TW202034203A - Simulation device, simulation program, and simulation method - Google Patents

Simulation device, simulation program, and simulation method Download PDF

Info

Publication number
TW202034203A
TW202034203A TW108121944A TW108121944A TW202034203A TW 202034203 A TW202034203 A TW 202034203A TW 108121944 A TW108121944 A TW 108121944A TW 108121944 A TW108121944 A TW 108121944A TW 202034203 A TW202034203 A TW 202034203A
Authority
TW
Taiwan
Prior art keywords
mesh
piping
model
factory
cost
Prior art date
Application number
TW108121944A
Other languages
Chinese (zh)
Inventor
京屋貴則
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW202034203A publication Critical patent/TW202034203A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

In the present invention, a mesh calculation unit (120) creates, on the basis of a mesh coarseness that has been input, a piping model of a mesh piping circuit into which a fluid flows, which includes a plurality of valves that can be opened/closed by control thereof and a plurality of pipes, and in which the plurality of pipes are arranged in a mesh shape by connecting the valves to each other. The mesh calculation unit (120) creates a factory model, which is a model of a simulation subject, by combining a piping model and a factory layout model indicating a model of a factory which will use the mesh piping circuit. A construction cost calculation unit (130) calculates the construction cost of the factory indicated by the factory model. A production cost calculation unit (140) simulates the factory model and calculates the running cost for running the factory using the mesh piping circuit. A mesh effect evaluation unit (170) evaluates the effect of the mesh piping circuit on the basis of the construction cost and the running cost.

Description

模擬裝置、模擬程式產品以及模擬方法Simulation device, simulation program product and simulation method

此發明,係關於以配管供給像壓縮空氣的流體之供給路徑的模擬裝置。This invention relates to a simulation device for supplying fluid like compressed air with a pipe.

以往,具有的技術,係藉由壓力資料及根據模型的模擬,將壓縮空氣漏出場所候補及漏出場所中的漏出量,利用Metaheuristic(元啟發式)最佳化法計算輸出(例如專利文件1)。 但是,以往,係以複數節點連接表現構成機器的輸出入關係為分支的機器模型,用模擬器診斷全部漏出場所組合的技術。因此,雖然變更壓縮空氣的供給路徑,但不能評估依存於可變型供給路徑的損失迴避效果。 [先行技術文件] [專利文件]In the past, the technology has been based on pressure data and model-based simulations to calculate the output of the compressed air leakage location candidate and the leakage amount in the leakage location using Metaheuristic optimization method (e.g. Patent Document 1) . However, in the past, a device model in which the input/output relationship of the constituent devices is represented by a plurality of node connections is branched, and a simulator is used to diagnose all leak-place combinations. Therefore, although the compressed air supply path is changed, the loss avoidance effect dependent on the variable supply path cannot be evaluated. [Advanced Technical Document] [Patent Document]

[專利文件1]日本專利公開第2009-259279號公報[Patent Document 1] Japanese Patent Publication No. 2009-259279

[發明所欲解決的課題][The problem to be solved by the invention]

本發明,為了在工廠進行抑制損失的壓縮空氣的JIT供給,用可控制的開關閥連接配管,以網目化壓縮空氣的供給路徑為前提,利用模擬事前評估可變更供給路徑的網目型供給路徑的最佳形狀,以提供決定的模擬裝置為目的。 [用以解決課題的手段]In the present invention, in order to perform JIT supply of compressed air to suppress loss in a factory, a controllable on-off valve is used to connect piping. On the premise of the supply path of meshed compressed air, it uses simulation to evaluate in advance a mesh type supply path that can change the supply path. The best shape is for the purpose of providing a determined simulation device. [Means to solve the problem]

此發明的模擬裝置,包括: 網目計算部,具有包含根據控制可開關的複數電磁閥之複數閥、以及複數配管,由於上述複數配管的各配管連接閥之間,配置上述複數配管成網目狀,根據輸入的網目粗細,制作流體流入的網目配管電路模型的配管模型,透過組合制作的上述配管模型與表示使用上述網目配管電路的工廠模型之工廠配置模型,制作包括上述網目配管電路的工廠模型且是模擬對象的模型之工廠模型; 構築成本計算部,計算上述工廠模型表示的上述工廠構築成本; 生產成本計算部,透過模擬上述工廠模型,上述工廠使用上述網目配管電路計算運轉的運轉成本;以及 網目效果評估部,根據上述構築成本與上述運轉成本,評估上述網目配管電路的效果。 [發明效果]The simulation device of this invention includes: The mesh calculation unit has plural valves including plural solenoid valves that can be opened and closed according to control, and plural piping. Since the plural piping connection valves of the plural piping are arranged between the plural piping connection valves, the plural piping is arranged in a mesh shape, and the fluid is produced according to the input mesh thickness The piping model of the inflowing mesh piping circuit model, by combining the above-mentioned piping model created with the factory layout model representing the factory model using the above mesh piping circuit, to create a factory model including the above mesh piping circuit and a model of the simulation target ; The construction cost calculation department calculates the construction cost of the aforementioned factory represented by the aforementioned factory model; The production cost calculation department, by simulating the above-mentioned factory model, the above-mentioned factory uses the above-mentioned mesh piping circuit to calculate the operating cost of operation; and The mesh effect evaluation department evaluates the effect of the above mesh piping circuit based on the above construction cost and the above operation cost. [Invention Effect]

根據本發明,可以提供以模擬事前評估可變更供給路徑的網目型供給路徑的最佳形狀並決定的模擬裝置。According to the present invention, it is possible to provide a simulation device that evaluates and determines the optimal shape of the mesh-type supply path in which the supply path can be changed in advance.

以下,關於本發明的實施形態,利用圖說明。又,各圖中,相同或相當的部分,附上相同的符號。實施形態的說明中,關於相同或相當的部分,適當省略或簡化說明。Hereinafter, the embodiment of the present invention will be described with reference to drawings. In addition, in each figure, the same or equivalent parts are given the same symbols. In the description of the embodiment, the description of the same or equivalent parts will be omitted or simplified as appropriate.

(1)   以下,有時標記生產設備為設備。生產設備,係利用流體的利用設備。 (2)   以下,使用壓縮空氣作為流體。但是,流體不限於壓縮空氣,壓縮空氣以外的惰性氣體或像二氧化碳的氣體也可以。又,流體是液體也可以。又,流體是粉末也可以。 (3)   以下,配管成本資料庫133、配管資料庫151b以及設備資料庫152b上場,但這些是標記為配管成本DB133、配管DB151b以及設備DB152b。 (4)   以下,記載為閥時,只要不特別事先說明,係具有像1個或4個複數個開關閥,且可控制這些開關閥開關之電磁閥。電磁閥是開關閥。(1) Below, sometimes the production equipment is marked as equipment. Production equipment is a fluid utilization equipment. (2) Below, use compressed air as the fluid. However, the fluid is not limited to compressed air, and inert gases other than compressed air or gases like carbon dioxide may also be used. In addition, the fluid may be liquid. In addition, the fluid may be powder. (3) Below, the piping cost database 133, the piping database 151b, and the equipment database 152b are available, but these are marked as piping cost DB133, piping DB151b, and equipment DB152b. (4) In the following, when it is described as a valve, unless otherwise specified, it is a solenoid valve that has multiple on-off valves like 1 or 4 and can control the on-off of these on-off valves. The solenoid valve is an on-off valve.

實施形態1 參照第1到7圖,說明實施形態1的模擬裝置101。Embodiment 1 With reference to Figs. 1 to 7, the simulation device 101 of the first embodiment will be described.

構成的說明 第1圖係顯示包括模擬對象的工廠700之流體供給系統1000。第1圖中,實線顯示壓縮空氣流,虛線顯示資料流。流體供給系統1000,包括生產實行系統230、壓縮機控制裝置240、閥控制部250以及工廠700。工廠700,具有複數壓縮機710、閥720、接收槽730、閥740以及網目配管電路800。Description of composition Fig. 1 shows a fluid supply system 1000 of a factory 700 including a simulation object. In Figure 1, the solid line shows the compressed air flow, and the dotted line shows the data flow. The fluid supply system 1000 includes a production execution system 230, a compressor control device 240, a valve control unit 250, and a factory 700. The factory 700 has a plurality of compressors 710, valves 720, receiving tanks 730, valves 740, and mesh piping circuits 800.

<網目配管電路800> 網目配管電路800,具有包含根據控制可開關的複數閥801之複數閥以及複數配管802。網目配管電路800的複數閥,全部是電磁閥也可以,包含1個或複數的手動閥也可以。網目配管電路800,由於複數配管802的各配管802連接閥801之間,配置複數配管802成網目狀,流體流入。利用流體的複數利用設備810、810a、810b連接至複數配管802中分別不同的配管802。閥控制部250,透過控制網目配管電路800具有的複數閥801,形成供給路徑。Mesh piping circuit 800> The mesh piping circuit 800 has plural valves including plural valves 801 that can be opened and closed according to control, and plural pipes 802. The plural valves of the mesh piping circuit 800 may all be solenoid valves, and one or plural manual valves may be included. In the mesh piping circuit 800, since the piping 802 of the plural piping 802 is connected between the valves 801, the plural piping 802 are arranged in a mesh shape, and fluid flows in. The plural use devices 810, 810a, and 810b using fluid are connected to different pipes 802 among the plural pipes 802, respectively. The valve control unit 250 controls a plurality of valves 801 included in the mesh piping circuit 800 to form a supply path.

<模擬的對象> 成為模擬裝置101的模擬對象,係第1圖的工廠700。成為模擬對象的工廠700的模型,以下稱作工廠模型。<Object of simulation> The simulation target of the simulation device 101 is the factory 700 in Fig. 1. The model of the factory 700 to be the simulation target is hereinafter referred to as the factory model.

第2圖係說明流體供給系統1000具有的網目配管電路800中的供給路徑圖。第2圖的左上圖,是網目配管電路800的比較例的回路型配管。回路型配管中,從設備A到設備D之中只有設備C運轉(ON),即使停止(OFF)設備A、B、D時,也必須供給回路型配管全區壓縮空氣。因此,因為停止中的設備A、B、D的路徑也流入壓縮空氣,產生此部分的壓縮空氣的漏出。 另一方面,實施形態1的網目配管電路800如下述。第2圖的左下圖模式顯示網目配管電路800。網目配管電路800係16處的閥V以配管802連接。第2圖的左下圖係設備A到設備D全部停止。第2圖的右上圖,顯示設備C開始運轉的狀態。第2圖的右上圖中,被看作閥V1的閥V2方向是開,閥V2的閥V3方向是開,閥V3的閥V4方向是開,形成實線顯示的供給路徑。此時,對於第2圖的左上的回路型配管,因為對虛線顯示的部分不供給壓縮空氣,對於回路型配管壓縮空氣的漏出很少。第2圖的右下圖,顯示運轉設備B、C、D的狀態。 此圖中,除了右上的狀態,因為還有閥V4的閥V5方向為開,閥V5的閥V6方向為開,閥V5的閥V10方向為開,及閥V6的閥V7方向為開,閥V7的閥V8方向為開,閥V8的閥V9方向為開,形成實線顯示的壓縮空氣的供給路徑。第2圖的右下圖,也不使用網目配管電路800中虛線的配線管。因此,對於回路型配線管壓縮空氣的漏出很少。Fig. 2 is a diagram illustrating the supply path in the mesh piping circuit 800 included in the fluid supply system 1000. The upper left diagram of FIG. 2 is a loop type piping of a comparative example of the mesh piping circuit 800. In loop-type piping, only device C is operating (ON) from device A to device D. Even when devices A, B, and D are stopped (OFF), compressed air must be supplied to all areas of loop-type piping. Therefore, since compressed air flows into the paths of the devices A, B, and D that are stopped, this part of the compressed air leaks. On the other hand, the mesh piping circuit 800 of Embodiment 1 is as follows. The lower left diagram of FIG. 2 schematically shows the mesh piping circuit 800. The valve V at 16 of the mesh piping circuit 800 is connected with a piping 802. The bottom left of Figure 2 shows that equipment A to equipment D are all stopped. The upper right diagram of Figure 2 shows the state of equipment C starting to operate. In the upper right diagram of Figure 2, the valve V2 direction of the valve V1 is regarded as open, the valve V3 direction of the valve V2 is open, and the valve V4 direction of the valve V3 is open, forming a supply path indicated by a solid line. At this time, for the loop-type piping in the upper left of Figure 2, because compressed air is not supplied to the portion shown by the broken line, there is little leakage of compressed air into the loop-type piping. The lower right diagram of Figure 2 shows the status of operating equipment B, C, and D. In this figure, in addition to the upper right state, because there are also valve V4 with the valve V5 direction open, valve V5 with the valve V6 direction open, valve V5 with the valve V10 direction open, and valve V6 with the valve V7 direction open, The valve V8 direction of V7 is open, and the valve V9 direction of valve V8 is open, forming a compressed air supply path shown by a solid line. The lower right diagram of Figure 2 does not use the dashed wiring duct in the mesh piping circuit 800. Therefore, there is little leakage of compressed air into the loop-type wiring duct.

