a central shaft member have a smaller r1, behaving more competitively than a stator with a larger radius.

具有角範圍δ之定子或定子分段之面積A係:

Figure 02_image020
The area A of the stator or stator segment with angular range δ:
Figure 02_image020

針對習知設計之一定子,

Figure 02_image022
。針對一定子分段,δ理想地對應於整數個磁極對。為比較定子分段與基於成本之習知設計,可合理比較等面積定子與磁體總成。隨著內半徑
Figure 02_image024
增大,任何
Figure 02_image024
存在δ及
Figure 02_image026
之多個解,且在此將δ及
Figure 02_image026
之多個解視作獨立變數。特定言之,當考量δ時,一分段上之磁極間距亦無需如同一習知定子般符合在2π rad上均勻安置磁極之通常約束。此暗示習知定子不享有之分段之相當大設計靈活性及達成相等面積A之能力。使用較小δ來將定子面積位移至較大
Figure 02_image024
之優點之實例包含:(1)具有較大
Figure 02_image024
之定子分段提供每單位面積之較高峰值扭矩;(2)當定子分段及磁性材料在特定轉子角(或角範圍)處完全重疊時,可使用峰值扭矩;(3)當磁性材料及定子不重疊時,機器中無渦電流損耗;(4)可在
Figure 02_image024
Figure 02_image026
及δ使得分段可「巢套」於一印刷電路板面板上時獲得定子分段以最小化浪費材料及成本;及(5)每單位面積(或每單位成本)之峰值扭矩隨定子分段之半徑而增大。Aiming at one of the conventionally designed stators,
Figure 02_image022
. For a certain sub-segment, δ ideally corresponds to an integer number of magnetic pole pairs. In order to compare stator segments with conventional cost-based designs, a reasonable comparison of equal area stator and magnet assemblies can be made. With inner radius
Figure 02_image024
Increase, any
Figure 02_image024
There is δ and
Figure 02_image026
Multiple solutions, and here δ and
Figure 02_image026
The multiple solutions are treated as independent variables. In particular, when considering δ, the pitch of the magnetic poles on a segment does not need to conform to the usual constraint of uniformly arranging magnetic poles on 2π rad as in the same conventional stator. This implies considerable design flexibility and the ability to achieve the same area A of the segments that conventional stators do not enjoy. Use smaller δ to displace the stator area to larger
Figure 02_image024
Examples of its advantages include: (1) It has greater
Figure 02_image024
The stator segment provides a higher peak torque per unit area; (2) When the stator segment and the magnetic material completely overlap at a specific rotor angle (or angle range), the peak torque can be used; (3) When the magnetic material and When the stators do not overlap, there is no eddy current loss in the machine; (4)
Figure 02_image024
,
Figure 02_image026
And δ enable the segments to be "nested" on a printed circuit board panel to obtain stator segments to minimize wasted material and cost; and (5) the peak torque per unit area (or per unit cost) follows the stator segment The radius increases.

假設具有

Figure 02_image028
之一原型習知定子之一設計程序滿足一特定扭矩
Figure 02_image030
,當分段與磁性材料完全重疊時,可推斷對向跨越一角度δ之原型設計中之磁極之一子集的定子分段之設計產生角範圍內之
Figure 02_image032
之一峰值扭矩。因此,分段之一實際設計程序係設計習知定子原型,其中扭矩要求增大習知定子中之磁極相對於意欲留在分段中之磁極的比率。此程序儘管有利,但無法利用分段設計之自由,因為磁極間距同時受約束於分段之角範圍及習知設計之2π範圍。分段角δ無需為2π之一除數且可因此經最佳化以滿足設計約束。Suppose to have
Figure 02_image028
A prototype conventional stator A design program to meet a specific torque
Figure 02_image030
, When the segment is completely overlapped with the magnetic material, it can be inferred that the stator segment of a subset of the magnetic poles in the prototype design that crosses an angle δ produces an angle within the range
Figure 02_image032
One of peak torque. Therefore, one of the actual design procedures for the segment is to design a conventional stator prototype, in which the torque requirement increases the ratio of the poles in the conventional stator to the poles intended to stay in the segment. Although this procedure is advantageous, it cannot take advantage of the freedom of segmented design, because the magnetic pole pitch is constrained by both the angle range of the segment and the 2π range of the conventional design. The segment angle δ does not need to be a divisor of 2π and can therefore be optimized to meet design constraints.

依特定角集中於固定框架及轉子上之定子分段及磁性材料之組合可達成依據角度而變化之各種扭矩能力。轉子上之一或多個區域可攜載包括不同磁通密度之磁性材料(一或多個磁極對),且可依各種角度分佈。固定框架中可存在依各種角度定位之一或多個定子分段。The combination of stator segments and magnetic materials concentrated on the fixed frame and the rotor at a specific angle can achieve various torque capabilities that vary depending on the angle. One or more areas on the rotor can carry magnetic materials (one or more magnetic pole pairs) with different magnetic flux densities, and can be distributed at various angles. There may be one or more stator segments positioned at various angles in the fixed frame.

美國專利第7,109,625號、第9,673,688號、第9,800,109號、第9,673,684號及第10,170,953號及美國專利公開申請案第2018-0351441 A1號(「'441公開案」)(該等案以引用的方式併入上文)中描述其中可採用非均勻分佈之定子及/或轉子(諸如本文中所揭示之定子及/或轉子)的馬達及/或發電機之實例。首先,將結合圖1A及圖1B來描述此等機器之說明性實例。接著,將結合圖2至圖8來描述具有圍繞一轉子之旋轉軸不均勻分佈且可用於此等機器中之磁通外形之定子及轉子之實例。U.S. Patent Nos. 7,109,625, 9,673,688, 9,800,109, 9,673,684, and 10,170,953 and U.S. Patent Publication No. 2018-0351441 A1 (``'441 Publication'') (these cases are incorporated by reference) The above) describes examples of motors and/or generators in which non-uniformly distributed stators and/or rotors (such as the stators and/or rotors disclosed herein) can be used. First, illustrative examples of these machines will be described in conjunction with FIGS. 1A and 1B. Next, examples of stators and rotors with magnetic flux profiles that are unevenly distributed around a rotor axis and can be used in these machines will be described with reference to FIGS. 2 to 8.

