TW202030535A - Enhanced quantum dot on color filter lcd - Google Patents

Enhanced quantum dot on color filter lcd Download PDF

Info

Publication number
TW202030535A
TW202030535A TW108143598A TW108143598A TW202030535A TW 202030535 A TW202030535 A TW 202030535A TW 108143598 A TW108143598 A TW 108143598A TW 108143598 A TW108143598 A TW 108143598A TW 202030535 A TW202030535 A TW 202030535A
Authority
TW
Taiwan
Prior art keywords
layer
qdcf
quantum dot
lcd device
liml
Prior art date
Application number
TW108143598A
Other languages
Chinese (zh)
Other versions
TWI840460B (en
Inventor
韓宋豐
石川 智弘
費德爾狄米崔維奇 奇塞雷弗
麥可 莫雷那克
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202030535A publication Critical patent/TW202030535A/en
Application granted granted Critical
Publication of TWI840460B publication Critical patent/TWI840460B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Abstract

A quantum dots on color filter (QDCF) LCD apparatus having certain combinations of enhancement features that enhance contrast ratio by eliminating or minimizing high angle incident light within the LCD stack is disclosed.

Description

濾色器LCD上的增強性量子點Enhanced quantum dots on color filter LCD

交叉引用cross reference

此申請案依據美國專利法第119條主張分別於2019年1月30日及2018年11月30日提交的美國專利臨時申請案,第62/798607號及第62/773449號的優先權權利,此些專利申請案的各自內容以引用的方式全部併入本文中。According to Article 119 of the U.S. Patent Law, this application claims the priority right of U.S. Provisional Application No. 62/798607 and No. 62/773449 filed on January 30, 2019 and November 30, 2018, respectively. The respective contents of these patent applications are fully incorporated herein by reference.

此揭露內容與濾色器LCD上的增強性量子點有關。This disclosure is related to the enhanced quantum dots on the color filter LCD.

液晶顯示器(LCD)行業正在尋求提高LCD的效率並改善其色域(顯示器的色彩含量),以便與有機光發射顯示器(OLED)產品競爭的解決方案。傳統的LCD尤其在色域性能方面落後於OLED。液晶顯示器中量子點(QD)的使用提高了液晶顯示器的色域性能;實際上如此改進在LCD設計中已經顯而易見,其中QD薄膜元件用於背光單元(BLU),即提供的光通過LCD像素化面板的液晶(LC)填充像素的有源矩陣的光源。在此等BLU設計中,藍色LED光耦合至導光板(LGP),並從LGP朝LCD像素化面板的方向取獲藍色LED光。然後,引導的藍光遇到QD,QD吸收一部分藍光並發出綠色及紅色光譜的光。產生的紅色、綠色、及藍色光譜的光為LCD像素化面板提供了白色光源。The liquid crystal display (LCD) industry is seeking solutions that increase the efficiency of LCDs and improve their color gamut (color content of the display) in order to compete with organic light emitting display (OLED) products. Traditional LCD lags behind OLED in terms of color gamut performance. The use of quantum dots (QD) in liquid crystal displays improves the color gamut performance of liquid crystal displays; in fact, such improvements are already obvious in LCD design, where QD thin-film elements are used in backlight units (BLU), that is, the light provided is pixelated by LCD The liquid crystal (LC) of the panel fills the light source of the active matrix of pixels. In these BLU designs, the blue LED light is coupled to the light guide plate (LGP), and the blue LED light is obtained from the LGP toward the LCD pixelated panel. Then, the guided blue light encounters the QD, and the QD absorbs part of the blue light and emits light in the green and red spectrum. The generated red, green, and blue spectrum light provides a white light source for the LCD pixelated panel.