模擬裝置101,模擬包括第2圖的網目配管電路800的工廠700。模擬裝置101,模擬工廠700的構築成本及運轉成本,可評估各工廠模型的綜合成本。The simulation device 101 simulates a factory 700 including the mesh piping circuit 800 in FIG. 2. The simulation device 101 simulates the construction cost and operating cost of the factory 700, and can evaluate the overall cost of each factory model.

<模擬裝置101> 第3圖,係顯示模擬裝置101的構成之方塊圖。模擬裝置101,包括模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160及網目效果評估部170。Simulation device 101> Fig. 3 is a block diagram showing the structure of the simulation device 101. The simulation device 101 includes a model management unit 110, a mesh calculation unit 120, a construction cost calculation unit 130, a production cost calculation unit 140, an operating cost calculation unit 150, a reduction effect calculation unit 160, and a mesh effect evaluation unit 170.

<模型管理部110> 以下說明模型管理部110。模型管理部110,包括工廠模型管理部111、成本模型制作部112、配管模型制作部113、工廠配置模型制作部114以及設備模型制作部115。<Model Management Department 110> The model management unit 110 will be described below. The model management unit 110 includes a factory model management unit 111, a cost model production unit 112, a piping model production unit 113, a factory layout model production unit 114, and an equipment model production unit 115.

<工廠模型管理部111> 工廠模型管理部111,管理包括網目型配管的工廠模型。工廠模型,如後述的第4圖所示,是以模型表現工廠的網目型配管、設備等的資料。工廠模型,係將後述的網目計算部120決定的工廠的網目型配管、設備等的配置、連接形態模型化的資料。根據網目粗細的不同,複數「工廠模型」存在。工廠模型使用於網目效果評估。 工廠模型與工廠配置模型不同。工廠配置模型,係生產設備、關聯設備對工廠樓層的配置(layout)模型。 另一方面,工廠模型,如後述第4圖所示,係運轉組合的工廠配置模型、配管模型等之模擬對象模型。工廠模型,不只是生產設備的配置,也是包含配管及閥的配置等的模型。<Factory Model Management Department 111> The factory model management unit 111 manages a factory model including mesh-type piping. The factory model, as shown in Figure 4 described later, is a model that expresses the mesh-type piping, equipment, etc. of the factory. The factory model is a material that models the layout and connection form of mesh-type piping, equipment, etc. of the factory determined by the mesh calculation unit 120 described later. Depending on the thickness of the mesh, multiple "factory models" exist. The factory model is used for mesh effect evaluation. The factory model is different from the factory configuration model. The factory configuration model is a layout model of production equipment and related equipment on the factory floor. On the other hand, the plant model is a simulation target model such as a plant layout model and a piping model of the operation combination, as shown in Fig. 4 described later. The factory model is not only the configuration of production equipment, but also the configuration of piping and valves.

<成本模型制作部112> 成本模型制作部112,制作壓縮空氣成本模型。所謂壓縮空氣成本模型,係以模型表現壓縮空氣成本的資料。所謂壓縮空氣成本模型,係用以轉換壓縮空氣消耗量為成本的模型。壓縮空氣成本模型,係用於根據供給壓縮空氣需要的壓縮機電力,算出成本。<Cost Model Making Department 112> The cost model creation unit 112 creates a compressed air cost model. The so-called compressed air cost model is a data representing the cost of compressed air in a model. The so-called compressed air cost model is a model used to convert compressed air consumption into cost. The compressed air cost model is used to calculate the cost based on the compressor power required to supply compressed air.

<配管模型制作部113> 配管模型制作部113,制作配管模型。配管模型,係以模型表現供給壓縮空氣的網目配管的資料。配管模型,使用於配管網目設計。配管模型,係以一般的CAD(電腦輔助設計)等,作為對關聯壓縮空氣的消耗、供給的設備的配管設計需要的資訊,把材質、形狀(剖面、厚度等)、接合圓、開關閥、壓力計等模型化。<Piping Model Making Department 113> The piping model making part 113 creates a piping model. The piping model expresses the data of the mesh piping supplying compressed air in a model. The piping model is used for piping network design. The piping model is based on general CAD (computer-aided design), etc., as information required for the piping design of the equipment related to the consumption and supply of compressed air. The material, shape (section, thickness, etc.), junction circle, on-off valve, Modeling of pressure gauges.

<工廠配置模型制作部114> 工廠配置模型制作部114,制作工廠配置模型。工廠配置模型,係以模型表現工廠配置的資訊。工廠配置模型,使用於配管網目設計。工廠配置模型,係以一般的CAD等,把設置連接至壓縮空氣配管的生產設備、關聯設備的工廠樓層模型化的模型。<Factory layout model making department 114> The factory configuration model making section 114 makes a factory configuration model. The factory configuration model is a model that expresses the information of the factory configuration. The factory configuration model is used in the design of the piping network. The factory layout model is a model of the factory floor that connects the production equipment and related equipment to the compressed air piping with general CAD.

<設備模型制作部115> 設備模型制作部115,制作設備模型。設備模型,係以模型表現設備的壓縮空氣消耗的模型。設備模型,使用於配管網目設計以及生產模擬。設備模型,把根據設備的動作模式(停止、運轉、暫停等)的壓縮空氣消耗的模型化。在此動作模式,係以生產投入計畫或生產制法決定。滿足壓縮空氣消耗量的規格的配管的配置配線是必要的。<Equipment Model Making Department 115> The equipment model making part 115 makes equipment models. The equipment model is a model that expresses the compressed air consumption of the equipment. The equipment model is used for piping network design and production simulation. The equipment model is to model the compressed air consumption according to the operation mode of the equipment (stop, run, pause, etc.). In this action mode, it is determined by the production input plan or production method. The arrangement and wiring of piping that meet the specifications of compressed air consumption is necessary.

<網目計算部120> 網目計算部120,包括網目粗細調整部121及網目配線部122。網目計算部120,制作配管模型。所謂配管模型,係具有包含根據控制可開關的複數電磁閥的複數閥、以及複數配管,由於複數配管的各配管連接閥之間,配置複數配管成網目狀,流體流入的網目配管電路的模型。網目計算部120,根據輸入的網目粗細制作配管模型。網目計算部120,透過組合制作的配管模型與表示使用網目配管電路的工廠模型之工廠配置模型,制作工廠模型。所謂工廠模型,係包括網目配管電路的工廠模型,且是模擬對象的模型。Mesh calculation department 120> The mesh calculation unit 120 includes a mesh thickness adjustment unit 121 and a mesh wiring unit 122. The mesh calculation unit 120 creates a piping model. The piping model is a model having a plurality of valves including a plurality of solenoid valves that can be opened and closed by control, and a plurality of piping. Since the piping connection valves of the plurality of pipings are connected to each other, the plurality of pipings are arranged in a mesh pattern and the fluid flows in a mesh piping circuit. The mesh calculation unit 120 creates a piping model based on the input mesh thickness. The mesh calculation unit 120 creates a factory model by combining the created piping model and a factory layout model representing a factory model using mesh piping circuits. The so-called factory model refers to the factory model including the piping circuit of the mesh and is a model of the simulation object.

<網目粗細調整部121> 網目粗細調整部121,為了可以指示網目的粗細顆粒度為任意的粗細或自動設定為具有複數寬度的顆粒度,分配設定。網目粗細調整部121,從導入成本小且效果小的「粗細度大」到相反的「粗細度小」,分配網目的顆粒度。分支間(配管與配管之間),有可能只是接合材,也有可能是開關閥。網目粗細調整部121,使用工廠配置模型、設備模型、配管模型的資訊及網目粗細資訊,對網目配線部122發出指示。Mesh adjustment section 121> The mesh thickness adjustment unit 121 allocates settings in order to be able to instruct the thickness and granularity of the mesh to be an arbitrary thickness or to automatically set the granularity with a plurality of widths. The mesh thickness adjustment unit 121 assigns the granularity of the mesh from "large thickness" with low introduction cost and low effect to the opposite "small thickness". Between the branches (between the piping and the piping), it may be just a joining material, or it may be an on-off valve. The mesh thickness adjustment unit 121 uses the information of the factory configuration model, equipment model, piping model, and mesh thickness information to give instructions to the mesh wiring unit 122.

<網目配線部122> 網目配線部122,自動配線網目配管。網目配線部122,根據網目粗細設定,自動配線網目配管。開關閥設定資訊,從網目粗細調整部121接收。 第4圖顯示網目配線部122配線的4個網目配管電路。 (1)   第4圖的左上,當網目粗細是零時,由網目配線部122指示形成回路型的配管電路。 (2)   第4圖的左下,當網目粗細是「粗」時,由網目配線部122指示以3*3的網目形成的配管電路。 (3)   第4圖的右上,當網目粗細是「中」時,由網目配線部122指示以4*4的網目形成的配管電路。 (4)   第4圖的右下,當網目粗細是「細」時,由網目配線部122指示以6*6的網目形成的配管電路。 配管之間的交點稱作節點。幾個節點中,放置可控制的閥。網目配線部122,以網目的粗細(閥的配置數)、閥的設置場所(配線路徑)以及閥的有無作為參數,制作複數「工廠模型」。Mesh wiring part 122> The mesh wiring part 122, automatic wiring mesh piping. The mesh wiring part 122 is set according to the thickness of the mesh, and the mesh piping is automatically wired. The switch valve setting information is received from the mesh thickness adjustment unit 121. Figure 4 shows four mesh piping circuits wired by the mesh wiring section 122. (1) In the upper left of Figure 4, when the mesh thickness is zero, the mesh wiring part 122 instructs to form a loop-type piping circuit. (2) At the bottom left of Figure 4, when the mesh thickness is "thick", the mesh wiring section 122 indicates the piping circuit formed with a 3*3 mesh. (3) On the upper right of Figure 4, when the mesh thickness is "medium", the mesh wiring section 122 indicates the piping circuit formed with a 4*4 mesh. (4) At the bottom right of Figure 4, when the mesh thickness is "fine", the mesh wiring section 122 indicates the piping circuit formed with a 6*6 mesh. The intersection between the pipes is called a node. In several nodes, place controllable valves. The mesh wiring section 122 creates a plural "factory model" with the thickness of the mesh (the number of valves arranged), the installation location of the valve (wiring route), and the presence or absence of the valve as parameters.

<構築成本計算部130> 構築成本計算部130,包括基線評估部131、配管成本計算部132以及配管成本DB133。構築成本計算部130,計算工廠模型指示的工廠構築成本。<Construction cost calculation department 130> The construction cost calculation unit 130 includes a baseline evaluation unit 131, a piping cost calculation unit 132, and a piping cost DB133. The construction cost calculation unit 130 calculates the factory construction cost indicated by the factory model.

<基線評估部131> 基線評估部131,保持關於後述的基線的配管構築成本之值。基線評估部131,實施對應根據網目的顆粒度的1個或複數「工廠模型(後述)」之配管構築成本與成為基線的工廠模型的配管構築成本的比較。Baseline Evaluation Department 131> The baseline evaluation unit 131 holds the value of the piping construction cost for the baseline described later. The baseline evaluation unit 131 compares the piping construction cost corresponding to one or plural "factory model (described later)" according to the granularity of the mesh and the piping construction cost of the factory model used as the baseline.

<配管成本計算部132> 配管成本計算部132,計算配管構築需要的成本。配管成本計算部132,利用配管成本DB133計算工廠模型管理部111保持的複數「工廠模型」的各構築成本。<Piping cost calculation section 132> The piping cost calculation unit 132 calculates the cost required for piping construction. The piping cost calculation unit 132 uses the piping cost DB133 to calculate each construction cost of the plural "factory models" held by the factory model management unit 111.

<配管成本DB133> 配管成本DB133,係具有配管構築需要的成本資料之資料庫。配管成本DB133,係對應配管的材質和厚度、接合部、開關閥設置等條件的成本資料庫。配管成本DB133具有的資料,例如,每單位長的配管成本及每一接合部的成本。<Piping cost DB133> The piping cost DB133 is a database with cost data required for piping construction. The piping cost DB133 is a cost database corresponding to conditions such as the material and thickness of the piping, joints, and on-off valve settings. The piping cost DB133 has data such as the piping cost per unit length and the cost per joint.

<生產成本計算部140> 生產成本計算部140,包括計畫輸入部141、制法輸入部142以及模擬實行部143。生產成本計算部140,透過模擬工廠模型,計算工廠使用網目配管電路運轉的運轉成本。<Production cost calculation department 140> The production cost calculation unit 140 includes a plan input unit 141, a manufacturing method input unit 142, and a simulation execution unit 143. The production cost calculation unit 140 calculates the operating cost of the factory using the mesh piping circuit to operate by simulating the factory model.