圖1A展示將一平坦複合定子110用於具有轉子組件104a及104b、軸件108、導線114及控制器112之一總成中之一系統100之一實例。圖1B中展示一展開圖,其展示此等組件及其組裝構件。亦在圖1B之展開圖中明顯看到轉子總成之永久磁化部分106a、106b中磁極之型樣。圖1A係其中在PCS 110之外半徑處取得電連接件114且定子在外周邊處安裝至一框架或殼體之一實施例之一實例。另一有用構形(「外動輪」構形)涉及將定子安裝於內半徑處以使電連接件114位於內半徑處且由分離轉子半體之一圓環替換軸件108。亦可使系統構形有僅一個磁體106a或106b或將多個定子插入連續磁體總成之間。導線114亦可基於安裝於定子上之霍爾(Hall)效應或類似感測器之讀數來傳送關於轉子之位置之資訊。儘管圖中未展示,但目的類似地,附接至軸件108之一編碼器可提供位置資訊至控制器112。FIG. 1A shows an example of using a flat composite stator 110 for a system 100 in an assembly having rotor components 104a and 104b, shaft 108, wires 114, and controller 112. An expanded view is shown in Figure 1B, which shows these components and their assembly components. The pattern of the magnetic poles in the permanent magnetized parts 106a, 106b of the rotor assembly is also clearly seen in the expanded view of FIG. 1B. FIG. 1A is an example of an embodiment in which the electrical connector 114 is taken at the outer radius of the PCS 110 and the stator is mounted to a frame or housing at the outer periphery. Another useful configuration ("outer wheel" configuration) involves mounting the stator at the inner radius so that the electrical connection 114 is located at the inner radius and the shaft 108 is replaced by a ring that separates the rotor halves. It is also possible to configure the system with only one magnet 106a or 106b or to insert multiple stators between consecutive magnet assemblies. The wire 114 can also transmit information about the position of the rotor based on the readings of the Hall effect or similar sensors installed on the stator. Although not shown in the figure, for a similar purpose, an encoder attached to the shaft 108 can provide position information to the controller 112.

圖1A及圖1B中之系統100可充當一馬達或一發電機,其取決於控制器112及連接至軸件108之組件之操作。作為一馬達系統,控制器112操作開關,使得定子110中之電流歸因於源自連接至軸件108之磁體104a、104b之間隙中之磁通而產生圍繞軸件之一扭矩。取決於控制器112之設計,可量測或估計間隙中之磁通及/或轉子之位置以操作開關達成軸件108處之扭矩。作為一發電機系統,連接至軸件108之一機械旋轉動力源在定子之端子112處產生電壓波形。此等電壓可直接施加至一負載,或其可由控制器112內之三相(或多相)整流器整流。整流器實施方案112可在發電機模式中使用二極體來「自換向」,或可使用馬達控制器之控制開關來建構,但經操作使得軸件扭矩與由機械波源提供之扭矩相反,且機械能轉換成電能。因此,圖1A之一相同構形可充當發電機及馬達兩者,其取決於如何操作控制器112。另外,控制器112可包含濾波器組件,其緩解切換效應、減少來自導線114之EMI/RFI、減少損耗及提供供應至控制器或自控制器輸送之功率之額外靈活性。The system 100 in FIGS. 1A and 1B can act as a motor or a generator, depending on the operation of the controller 112 and the components connected to the shaft 108. As a motor system, the controller 112 operates the switch so that the current in the stator 110 is due to the magnetic flux originating from the gap between the magnets 104a, 104b connected to the shaft 108 to generate a torque around the shaft. Depending on the design of the controller 112, the magnetic flux in the gap and/or the position of the rotor can be measured or estimated to operate the switch to achieve the torque at the shaft 108. As a generator system, a mechanical rotating power source connected to the shaft 108 generates a voltage waveform at the terminal 112 of the stator. These voltages can be directly applied to a load, or they can be rectified by a three-phase (or multi-phase) rectifier in the controller 112. The rectifier implementation 112 can use diodes in the generator mode to "self-commutate", or can be constructed using the control switch of the motor controller, but the shaft torque is opposite to the torque provided by the mechanical wave source after operation, and Mechanical energy is converted into electrical energy. Therefore, the same configuration in FIG. 1A can serve as both a generator and a motor, depending on how the controller 112 is operated. In addition, the controller 112 may include filter components that mitigate switching effects, reduce EMI/RFI from the wires 114, reduce losses, and provide additional flexibility for power supplied to or delivered from the controller.

圖2展示具有不同角及徑向範圍但具有相等面積之三個定子202、204及206之幾何形狀。定子204及206具有不同內半徑。定子206展示由'625專利描述之定子之典型相對尺寸。定子204係一薄環形設計。在定子204中,增大內半徑,但具有此等相對尺寸之一定子無法高效率利用印刷電路板材料之一「面板」。如本文中所提出,定子202展示具有等於定子204之面積及半徑之一定子分段208。所有其他相等之較大半徑定子202及204將產生比定子206高之一峰值扭矩,因為半徑增大扭矩臂。Figure 2 shows the geometry of three stators 202, 204, and 206 with different angular and radial extents but equal areas. The stators 204 and 206 have different inner radii. The stator 206 shows the typical relative dimensions of the stator described by the '625 patent. The stator 204 has a thin ring design. In the stator 204, the inner radius is increased, but a stator having such a relative size cannot efficiently use one of the printed circuit board materials "panel". As proposed herein, the stator 202 exhibits a stator segment 208 having an area and radius equal to the stator 204. All other equal larger radius stators 202 and 204 will produce a peak torque higher than stator 206 because the radius increases the torque arm.

圖3展示一標準大小之印刷電路板面板302上之定子分段(如圖2中所展示之分段208)之「拼板」或填裝。使用所繪示之配置來高效利用面板302。定子分段208之成本與面板302之利用率成反比。FIG. 3 shows the "pieces" or filling of the stator segment (the segment 208 shown in FIG. 2) on a standard size printed circuit board panel 302. Use the illustrated configuration to efficiently utilize the panel 302. The cost of the stator segment 208 is inversely proportional to the utilization rate of the panel 302.

圖4展示面板302上之相同於圖3之大小之分段208之一無效配置。儘管此配置不實用,但其展示具有相同於由分段208達成之內半徑及外徑之內半徑及外半徑的一習知定子將達成之有效面板利用。FIG. 4 shows an invalid configuration of the segment 208 on the panel 302 with the same size as that of FIG. 3. Although this configuration is not practical, it demonstrates the effective panel utilization achieved by a conventional stator having inner and outer radii that are the same as those achieved by the segment 208.

圖5展示相對於一轉子504上之磁體502之一定子分段208之一實例性配置。在所繪示之實例中,提供轉子504上之磁體502之一密集角範圍506 (本文中亦指稱一「密集磁體區域」以達成與定子分段208之重疊角處之峰值扭矩。磁體502之非密集角範圍508 (本文中亦指稱「非密集磁體區域」經配置以提供與角度無關之一較低扭矩能力。儘管圖中未繪示,但應瞭解,在一些實施例中,可在附近或非密集磁體區域508中添加非磁性元件以平衡整個轉子504之重量。此外,應瞭解,在一些實施例中,具有一對應但極性相反之磁體配置的一額外轉子部分(圖中未展示)可定位於轉子504之繪示部分上方,使得定子分段208可定位於兩個轉子部分之間的一間隙內,其中磁通線沿平行於轉子之旋轉軸的一方向延伸於對置之極性相反磁體對之間。另外,儘管圖5中未繪示,但應瞭解,定子分段208可包含(例如)安置於一或多個介電層上之導電跡線及/或通路,其經構形以形成在由電流激勵時沿平行於轉子之旋轉軸之一方向產生磁通之繞組。此等繞組可經構形以自一電源供應器(圖5中未展示)接收一或多個電流相位,且可配置成一或多個螺線、一或多個蛇形圖案或其他以產生此磁通。FIG. 5 shows an exemplary configuration of a stator segment 208 with respect to a magnet 502 on a rotor 504. In the illustrated example, a dense angular range 506 of the magnets 502 on the rotor 504 (also referred to herein as a "dense magnet area" is provided to achieve the peak torque at the overlap angle with the stator segment 208. The magnet 502 The non-dense angular range 508 (also referred to herein as the "non-dense magnet area" is configured to provide a lower torque capability that is independent of angle. Although not shown in the figure, it should be understood that in some embodiments, it may be nearby Or add non-magnetic elements in the non-dense magnet area 508 to balance the weight of the entire rotor 504. In addition, it should be understood that in some embodiments, there is an additional rotor part (not shown) with a corresponding but opposite magnet configuration. Can be positioned above the illustrated part of the rotor 504, so that the stator segment 208 can be positioned in a gap between the two rotor parts, wherein the magnetic flux lines extend in a direction parallel to the axis of rotation of the rotor to opposite polarities In addition, although not shown in FIG. 5, it should be understood that the stator segment 208 may include, for example, conductive traces and/or vias disposed on one or more dielectric layers, which pass through It is configured to form windings that generate magnetic flux in a direction parallel to the axis of rotation of the rotor when excited by current. These windings can be configured to receive one or more from a power supply (not shown in Figure 5) The current phase can be configured into one or more spirals, one or more serpentine patterns or other to generate this magnetic flux.