在其他設計中,QD材料直接放置在LCD像素化面板內的相應單獨像素中。此種設計不僅保證了更大的色域,且亦潛在地取代了界定傳統(無QD)LCD設計中單獨像素顏色的濾色器(CF)。如此設計稱作「濾色器上的量子點」(QDCF)設計。在QDCF設計中,將QD像素放置在光遇到兩個偏光器之後(之處),此等偏光器為LCD的一部分,此等偏光器與LC一起操縱光的偏光。In other designs, the QD material is placed directly in the corresponding individual pixels in the LCD pixelated panel. This design not only ensures a larger color gamut, but also potentially replaces the color filter (CF) that defines the color of individual pixels in traditional (QD-free) LCD designs. Such a design is called a "quantum dot on color filter" (QDCF) design. In the QDCF design, the QD pixel is placed after (where) the light encounters two polarizers, which are part of the LCD, and these polarizers work with the LC to manipulate the polarization of the light.

即使是一對完美的偏光器,亦會使入射到其上的光在「非與片狀偏光器的平面呈法向」的方向(法向為與發射元件表面垂直)上發生光洩漏。圖1A及1B示出了穿過一對交叉偏光器的光傳輸,在此等偏光器之間具有相位延遲器以模仿作為視角的函數的LC介質。圖1A及1B分別示出了在像素為「開啟」及「關閉」的狀態下,穿過一對交叉偏光器,作為視角的函數(法線視角位於圖的中心)的光傳輸。標記x軸及y軸為H及V,分別表示在水平方向及垂直方向上偏離法線視角(圖的中心)的「水平」及「垂直」角度(以度為單位)。圖1A顯示了從傳統LCD發射、處於開啟狀態的光通過一對交叉偏光器傳輸的光。高角度射線會致使在高入射角(或視角)時對比度(CR)急劇下降。因此,圖1A的外圍附近接近90度視角的較暗區域,在較高視角處顯示出較低的傳輸率。圖1B示出了從LCD發射、處於關閉狀態的光(即光洩漏)通過一對交叉偏光器傳輸光。Even a pair of perfect polarizers will cause the light incident on it to leak in the direction "non-normal to the plane of the sheet polarizer" (the normal direction is perpendicular to the surface of the emitting element). Figures 1A and 1B show light transmission through a pair of crossed polarizers with a phase retarder between the polarizers to mimic the LC medium as a function of viewing angle. 1A and 1B respectively show the light transmission through a pair of crossed polarizers as a function of viewing angle (the normal viewing angle is in the center of the figure) when the pixel is in the "on" and "off" states. The x-axis and y-axis are marked as H and V, which respectively indicate the "horizontal" and "vertical" angles (in degrees) that deviate from the normal viewing angle (center of the figure) in the horizontal and vertical directions. Figure 1A shows the light emitted from a conventional LCD and transmitted through a pair of crossed polarizers in an on state. High-angle rays will cause the contrast (CR) to drop sharply at high incident angles (or viewing angles). Therefore, the darker area near the periphery of FIG. 1A with a viewing angle of 90 degrees shows a lower transmission rate at a higher viewing angle. FIG. 1B shows that light emitted from the LCD in the off state (ie, light leakage) transmits light through a pair of crossed polarizers.

比較圖1A及1B中所示的開啟與關閉狀態之間的光發射,在傳統的LCD中,高角度光線會致使在高入射角(或視角)時對比度(CR)急劇下降。CR測量LCD處於開啟狀態的光與LCD處於關閉狀態的光之比值。理想情況下,對於所有入射角,關閉狀態皆應盡可能地黑暗,因此將關閉狀態稱為黑暗狀態。CR對黑暗狀態(分母)中的光非常敏感。即使在黑暗狀態下只有少量的光,CR亦會顯著降低。Comparing the light emission between the on and off states shown in FIGS. 1A and 1B, in a conventional LCD, high-angle light will cause the contrast ratio (CR) to drop sharply at a high incident angle (or viewing angle). CR measures the ratio of the light when the LCD is on to the light when the LCD is off. Ideally, for all incident angles, the closed state should be as dark as possible, so the closed state is called the dark state. CR is very sensitive to light in the dark state (denominator). Even if there is only a small amount of light in the dark state, CR will be significantly reduced.