<計畫輸入部141> 計畫輸入部141內,輸入假設的典型生產投入計畫。生產投入計畫,為了模擬工廠中假設的生產計畫,設定典型生產投入計畫。例如,1天500台車的例子。<Plan input unit 141> In the plan input unit 141, a hypothetical typical production input plan is input. Production input plan, in order to simulate the assumed production plan in the factory, set up a typical production input plan. For example, an example of 500 cars a day.

<制法輸入部142> 制法輸入部142內,輸入每一設備的生產制法。以設備水準,設定假設的典型生產制法。例如,機身(body)洗滌,以每秒0.5立方米噴射1分鐘壓縮空氣後等待5分鐘時間的生產制法。 第5圖係顯示輸入生產成本計算部140的生產投入計畫與制法。第5圖的上表顯示生產投入計畫,第5圖的下表顯示制法。<Production method input unit 142> The manufacturing method input unit 142 inputs the manufacturing method of each device. Based on the equipment level, set hypothetical typical production methods. For example, the body is washed, and compressed air is sprayed at 0.5 cubic meters per second for 1 minute and then waiting for 5 minutes. Figure 5 shows the production input plan and manufacturing method input to the production cost calculation unit 140. The top table in Figure 5 shows the production input plan, and the bottom table in Figure 5 shows the manufacturing method.

<模擬實行部143> 模擬實行部143,模擬生產,計算成本。模擬實行部143,模擬生產,將模擬結果交給運轉成本計算部150(後述)。模擬實行部143,從運轉成本計算部150接收運轉成本計算部150計算的成本,計算生產模擬消費的壓縮空氣成本。模擬實行部143內,輸入各工廠模型、生產計畫、制法以及「設備與配管的壓縮空氣消耗量」。模擬實行部143,根據這些輸入值,計算生產需要的成本並輸出。模擬實行部143,藉由輸出對應各種輸入值的解,提供削減效果計算部160需要的資訊。Simulation Execution Section 143> The simulation execution unit 143 simulates production and calculates the cost. The simulation execution unit 143 simulates production, and passes the simulation result to the operating cost calculation unit 150 (described later). The simulation execution unit 143 receives the cost calculated by the operation cost calculation unit 150 from the operation cost calculation unit 150, and calculates the compressed air cost for production simulation consumption. In the simulation execution unit 143, each factory model, production plan, manufacturing method, and "compressed air consumption of equipment and piping" are input. The simulation execution unit 143 calculates and outputs the cost required for production based on these input values. The simulation execution unit 143 provides information required by the reduction effect calculation unit 160 by outputting solutions corresponding to various input values.

<運轉成本計算部150> 運轉成本計算部150,包括配管評估部151、設備評估部152以及成本轉換部153。運轉成本計算部150,對於模擬實行部143模擬的生產中消耗的壓縮空氣,計算對應此壓縮空氣的運轉成本。<Operation cost calculation unit 150> The operating cost calculation unit 150 includes a piping evaluation unit 151, an equipment evaluation unit 152, and a cost conversion unit 153. The operating cost calculation unit 150 calculates the operating cost corresponding to the compressed air consumed in the production simulated by the simulation execution unit 143.

<配管評估部151> 配管評估部151,包括配管計算部151a及配管DB151b。配管評估部151,轉換配管的壓縮空氣消耗量為成本。配管評估部151,根據模擬實行部143模擬的生產,計算配管消耗(閥的開關引起的體積變化、漏出)的壓縮空氣量與壓縮機電力,並使用成本轉換部153,計算壓縮空氣量成本。<Piping Evaluation Department 151> The piping evaluation unit 151 includes a piping calculation unit 151a and a piping DB151b. The piping evaluation unit 151 converts the compressed air consumption of the piping to the cost. The piping evaluation unit 151 calculates the amount of compressed air consumed by the piping (volume change and leakage due to valve opening and closing) and compressor power based on the production simulated by the simulation execution unit 143, and uses the cost conversion unit 153 to calculate the compressed air cost.

<設備評估部152> 設備評估部152,轉換設備的電力及壓縮空氣消耗量為成本。設備評估部152,根據模擬實行部143模擬的生產,計算設備消耗的電力與壓縮空氣量,並使用成本轉換部153,計算成本。Equipment Evaluation Department 152> The equipment evaluation unit 152 converts the power and compressed air consumption of the equipment into costs. The equipment evaluation unit 152 calculates the power and compressed air consumption of the equipment based on the production simulated by the simulation execution unit 143, and uses the cost conversion unit 153 to calculate the cost.

設備評估部152,包括設備計算部152a及設備DB152b。The device evaluation unit 152 includes a device calculation unit 152a and a device DB 152b.

<成本轉換部153> 成本轉換部153,轉換壓縮空氣消耗量為成本。成本轉換部153,根據成本模型制作部112的資訊,轉換壓縮空氣消耗量為成本。Cost Conversion Department 153> The cost conversion unit 153 converts compressed air consumption into cost. The cost conversion unit 153 converts the compressed air consumption into a cost based on the information from the cost model creation unit 112.

<削減效果計算部160> 削減效果計算部160,包括網目類型評估部161及基線評估部162。削減效果計算部160,如後述,計算根據基線與各網目類型的運轉成本比較產生的損失削減效果。<Reduction effect calculation unit 160> The reduction effect calculation unit 160 includes a mesh type evaluation unit 161 and a baseline evaluation unit 162. The reduction effect calculation unit 160, as described later, calculates the loss reduction effect based on the comparison between the baseline and the operating cost of each mesh type.

<網目類型評估部161> 網目類型評估部161,分別關於複數網目類型,評估損失削減效果。網目類型評估部161,對分配網目粗細的複數「工廠模型」,將模擬實行部143產生的生產模擬得到的成本,與基線評估部162計算的基線比較,計算損失削減效果。<Mesh Type Evaluation Department 161> The mesh type evaluation section 161 evaluates the loss reduction effect with respect to plural mesh types. The mesh type evaluation unit 161 compares the cost obtained by the production simulation generated by the simulation execution unit 143 with the baseline calculated by the baseline evaluation unit 162 to calculate the loss reduction effect for the plural "factory model" of the distribution mesh thickness.

<基線評估部162> 基線評估部162,設定評估基準的基線值。所謂基線,係成本比較的基準。原則是假設以習知的配管即配管為網目粗細是零的回路配管(工廠配置模型等與其它工廠模型相同)。但是,以使用者的設計任意變更(例如,以網目粗細度「中」為基線等)也可以。 具體地,基線評估部162,藉由從模型管理部110及生產成本計算部140接收不導入網目型配管的設定,設定評估基準的基線值。Baseline Evaluation Department 162> The baseline evaluation unit 162 sets the baseline value of the evaluation criterion. The so-called baseline is the benchmark for cost comparison. The principle is to assume that the conventional piping, that is, the piping, is a loop piping with a zero mesh size (the factory configuration model is the same as other factory models). However, it may be arbitrarily changed based on the user's design (for example, using the mesh thickness "medium" as the baseline). Specifically, the baseline evaluation unit 162 sets the baseline value of the evaluation criterion by receiving the setting of not introducing mesh-type piping from the model management unit 110 and the production cost calculation unit 140.

<網目效果評估部170> 網目效果評估部170,根據構築成本與運轉成本,評估網目配管電路的效果。 網目效果評估部170,評估網目的費用對效果。網目效果評估部170,根據按照複數「工廠模型」的構築成本計算部130的導入成本以及削減效果計算部160的削減成本,評估網目的費用對效果。網目效果評估部170的評估,係按照對網目粗細輸入的最佳解的計算或每一工廠模型的ROI(return on investment(投資回報率))的計算或投資額的最佳化。<Mesh Effect Evaluation Department 170> The mesh effect evaluation unit 170 evaluates the effect of the mesh piping circuit based on the construction cost and operating cost. The net effect evaluation unit 170 evaluates the effect of net expenses on net items. The mesh effect evaluation unit 170 evaluates the effect of the mesh cost on the basis of the introduction cost of the construction cost calculation unit 130 according to the plural "factory model" and the reduction cost of the reduction effect calculation unit 160. The evaluation by the mesh effect evaluation unit 170 is based on the calculation of the optimal solution for the input of the mesh thickness, the calculation of ROI (return on investment) for each plant model, or the optimization of the investment amount.

動作的說明 第6圖係模擬裝置101的程序圖。 第7圖係補足第6圖的流程圖。第6圖中記上第7圖的步驟號碼。 以下,參照第6、7圖,說明模擬裝置101的動作。模擬裝置101的動作,相當於模擬方法。模擬裝置101的動作,相當於模擬程式的處理。Description of action Fig. 6 is a program diagram of the simulation device 101. Figure 7 is a flowchart that complements Figure 6. In Figure 6, write the step number in Figure 7. Hereinafter, the operation of the simulation device 101 will be described with reference to FIGS. 6 and 7. The operation of the simulation device 101 corresponds to a simulation method. The operation of the simulation device 101 corresponds to the processing of the simulation program.

<A:步驟S(1)> 步驟S(1),係初期設定的步驟。 步驟S(1),由步驟S(2)、步驟S(3)、步驟S(4)及步驟S(5)組成。步驟S(1)中,使用者,作為事前準備,制作模型、資料庫、模擬的生產計畫及制法。 步驟S(2)中,使用者,使用模型管理部110制作各模型資訊。成本模型制作部112,制作壓縮空氣成本模型。配管模型制作部113,制作配管模型。工廠配置模型制作部114,制作工廠配置模型。設備模型制作部115,制作設備模型。 步驟S(3)中,使用者,制作配管DB151b及設備DB152b。 步驟S(4)中,使用者,制作構築成本計算部130的配管成本DB133。步驟S(5)中,使用者輸入生產計畫至生產成本計算部140的計畫輸入部141,輸入制法至制法輸入部142。<A: Step S(1)> Step S(1) is a step of initial setting. Step S(1) consists of step S(2), step S(3), step S(4) and step S(5). In step S(1), the user, as a pre-preparation, creates a model, database, and simulated production plan and manufacturing method. In step S(2), the user uses the model management unit 110 to create each model information. The cost model creation unit 112 creates a compressed air cost model. The piping model making part 113 creates a piping model. The factory configuration model making section 114 makes a factory configuration model. The equipment model making part 115 makes equipment models. In step S(3), the user creates the piping DB151b and the equipment DB152b. In step S(4), the user creates the piping cost DB133 for constructing the cost calculation unit 130. In step S(5), the user inputs the production plan to the plan input unit 141 of the production cost calculation unit 140, and inputs the manufacturing method to the manufacturing method input unit 142.

<B:步驟S(6)> 步驟S(6),係制作工廠模型的步驟。 步驟S(6),由步驟S(7)、步驟S(8)組成。步驟S(6)中,根據「使用者的輸入」與複數粗細網目的配置配線,制作1個網目型配管工廠模型。 使用者,輸入網目的粗細至網目粗細調整部121。網目粗細的輸入形式,使用者選擇像粗、中、細的粗細度的方式也可以,使用者輸入直接參數的數值的形式也可以。<B: Step S(6)> Step S(6) is the step of making a factory model. Step S(6) consists of step S(7) and step S(8). In step S(6), based on the "user's input" and the layout and wiring of the multiple coarse and fine meshes, a mesh-type piping factory model is created. The user inputs the thickness of the mesh to the mesh thickness adjustment part 121. For the input form of the mesh thickness, the user can also select the thickness of coarse, medium, and fine, and the user can also input the value of the direct parameter.

步驟S(7)中,根據使用者輸入,網目粗細調整部121決定粗細的參數。網目配線部122,根據粗細的參數,實施網目配管的配線。在此之際,可設定限制條件(根據投入預算和生產線特性,粗略點的目標或詳細點的目標)。又,網目配線部122,根據工廠配置模型與配管電路產生比較用工廠模型的基線。 步驟S(8)中,工廠模型管理部111管理步驟S(7)的結果,即工廠配置模型加上網目配管電路模型的「工廠模型」。In step S(7), based on user input, the mesh thickness adjustment unit 121 determines the thickness parameter. The mesh wiring section 122 implements wiring of mesh piping based on the thickness parameter. On this occasion, restrictions can be set (according to the input budget and the characteristics of the production line, rough targets or detailed targets). In addition, the mesh wiring section 122 generates a baseline of the factory model for comparison based on the factory configuration model and the piping circuit. In step S(8), the factory model management unit 111 manages the result of step S(7), that is, the "factory model" of the factory layout model plus the mesh piping circuit model.