如圖5中所展示,在一些實施例中,定子分段208可經由一弓形附接部件510 (可使用一或多個緊固件512來將定子分段208附接至弓形附接部件510)來保持於適當位置中,且定子分段208之一或多個繞組(圖中未繪示)可連接至與附接部件510相關聯之端子514,該等端子可連接至一控制器(圖5中未展示)(諸如上文結合圖1A及圖1B所討論之控制器112)以供應(若干)激勵電流至(若干)繞組。As shown in Figure 5, in some embodiments, the stator segment 208 may be attached via an arcuate attachment member 510 (one or more fasteners 512 may be used to attach the stator segment 208 to the arcuate attachment member 510) To be held in place, and one or more windings of the stator segment 208 (not shown in the figure) can be connected to the terminal 514 associated with the attachment part 510, and these terminals can be connected to a controller (Figure Not shown in 5) (such as the controller 112 discussed above in connection with FIGS. 1A and 1B) to supply the excitation current(s) to the winding(s).

圖6展示相同於圖5之構形,但其中轉子504依定子分段208與提供峰值扭矩之密集磁體區段506重疊之一角度定位。Figure 6 shows the same configuration as Figure 5, but where the rotor 504 is positioned at an angle at which the stator segment 208 overlaps the dense magnet segment 506 that provides peak torque.

圖7展示圖4及圖5之一替代配置。如圖中所展示,除採用非密集磁體區域508 (圖7中未展示)及一密集角範圍506之外或代替採用非密集磁體區域508及一密集角範圍506,定子分段208a至208g可經配置使得其等完全或幾乎描述具有任何角度處之恆定可用扭矩之一環形定子。在一些實施例中,定子分段208a至208g之一子集可較小,可依一較粗節距配置,可含有較少繞組「匝」,及/或可被供應比一或多個其他定子分段208小之功率,使得具有集中磁體之一機器可提供角特定峰值扭矩,同時仍提供任何角度處之扭矩能力。例如,在一些實施例中,定子分段208a可為了此一目的而不同於其他定子分段208b至208g來構形、配置及/或激勵。Figure 7 shows an alternative configuration of Figures 4 and 5. As shown in the figure, in addition to using a non-dense magnet area 508 (not shown in FIG. 7) and a dense angle range 506 or instead of using a non-dense magnet area 508 and a dense angle range 506, the stator segments 208a to 208g can be It is configured such that it completely or almost describes an annular stator with constant available torque at any angle. In some embodiments, a subset of the stator segments 208a to 208g may be smaller, may be arranged at a larger pitch, may contain fewer winding "turns", and/or may be supplied with more than one or more other The low power of the stator segment 208 allows a machine with concentrated magnets to provide angular specific peak torque while still providing torque capability at any angle. For example, in some embodiments, the stator segment 208a may be configured, configured, and/or excited differently from the other stator segments 208b to 208g for this purpose.

無論所採用之(若干)磁體502及(若干)定子分段208之特定配置如何,在至少一些情境中,要注意確保在轉子504之一回轉期間至少一定子分段208在各位置處與至少一磁體502至少部分重疊,使得轉子504不被「卡於」其中無來自一定子分段208之磁通與來自一磁體502之磁通相互作用之一位置處。Regardless of the specific configuration of the magnet(s) 502 and the stator segment(s) 208 used, in at least some scenarios, care should be taken to ensure that at least certain sub-segments 208 are at each position during one revolution of the rotor 504 and at least A magnet 502 is at least partially overlapped so that the rotor 504 is not "stuck" at a position where no magnetic flux from the stator segment 208 interacts with the magnetic flux from a magnet 502.

在上述實例性構形之各者中,(若干)定子分段208及/或轉子504之(若干)磁體502經構形以具有圍繞機器之主旋轉軸不均勻分佈之一磁通外形。特定言之,(若干)定子分段208經配置使得在定子之繞組由電流激勵之任何給定時間點,由定子產生之峰值磁通之位置相對於圍繞轉子之旋轉軸之角度不均勻分佈。類似地,在此等機器中,一轉子504之磁體502亦經配置使得在任何給定時間點,由轉子產生之峰值磁通之位置亦相對於圍繞轉子之旋轉軸之角度不均勻分佈。因此,針對此等機器中之轉子及定子之各者,不同角度分離圍繞旋轉軸之峰值磁通之至少一些位置與峰值磁通之相鄰位置,使得由此組件產生之該磁通外形圍繞旋轉軸不均勻分佈。In each of the above exemplary configurations, the stator segment(s) 208 and/or the magnet(s) 502 of the rotor 504 are configured to have a magnetic flux profile that is unevenly distributed around the main rotation axis of the machine. In particular, the stator segment(s) 208 are configured so that at any given point in time when the windings of the stator are excited by current, the position of the peak magnetic flux generated by the stator is unevenly distributed with respect to the angle around the axis of rotation of the rotor. Similarly, in these machines, the magnet 502 of a rotor 504 is also configured such that at any given point in time, the position of the peak magnetic flux generated by the rotor is also unevenly distributed with respect to the angle around the axis of rotation of the rotor. Therefore, for each of the rotor and stator in these machines, at least some positions of the peak magnetic flux around the axis of rotation and the adjacent positions of the peak magnetic flux are separated at different angles, so that the magnetic flux generated by the component rotates around The shafts are not evenly distributed.