在QDCF的模擬中,發明者觀察到CR的急劇下降係由於通過偏光器的高觀看角度光洩漏的結果。在傳統的LCD中,洩漏的光仍保持朝向高視角,而在QDCF中,此光被顯著地散射,其中包括藍色光源。這意味著洩漏的光亦朝向接近法線視角的角度,而增加了法向(及其他方向)CR定義的分母中光的值,從而有效地平均了各種視角上的CR。如此的平均不符合需求地大量降低了CR。In the QDCF simulation, the inventor observed that the sharp drop in CR was the result of light leakage through the high viewing angle of the polarizer. In a conventional LCD, the leaked light still remains towards a high viewing angle, while in QDCF, this light is significantly scattered, including a blue light source. This means that the leaked light also faces an angle close to the normal viewing angle, and the value of the light in the denominator defined by the normal (and other directions) CR is increased, thereby effectively averaging CR at various viewing angles. Such an average does not meet the demand and greatly reduces CR.

圖2A為傳統LCD範例的CR繪製圖,圖2B為習知QDCF的CR繪製圖。標記x軸及y軸H及V,表示從水平方向及垂直方向上的法線所視(圖的中心)的「水平」及「垂直」角度。圖2A示出了傳統LCD的CR。傳統LCD的CR在法線視角(水平及垂直角度均在0度)下計算為〜3200:1,由繪製圖中心的峰值表示,但隨著水平及垂直視角的增加而顯著下降。因此,如果觀看者不以法線視角觀看LCD,則傳統LCD中的CR顯著惡化。此為觀看者提供了非常不均勻的觀看體驗。圖2B示出了QDCF LCD的CR。QDCF LCD的CR更均勻,但對於觀看者來說其值非常低,約為128:1。低CR會致使觀看者的畫質下降。即使在法線視角下的CR能具有為幾千秒的值(垂直對齊LC模式顯示器能具有〜5000的CR值),對於高視角,CR仍會降至>10。FIG. 2A is a CR drawing of a conventional LCD example, and FIG. 2B is a CR drawing of a conventional QDCF. The x-axis and y-axis H and V are marked to indicate the "horizontal" and "vertical" angles viewed from the normal in the horizontal and vertical directions (the center of the figure). Figure 2A shows the CR of a conventional LCD. The CR of a conventional LCD is calculated to be ~3200:1 under the normal viewing angle (both horizontal and vertical angles are at 0 degrees), which is represented by the peak in the center of the drawing, but decreases significantly as the horizontal and vertical viewing angles increase. Therefore, if the viewer does not view the LCD with a normal viewing angle, CR in the conventional LCD is significantly deteriorated. This provides viewers with a very uneven viewing experience. Figure 2B shows the CR of the QDCF LCD. The CR of QDCF LCD is more uniform, but its value is very low for the viewer, about 128:1. Low CR will cause the viewer's picture quality to deteriorate. Even if the CR under normal viewing angle can have a value of several thousand seconds (a vertically aligned LC mode display can have a CR value of ~5000), the CR will still drop to >10 for high viewing angles.

基於QD的顯示器通常提供更高的色彩精度和更廣的色域。當前的技術使用用於背光照明之藍色LED及在背光單元(BLU)內部使用紅色和綠色QD的混合物之QD薄膜,將藍色光轉換為白色。因為在濾色器(CF's)中而非在BLU中進行轉換,QDCF的另一個概念允許提供更好的色域。在此等設計中,短通濾光器位於QD層/濾色器層與BLU之間。在美國專利申請公開第US2017/0153366號中揭露的另一種方法中,使用帶截止濾光器在轉換後濾出藍光,此專利的內容通過引用的方式併入本文。US2017/0153366中亦描述了利用來自背光及藍色QD的紫外線的方案。QD-based displays generally provide higher color accuracy and a wider color gamut. The current technology uses blue LEDs for backlighting and a QD film that uses a mixture of red and green QDs inside the backlight unit (BLU) to convert blue light into white. Because the conversion is done in color filters (CF's) instead of BLU, another concept of QDCF allows for a better color gamut. In these designs, the short-pass filter is located between the QD layer/color filter layer and the BLU. In another method disclosed in US Patent Application Publication No. US2017/0153366, a band-cut filter is used to filter out blue light after conversion, and the content of this patent is incorporated herein by reference. US2017/0153366 also describes a solution using ultraviolet light from backlight and blue QD.