<C:步驟S(9)> 步驟S(9),係工廠模型的構築成本的計算步驟。 步驟S(9),由步驟S(10)構成。步驟S(9)中,計算步驟(7)中產生的「工廠模型」及基線的各構築費用。 步驟S(10)中,構築成本計算部130,計算對應工廠模型管理部111具有的「工廠模型」的構築成本。 基線評估部131,參照配管成本DB133,計算工廠模型管理部111管理的比較用工廠模型的基線構築成本。配管成本計算部132,參照配管成本DB133,計算工廠模型管理部111管理的工廠模型的構築成本。<C: Step S(9)> Step S(9) is the calculation step of the construction cost of the plant model. Step S(9) consists of step S(10). In step S(9), each construction cost of the "factory model" and the baseline generated in step (7) is calculated. In step S(10), the construction cost calculation unit 130 calculates the construction cost corresponding to the "factory model" possessed by the factory model management unit 111. The baseline evaluation unit 131 refers to the piping cost DB133, and calculates the baseline construction cost of the comparison plant model managed by the plant model management unit 111. The piping cost calculation unit 132 refers to the piping cost DB 133 to calculate the construction cost of the plant model managed by the plant model management unit 111.

<D:步驟S(11)> 步驟S(11),係工廠模型的運轉成本的計算步驟。 步驟S(11),由步驟S(12)、步驟S(13)及步驟S(14)組成。步驟S(11)中,以步驟S(12)到步驟S(14),計算實行對應「工廠模型」的假設生產計畫時的運轉成本。 步驟S(12)中,模擬實行部143,利用工廠模型管理部111具有的「工廠模型」、計畫輸入部141具有的生產計畫、制法輸入部142具有的制法,模擬各設備、壓縮空氣配管網(以開關閥供給控制)的動作。 步驟S(13)中,運轉成本計算部150,取得步驟S(12)的模擬結果,算出設備的消耗電力成本以及計算壓縮空氣成本。具體地,配管評估部151及設備評估部152,從模擬實行部143取得模擬結果。配管評估部151,參照配管DB151b,根據模擬結果中的配管的壓縮空氣消耗量及模擬結果中的壓縮機電力消耗量,計算關於配管的壓縮空氣消耗量的運轉成本(以下,配管運轉成本)。設備評估部152,參照設備DB152b,根據模擬結果中設備消耗的電力及模擬結果中設備使用的壓縮空氣,計算關於設備的運轉成本(以下,設備運轉成本)。 步驟S(14)中,模擬實行部143,從配管評估部151取得配管評估部151計算的配管運轉成本,從設備評估部152取得設備評估部152計算的設備運轉成本。模擬實行部143,計算對應「工廠模型」之生產時的運轉成本。<D: Step S(11)> Step S(11) is the calculation step of the operating cost of the plant model. Step S(11) consists of step S(12), step S(13) and step S(14). In step S(11), from step S(12) to step S(14), the operating cost when implementing the hypothetical production plan corresponding to the "factory model" is calculated. In step S(12), the simulation execution unit 143 uses the "factory model" possessed by the factory model management unit 111, the production plan possessed by the plan input unit 141, and the manufacturing method possessed by the manufacturing method input unit 142 to simulate each device, The operation of compressed air piping network (controlled by on-off valve supply). In step S(13), the operating cost calculation unit 150 obtains the simulation result of step S(12), calculates the power consumption cost of the equipment and calculates the compressed air cost. Specifically, the piping evaluation unit 151 and the equipment evaluation unit 152 obtain simulation results from the simulation execution unit 143. The piping evaluation unit 151 refers to the piping DB151b, and calculates the operating cost (hereinafter, piping operating cost) related to the compressed air consumption of the piping based on the compressed air consumption of the piping in the simulation result and the compressor power consumption of the simulation result. The equipment evaluation unit 152 refers to the equipment DB 152b, and calculates the equipment operating cost (hereinafter, equipment operating cost) based on the power consumed by the equipment in the simulation result and the compressed air used by the equipment in the simulation result. In step S (14), the simulation execution unit 143 obtains the piping operation cost calculated by the piping evaluation unit 151 from the piping evaluation unit 151, and obtains the equipment operation cost calculated by the equipment evaluation unit 152 from the equipment evaluation unit 152. The simulation execution unit 143 calculates the operating cost at the time of production corresponding to the "factory model".

<E:步驟S(15)> 步驟S(15),係確認費用對效果的步驟。 步驟S(15),由步驟S(16)、步驟S(17)及步驟S(18)組成。步驟S(15)中,評估網目型配管的壓縮空氣供給產生的損失削減效果。 步驟S(16)中,根據在步驟S(7)實施的基線的「工廠模型」用資料,基線評估部162保持步驟S(14)中模擬實行部143算出的運轉成本。 步驟S(17)中,網目類型評估部161,從模擬實行部143取得對應「工廠模型」的運轉成本。又,網目類型評估部161,從基線評估部162取得步驟S(16)中基線評估部162保持的基線用運轉成本。網目類型評估部161,比較從模擬實行部143取得的工廠模型的運轉成本與從基線評估部162取得的基線用運轉成本。 步驟S(18)中,網目效果評估部170,根據步驟S(17)的「工廠模型的運轉成本與基線用運轉成本」的比較結果與步驟S(10)的結果(工廠模型的構築成本),計算費用對效果。作為費用對效果的例,網目效果評估部170,例如,投入200萬圓的構築費用,因為估計100萬圓/年的運轉成本削減效果,計算2年可回收的評估。使用者改變輸入(網目粗細)得到複數結果。網目效果評估部170,在後述的實施形態5的顯示裝置300中顯示複數結果(網目效果評估部170計算的每一輸入的費用對效果)。使用者,從顯示裝置300顯示的複數結果中,採用對應1個網目粗細的結果(網目效果評估部170計算的評估結果)。<E: Step S(15)> Step S(15) is the step of confirming the effect of cost. Step S(15) consists of step S(16), step S(17) and step S(18). In step S(15), the loss reduction effect of the compressed air supply of the mesh-type pipe is evaluated. In step S(16), based on the data for the "factory model" of the baseline implemented in step S(7), the baseline evaluation unit 162 holds the operating cost calculated by the simulation execution unit 143 in step S(14). In step S(17), the mesh type evaluation unit 161 obtains the operating cost corresponding to the "factory model" from the simulation execution unit 143. In addition, the mesh type evaluation unit 161 obtains the baseline operating cost maintained by the baseline evaluation unit 162 in step S(16) from the baseline evaluation unit 162. The mesh type evaluation unit 161 compares the operating cost of the plant model acquired from the simulation execution unit 143 with the baseline operating cost acquired from the baseline evaluation unit 162. In step S(18), the mesh effect evaluation unit 170 compares the result of step S(17) with the result of step S(10) (construction cost of the factory model) of "the operating cost of the factory model and the baseline operating cost" , Calculate the effect of cost. As an example of the cost-effectiveness, the mesh effect evaluation unit 170, for example, invests 2 million yen in construction costs, and calculates an evaluation that can be recovered in 2 years because of the estimated operating cost reduction effect of 1 million yen/year. The user changes the input (the thickness of the mesh) to get a complex result. The mesh effect evaluation unit 170 displays a plurality of results (the effect of each input calculated by the mesh effect evaluation unit 170) on the display device 300 of the fifth embodiment described later. The user uses the result corresponding to one mesh thickness from the plural results displayed on the display device 300 (the evaluation result calculated by the mesh effect evaluation unit 170).

作為模擬裝置101的模擬的其它例用例,有以下的利用例。生產成本計算部140,對於網目計算部120制作的工廠模型,根據模擬,對複數生產計畫的每一生產計畫計算運轉成本。網目效果評估部170,評估各個運轉成本,抽出最佳運轉成本的生產計畫。 以下,係壓縮空氣配管施工後,也可以活用模擬的具體例。 (1)   網目型配管施工後,利用模擬裝置101的模擬,評估對複數生產計畫案的運轉成本。根據此評估,可以制作擬定成本最佳的生產計畫方案。 (2)   有複數達成接受訂貨的生產投入計畫案時,使用模擬裝置101。 (2.1)網目型配管工廠模型管理部保持採用的1個「工廠模型」。 (2.2)對生產投入計畫輸入部,輸入複數計畫案。 (2.3)以(2.1)與(2.2)作為輸入,實施步驟S(12)〜步驟S(14)。在此,人工費及中間庫存保管費等的經費,也處理作為設備運轉成本的一部分也沒關係(以設備模型設定)。 (2.4)選擇成本最有利的計畫案。As another example use case of the simulation of the simulation device 101, there are the following use examples. The production cost calculation unit 140 calculates the operating cost for each production plan of the plural production plans based on the simulation of the factory model created by the mesh calculation unit 120. The mesh effect evaluation unit 170 evaluates each operating cost and extracts the production plan with the best operating cost. The following is a concrete example of simulation that can be used after compressed air piping construction. (1) After the mesh-type piping is constructed, use the simulation of the simulation device 101 to evaluate the operating cost of the multiple production plan. Based on this evaluation, the most cost-effective production plan can be prepared. (2) When there are multiple production input plans to accept orders, use the simulation device 101. (2.1) One "factory model" maintained by the mesh-type piping factory model management department. (2.2) Input multiple plans to the input section of the production input plan. (2.3) Using (2.1) and (2.2) as input, implement step S(12)~step S(14). Here, expenses such as labor costs and intermediate inventory storage costs are also treated as part of the equipment operating cost (set by equipment model). (2.4) Choose the most favorable cost plan.

實施形態1的效果 (1)   以往,容許回路形狀的供給路徑中的壓縮空氣漏出損失。 但是,模擬裝置101,以可控制的閥連接的網目配管電路的利用作為前提,根據設備及配管的模型,事前模擬依存於網目形狀的構築費用及依存於網目形狀的損失迴避效果。 因此,利用模擬裝置101,可以決定作為網目配管電路應採用的最佳網目形狀。 (2)   又,模擬裝置101,可以模擬按照生產計畫的壓縮空氣的JIT(Just in time(及時))供給效果。因此,可以實現以往定量評估困難的「依存於生產計畫的壓縮空氣的損失量削減效果的事前定量評估」。即,生產計畫擬定時,作為像「生產性與電力消耗」及「生產性與壓縮空氣消耗」的工廠系統全體,可以得到用以達到最佳運用的資訊。Effect of Embodiment 1 (1) In the past, compressed air leakage loss in the supply path of the circuit shape was allowed. However, the simulation device 101 preliminarily simulates the construction cost dependent on the mesh shape and the loss avoidance effect dependent on the mesh shape based on the equipment and piping model based on the use of the mesh piping circuit connected with the controllable valve. Therefore, the simulation device 101 can determine the optimal mesh shape to be adopted as the mesh piping circuit. (2) In addition, the simulation device 101 can simulate the JIT (Just in Time) supply effect of compressed air according to the production plan. Therefore, it is possible to realize the "pre-quantitative evaluation of the effect of reducing the amount of compressed air loss dependent on the production plan", which was difficult in the past quantitative evaluation. That is, when the production plan is drafted, as the entire factory system such as "productivity and power consumption" and "productivity and compressed air consumption", information for optimal use can be obtained.

實施形態2 參照第8圖,說明實施形態2的模擬裝置102。 第8圖係說明模擬裝置102的動作流程圖。第8圖,對應第7圖,模擬裝置102的構成,與第3圖的模擬裝置101相同。Embodiment 2 With reference to Fig. 8, the simulation device 102 of the second embodiment will be described. FIG. 8 is a flowchart illustrating the operation of the simulation device 102. Fig. 8 corresponds to Fig. 7, and the configuration of the simulation device 102 is the same as that of the simulation device 101 in Fig. 3.

模擬裝置102,對於對應網目計算部120自動產生的複數網目粗細(計畫1、計畫2、…)的複數「工廠模型」,透過網目效果評估部170計算推薦的最佳解以及依照初期投資能力的ROI,以本模擬構成的系統自動推薦(提示)最佳解。又,上述實施形態1中,人判斷最佳解。例如,計畫1(網目是10階段的第2號粗細),係投入200萬圓,因為削減效果100萬圓/年,網目效果評估部170進行2年可回收這樣的計算。The simulation device 102 calculates the recommended best solution through the mesh effect evaluation unit 170 for the plural "factory model" corresponding to the plural mesh thicknesses (plan 1, plan 2,...) automatically generated by the mesh calculation unit 120 and according to the initial investment Ability to ROI, the system automatically recommends (prompts) the best solution with this simulation. In addition, in the first embodiment described above, a human judges the best solution. For example, in Project 1 (the mesh size is No. 2 in 10 stages), 2 million yen is invested, because the reduction effect is 1 million yen/year, and the mesh effect evaluation unit 170 calculates that it can be recovered in 2 years.

第8圖係顯示模擬裝置102的動作流程圖。參照第8圖,說明模擬裝置102的動作。模擬裝置102的動作,相當於模擬方法。模擬裝置102的動作,相當於模擬程式的處理。Fig. 8 is a flowchart showing the operation of the simulation device 102. Referring to Fig. 8, the operation of the simulation device 102 will be described. The operation of the simulation device 102 corresponds to a simulation method. The operation of the simulation device 102 corresponds to the processing of the simulation program.

第8圖,除了第7圖的步驟S13、步驟S16成為步驟S27與步驟S13-2、步驟S16-2以及步驟S27-2以外,與第7圖相同。Fig. 8 is the same as Fig. 7 except that steps S13 and S16 in Fig. 7 become steps S27 and S13-2, step S16-2, and step S27-2.