圖8繪示根據本發明之一些態樣之一軸向磁通馬達802之一實例性實施例之一橫截面,軸向磁通馬達802經構形有如同圖5及圖6中所展示之組件的組件且與一洗衣機負載804整合。如圖中所展示,馬達802之一定子分段208可經由一附接部件510及一或多個緊固件512來固定至容納一洗衣機桶808之一外殼806,且洗衣機桶808可經由軸承元件810來可旋轉地耦合至外殼806。馬達802之一轉子504可經由可自洗衣機桶808延伸及/或固定地附接至洗衣機桶808之一軸件812來直接驅動洗衣機桶808。就所繪示之構形而言,可使用定子分段208及配置至一密集磁體區域506及一或多個非密集磁體區域508中之磁體502之一集合(如上文結合圖5及圖6所描述)來達成「自旋」模式中之相對高速及低扭矩處之連續旋轉。在此一自旋模式期間,歸因於轉子及定子之磁通外形圍繞轉子之旋轉軸不均勻分佈,當轉子504依一實質上恆定速度相對於定子分段208旋轉通過一角範圍時,歸因於由轉子及定子產生之磁通之間的相互作用所產生之扭矩之週期性係無規律的。「洗滌」模式所需之反向作用可為其中可依特定角供應扭矩之一相對低速、高扭矩操作模式。在此情況中,定子分段208與密集磁體區域506之相互作用可提供峰值扭矩要求。根據本發明之設備及方法之實例性實施方案 8 shows a cross-section of an exemplary embodiment of an axial flux motor 802 according to some aspects of the present invention. The axial flux motor 802 is configured as shown in FIGS. 5 and 6 The components of the components are integrated with a washing machine load 804. As shown in the figure, a stator section 208 of the motor 802 can be fixed to a housing 806 that houses a washing machine tub 808 via an attachment part 510 and one or more fasteners 512, and the washing machine tub 808 can be via bearing elements 810 is rotatably coupled to the housing 806. A rotor 504 of the motor 802 can directly drive the washing machine tub 808 via a shaft 812 that can extend from the washing machine tub 808 and/or is fixedly attached to the washing machine tub 808. As far as the configuration shown is concerned, stator segment 208 and one set of magnets 502 arranged in a dense magnet area 506 and one or more non-dense magnet areas 508 can be used (as described above in conjunction with FIGS. 5 and 6 Described) to achieve continuous rotation at relatively high speed and low torque in the "spin" mode. During this spinning mode, the magnetic flux profile due to the rotor and the stator is unevenly distributed around the axis of rotation of the rotor. When the rotor 504 rotates through an angular range relative to the stator segment 208 at a substantially constant speed, the The periodicity of the torque generated by the interaction between the magnetic flux generated by the rotor and the stator is irregular. The reverse action required for the "washing" mode can be a relatively low-speed, high-torque operation mode in which torque can be supplied at a specific angle. In this case, the interaction of the stator segment 208 with the dense magnet area 506 can provide the peak torque requirement. Exemplary embodiments of the apparatus and method according to the present invention

以下段落(A1)至(A14)描述可根據本發明來實施之設備之實例。The following paragraphs (A1) to (A14) describe examples of devices that can be implemented according to the present invention.

(A1) 一種馬達或發電機,其可包括一轉子及一定子,該轉子具有一旋轉軸且經構形以產生平行於該旋轉軸之第一磁通,該定子經構形以產生平行於該旋轉軸之第二磁通,其中該轉子或該定子之至少一者經構形以產生圍繞該旋轉軸不均勻分佈之一磁通外形。(A1) A motor or generator, which may include a rotor and a stator. The rotor has a rotation axis and is configured to generate a first magnetic flux parallel to the rotation axis. The stator is configured to generate a first magnetic flux parallel to the rotation axis. The second magnetic flux of the rotating shaft, wherein at least one of the rotor or the stator is configured to produce a magnetic flux profile that is unevenly distributed around the rotating shaft.

(A2) 如段落(A1)之馬達或發電機,其中該轉子可經進一步構形以產生圍繞該旋轉軸不均勻分佈之一第一磁通外形。(A2) The motor or generator of paragraph (A1), wherein the rotor can be further configured to produce a first magnetic flux profile that is unevenly distributed around the axis of rotation.

(A3) 如段落(A2)之馬達或發電機,其中該轉子可進一步包括圍繞該旋轉軸不均勻分佈之一或多個磁體分段。(A3) The motor or generator of paragraph (A2), wherein the rotor may further include one or more magnet segments unevenly distributed around the rotation axis.

(A4) 如段落(A3)之馬達或發電機,其中該一或多個磁體分段之各者可進一步具有其中該第一磁通具有一最大密度之一各自表面位置,且該等各自表面位置可圍繞該旋轉軸不均勻分佈。(A4) The motor or generator of paragraph (A3), wherein each of the one or more magnet segments may further have a respective surface position in which the first magnetic flux has a maximum density, and the respective surfaces The positions may be unevenly distributed around the axis of rotation.

(A5) 如段落(A2)至(A4)中任一項之馬達或發電機,其中該轉子可經進一步構形使得當該轉子依一實質上恆定速度相對於該定子旋轉通過一角範圍時,歸因於該第一磁通與該第二磁通之相互作用所產生之扭矩之一週期性係無規律的。(A5) The motor or generator of any of paragraphs (A2) to (A4), wherein the rotor can be further configured such that when the rotor rotates through an angular range relative to the stator at a substantially constant speed, A periodicity of the torque generated due to the interaction of the first magnetic flux and the second magnetic flux is irregular.

(A6) 如段落(A2)至(A5)中任一項之馬達或發電機,其中該定子可經進一步構形以產生圍繞該旋轉軸不均勻分佈之一第二磁通外形。(A6) The motor or generator of any one of paragraphs (A2) to (A5), wherein the stator can be further configured to produce a second magnetic flux profile that is unevenly distributed around the axis of rotation.

(A7) 如段落(A1)之馬達或發電機,其中該定子可經進一步構形以產生圍繞該旋轉軸不均勻分佈之一磁通外形。(A7) The motor or generator of paragraph (A1), wherein the stator can be further configured to produce a magnetic flux profile that is unevenly distributed around the rotation axis.

(A8) 如段落(A2)至(A7)中任一項之馬達或發電機,其中該定子可進一步包括圍繞該旋轉軸不均勻分佈之一或多個印刷電路板分段。(A8) The motor or generator of any one of paragraphs (A2) to (A7), wherein the stator may further include one or more printed circuit board segments unevenly distributed around the rotation axis.

(A9) 如段落(A2)至(A8)中任一項之馬達或發電機,其中該定子可進一步包括配置於至少一介電層上以在由電流激勵時產生該第二磁通之導電跡線。(A9) The motor or generator according to any one of paragraphs (A2) to (A8), wherein the stator may further include a conductive layer disposed on at least one dielectric layer to generate the second magnetic flux when excited by a current Trace.

(A10) 如段落(A2)至(A9)中任一項之馬達或發電機,其中該定子可經進一步構形使得在該等導電跡線由電流激勵之任何給定時間,該第二磁通之最大密度之一或多個位置圍繞該旋轉軸不均勻分佈。(A10) The motor or generator of any of paragraphs (A2) to (A9), wherein the stator can be further configured such that at any given time when the conductive traces are excited by current, the second magnetic Generally, one or more positions of the maximum density are unevenly distributed around the axis of rotation.