此等設計中觀察到的另一個問題是,除了CR較低之外,由於全內反射(TIR),高出射角的光還將被局限(trap)在覆蓋玻璃內部。在傳統的LCD設計中,光輸出通常會集中在某些有限的輸出角度,因此TIR並非限制因素。然而,在QDCF設計中,QD層以各種角度重新發射光,因此會有顯著的光經歷TIR。TIR反射回來的光可能會被不同顏色或相同顏色的濾色鏡(CF)吸收(典型的吸收CF具有80%〜90%的傳輸率),從而致使LCD最終發出的光量顯著減少。Another problem observed in these designs is that, in addition to the low CR, light with a high exit angle will also be trapped inside the cover glass due to total internal reflection (TIR). In traditional LCD design, light output is usually concentrated in certain limited output angles, so TIR is not a limiting factor. However, in the QDCF design, the QD layer re-emits light at various angles, so significant light experiences TIR. The light reflected by the TIR may be absorbed by color filters (CFs) of different colors or the same color (a typical absorption CF has a transmission rate of 80% to 90%), resulting in a significant reduction in the amount of light emitted by the LCD.

因此,需要具有改善的CR的改善QDCF架構。Therefore, there is a need for an improved QDCF architecture with improved CR.

根據本揭露內容的實施例,揭露了QDCF LCD設備。量子點濾色器(QDCF)液晶顯示(LCD)設備,包括:覆蓋玻璃;後反射器層;在覆蓋玻璃與後反射器層之間的液晶面板層;在液晶面板層與後反射器之間的背光單元,背光單元配置成向液晶面板層產生圖像形成光;在覆蓋玻璃與液晶面板層之間的量子點層;在覆蓋玻璃與量子點層之間的濾色器層,濾色器及量子點層組合配置成藉由轉換來自背光單元並穿透過液晶面板的圖像形成光的一波長來形成顏色;位於液晶面板層與背光單元之間的底部偏光器層;位於液晶面板層與量子點層之間的頂部偏光器層;及進一步包括以下一項或更多項增強性特徵: (a) 提供在濾色器層與量子點層之間的低折射率材料層(LIML); (b) 配置成向液晶面板層產生準直的圖像形成光的背光單元; (c) 底部偏光器與頂部偏光器中的一者或兩者由E型偏光器材料製成; (d) 底部偏光器與頂部偏光器各自由補償薄膜製成,補償薄膜包括A板、C板、及雙軸板中的一個或多個;及 (e) 提供在頂部偏光器與量子點層之間的隱私濾光器薄膜。According to the embodiments of the present disclosure, a QDCF LCD device is disclosed. Quantum dot color filter (QDCF) liquid crystal display (LCD) device, including: cover glass; back reflector layer; liquid crystal panel layer between cover glass and back reflector layer; between liquid crystal panel layer and back reflector The backlight unit is configured to generate image forming light to the liquid crystal panel layer; the quantum dot layer between the cover glass and the liquid crystal panel layer; the color filter layer between the cover glass and the quantum dot layer, the color filter And the quantum dot layer combination is configured to form a color by converting a wavelength of the image forming light from the backlight unit and penetrating the liquid crystal panel; the bottom polarizer layer located between the liquid crystal panel layer and the backlight unit; The top polarizer layer between the quantum dot layers; and further includes one or more of the following enhancement features: (a) Provide a low refractive index material layer (LIML) between the color filter layer and the quantum dot layer; (b) A backlight unit configured to generate collimated image forming light to the liquid crystal panel layer; (c) One or both of the bottom polarizer and the top polarizer are made of E-type polarizer material; (d) The bottom polarizer and the top polarizer are each made of compensation film, the compensation film includes one or more of A plate, C plate, and biaxial plate; and (e) Provide a privacy filter film between the top polarizer and the quantum dot layer.