又,模擬裝置102也與模擬裝置101同樣作步驟S(1)到步驟S(18)的動作,但說明步驟S(1)到步驟S(18)中處理內容不同的步驟。In addition, the simulation device 102 also performs the operations of step S(1) to step S(18) similarly to the simulation device 101, but the steps S(1) to step S(18) with different processing contents will be described.

<步驟S(6)到S(8)> 步驟S(6)中,以複數粗細網目的配置配線,制作複數網目型配管工廠模型。 步驟S(7)中,網目計算部120,分配網目粗細調整部121的參數,實施複數變化的配置配線。在此之際,可以限制條件(根據投入預算和生產線特性,粗略點目標或詳細點目標設定)。又,也設定成為比較基礎的「不是網目型的一般回路型配管」的條件作為基線用。 步驟S(8)中,工廠模型管理部111管理步驟S(7)的結果作為複數工廠模型。<Steps S(6) to S(8)> In step S(6), the wiring is arranged with multiple coarse and fine meshes to create a multiple mesh type piping factory model. In step S(7), the mesh calculation unit 120 allocates the parameters of the mesh thickness adjustment unit 121, and implements the arrangement and wiring of plural changes. On this occasion, you can limit the conditions (according to the input budget and production line characteristics, rough point target or detailed point target setting). In addition, the basic condition of "general loop piping that is not mesh type" is set as a baseline. In step S(8), the plant model management unit 111 manages the result of step S(7) as a plurality of plant models.

<步驟S(6)、S(10)> 步驟S(9)中,分別計算對應步驟S(7)的工廠模型的複數構築費用(包含基線)。 步驟S(10)中,構築成本計算部130,分別計算對應工廠模型管理部111具有的複數工廠模型的成本。<Steps S(6), S(10)> In step S(9), the complex construction cost (including the baseline) of the plant model corresponding to step S(7) is calculated. In step S(10), the cost calculation unit 130 is constructed to calculate the costs of the plural factory models that the corresponding factory model management unit 111 has.

<步驟S(11)到S(14)> 步驟S(11)中,分別計算實行對應複數「工廠模型」之假設生產計畫時的運轉成本。 步驟S(12)中,利用工廠模型管理部111具有的複數工廠模型、計畫輸入部141、制法輸入部142的資料,生產成本計算部140複數模擬各設備及壓縮空氣配管網的動作。 步驟S(13)中,輸入步驟S(12)的結果至運轉成本計算部150,計算設備的消耗電力成本及壓縮空氣成本(以設備的壓縮空氣消耗量與配管的壓縮空氣消耗量為基礎,成本轉換部153轉換為成本)。 步驟S(14)中,生產成本計算部140,接受步驟S(13)的結果,計算對應複數工廠模型之生產時的運轉成本。<Steps S(11) to S(14)> In step S(11), respectively calculate the operating costs when implementing the hypothetical production plan corresponding to the plural "factory model". In step S(12), the production cost calculation unit 140 simulates the operations of the equipment and the compressed air piping network using the data of the multiple plant models, the plan input unit 141, and the manufacturing method input unit 142 possessed by the plant model management unit 111. In step S(13), input the result of step S(12) to the operating cost calculation unit 150 to calculate the power consumption cost and compressed air cost of the equipment (based on the compressed air consumption of the equipment and the compressed air consumption of the piping, The cost conversion unit 153 converts to cost). In step S (14), the production cost calculation unit 140 receives the result of step S (13), and calculates the operating cost at the time of production corresponding to the multiple factory model.

<步驟S(15)到S(18)> 步驟S(15),評估網目型配管的壓縮空氣供給產生的損失削減效果。 步驟S(16)中,根據步驟S(7)實施的基線用工廠模型資料,基線評估部162保持步驟S(14)計算的成本。 步驟S(17)中,對應複數工廠模型的成本,輸入至網目類型評估部161,與步驟S(16)的結果比較。 步驟S(18)中,以步驟S(17)的結果及步驟S(10)的結果為基礎,網目效果評估部170計算費用對效果。例如,投入200萬圓的構築費用,因為估計100萬圓/年的運轉成本削減效果,根據2年可回收的結果,系統(模擬裝置102)推薦1個最佳解。<Steps S(15) to S(18)> Step S(15) evaluates the loss reduction effect of the compressed air supply of the mesh type pipe. In step S(16), based on the baseline plant model data implemented in step S(7), the baseline evaluation unit 162 maintains the cost calculated in step S(14). In step S(17), the cost corresponding to the plural factory models is input to the mesh type evaluation unit 161 and compared with the result of step S(16). In step S(18), based on the result of step S(17) and the result of step S(10), the mesh effect evaluation unit 170 calculates the effect of the fee. For example, if a construction cost of 2 million yen is invested, because the operating cost reduction effect of 1 million yen/year is estimated, the system (simulation device 102) recommends an optimal solution based on the results that can be recovered in 2 years.

實施形態2的效果 實施形態2的模擬裝置102,接受複數網目粗細作為輸入(步驟S13-2),輸出每一網目粗細的效果,自動提示最佳解(步驟S27-2)。因此,可以迅速得到每一網目粗細的成本效果。Effect of Embodiment 2 The simulation device 102 of the second embodiment accepts a plurality of mesh thicknesses as input (step S13-2), outputs the effect of each mesh thickness, and automatically presents the best solution (step S27-2). Therefore, the cost effect of each mesh thickness can be quickly obtained.

實施形態3 參照第9到11圖,說明實施形態3的模擬裝置103。模擬裝置103,在最佳解的網目粗細檢索中,活用人工智能。後述的實施形態4的模擬裝置104,也在最佳解的網目粗細的檢索中活用人工智能,但模擬裝置103在每次1個網目粗細的輸入,人工智能判斷是否是最佳解,模擬裝置104對於複數網目粗細的輸入,人工智能輸出最佳解。Embodiment 3 With reference to Figs. 9 to 11, the simulation device 103 of the third embodiment will be described. The simulation device 103 utilizes artificial intelligence in the mesh size search for the best solution. The simulation device 104 of the fourth embodiment described later also uses artificial intelligence in the search of the mesh thickness of the optimal solution. However, the simulation device 103 inputs one mesh thickness every time, and the artificial intelligence judges whether it is the optimal solution. 104 For the input of complex mesh size, artificial intelligence outputs the best solution.

<構成的說明> 第9圖係顯模擬裝置103的機能構成之方塊圖。模擬裝置103,相對於第3圖的模擬裝置101,包括學習部180。學習部180,連接網目粗細調整部121與網目效果評估部170。 學習部180,為了效率良好收斂網目粗細至最佳解,不是隨機分配網目粗細,而是取得網目效果評估部170的結果,回饋網目粗細調整。 學習部180,不是「循環格點搜尋(Grid Search)」,作為有效率的探索法,活應深度學習(Deep learning)或Metaheuristic(元啟發式)遺傳演算。<Description of composition> Figure 9 is a block diagram showing the functional configuration of the simulation device 103. The simulation device 103 includes a learning unit 180 compared to the simulation device 101 in FIG. 3. The learning unit 180 connects the mesh thickness adjustment unit 121 and the mesh effect evaluation unit 170. In order to efficiently converge the mesh thickness to an optimal solution, the learning unit 180 does not randomly assign the mesh thickness, but obtains the result of the mesh effect evaluation unit 170, and feeds back the mesh thickness adjustment. The learning unit 180 is not a "grid search". As an efficient exploration method, it should be deep learning or Metaheuristic genetic algorithm.

第10及11圖,係顯示模擬裝置103動作的流程圖。第10圖的流程圖,對應實施形態1的第7圖的流程圖。參照第10及11圖,說明模擬裝置103的動作。模擬裝置103的動作相當於模擬方法。模擬裝置103的動作,相當於模擬程式的處理。第10圖,除了第7圖的步驟S13及步驟S16,成為步驟S13-3、步驟S16-3,以及步驟S28前進至第11圖的步驟S29以外,與第7圖相同。Figures 10 and 11 are flowcharts showing the operation of the simulation device 103. The flowchart in Fig. 10 corresponds to the flowchart in Fig. 7 in the first embodiment. With reference to Figs. 10 and 11, the operation of the simulation device 103 will be described. The operation of the simulation device 103 corresponds to a simulation method. The operation of the simulation device 103 corresponds to the processing of the simulation program. Fig. 10 is the same as Fig. 7 except that steps S13 and S16 in Fig. 7 become steps S13-3 and S16-3, and step S28 proceeds to step S29 in Fig. 11.

又,模擬裝置103也與模擬裝置101同樣作第6圖所示的步驟S(1)到步驟S(18)的動作,但說明步驟S(1)到步驟S(18)中處理內容不同的步驟。In addition, the simulation device 103 also performs the operations from step S(1) to step S(18) shown in Fig. 6 in the same manner as the simulation device 101, but the processing content of steps S(1) to step S(18) is different. step.

步驟S(1)到步驟S(18)中,實施形態3中步驟S(6)、步驟S(18)的兩個步驟不同。其它與實施形態1相同。以下,說明步驟S(6)、步驟S(18)以及第11圖。In step S(1) to step S(18), the two steps of step S(6) and step S(18) in the third embodiment are different. Others are the same as in Embodiment 1. Hereinafter, step S(6), step S(18), and Fig. 11 will be described.

實施形態3的步驟S(6)中,根據1個粗細,實施網目的配置配線,制作1個網目型配管工廠模型。In step S(6) of the third embodiment, the layout and wiring of the mesh is performed according to one thickness, and a mesh-type piping factory model is created.

步驟S(18)中,根據步驟S(17)的結果以及步驟S(10)的結果,網目效果評估部170,計算費用對效果,提示推薦的1個最佳解。In step S(18), based on the result of step S(17) and the result of step S(10), the mesh effect evaluation unit 170 calculates the cost-to-effect, and presents a recommended optimal solution.

說明第11圖。第10圖的步驟S28,前進至第11圖的步驟S29。 步驟S29中,網目效果評估部170,對學習部180,輸入在步驟S28計算的費用對效果的計算結果。學習部180,利用人工智能進行機械學習。 步驟S30中,學習部180,評估改善效果更高的網目形狀方案是否存在。改善效果更高的網目形狀方案不存在時,處理前進至步驟S34,網目形狀決定,又,效果預測確定。改善效果更高的網目形狀方案存在時,處理前進至步驟S32。 步驟S32中,學習部180計算1個改善效果更高的網目形狀方案。 步驟S33中,對網目粗細調整部121輸入計算結果。處理從步驟S33前進至第10圖的步驟S13-3。Illustrate Figure 11. Step S28 in Fig. 10 proceeds to step S29 in Fig. 11. In step S29, the mesh effect evaluation unit 170 inputs to the learning unit 180 the calculation result of the fee calculated in step S28 on the effect. The learning unit 180 uses artificial intelligence for machine learning. In step S30, the learning unit 180 evaluates whether a mesh shape solution with a higher improvement effect exists. When there is no mesh shape solution with a higher improvement effect, the process proceeds to step S34, the mesh shape is determined, and the effect prediction is determined. When a mesh shape solution with a higher improvement effect exists, the process proceeds to step S32. In step S32, the learning unit 180 calculates a mesh shape proposal with a higher improvement effect. In step S33, the calculation result is input to the mesh thickness adjustment unit 121. The process proceeds from step S33 to step S13-3 in Fig. 10.

<根據學習部180的最佳解提示法> (1)學習部180,評估比從網目效果評估部170輸入的1個費用對效果改善效果更高的網目形狀方案是否存在。 (2)學習部180,如果改善效果更高的網目形狀方案不存在,提示來自網目效果評估部170的輸入作為最佳解,如果存在,輸入1個改善效果高的網目形狀方案至網目粗細調整部121。 (3)學習部180,在輸入1個改善效果高的網目形狀方案至網目粗細調整部121時,重複上述步驟S(6)之後。<The method of suggesting the best solution according to the learning department 180> (1) The learning unit 180 evaluates whether there is a mesh shape plan that has a higher effect on effect improvement than the one fee input from the mesh effect evaluation unit 170. (2) The learning unit 180, if the mesh shape plan with higher improvement effect does not exist, prompts the input from the mesh effect evaluation unit 170 as the best solution, if there is, input a mesh shape plan with higher improvement effect to the mesh thickness adjustment部121. (3) The learning unit 180 repeats the above-mentioned step S(6) after inputting a mesh shape proposal with a high improvement effect to the mesh thickness adjustment unit 121.

<學習部180的學習方法> 學習學習部180在實施最佳解提示前,進行事前學習。具體地,學習部180,在學習中透過實施實施形態1、2所示的處理,藉由取得求出的複數費用對效果,學習最佳網目粗細的設定值。又,此學習,以複數模擬裝置共同實施也可以。<Learning method of learning section 180> The learning learning unit 180 conducts pre-learning before implementing the best solution presentation. Specifically, the learning unit 180 learns the setting value of the optimal mesh thickness by performing the processing shown in Embodiments 1 and 2 during the learning, and by obtaining the calculated multiple fee pair effect. In addition, this learning may be carried out jointly with a plurality of simulation devices.