(A11) 如段落(A9)或段落(A10)之馬達或發電機,該等導電跡線配置於該至少一介電層上且耦合至一電源以產生對應於由該電源輸出之電流之三個相位的該第二磁通之三個相位。(A11) For the motor or generator of paragraph (A9) or paragraph (A10), the conductive traces are arranged on the at least one dielectric layer and are coupled to a power source to generate three corresponding to the current output by the power source Three phases of the second magnetic flux of two phases.

(A12) 如段落(A1)至(A11)中任一項之馬達或發電機,其中該定子可經進一步構形使得當該轉子依一恆定速度相對於該定子旋轉通過一角範圍時,歸因於該第一磁通與該第二磁通之相互作用所產生之扭矩之一週期性係無規律的。(A12) The motor or generator of any one of paragraphs (A1) to (A11), wherein the stator can be further configured such that when the rotor rotates through an angular range relative to the stator at a constant speed, attributable A periodicity of the torque generated by the interaction between the first magnetic flux and the second magnetic flux is irregular.

(A13) 一種用於一馬達或發電機中之轉子,其可包括一支撐結構及一或多個磁體分段,該一或多個磁體分段由該支撐結構支撐且產生平行於一旋轉軸之第一磁通,該支撐結構在與一定子組裝時圍繞該旋轉軸旋轉,該定子產生平行於該旋轉軸之第二磁通,其中該一或多個磁體分段經構形及配置以產生圍繞該旋轉軸不均勻分佈之一磁通外形。(A13) A rotor used in a motor or generator, which may include a support structure and one or more magnet segments, the one or more magnet segments are supported by the support structure and generated parallel to a rotation axis The first magnetic flux, the support structure rotates around the rotation axis when assembled with the stator, the stator generates a second magnetic flux parallel to the rotation axis, wherein the one or more magnet segments are configured and arranged to A magnetic flux profile that is unevenly distributed around the axis of rotation is produced.

(A14) 如段落(A13)之轉子,其中該一或多個磁體分段可進一步包含至少一第一磁體分段及與該第一磁體分段間隔開之一第二磁體分段,且該第一磁體分段可包含比該第二磁體分段多之一相鄰磁體數目。(A14) The rotor of paragraph (A13), wherein the one or more magnet segments may further include at least one first magnet segment and a second magnet segment spaced apart from the first magnet segment, and the The first magnet segment may include one more number of adjacent magnets than the second magnet segment.

以下段落(M1)至(M5)描述可根據本發明來實施之方法之實例。The following paragraphs (M1) to (M5) describe examples of methods that can be implemented according to the present invention.

(M1) 一種方法,其可包括圍繞一軸向磁通馬達或發電機之一轉子之一旋轉軸不均勻配置一定子之一或多個磁通產生繞組。(M1) A method which may include unevenly arranging one or more magnetic flux-generating windings of stators around a rotating shaft of an axial flux motor or a rotor of a generator.

(M2) 如段落(M1)之方法,其中配置該一或多個磁通產生繞組進一步包括圍繞該旋轉軸不均勻配置包含該等繞組之一或多個印刷電路板分段。(M2) The method of paragraph (M1), wherein arranging the one or more magnetic flux generating windings further includes unevenly arranging one or more printed circuit board segments including the windings around the rotation axis.

(M3) 如段落(M1)或段落(M2)之方法,其中配置該一或多個印刷電路板分段可進一步包括配置該一或多個印刷電路板分段,使得在該等繞組由電流激勵之任何給定時間,該第二磁通之最大密度之一或多個位置圍繞該旋轉軸不均勻分佈。(M3) The method of paragraph (M1) or paragraph (M2), wherein arranging the one or more printed circuit board segments may further include arranging the one or more printed circuit board segments so that current flows in the windings At any given time of excitation, one or more positions of the maximum density of the second magnetic flux are unevenly distributed around the axis of rotation.

(M4) 如段落(M1)至(M3)中任一項之方法,其中該轉子可包括圍繞該旋轉軸不均勻配置之磁體。(M4) The method of any one of paragraphs (M1) to (M3), wherein the rotor may include magnets unevenly arranged around the rotation axis.

(M5) 如段落(M1)至(M4)中任一項之方法,其中配置該一或多個磁通產生繞組可進一步包括配置該一或多個磁通產生繞組,使得當該轉子依一恆定速度相對於該定子旋轉通過一角範圍時,歸因於由該轉子及該定子產生之磁通之相互作用所產生之扭矩之一週期性係無規律的。(M5) The method of any one of paragraphs (M1) to (M4), wherein configuring the one or more magnetic flux generating windings may further include configuring the one or more magnetic flux generating windings such that when the rotor is When the constant speed passes through an angular range with respect to the rotation of the stator, a periodicity of the torque due to the interaction of the magnetic flux generated by the rotor and the stator is irregular.

因此,儘管已描述至少一實施例之若干態樣,但應瞭解,熟習技術者將易於想到各種替代、修改及改良。此等替代、修改及改良意欲為本發明之部分,且意欲在本發明之精神及範疇內。因此,以上描述及圖式僅供例示。Therefore, although several aspects of at least one embodiment have been described, it should be understood that those skilled in the art will easily think of various alternatives, modifications and improvements. These substitutions, modifications and improvements are intended to be part of the present invention and are intended to be within the spirit and scope of the present invention. Therefore, the above description and drawings are for illustration only.

本發明之各種態樣可單獨、組合或依上述實施例中未具體討論之各種配置使用且因此不受限於本申請案中之細節及以上描述中所闡述或圖式中所繪示之組件之配置。例如,一實施例中所描述之態樣可依任何方式與其他實施例中所描述之態樣組合。The various aspects of the present invention can be used alone, in combination, or in various configurations that are not specifically discussed in the above embodiments, and are therefore not limited to the details in this application and the components set forth in the above description or shown in the drawings The configuration. For example, the aspect described in one embodiment can be combined with the aspect described in other embodiments in any way.

此外,所揭示之態樣可體現為已提供其實例之一方法。可依任何適合方式排序執行為方法之部分的動作。因此,可建構其中依不同於所繪示之順序的一順序執行動作之實施例,其可包含同時執行一些動作,即使該等動作在說明性實施例中展示為循序動作。In addition, the disclosed aspect can be embodied as one of the methods provided for its example. The actions that are part of the method can be sequenced in any suitable way. Therefore, embodiments can be constructed in which actions are performed in a sequence other than the sequence shown, which may include performing some actions at the same time, even if the actions are shown as sequential actions in the illustrative embodiment.

申請專利範圍中用於修飾一請求項元件之序數(諸如「第一」、「第二」、「第三」等等)本身不暗示一請求項元件相較於另一請求項元件之優先權、位次或順序或執行一方法之動作之時間順序,而是僅用作區分具有一特定名稱之一主張元件與具有一相同名稱(但使用序數)之另一元件以區分請求項元件之標記。The ordinal number used to modify a claim element in the scope of the patent application (such as "first", "second", "third", etc.) itself does not imply the priority of one claim element compared to another claim element , Order or order, or the time sequence of the actions of a method, but only used to distinguish a claim element with a specific name from another element with the same name (but using an ordinal number) to distinguish the requested element .