根據一些實施例,QDCF LCD設備包含背光單元及LIML,背光單元配置成向液晶面板層產生圖像形成光,LIML被提供在濾色器層與量子點層之間;及進一步包括以下一項或更多項增強性特徵: (a) 底部偏光器與頂部偏光器中的一者或兩者由E型偏光器材料製成; (b) 配置成向液晶面板層產生準直的圖像形成光的背光單元; (c) 底部偏光器與頂部偏光器各自由補償薄膜製成,補償薄膜包括A板、C板、及雙軸板中的一個或多個;及 (d) 提供在頂部偏光器與量子點層之間的隱私濾光器薄膜。According to some embodiments, the QDCF LCD device includes a backlight unit and LIML, the backlight unit is configured to generate image forming light to the liquid crystal panel layer, the LIML is provided between the color filter layer and the quantum dot layer; and further includes one of the following: More enhanced features: (a) One or both of the bottom polarizer and the top polarizer are made of E-type polarizer material; (b) A backlight unit configured to generate collimated image forming light to the liquid crystal panel layer; (c) The bottom polarizer and the top polarizer are each made of compensation film, which includes one or more of A plate, C plate, and biaxial plate; and (d) Provide a privacy filter film between the top polarizer and the quantum dot layer.

應當理解,前文一般性描述與以下的詳細描述提出了本揭露內容的實施例,並且旨在提供用於理解所主張保護的標的之性質與特性的概述或框架。本文所含的隨附示意圖提供對本揭露內容的進一步理解,且併入本說明書中並構成本說明書的一部分。本文中的圖示顯示了此揭露內容的不同實施例,且與敘述內容共同用於解釋所主張保護的標的的原理與操作。It should be understood that the foregoing general description and the following detailed description propose embodiments of the present disclosure, and are intended to provide an overview or framework for understanding the nature and characteristics of the claimed subject matter. The accompanying schematic diagram contained herein provides a further understanding of the content of the disclosure, and is incorporated into this specification and constitutes a part of this specification. The illustrations in this document show different embodiments of the disclosure, and are used together with the narrative to explain the principles and operations of the claimed subject matter.

參照附圖描述了發光塗層及設備的各種實施例,其中相似的元件已被賦予相似的元件符號以促進理解。Various embodiments of the luminescent coating and device are described with reference to the drawings, in which similar elements have been given similar element symbols to facilitate understanding.

亦應當理解,除非另作說明,否則諸如「頂部」、「底部」、「向外」、「向內」等術語是方便的用語,且不應解釋成限制性術語。另外,每當一群組被描述成包括一組元素中的至少一個及其組合時,此群組能包含此等元素、基本上單獨地由此等元素組成或由此等元素的組合組成、或單獨地由所載此等元素或由此等元組的組合的任意數目組成。It should also be understood that, unless otherwise specified, terms such as "top", "bottom", "outward", "inward" and other terms are convenient terms and should not be interpreted as restrictive terms. In addition, whenever a group is described as including at least one of a group of elements and a combination thereof, the group can include these elements, basically consist of these elements alone or a combination of these elements, Or it is composed of any number of these elements or combinations of such tuples alone.