實施形態3的效果 實施形態3的模擬裝置103中,學習部180進行成為最佳解的網目粗細的檢索。因此,比起習知的隨機或依賴經驗的方法,可以更少次數或更短時間到達最佳解。Effect of Embodiment 3 In the simulation device 103 of the third embodiment, the learning unit 180 searches for the mesh thickness that becomes the best solution. Therefore, compared to the conventional random or experience-dependent methods, the optimal solution can be reached in fewer times or in a shorter time.

實施形態4 參照第12及13圖,說明實施形態4的模擬裝置104。模擬裝置104的構成,與第9圖的模擬裝置103相同。模擬裝置104也包括學習部180。模擬裝置104中,輸入複數網目粗細。Embodiment 4 Referring to Figs. 12 and 13, the simulation device 104 of the fourth embodiment will be described. The configuration of the simulation device 104 is the same as that of the simulation device 103 in FIG. 9. The simulation device 104 also includes a learning unit 180. In the simulation device 104, multiple mesh thicknesses are input.

第12及13圖,係顯示模擬裝置104動作的流程圖。參照第12及13圖,說明模擬裝置104的動作。模擬裝置104的動作,相當於模擬方法。模擬裝置104的動作,相當於模擬程式的處理。Figures 12 and 13 are flowcharts showing the operation of the simulation device 104. With reference to Figs. 12 and 13, the operation of the simulation device 104 will be described. The operation of the simulation device 104 corresponds to the simulation method. The operation of the simulation device 104 corresponds to the processing of the simulation program.

第12圖,除了第7圖的步驟S13、步驟S16及步驟S27成為步驟S13-4、步驟S16-4及步驟S27-4,以及步驟S28前進至第13圖的步驟S29以外,與第7圖相同。 第13圖與第11圖類似,第13圖特有的步驟,係步驟S30-4、步驟S31-4及步驟S32-4。Figure 12 is similar to Figure 7 except that steps S13, S16, and S27 in Figure 7 become steps S13-4, S16-4, and S27-4, and step S28 proceeds to step S29 in Figure 13 the same. Figure 13 is similar to Figure 11. The steps unique to Figure 13 are step S30-4, step S31-4, and step S32-4.

模擬裝置104也與模擬裝置101同樣作步驟S(1)到步驟S(18)的動作,但說明步驟S(1)到步驟S(18)中處理內容不同的步驟。 以下,說明步驟S(1)到步驟S(18)中,處理內容不同的步驟與第13圖。The simulation device 104 also performs the operations of step S(1) to step S(18) similarly to the simulation device 101, but the steps S(1) to step S(18) with different processing contents will be described. Hereinafter, in step S(1) to step S(18), the steps with different processing contents and Fig. 13 will be described.

<步驟S(6)到S(8)> 步驟S(6)中,根據複數粗細的網目配置配線,制作複數網目型配管工廠模型。 步驟S(7)中,以網目計算部120,分配網目粗細調整部121的參數,實施複數變化的配置配線。在此之際,可以設定限制條件(根據配管設備導入需要的初期投入預算和生產線特性,粗略點目標或詳細點目標)。又,也設定成為比較的基礎的「不是網目型的一般回路型配管」的條件作為基線用。 步驟S(8)中,工廠模型管理部111管理步驟S(7)中的結果作為複數工廠模型。<Steps S(6) to S(8)> In step S(6), the wiring is arranged according to the meshes of plural thicknesses, and a model of a piping factory of plural meshes is created. In step S(7), the mesh calculation unit 120 allocates the parameters of the mesh thickness adjustment unit 121, and implements the arrangement wiring of plural changes. In this case, you can set the restriction conditions (according to the initial investment budget and production line characteristics required for the introduction of piping equipment, rough or detailed targets). In addition, the condition of "general loop piping that is not a mesh type", which is the basis for comparison, is also set as a baseline. In step S(8), the plant model management unit 111 manages the result in step S(7) as a plurality of plant models.

<步驟S(9)、S(10)> 步驟S(9)中,分別計算對應步驟S(7)的工廠模型的複數構築費用(包含基線)。 步驟S(10)中,構築成本計算部130分別計算對應工廠模型管理部111具有的複數工廠模型之成本。<Steps S(9), S(10)> In step S(9), the complex construction cost (including the baseline) of the plant model corresponding to step S(7) is calculated. In step S(10), the construction cost calculation unit 130 calculates the cost of the plural factory models that the corresponding factory model management unit 111 has.

<步驟S(11)到S(14)> 步驟S(11)中,分別計算對應複數工廠模型之實行假設生產計畫時的運轉成本。 步驟S(12)中,利用網目型配管工廠模型管理具有的複數工廠模型、計畫輸入部141、制法輸入部142的資料,生產成本計算部140複數模擬各設備及壓縮空氣配管網(以開關閥控制供給)的動作。 步驟S(13)中,輸入步驟S(12)的結果至運轉成本計算部150,計算設備的消耗電力成本及壓縮空氣成本(以設備的壓縮空氣消耗量與配管的壓縮空氣消耗量為基礎,成本轉換部153轉換為成本)。 步驟S(14)中,生產成本計算部140,接受步驟S(13)的結果,計算對應複數工廠模型之生產時的運轉成本。<Steps S(11) to S(14)> In step S(11), respectively calculate the operating costs for the implementation of the hypothetical production plan corresponding to the plural factory models. In step S(12), the mesh-type piping factory model is used to manage the data of the multiple factory models, the plan input unit 141, and the manufacturing method input unit 142, and the production cost calculation unit 140 multiple simulations of each equipment and compressed air piping network (with The on-off valve controls the operation of the supply). In step S(13), input the result of step S(12) to the operating cost calculation unit 150 to calculate the power consumption cost and compressed air cost of the equipment (based on the compressed air consumption of the equipment and the compressed air consumption of the piping, The cost conversion unit 153 converts to cost). In step S (14), the production cost calculation unit 140 receives the result of step S (13), and calculates the operating cost at the time of production corresponding to the multiple factory model.

<步驟S(15)到S(18)> 步驟S(15),評估網目型配管的壓縮空氣供給產生的損失削減效果。 步驟S(16)中,根據步驟S(7)實施的基線用「工廠模型」資料,基線評估部162保持步驟S(14)計算的成本。 步驟S(17)中,對應複數「工廠模型」的成本,輸入至網目類型評估部161,與步驟S(16)的結果比較。 步驟S(18)中,以步驟S(17)的結果及步驟S(10)的結果為基礎,網目效果評估部170計算費用對效果,提示推薦的複數最佳解候補,交給後述的學習部180。<Steps S(15) to S(18)> Step S(15) evaluates the loss reduction effect of the compressed air supply of the mesh type pipe. In step S(16), based on the baseline "factory model" data implemented in step S(7), the baseline evaluation unit 162 maintains the cost calculated in step S(14). In step S(17), the cost corresponding to the plural "factory model" is input to the mesh type evaluation unit 161 and compared with the result of step S(16). In step S(18), based on the result of step S(17) and the result of step S(10), the mesh effect evaluation unit 170 calculates the cost-to-effect, presents the recommended plural best solution candidates, and gives them to the learning described later部180.

說明第13圖。第12圖的步驟S28,前進至第13圖的步驟S29。 步驟S29中,網目效果評估部170,對學習部180,輸入在步驟S28計算的費用對效果的計算結果。學習部180,利用人工智能進行機械學習。 步驟S30-4中,學習部180,以評估結果作為學習資料,學習改善效果高的網目形狀方案。 步驟S31-4中,學習部180判定是否符合停止條件。在此所謂「停止條件」,係像以下的條件1或條件2的條件。 條件1:網目粗細變化差在臨界值以下的條件。 條件2:回路次數或回路時間超過臨界值的條件。 符合條件1或條件2時,學習部180的處理前進至步驟S34。 不符合「停止條件」時,處理前進至步驟S32-4。 步驟S32-4,學習部180,根據學習結果,選定複數改善效果高的網目形狀方案。 步驟S33中,學習部180,對網目粗細調整部121輸入計算結果。處理從步驟S33前進至第12圖的步驟S13-4。Illustrate Figure 13. Step S28 in Fig. 12 proceeds to step S29 in Fig. 13. In step S29, the mesh effect evaluation unit 170 inputs to the learning unit 180 the calculation result of the fee calculated in step S28 on the effect. The learning unit 180 uses artificial intelligence for machine learning. In step S30-4, the learning unit 180 uses the evaluation result as the learning material, and learns a mesh shape solution with a high improvement effect. In step S31-4, the learning unit 180 determines whether the stop condition is met. The "stop condition" here is a condition like condition 1 or condition 2 below. Condition 1: The condition where the difference in mesh thickness is below the critical value. Condition 2: The number of loops or loop time exceeds the critical value. When the condition 1 or the condition 2 is met, the processing of the learning unit 180 proceeds to step S34. If the "stop condition" is not met, the process proceeds to step S32-4. In step S32-4, the learning unit 180 selects a mesh shape solution with a high plural improvement effect based on the learning result. In step S33, the learning unit 180 inputs the calculation result to the mesh thickness adjustment unit 121. The process proceeds from step S33 to step S13-4 in Fig. 12.

<學習部180的最佳解提示方法> 實施形態4的學習部180,同時實施學習與最佳提示。 (1)學習部180,根據從網目效果評估部170輸入的複數費用對效果,學習成為改善效果高的網目形狀方案的條件。 (2)學習部180,實施停止條件判定,滿足停止條件的話(在步驟S31-4YES),從現在的費用對效果中,以費用對效果最高的網目形狀方案作為最佳解。不滿足停止條件的話(在步驟S31-4NO),學習部180,根據學習結果,選定複數改善效果更高的網目形狀方案(步驟S32),輸入網目粗細調整部121。 (3)學習部180輸入1個網目形狀方案至網目粗細調整部121時,重複上述步驟S(6)之後。<The best solution presentation method of learning section 180> The learning unit 180 of the fourth embodiment simultaneously implements learning and optimal presentation. (1) The learning unit 180 learns the conditions for a mesh shape plan with a high improvement effect based on the multiple cost-to-effects input from the mesh effect evaluation unit 170. (2) The learning unit 180 performs stop condition determination, and if the stop condition is satisfied (YES in step S31-4), from the current cost-to-effects, the mesh shape plan with the highest cost-to-effect is the best solution. If the stop condition is not satisfied (NO in step S31-4), the learning unit 180 selects a mesh shape plan with a higher improvement effect based on the learning result (step S32), and inputs it to the mesh thickness adjustment unit 121. (3) When the learning unit 180 inputs one mesh shape plan to the mesh thickness adjustment unit 121, the step S(6) is repeated.

實施形態4的效果 實施形態4的模擬裝置104中,學習部180以複數網目粗細作為對象,求出網目粗細的最佳解。因此,可以迅速得到網目粗細的最佳解。Effect of Embodiment 4 In the simulation device 104 of the fourth embodiment, the learning unit 180 targets the multiple mesh thicknesses and finds the optimal solution for the mesh thickness. Therefore, the optimal solution for mesh thickness can be quickly obtained.

實施形態5 實施形態5,說明實施形態1到實施形態4說明的模擬裝置101、102、103、104的硬體構成。 第14圖顯示模擬裝置101、102的硬體構成。 第15圖顯示模擬裝置103、104的硬體構成圖。 第14圖中,處理器10不具有學習部180,但第15圖中處理器10具有學習部180。Embodiment 5 In the fifth embodiment, the hardware configuration of the simulation devices 101, 102, 103, and 104 described in the first to fourth embodiments will be described. Figure 14 shows the hardware configuration of the simulation devices 101 and 102. Figure 15 shows the hardware configuration of the simulation devices 103 and 104. In FIG. 14, the processor 10 does not have a learning unit 180, but in FIG. 15 the processor 10 has a learning unit 180.

<模擬裝置101> 以下,以模擬裝置101為例說明。模擬裝置101,係電腦。如第14圖所示,模擬裝置101,包括處理器10的同時,也包括主記憶裝置20、輔助記憶裝置30、輸入IF40、輸出IF50及通訊IF60等的硬體。又IF表示界面。處理器10,經由信號線70與其它硬體連接,控制這些其它的硬體。Simulation device 101> In the following, the simulation device 101 is taken as an example for description. The simulation device 101 is a computer. As shown in FIG. 14, the simulation device 101 includes the processor 10, and also includes hardware such as the main memory device 20, the auxiliary memory device 30, the input IF 40, the output IF 50, and the communication IF 60. And IF stands for interface. The processor 10 is connected to other hardware via a signal line 70 and controls these other hardware.