此外,本文中所使用之片語及術語用於描述且不應被視為限制。本文中所使用之「包含」、「包括」或「具有」、「含有」、「涉及」及其變體意謂涵蓋其後所列之項目及其等效物及額外項目。In addition, the phrases and terms used herein are used for description and should not be considered as limiting. As used in this article, "include", "include" or "have", "include", "involved" and their variants mean the items listed thereafter and their equivalents and additional items.

100:系統 104a:轉子組件/磁體 104b:轉子組件/磁體 106a:永久磁化部分/磁體 106b:永久磁化部分/磁體 108:軸件 110:定子 112:控制器/端子/整流器實施方案 114:導線/電連接件 202:定子 204:定子 206:定子 208:定子分段 208a至208g:定子分段 302:印刷電路板面板 502:磁體 504:轉子 506:密集磁體區段/密集磁體區域/密集角範圍 508:非密集角範圍/非密集磁體區域 510:附接部件 512:緊固件 514:端子 802:馬達 804:洗衣機負載 806:外殼 808:洗衣機桶 810:軸承元件 812:軸件100: System 104a: Rotor assembly/magnet 104b: Rotor assembly/magnet 106a: Permanently magnetized part/magnet 106b: Permanently magnetized part/magnet 108: Shaft 110: stator 112: Controller/terminal/rectifier implementation plan 114: Wire/electrical connection 202: Stator 204: Stator 206: Stator 208: stator segment 208a to 208g: stator segment 302: printed circuit board panel 502: Magnet 504: Rotor 506: dense magnet section / dense magnet area / dense angle range 508: Non-dense angular range/non-dense magnet area 510: attachment parts 512: Fastener 514: Terminal 802: Motor 804: washing machine load 806: shell 808: washing machine bucket 810: bearing element 812: Shaft

將自以下[實施方式]、隨附申請專利範圍及附圖更完全明白本文中所揭示之實施例之目的、態樣、特徵及優點,在附圖中,相同元件符號識別類似或相同元件。結合一圖來引入至本說明書中之參考元件符號可在一或多個後續圖中重複且本說明書中不另外描述以提供其他特徵之背景,且可不在每一圖中標記每一元件。圖式未必按比例繪製,而是將重點放在繪示實施例、原理及概念上。圖式不意欲限制包含於本文中之申請專利範圍之範疇。The purpose, aspect, features and advantages of the embodiments disclosed herein will be more fully understood from the following [Embodiments], the scope of the attached patent application and the accompanying drawings. In the accompanying drawings, the same component symbols identify similar or identical components. The reference element symbols introduced into this specification in conjunction with a figure may be repeated in one or more subsequent figures and are not otherwise described in this specification to provide a background for other features, and each element may not be labeled in each figure. The drawings are not necessarily drawn to scale, but the emphasis is placed on illustrating the embodiments, principles and concepts. The drawings are not intended to limit the scope of the patent application included in this article.

圖1A展示其中可採用本發明之一些態樣之一軸向磁通馬達或發電機之一實例; Figure 1A shows an example of an axial flux motor or generator in which some aspects of the present invention can be used;

圖1B係展示圖1A中所展示之軸向磁通馬達或發電機之組件及用於組裝此等組件之一構件的一展開圖; Figure 1B is an exploded view showing the components of the axial flux motor or generator shown in Figure 1A and a component used to assemble one of these components;

圖2係展示具有相等面積但不同構形之三個印刷電路板定子的一概念圖; Figure 2 is a conceptual diagram showing three printed circuit board stators with equal areas but different configurations;

圖3係展示多個定子分段可如何經配置以製造於標準尺寸之一印刷電路板面板上的一圖式; Figure 3 is a diagram showing how multiple stator segments can be configured to be manufactured on a printed circuit board panel of a standard size;

圖4係展示圖3中所展示之定子分段之一子集如何呈現為邊緣對邊緣地配置於圖3中所展示之印刷電路板面板上的一圖式; Fig. 4 is a diagram showing how a subset of the stator segments shown in Fig. 3 is presented edge-to-edge arranged on the printed circuit board panel shown in Fig. 3;

圖5展示根據本發明之一些態樣之一定子分段相對於一轉子上之磁體之一實例性配置; Figure 5 shows an exemplary configuration of a stator segment relative to a magnet on a rotor according to some aspects of the present invention;

圖6展示相同於圖5之配置,但其中依一角度展示轉子,定子分段依該角度與提供峰值扭矩之一磁體區段重疊;Figure 6 shows the same configuration as Figure 5, but in which the rotor is shown at an angle, and the stator segment overlaps with a magnet segment that provides peak torque at this angle;

圖7展示根據本發明之一些態樣之多個定子分段相對於一轉子上之磁體之一實例性配置;及Figure 7 shows an exemplary configuration of a plurality of stator segments with respect to magnets on a rotor according to some aspects of the present invention; and

圖8繪示根據本發明之一些態樣之與一洗衣機負載構形及整合之一軸向磁通馬達之一實例性實施例之一橫截面。FIG. 8 shows a cross-section of an exemplary embodiment of an axial flux motor with a washing machine load configuration and integration according to some aspects of the present invention.

208:定子分段 208: stator segment

502:磁體 502: Magnet

504:轉子 504: Rotor

506:密集磁體區段/密集角範圍/密集磁體區域 506: Dense magnet section / Dense angle range / Dense magnet area

508:非密集角範圍/非密集磁體區域 508: Non-dense angular range/non-dense magnet area

510:附接部件 510: attachment parts

512:緊固件 512: Fastener

514:端子 514: Terminal

Claims (20)