類似地,每當一群組被描述成由一組元素中的至少一個元素或其組合組成時,此群組能單獨地由所載此等元素或由此等元素的組合的任意數目組成。除非另作說明,否則當載明值的範圍時包含此範圍的上限和下限。如本文中所用,除非另作說明,則本文中所用的不定冠詞「一(a)」或「一(an)」及其相應的定冠詞「該」係指至少一個,或一個或多個。Similarly, whenever a group is described as being composed of at least one element of a group of elements or a combination thereof, the group can be composed of any number of such elements or combinations of such elements alone. Unless otherwise stated, the upper and lower limits of this range are included when specifying the value range. As used herein, unless otherwise specified, the indefinite article "一 (a)" or "一 (an)" and its corresponding definite article "the" used herein refer to at least one, or one or more.

熟習此項技藝者將認知到,能對所描述的實施例進行許多更改,同時仍然能獲得揭露內容的有益結果。同樣顯而易見的是,能藉由選擇一些描述的特徵而不使用其他特徵來獲得本揭露內容的某些符合需求的益處。因而,本領域熟習技藝者將認知到,許多修改及改編為可能的,且在某些情況下甚至為符合需求的,且為揭露內容的一部分。因此,提供以下描述以說明本揭露內容的原理,但不限於此。Those familiar with the art will recognize that many changes can be made to the described embodiments while still obtaining beneficial results for the disclosure. It is also obvious that some of the benefits of the disclosure can be obtained by selecting some of the described features without using other features. Therefore, those skilled in the art will recognize that many modifications and adaptations are possible, and in some cases even meet the needs, and are part of the disclosure content. Therefore, the following description is provided to illustrate the principle of the disclosure, but is not limited thereto.

應當理解,在不脫離揭露內容的精神和範圍的情況下,熟習此項技藝者可對本文所述的範例性實施例進行許多修改。因此,此描述並非旨在且不應解釋成限於所給定的範例,而應被授予所附請求項及其均等物所提供的全部保護範圍。另外,可使用本揭露內容的某些特徵,而無需使用其他特徵。因而,為了說明本揭露內容的原理而提供了對範例性或說明性實施例的前述描述,而非對其進行限制,且能對此等實施例進行修改及排列。It should be understood that, without departing from the spirit and scope of the disclosed content, those skilled in the art can make many modifications to the exemplary embodiments described herein. Therefore, this description is not intended and should not be construed as being limited to the given examples, but should be granted the full scope of protection provided by the appended claims and their equivalents. In addition, some features of the present disclosure can be used without using other features. Therefore, in order to explain the principle of the present disclosure, the foregoing description of exemplary or illustrative embodiments is provided instead of limiting, and these embodiments can be modified and arranged.

發明者已藉由「黑暗狀態」中的偏光器識別出光洩漏為QDCF顯示器中CR降低的原因。本揭露內容藉由減少或消除光洩漏解決了此問題。本揭露內容係藉由將一個或更多個某些技術合併到QDCF中來實現,這在以前為未知的。此等技術為:(1)藉由將來自背光單元(BLU)光源的光準直化來消除LCD結構內的光的高入射角;(2)使用具有比O型偏光器低的較低高入射角光洩漏之E型偏光器;(3)使用降低致使偏光器洩漏的高入射角之補償薄膜;(4)使用可減少高入射角(致使偏光器洩漏)的隱私觀看薄膜;及(5)在QDCF結構的QD層之上添加低折射率材料層(LIML)。根據本揭露內容,此等技術被單獨合併到QDCF結構中,或有時將它們中的兩個或更多個組合在一起。The inventor has identified light leakage as the cause of CR reduction in QDCF displays by using the polarizer in the "dark state". This disclosure solves this problem by reducing or eliminating light leakage. This disclosure is achieved by incorporating one or more certain technologies into QDCF, which was previously unknown. These technologies are: (1) By collimating the light from the backlight unit (BLU) light source to eliminate the high incident angle of the light in the LCD structure; (2) using a lower height than the O-type polarizer E-type polarizer with incident angle light leakage; (3) Use a compensation film that reduces the high incident angle that causes the polarizer to leak; (4) Use a privacy viewing film that can reduce the high incident angle (causing the polarizer to leak); and (5) ) Add a low refractive index material layer (LIML) on top of the QD layer of the QDCF structure. According to this disclosure, these technologies are incorporated into the QDCF structure alone, or sometimes two or more of them are combined together.