模擬裝置101,作為機能要素,包括模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160及網目效果評估部170。 模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160及網目效果評估部170的機能,以模擬程式101a實現。The simulation device 101 includes a model management unit 110, a mesh calculation unit 120, a construction cost calculation unit 130, a production cost calculation unit 140, an operating cost calculation unit 150, a reduction effect calculation unit 160, and a mesh effect evaluation unit 170 as functional elements. The functions of the model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, and the mesh effect evaluation unit 170 are realized by the simulation program 101a.

處理器10,係實行模擬程式101a的裝置。處理器10,係實行演算處理的IC(積體電路)。處理器10的具體例,係CPU(中央處理單元)、DSP(數位信號處理器)、GPU(圖形處理單元)。The processor 10 is a device that executes the simulation program 101a. The processor 10 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 10 are CPU (Central Processing Unit), DSP (Digital Signal Processor), and GPU (Graphics Processing Unit).

主記憶裝置20的具體例,係SRAM(靜態隨機存取記憶體)、DRAM(動態隨機存取記憶體)。主記憶裝置20,保持處理器10的演算結果。Specific examples of the main memory device 20 are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory). The main memory device 20 holds the calculation results of the processor 10.

輔助記憶裝置30,係非揮發性保管資料的記憶裝置。輔助記憶裝置30的具體例,係HDD(硬碟驅動器)。又,輔助記憶裝置30可以是SD(註冊商標)(Secure Digital(安全數位))記憶卡、NAND Flash(快閃)、Flexible disc(軟碟)、光碟、Compact Disc(小型光碟)、Blue ray(藍光)(註冊商標)碟、DVD(數位影音光碟)等可攜式記錄媒體。輔助記憶裝置30,收納配管成本DB133、配管DB151b、設備DB152b及模擬程式101a。The auxiliary memory device 30 is a memory device for non-volatile storage of data. A specific example of the auxiliary memory device 30 is an HDD (Hard Disk Drive). Also, the auxiliary memory device 30 may be SD (registered trademark) (Secure Digital) memory card, NAND Flash (flash), Flexible disc (floppy disk), optical disc, Compact Disc (compact disc), Blue ray ( Portable recording media such as Blu-ray) (registered trademark) disc, DVD (digital audio-visual disc). The auxiliary memory device 30 stores the piping cost DB133, the piping DB151b, the equipment DB152b, and the simulation program 101a.

輸入IF40,係連接像滑鼠或鍵盤的輸入裝置200,從各裝置輸入資料的埠。 輸出IF50,係連接像顯示裝置300或外部裝置的各種機器,由處理器10對各種機器輸出資料的埠。 通訊IF60,係處理器10用以與其它裝置通訊的通訊埠。The input IF40 is a port for connecting an input device 200 like a mouse or a keyboard to input data from each device. The output IF50 is a port for connecting various devices like the display device 300 or external devices, and the processor 10 outputs data to various devices. The communication IF60 is a communication port used by the processor 10 to communicate with other devices.

處理器10,從輔助記憶裝置30下載模擬程式101a至主記憶裝置20,從主記憶裝置20讀入實行模擬程式101a。主記憶裝置20中,除了模擬程式101a以外,也記憶OS(作業系統)。處理器10,邊實行OS,邊實行模擬程式101a。 模擬裝置101,也可以包括代替處理器10的複數處理器。這些複數處理器,分擔模擬程式101a的實行。各個處理器,與處理器10相同,係實行模擬程式101a的裝置。由模擬程式101a利用、處理或輸出的資料、資訊、信號值及變數值,記憶在主記憶裝置20、輔助記憶裝置30或處理器10內的暫存器或快取(cache)記憶體內。The processor 10 downloads the simulation program 101a from the auxiliary storage device 30 to the main storage device 20, and reads and executes the simulation program 101a from the main storage device 20. In the main storage device 20, in addition to the simulation program 101a, the OS (operating system) is also stored. The processor 10 executes the simulation program 101a while executing the OS. The simulation device 101 may include a plurality of processors instead of the processor 10. These plural processors share the execution of the simulation program 101a. Each processor, like the processor 10, is a device that executes the simulation program 101a. The data, information, signal values, and variable values used, processed or output by the simulation program 101a are stored in the main memory device 20, the auxiliary memory device 30, or the register or cache memory in the processor 10.

模擬程式101a,係使電腦實行改稱模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160及網目效果評估部170的「部」為「處理」、「程序」或「步驟」的各處理、各程序或各步驟之程式。The simulation program 101a renames the model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, and the mesh effect evaluation unit 170 to be executed by the computer. "Department" refers to each process, each procedure or each step program of "processing", "procedure" or "step".

又,模擬檢出方法,係透過電腦的模擬裝置101實行模擬程式101a執行的方法。In addition, the simulation detection method is a method of executing the simulation program 101a through the simulation device 101 of the computer.

模擬程式101a,收納在可電腦讀取的記錄媒體內提供也可以,作為程式產品提供也可以。The simulation program 101a may be stored in a computer-readable recording medium or provided as a program product.

模擬裝置102的硬體構成也與上述模擬裝置101相同。又,模擬裝置103及模擬裝置104的硬體構成也與上述模擬裝置101相同。又,模擬裝置103及模擬裝置104,除了模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160、網目效果評估部170,還包括學習部180。模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160、網目效果評估部170及學習部180,以處理器10實行程式實現。The hardware configuration of the simulation device 102 is also the same as that of the simulation device 101 described above. In addition, the hardware configuration of the simulation device 103 and the simulation device 104 is also the same as that of the simulation device 101 described above. In addition, the simulation device 103 and the simulation device 104 except for the model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, and the mesh effect evaluation unit 170 , Also includes the learning unit 180. The model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, the mesh effect evaluation unit 170, and the learning unit 180, execute programs with the processor 10 achieve.

<硬體構成的補足> 第14、15圖的模擬裝置中,模擬裝置的機能以軟體實現,但模擬裝置的機能以硬體實現也可以。 第16圖顯示模擬裝置101的機能以硬體實現的構成。第16圖的電子電路90係專用的電子電路,實現模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160、網目效果評估部170、主記憶裝置20、輔助記憶裝置30、輸入IF40、輸出IF50及通訊IF60的機能。電子電路90,連接至信號線91。電子電路90,具體地,是單一電路、複合電路、程式化的處理器、並聯程式化處理器、邏輯IC(積體電路)、GA、ASIC或FPGA(可現場編程閘陣列)。GA是Gate Array(閘陣列)的簡稱。ASIC是(Application Specific Integrated Circuit(特殊應用積體電路)的簡稱。FPGA是(Field-Programmable Gate Array(可現場編程閘陣列))的簡稱。模擬裝置101的構成要素的機能,以1個電子電路實現也可以,分散成複數電子電路實現也可以。模擬裝置101的構成要素的一部分機能以電子電路實現,剩下的機能以軟體實現也可以。<Complement of hardware configuration> In the simulation device shown in Figures 14 and 15, the function of the simulation device is realized by software, but the function of the simulation device may be realized by hardware. Figure 16 shows the structure of the simulation device 101 implemented in hardware. The electronic circuit 90 in Figure 16 is a dedicated electronic circuit that realizes the model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, and the mesh effect The function of the evaluation unit 170, the main memory device 20, the auxiliary memory device 30, the input IF40, the output IF50, and the communication IF60. The electronic circuit 90 is connected to the signal line 91. The electronic circuit 90 is, specifically, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC (integrated circuit), GA, ASIC or FPGA (field programmable gate array). GA is the abbreviation of Gate Array. ASIC is the abbreviation of (Application Specific Integrated Circuit). FPGA is the abbreviation of (Field-Programmable Gate Array). The function of the component elements of the analog device 101 is based on one electronic circuit It may be realized, or distributed into plural electronic circuits. Some functions of the components of the analog device 101 may be realized by electronic circuits, and the remaining functions may be realized by software.

處理器10與電子電路90分別都稱作處理電路。模擬裝置101中,模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160及網目效果評估部170的機能以處理電路實現也可以。或者,模型管理部110、網目計算部120、構築成本計算部130、生產成本計算部140、運轉成本計算部150、削減效果計算部160、網目效果評估部170、主記憶裝置20、輔助記憶裝置30、輸入IF40、輸出IF50及通訊IF60的機能,以處理電路實現也可以。上述的第16圖的說明,對模擬裝置102、103及模擬裝置104也同樣適用。The processor 10 and the electronic circuit 90 are respectively called processing circuits. In the simulation device 101, the functions of the model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, and the mesh effect evaluation unit 170 are realized by processing circuits It is also possible. Alternatively, the model management unit 110, the mesh calculation unit 120, the construction cost calculation unit 130, the production cost calculation unit 140, the operating cost calculation unit 150, the reduction effect calculation unit 160, the mesh effect evaluation unit 170, the main memory device 20, and the auxiliary memory device 30. The function of input IF40, output IF50 and communication IF60 can be realized by processing circuit. The description of FIG. 16 described above is also applicable to the simulation devices 102 and 103 and the simulation device 104.

10:處理器 20:主記憶裝置 30:輔助記憶裝置 40:輸入IF 50:輸出IF 60:通訊IF 90:電子電路 91:信號線 101:模擬裝置 101a:模擬程式 102:模擬裝置 103:模擬裝置 104:模擬裝置 110:模型管理部 111:工廠模型管理部 112:成本模型制作部 113:配管模型制作部 114:工廠配置模型制作部 115:設備模型制作部 120:網目計算部 121:網目粗細調整部 122:網目配線部 130:構築成本計算部 131:基線評估部 132:配管成本計算部 133:配管成本DB 140:生產成本計算部 141:計畫輸入部 142:制法輸入部 143:模擬實行部 150:運轉成本計算部 151:配管評估部 151a:配管計算部 151b:配管DB 152:設備評估部 152a:設備計算部 152b:設備DB 153:成本轉換部 160:削減效果計算部 161:網目類型評估部 162:基線評估部 170:網目效果評估部 180:學習部 200:輸入裝置 230:生產實行系統 240:壓縮機控制裝置 250:閥控制部 300:顯示裝置 700:工廠 710:壓縮機 720:閥 730:接收槽 740:閥 800:網目配管電路 801:閥 802:配管 810、810a、810b:利用設備 1000:流體供給系統 V、V1、V2:閥 10: processor 20: Main memory device 30: auxiliary memory device 40: Enter IF 50: output IF 60: Communication IF 90: electronic circuit 91: signal line 101: Simulator 101a: Simulation program 102: Simulator 103: Simulator 104: Simulator 110: Model Management Department 111: Factory Model Management Department 112: Cost Model Making Department 113: Piping Model Making Department 114: Factory configuration model production department 115: Equipment Model Making Department 120: Mesh Calculation Department 121: Mesh thickness adjustment section 122: Mesh wiring department 130: Construction of cost calculation department 131: Baseline Evaluation Department 132: Piping Cost Calculation Department 133: Piping cost DB 140: Production Cost Calculation Department 141: Project Input Department 142: System Input Department 143: Simulation Implementation Department 150: Operating Cost Calculation Department 151: Piping Evaluation Department 151a: Piping calculation department 151b: Piping DB 152: Equipment Evaluation Department 152a: Equipment Computing Department 152b: Device DB 153: Cost Conversion Department 160: Reduction effect calculation department 161: Mesh Type Evaluation Department 162: Baseline Evaluation Department 170: Mesh Effect Evaluation Department 180: Learning Department 200: input device 230: Production Implementation System 240: Compressor control device 250: Valve Control Department 300: display device 700: Factory 710: Compressor 720: Valve 730: receiving slot 740: Valve 800: Mesh piping circuit 801: Valve 802: Piping 810, 810a, 810b: use equipment 1000: fluid supply system V, V1, V2: Valve

[第1圖]係顯示實施形態1的圖中,包括模擬對象的工廠之流體供給系統1000之圖; [第2圖]係說明實施形態1的圖中,網目配管電路800中的供給路徑圖; [第3圖]係顯示實施形態1的圖中,模擬裝置101的構成之方塊圖; [第4圖]係顯示實施形態1的圖中,網目配線部122配線的4個網目配管電路圖; [第5圖]係顯示實施形態1的圖中,輸入生產成本計算部140的生產投入計畫與制法圖; [第6圖]係實施形態1的圖中,模擬裝置101的程序圖; [第7圖]係實施形態1的圖中,補足第6圖的流程圖; [第8圖]係實施形態2的圖中,說明模擬裝置102的動作流程圖; [第9圖]係顯示實施形態3的圖中,模擬裝置103的機能方塊圖; [第10圖]係實施形態3的圖中,說明模擬裝置103的動作流程圖; [第11圖]係實施形態3的圖中,從第10圖繼續的流程圖; [第12圖]係實施形態4的圖中,說明模擬裝置104的動作流程圖; [第13圖]係實施形態4的圖中,從第12圖繼續的流程圖; [第14圖]係顯示實施形態5的圖中,模擬裝置101、102的硬體構成圖; [第15圖]係顯示實施形態5的圖中,模擬裝置103、104的硬體構成圖;以及 [第16圖]係實施形態5的圖中,補足硬體構成圖。[Figure 1] is a diagram showing the first embodiment, including a fluid supply system 1000 of a factory to be simulated; [Figure 2] is a diagram illustrating the first embodiment, a supply path diagram in the mesh piping circuit 800; [Figure 3] is a block diagram showing the configuration of the simulation device 101 in the figure of the first embodiment; [Figure 4] is a circuit diagram showing the four mesh piping in the mesh wiring section 122 in the figure of the first embodiment; [Figure 5] is a diagram showing the first embodiment of the production input plan and manufacturing method input to the production cost calculation unit 140; [Figure 6] is a program diagram of the simulation device 101 in the figure of the first embodiment; [Figure 7] is a diagram of the first embodiment, supplementing the flowchart of Figure 6; [Figure 8] is a diagram of the second embodiment, illustrating the operation flowchart of the simulation device 102; [Figure 9] is a block diagram showing the function of the simulation device 103 in the figure of the third embodiment; [Figure 10] is a diagram of the third embodiment, illustrating the operation flowchart of the simulation device 103; [Figure 11] is a diagram of the third embodiment, a flowchart continued from Figure 10; [Figure 12] is a diagram of the fourth embodiment, illustrating the operation flowchart of the simulation device 104; [Figure 13] is a flowchart of the fourth embodiment, continuing from Figure 12; [Figure 14] is a diagram showing the hardware configuration of the simulation devices 101 and 102 in the fifth embodiment; [Figure 15] is a diagram showing the hardware configuration of the simulation devices 103 and 104 in the fifth embodiment; and [Figure 16] is a diagram of the fifth embodiment, complementing the hardware configuration diagram.