一種馬達或發電機,其包括: 一轉子,其具有一旋轉軸且經構形以產生平行於該旋轉軸之第一磁通;及 一定子,其經構形以產生平行於該旋轉軸之第二磁通; 其中該轉子或該定子之至少一者經構形以產生圍繞該旋轉軸不均勻分佈之一磁通外形。A motor or generator, which includes: A rotor having a rotating shaft and configured to generate a first magnetic flux parallel to the rotating shaft; and A stator, which is configured to generate a second magnetic flux parallel to the axis of rotation; At least one of the rotor or the stator is configured to produce a magnetic flux profile that is unevenly distributed around the rotation axis. 如請求項1之馬達或發電機,其中該轉子經構形以產生圍繞該旋轉軸不均勻分佈之一第一磁通外形。Such as the motor or generator of claim 1, wherein the rotor is configured to produce a first magnetic flux profile that is unevenly distributed around the rotation axis. 如請求項2之馬達或發電機,其中該轉子包括圍繞該旋轉軸不均勻分佈之一或多個磁體分段。Such as the motor or generator of claim 2, wherein the rotor includes one or more magnet segments unevenly distributed around the rotation axis. 如請求項3之馬達或發電機,其中該一或多個磁體分段之各者具有其中該第一磁通具有一最大密度之一各自表面位置,且該等各自表面位置圍繞該旋轉軸不均勻分佈。Such as the motor or generator of claim 3, wherein each of the one or more magnet segments has a respective surface position in which the first magnetic flux has a maximum density, and the respective surface positions are not around the rotation axis Evenly distributed. 如請求項2之馬達或發電機,其中該轉子經構形使得當該轉子依一實質上恆定速度相對於該定子旋轉通過一角範圍時,歸因於該第一磁通與該第二磁通之相互作用所產生之扭矩之一週期性係無規律的。Such as the motor or generator of claim 2, wherein the rotor is configured such that when the rotor rotates through an angular range relative to the stator at a substantially constant speed, it is due to the first magnetic flux and the second magnetic flux One of the periodicity of the torque produced by the interaction is irregular. 如請求項2之馬達或發電機,其中該定子經構形以產生圍繞該旋轉軸不均勻分佈之一第二磁通外形。Such as the motor or generator of claim 2, wherein the stator is configured to produce a second magnetic flux profile that is unevenly distributed around the rotation axis. 如請求項1之馬達或發電機,其中該定子經構形以產生圍繞該旋轉軸不均勻分佈之一磁通外形。Such as the motor or generator of claim 1, wherein the stator is configured to produce a magnetic flux profile that is unevenly distributed around the rotation axis. 如請求項7之馬達或發電機,其中該定子包括圍繞該旋轉軸不均勻分佈之一或多個印刷電路板分段。Such as the motor or generator of claim 7, wherein the stator includes one or more printed circuit board segments unevenly distributed around the rotation axis. 如請求項1之馬達或發電機,其中該定子包括配置於至少一介電層上以在由電流激勵時產生該第二磁通之導電跡線。The motor or generator of claim 1, wherein the stator includes conductive traces arranged on at least one dielectric layer to generate the second magnetic flux when excited by current. 如請求項9之馬達或發電機,其中該定子經構形使得在該等導電跡線由電流激勵之任何給定時間,該第二磁通之最大密度之一或多個位置圍繞該旋轉軸不均勻分佈。The motor or generator of claim 9, wherein the stator is configured such that at any given time when the conductive traces are excited by current, one or more positions of the maximum density of the second magnetic flux surround the axis of rotation Uneven distribution. 如請求項10之馬達或發電機,其中該等導電跡線配置於該至少一介電層上且耦合至一電源以產生對應於由該電源輸出之電流之三個相位的該第二磁通之三個相位。The motor or generator of claim 10, wherein the conductive traces are arranged on the at least one dielectric layer and are coupled to a power source to generate the second magnetic flux corresponding to the three phases of the current output by the power source The three phases. 如請求項10之馬達或發電機,其中該定子包括圍繞該旋轉軸不均勻分佈之一或多個印刷電路板分段。Such as the motor or generator of claim 10, wherein the stator includes one or more printed circuit board segments unevenly distributed around the rotation axis. 如請求項1之馬達或發電機,其中該轉子或該定子之至少一者經構形使得當該轉子依一恆定速度相對於該定子旋轉通過一角範圍時,歸因於該第一磁通與該第二磁通之相互作用所產生之扭矩之一週期性係無規律的。Such as the motor or generator of claim 1, wherein at least one of the rotor or the stator is configured such that when the rotor rotates through an angular range with respect to the stator at a constant speed, it is due to the first magnetic flux and The periodicity of the torque generated by the interaction of the second magnetic flux is irregular. 一種方法,其包括: 圍繞一軸向磁通馬達或發電機之一轉子之一旋轉軸不均勻配置一定子之一或多個磁通產生繞組。A method including: One or more magnetic flux generating windings of stators are unevenly arranged around a rotating shaft of a rotor of an axial flux motor or a generator. 如請求項14之方法,其中配置該一或多個磁通產生繞組包括: 圍繞該旋轉軸不均勻配置包含該等繞組之一或多個印刷電路板分段。Such as the method of claim 14, wherein configuring the one or more magnetic flux generating windings includes: The uneven configuration around the axis of rotation includes one or more printed circuit board segments of the windings. 如請求項15之方法,其中該轉子包括圍繞該旋轉軸不均勻配置之磁體。The method of claim 15, wherein the rotor includes magnets arranged unevenly around the rotation axis. 如請求項15之方法,其中配置該一或多個印刷電路板分段進一步包括: 配置該一或多個印刷電路板分段,使得在該等繞組由電流激勵之任何給定時間,該第二磁通之最大密度之一或多個位置圍繞該旋轉軸不均勻分佈。Such as the method of claim 15, wherein configuring the one or more printed circuit board segments further includes: The one or more printed circuit board segments are configured such that at any given time when the windings are excited by current, one or more positions of the maximum density of the second magnetic flux are unevenly distributed around the axis of rotation. 如請求項14之方法,其中配置該一或多個磁通產生繞組包括: 配置該一或多個磁通產生繞組,使得當該轉子依一恆定速度相對於該定子旋轉通過一角範圍時,歸因於由該轉子及該定子產生之磁通之相互作用所產生之扭矩之一週期性係無規律的。Such as the method of claim 14, wherein configuring the one or more magnetic flux generating windings includes: The one or more magnetic flux generating windings are arranged so that when the rotor rotates through an angular range with respect to the stator at a constant speed, the torque is due to the interaction of the magnetic flux generated by the rotor and the stator A periodicity is irregular. 一種用於一馬達或發電機中之轉子,其包括: 一支撐結構;及 一或多個磁體分段,其由該支撐結構支撐且產生平行於一旋轉軸之第一磁通,該支撐結構在與一定子組裝時圍繞該旋轉軸旋轉,該定子產生平行於該旋轉軸之第二磁通,其中該一或多個磁體分段經構形及配置以產生圍繞該旋轉軸不均勻分佈之一磁通外形。A rotor used in a motor or generator, which includes: A supporting structure; and One or more magnet segments, which are supported by the support structure and generate a first magnetic flux parallel to a rotation axis, the support structure rotates around the rotation axis when assembled with the stator, and the stator generates parallel to the rotation axis The second magnetic flux, wherein the one or more magnet segments are configured and arranged to produce a magnetic flux shape that is unevenly distributed around the rotation axis. 如請求項19之轉子,其中該一或多個磁體分段包含至少一第一磁體分段及與該第一磁體分段間隔開之一第二磁體分段,該第一磁體分段包含比該第二磁體分段多之一相鄰磁體數目。Such as the rotor of claim 19, wherein the one or more magnet segments include at least one first magnet segment and a second magnet segment spaced apart from the first magnet segment, the first magnet segment including The second magnet segment has one more number of adjacent magnets.
TW108139588A 2018-11-01 2019-10-31 A motor or generator, a rotor for use in a motor or generator, and a method for arranging a motor or genenerator TWI827721B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862754051P 2018-11-01 2018-11-01
US62/754,051 2018-11-01
US16/665,763 US11527933B2 (en) 2015-10-02 2019-10-28 Stator and rotor design for periodic torque requirements
US16/665,763 2019-10-28

Publications (2)

Publication Number Publication Date
TW202034607A true TW202034607A (en) 2020-09-16
TWI827721B TWI827721B (en) 2024-01-01

Family

ID=68610350

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139588A TWI827721B (en) 2018-11-01 2019-10-31 A motor or generator, a rotor for use in a motor or generator, and a method for arranging a motor or genenerator

Country Status (12)