本文揭露內容的技術的優點在於,它們允許在LC單元內使用QD(即進行像素化),同時具有QD的色域優勢,QD的顏色角均勻性(最小顏色偏移),而不損害CR或亮度。獲得的QDCF將比傳統的QDCF LCD更高效。The advantages of the technologies disclosed in this article are that they allow the use of QD (ie, pixelation) in the LC cell, and at the same time have the color gamut advantage of QD, the color angle uniformity of QD (minimum color shift), without compromising CR or brightness. The obtained QDCF will be more efficient than the traditional QDCF LCD.

由於在傳統LCD中發現的負視差問題被最小化,因此LCD的BLU光源中大致上地準直的光之使用允許了較厚偏光器之使用。使用E型偏光器、補償薄膜、或隱私觀看薄膜可實現某些技術的使用,同時保留光回收在背光單元(BLU)中的優勢。Since the negative parallax problem found in conventional LCDs is minimized, the use of substantially collimated light in the BLU light source of the LCD allows the use of thicker polarizers. The use of E-type polarizers, compensation films, or privacy viewing films can achieve the use of certain technologies while retaining the advantages of light recycling in the backlight unit (BLU).

將來源光準直化:藉由將來自LCD光源的光準直化消除了LCD結構內的光的高入射角,從而改善了CR。圖3顯示了作為來源光準直度的函數的QDCF LCD的CR改善趨勢。對於此等測量值,將BLU替換成矩形的朗伯光源。準直度以圓錐形的半頂角(以角度為單位)給出,表示來源光的角度範圍。因此,0度的半頂角表示完全準直的光,其中來源光以法線角度入射在LCD平面上。藉由將來光源限制在具有不同半頂角的圓錐體內來模擬準直度。圖3的繪製圖顯示準直度對CR的有利影響為呈指數增長的。在我們的範例中,將準直度限制為小於或等於±30度的半頂角、優選地小於或等於±20度半頂角、及更優選地小於或等於±15度半頂角,CR能在從1277:1到3885:1的範圍。Collimating the source light: By collimating the light from the LCD light source, the high incident angle of the light in the LCD structure is eliminated, thereby improving CR. Figure 3 shows the CR improvement trend of QDCF LCD as a function of source light collimation. For these measurements, replace the BLU with a rectangular Lambertian light source. The degree of collimation is given by the half apex angle (in angles) of the cone, which represents the angular range of the source light. Therefore, a half apex angle of 0 degrees represents fully collimated light, where the source light is incident on the LCD plane at a normal angle. The collimation is simulated by confining the light source in the cone with different half-vertex angles in the future. The plot in Figure 3 shows that the beneficial effect of collimation on CR increases exponentially. In our example, the collimation is limited to a half apex angle less than or equal to ±30 degrees, preferably less than or equal to ±20 degrees half apex angle, and more preferably less than or equal to ±15 degrees half apex angle, CR It can range from 1277:1 to 3885:1.