101:模擬裝置 101: Simulator

110:模型管理部 110: Model Management Department

111:工廠模型管理部 111: Factory Model Management Department

112:成本模型制作部 112: Cost Model Making Department

113:配管模型制作部 113: Piping Model Making Department

114:工廠配置模型制作部 114: Factory configuration model production department

115:設備模型制作部 115: Equipment Model Making Department

120:網目計算部 120: Mesh Calculation Department

121:網目粗細調整部 121: Mesh thickness adjustment section

122:網目配線部 122: Mesh wiring department

130:構築成本計算部 130: Construction of cost calculation department

131:基線評估部 131: Baseline Evaluation Department

132:配管成本計算部 132: Piping Cost Calculation Department

133:配管成本DB 133: Piping cost DB

140:生產成本計算部 140: Production Cost Calculation Department

141:計畫輸入部 141: Project Input Department

142:制法輸入部 142: System Input Department

143:模擬實行部 143: Simulation Implementation Department

150:運轉成本計算部 150: Operating Cost Calculation Department

151:配管評估部 151: Piping Evaluation Department

151a:配管計算部 151a: Piping calculation department

151b:配管DB 151b: Piping DB

152:設備評估部 152: Equipment Evaluation Department

152a:設備計算部 152a: Equipment Computing Department

152b:設備DB 152b: Device DB

153:成本轉換部 153: Cost Conversion Department

160:削減效果計算部 160: Reduction effect calculation department

161:網目類型評估部 161: Mesh Type Evaluation Department

162:基線評估部 162: Baseline Evaluation Department

170:網目效果評估部 170: Mesh Effect Evaluation Department

Claims (4)

一種模擬裝置,包括: 網目計算部,具有包含根據控制可開關的複數電磁閥之複數閥、以及複數配管,由於上述複數配管的各配管連接閥之間,配置上述複數配管成網目狀,根據輸入的網目粗細,制作流體流入的網目配管電路模型的配管模型,透過組合制作的上述配管模型與表示使用上述網目配管電路的工廠模型之工廠配置模型,制作包括上述網目配管電路的工廠模型且是模擬對象的模型之工廠模型; 構築成本計算部,計算上述工廠模型表示的上述工廠構築成本; 生產成本計算部,透過模擬上述工廠模型,上述工廠使用上述網目配管電路計算運轉的運轉成本;以及 網目效果評估部,根據上述構築成本與上述運轉成本,評估上述網目配管電路的效果。A simulation device, including: The mesh calculation unit has plural valves including plural solenoid valves that can be opened and closed according to control, and plural piping. Since the plural piping connection valves of the plural piping are arranged between the plural piping connection valves, the plural piping is arranged in a mesh shape, and the fluid is produced according to the input mesh thickness The piping model of the inflowing mesh piping circuit model, by combining the above-mentioned piping model created with the factory layout model representing the factory model using the above mesh piping circuit, to create a factory model including the above mesh piping circuit and a model of the simulation target ; The construction cost calculation department calculates the construction cost of the aforementioned factory represented by the aforementioned factory model; The production cost calculation department, by simulating the above-mentioned factory model, the above-mentioned factory uses the above-mentioned mesh piping circuit to calculate the operating cost of operation; and The mesh effect evaluation department evaluates the effect of the above mesh piping circuit based on the above construction cost and the above operation cost. 如申請專利範圍第1項所述的模擬裝置,其中, 上述生產成本計算部,對於上述網目計算部制作的上述工廠模型,透過模擬,對複數生產計畫的每一生產計畫計算上述運轉成本; 上述網目效果評估部,評估各上述運轉成本。The simulation device described in item 1 of the scope of patent application, wherein: The production cost calculation unit, for the factory model produced by the mesh calculation unit, calculates the operating cost for each production plan of the multiple production plan through simulation; The above-mentioned mesh effect evaluation department evaluates the above-mentioned operating costs. 一種模擬程式產品,使電腦模擬下列處理: 網目計算處理,具有包含根據控制可開關的複數電磁閥之複數閥、以及複數配管,由於上述複數配管的各配管連接閥之間,配置上述複數配管成網目狀,根據輸入的網目粗細,制作流體流入的網目配管電路模型的配管模型,透過組合制作的上述配管模型與表示使用上述網目配管電路的工廠模型之工廠配置模型,制作包括上述網目配管電路的工廠模型且是模擬對象的模型之工廠模型; 構築成本計算處理,計算上述工廠模型表示的上述工廠構築成本; 生產成本計算處理,透過模擬上述工廠模型,上述工廠使用上述網目配管電路計算運轉的運轉成本;以及 網目效果評估處理,根據上述構築成本與上述運轉成本,評估上述網目配管電路的效果。A simulation program product that enables a computer to simulate the following processing: The mesh calculation processing includes plural valves including plural solenoid valves that can be opened and closed according to the control, and plural piping. Since the plural piping connection valves of the plural piping are arranged between the plural piping connection valves, the plural piping is arranged in a mesh shape, and the fluid is produced according to the input mesh thickness The piping model of the inflowing mesh piping circuit model, by combining the above-mentioned piping model created with the factory layout model representing the factory model using the above mesh piping circuit, to create a factory model including the above mesh piping circuit and a model of the simulation target ; Construction cost calculation processing to calculate the construction cost of the aforementioned factory represented by the aforementioned factory model; Production cost calculation processing, by simulating the above-mentioned factory model, the above-mentioned factory uses the above-mentioned mesh piping circuit to calculate the operating cost of operation; and The mesh effect evaluation process evaluates the effect of the above mesh piping circuit based on the above construction cost and the above operation cost. 一種模擬程式方法,以電腦實行以下步驟: 具有包含根據控制可開關的複數電磁閥之複數閥、以及複數配管,由於上述複數配管的各配管連接閥之間,配置上述複數配管成網目狀,根據輸入的網目粗細,制作流體流入的網目配管電路模型的配管模型,透過組合制作的上述配管模型與表示使用上述網目配管電路的工廠模型之工廠配置模型,制作包括上述網目配管電路的工廠模型且是模擬對象的模型之工廠模型; 計算上述工廠模型表示的上述工廠構築成本; 透過模擬上述工廠模型,上述工廠使用上述網目配管電路計算運轉的運轉成本;以及 網目效果評估處理,根據上述構築成本與上述運轉成本,評估上述網目配管電路的效果。A simulation program method that uses a computer to perform the following steps: It has a plurality of valves including a plurality of solenoid valves that can be opened and closed according to the control, and a plurality of piping. Since the piping connection valves of the above-mentioned plurality of pipings are connected to each other, the plurality of pipings are arranged in a mesh shape, and the mesh piping into which the fluid flows is made according to the input mesh thickness The piping model of the circuit model, by combining the above-mentioned piping model and the factory configuration model representing the factory model that uses the above-mentioned mesh piping circuit, to create a factory model including the above-mentioned mesh piping circuit and a model of the simulation object; Calculate the construction cost of the aforementioned factory represented by the aforementioned factory model; By simulating the above-mentioned factory model, the above-mentioned factory uses the above-mentioned mesh piping circuit to calculate the operating cost of operation; and The mesh effect evaluation process evaluates the effect of the above mesh piping circuit based on the above construction cost and the above operation cost.
TW108121944A 2019-03-13 2019-06-24 Simulation device, simulation program, and simulation method TW202034203A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/010252 WO2020183647A1 (en) 2019-03-13 2019-03-13 Simulation device, simulation program, and simulation method
WOPCT/JP2019/010252 2019-03-13

Publications (1)

Publication Number Publication Date
TW202034203A true TW202034203A (en) 2020-09-16

Family

ID=72427218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121944A TW202034203A (en) 2019-03-13 2019-06-24 Simulation device, simulation program, and simulation method

Country Status (4)

Country Link
JP (1) JP6925565B2 (en)
CN (1) CN113544603A (en)
TW (1) TW202034203A (en)
WO (1) WO2020183647A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023129503A1 (en) * 2021-12-31 2023-07-06 Aveva Software, Llc Servers, systems, and methods for improving fluid networks

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305643A (en) * 1996-05-14 1997-11-28 Kobe Steel Ltd Method and device for designing plant layout
JP4088008B2 (en) * 1999-12-02 2008-05-21 晃 林 Distribution network simulation equipment
CN102081694A (en) * 2011-01-21 2011-06-01 南开大学 Method for designing experimental scheme of pipe-conveying process evaluation based on complete relation active network
JP6089755B2 (en) * 2013-02-18 2017-03-08 富士電機株式会社 Thermal countermeasure equipment introduction energy saving estimation evaluation system and evaluation method
US20140303949A1 (en) * 2013-04-09 2014-10-09 Schlumberger Technology Corporation Simulation of production systems
AU2016209908B2 (en) * 2015-01-20 2021-05-27 Illinois Tool Works, Inc. Method, computer program product and apparatus for providing a building options configuration
JP6429682B2 (en) * 2015-03-04 2018-11-28 株式会社日立産機システム Network simulation apparatus, network simulation method, and network simulation program
US20190019096A1 (en) * 2017-01-27 2019-01-17 Mitsubishi Hitachi Power Systems, Ltd. Estimator, estimation method, program and storage medium where program stored for model parameter estimation and model parameter estimation system
CN109344436B (en) * 2018-08-28 2023-05-26 中国石油化工股份有限公司 Online simulation method for large complex natural gas pipe network system
CN109344555B (en) * 2018-11-30 2020-11-06 中国石油大学(北京) Gathering and transportation pipe network design method and device

Also Published As

Publication number Publication date
JP6925565B2 (en) 2021-08-25
CN113544603A (en) 2021-10-22
WO2020183647A1 (en) 2020-09-17
JPWO2020183647A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
Hsu et al. Knowledge-based system for resolving design clashes in building information models
Naveh et al. Constraint-based random stimuli generation for hardware verification
Son et al. Simulation-based shop floor control: formal model, model generation and control interface
CN103914865B (en) Form the group in the face of geometrical pattern
Ang et al. Smart design for ships in a smart product through-life and industry 4.0 environment
CN109145352A (en) For learning to take the data set of image function as input
US9196085B2 (en) Interactively shaping terrain through composable operations
Chen et al. Developing efficient mechanisms for BIM-to-AR/VR data transfer
CN105389412A (en) Execution of sequential update
CN107229791A (en) Cost of construction metering method and device
CN102142152A (en) Method, apparatus, and program for displaying an object on a computer screen
US10534335B2 (en) Facility management system
CN105389413A (en) Method and apparatus
CN105224299B (en) A kind of universal modeling method based on system meta-model construction system model
Saraireh et al. Understanding the conceptual of building information modeling: a literature review
TW202034203A (en) Simulation device, simulation program, and simulation method
Rohrer et al. Simulating reality using AutoMod
CN105224300B (en) A kind of visual modeling method based on system member view construction system view
Kwon et al. Multiobjective evolutionary optimization for feature-based simplification of 3D boundary representation models
US9141743B1 (en) Methods, systems, and articles of manufacture for providing evolving information in generating a physical design with custom connectivity using force models and design space decomposition
Kureichik et al. General questions of automated design and engineering
Herr et al. Immersive visual analytics for modular factory layout planning
Zhang et al. Immersive product configurator for conceptual design
Pastukhov et al. Product lifecycle management concept in modern industry
Ogáyar-Anguita et al. Deferred boundary evaluation of complex CSG models