Country Link
EP (1) EP3874583A1 (en)
JP (1) JP2022506263A (en)
KR (1) KR20210083341A (en)
CN (1) CN112997383A (en)
AU (2) AU2019370644B2 (en)
BR (1) BR112021007191A2 (en)
CA (1) CA3116171A1 (en)
MX (1) MX2021005147A (en)
PH (1) PH12021550989A1 (en)
SG (1) SG11202103655XA (en)
TW (1) TWI827721B (en)
WO (1) WO2020092470A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141803B2 (en) 2017-01-11 2018-11-27 Infinitum Electric Inc. System and apparatus for axial field rotary energy device
WO2019190959A1 (en) 2018-03-26 2019-10-03 Infinitum Electric Inc. System and apparatus for axial field rotary energy device
US11283319B2 (en) 2019-11-11 2022-03-22 Infinitum Electric, Inc. Axial field rotary energy device with PCB stator having interleaved PCBS
US20210218304A1 (en) 2020-01-14 2021-07-15 Infinitum Electric, Inc. Axial field rotary energy device having pcb stator and variable frequency drive
US11482908B1 (en) 2021-04-12 2022-10-25 Infinitum Electric, Inc. System, method and apparatus for direct liquid-cooled axial flux electric machine with PCB stator

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103259A (en) * 1978-01-31 1979-08-14 Tokyo Electric Co Ltd Dust compressing apparatus for electric cleaner
AUPM827094A0 (en) * 1994-09-20 1994-10-13 Queensland Railways Open stator axial flux electric motor
GB0007743D0 (en) * 2000-03-31 2000-05-17 Kelsey Hayes Co Actuator
RU2294588C2 (en) 2003-02-07 2007-02-27 Кор Инновэйшн, Ллк Rotational electric machine with axial field
EP1670125A1 (en) * 2004-12-10 2006-06-14 Deutsche Thomson-Brandt Gmbh Electric motor
JP2008259399A (en) * 2007-03-15 2008-10-23 Honda Motor Co Ltd Stator for rotary electric machine equipped with toroidal winding structure
US10038349B2 (en) * 2008-08-15 2018-07-31 Millennial Research Corporation Multi-phase modular coil element for electric motor and generator
DE102010062271A1 (en) * 2010-12-01 2012-06-21 BSH Bosch und Siemens Hausgeräte GmbH Household appliance i.e. washing machine, has electric drive motor for driving movable component, and stator winding formed by planar strip conductors, where planar carrier i.e. thin film, on which strip conductors are attached, are printed
US9531236B2 (en) * 2011-06-02 2016-12-27 Calnetix Technologies, Llc Arrangement of axial and radial electromagnetic actuators
CN103138442B (en) * 2011-11-25 2016-04-13 丹佛斯(天津)有限公司 The rotor of interior permanent magnet machines and use its interior permanent magnet machines
US8736133B1 (en) * 2013-03-14 2014-05-27 Boulder Wind Power, Inc. Methods and apparatus for overlapping windings
GB2525582B (en) * 2014-02-26 2018-06-27 Yasa Ltd Asymmetric machines
CN104659996A (en) * 2014-11-14 2015-05-27 江西理工大学 Magnetic leakage type mechanical variable flux permanent magnet synchronous motor
CN104600950B (en) * 2015-01-27 2017-02-22 中国电子科技集团公司第二十一研究所 Radial flux hybrid stepping motor
CN106130291A (en) * 2015-05-08 2016-11-16 德昌电机(深圳)有限公司 Blower fan and single-phase external rotor brushless electric machine thereof
US9673688B2 (en) 2015-10-02 2017-06-06 E-Circuit Motors, Inc. Apparatus and method for forming a magnet assembly
US9800109B2 (en) 2015-10-02 2017-10-24 E-Circuit Motors, Inc. Structures and methods for controlling losses in printed circuit boards
US9673684B2 (en) 2015-10-02 2017-06-06 E-Circuit Motors, Inc. Structures and methods for thermal management in printed circuit board stators
US11121614B2 (en) 2017-06-05 2021-09-14 E-Circuit Motors, Inc. Pre-warped rotors for control of magnet-stator gap in axial flux machines
US10170953B2 (en) 2015-10-02 2019-01-01 E-Circuit Motors, Inc. Planar composite structures and assemblies for axial flux motors and generators
WO2017090074A1 (en) * 2015-11-24 2017-06-01 株式会社日立産機システム Axial gap-type rotary electric machine and rotary electric machine stator
US10530209B2 (en) * 2016-10-28 2020-01-07 Waymo Llc Devices and methods for driving a rotary platform
US10141803B2 (en) * 2017-01-11 2018-11-27 Infinitum Electric Inc. System and apparatus for axial field rotary energy device

Also Published As

Publication number Publication date
SG11202103655XA (en) 2021-05-28
AU2019370644A1 (en) 2021-05-20
BR112021007191A2 (en) 2021-07-20
CA3116171A1 (en) 2020-05-07
MX2021005147A (en) 2021-07-15
CN112997383A (en) 2021-06-18
EP3874583A1 (en) 2021-09-08
KR20210083341A (en) 2021-07-06
AU2023258344B2 (en) 2024-02-01
AU2019370644B2 (en) 2023-11-23
TWI827721B (en) 2024-01-01
PH12021550989A1 (en) 2021-10-04
AU2023258344A1 (en) 2023-11-16
JP2022506263A (en) 2022-01-17
WO2020092470A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
TW202034607A (en) Stator and rotor design for periodic torque requirements
US11527933B2 (en) Stator and rotor design for periodic torque requirements
US7385330B2 (en) Permanent-magnet switched-flux machine
US7504754B2 (en) Rotor having multiple permanent-magnet pieces in a cavity
CN102780286B (en) Asymmetric stator tooth in electro-motor
CN105706342B (en) Automatically controlled general purpose engine
US20180205279A1 (en) Electrical energy conversion system in the form of an induction motor or generator with variable coil winding patterns exhibiting multiple and differently gauged wires according to varying braid patterns
TW201025795A (en) A rotating electric machine with complementary permanent magnet structure to minimize cogging torque
TW201119186A (en) Generator and air core utilitied thereof
TW201236323A (en) High-Performance power generator device
Petrov et al. Fault-tolerant modular stator concentrated winding permanent magnet machine
JP6113884B1 (en) Continuous power generator
KR20210147833A (en) New two-stator and two-rotor combined energy-saving motor
CN105281448B (en) A kind of asynchronous machine that there is axially adjacent section in the same direction with reverse energization winding
US11831211B2 (en) Stator and rotor design for periodic torque requirements
CN1897422A (en) Permanent magnetic generator
WO2015181703A1 (en) Electrical machine with continuous geometry and constant torque operation
CN2296596Y (en) Generator
JP7330570B1 (en) brushless motor
KR102625174B1 (en) Layered motor
CN2274839Y (en) Electric power generator
JP6375967B2 (en) Rotating electric machine
JP2006050791A (en) Synchronous rotary electric machine
CN117937817A (en) Iron core-free double-rotor axial motor based on alpha winding
JP3709726B2 (en) motor