在圖4A及4B中,將具有準直的光的QDCF的性能與具有非準直的光的傳統QDCF的性能進行了比較。圖4A與圖2B相同,這為QDCF的非準直光(具有由模型化的BLU單元產生的角度分佈)的CR繪製圖,此繪製圖為「水平」角度的視角H及「垂直」角度的V的函數。CR為均勻〜128:1之值。圖4B為QDCF的CR繪製圖,其錐度源準直度為±15度。CR亦為均勻的,但CR值顯著提高到〜3885:1。準直度為±15度表示圓錐形的半頂角(以度為單位),表示來源光的角度色散程度。能在這裡應用的用於BLU的準直光源之範例是在美國專利第7,530,721號中揭露的雙面轉向薄膜,其內容通過引用方式併入本文。在T. Ishikawa及Mi Xiang-Dong,P-82中發現了另一個範例:SID 06 DIGEST(2006),「新型的高度準直薄膜的新設計」,其內容以引用的方式併入本文中。In FIGS. 4A and 4B, the performance of a QDCF with collimated light is compared with the performance of a conventional QDCF with non-collimated light. Figure 4A is the same as Figure 2B. This is a CR drawing of QDCF's non-collimated light (with an angular distribution generated by the modeled BLU unit). This drawing is a "horizontal" angle of view H and a "vertical" angle of view Function of V. CR is a uniform value of ~128:1. Figure 4B is a CR drawing of QDCF, and its taper source collimation is ±15 degrees. CR is also uniform, but the CR value is significantly increased to ~3885:1. The collimation degree of ±15 degrees indicates the half apex angle (in degrees) of the cone, and indicates the degree of angular dispersion of the source light. An example of a collimated light source for BLU that can be applied here is the double-sided turning film disclosed in US Patent No. 7,530,721, the content of which is incorporated herein by reference. Another example was found in T. Ishikawa and Mi Xiang-Dong, P-82: SID 06 DIGEST (2006), "New design of a new type of highly collimated film", the content of which is incorporated herein by reference.

圖5示出了根據本揭露內容的QDCF LCD面板結構500的範例的示意性垂直截面圖示。QDCF LCD面板結構500包括,起始於最遠處的覆蓋玻璃595、後反射器層510、光導板(LGP)520、一或多個光學片材530、底部偏光器540、液晶(LC)層550、頂部偏光器560、短通濾光器(SPF)570、圖案化量子點(QD)層580、濾色器(CF)590、及覆蓋玻璃595。QD層580及CF層590被定義成紅色、綠色、及藍色的子像素區域的圖案化或像素化結構,如圖6所示。CF層590中的子像素區域由黑矩陣600結構隔開。QDCF LCD面板結構500的組件層不僅限於圖5所示的那些(組件)。QDCF LCD面板的不同實施例能包含本領域習知的QDCF LCD面板及LCD面板的其他一個或更多個功能性層。此等額外功能性層的範例為亮度增強薄膜及擴散器。本揭露內容的某些增強性特徵的位置沿圖5所示的QDCF結構500的左側標出。FIG. 5 shows a schematic vertical cross-sectional view of an example of a QDCF LCD panel structure 500 according to the present disclosure. The QDCF LCD panel structure 500 includes a cover glass 595 starting at the farthest point, a back reflector layer 510, a light guide plate (LGP) 520, one or more optical sheets 530, a bottom polarizer 540, and a liquid crystal (LC) layer 550, top polarizer 560, short pass filter (SPF) 570, patterned quantum dot (QD) layer 580, color filter (CF) 590, and cover glass 595. The QD layer 580 and the CF layer 590 are defined as a patterned or pixelated structure of red, green, and blue sub-pixel regions, as shown in FIG. 6. The sub-pixel regions in the CF layer 590 are separated by the black matrix 600 structure. The component layers of the QDCF LCD panel structure 500 are not limited to those (components) shown in FIG. 5. Different embodiments of the QDCF LCD panel can include the QDCF LCD panel and one or more other functional layers of the LCD panel known in the art. Examples of these additional functional layers are brightness enhancement films and diffusers. The locations of some enhancement features of the present disclosure are marked along the left side of the QDCF structure 500 shown in FIG. 5.

由於製造高效的準直的光源會有些難度且成本高昂(例如,由於光的回收利用受到限制,且結構製造複雜),因此,亦揭露了減少在QDCF中使用的高入射角的其他方法。參考圖5所示的範例性QDCF結構500,根據實施例,頂部及底部頂部偏光器560、540的一者或兩者能為E型偏光器而非習知QDCF元件中使用的O型偏光器。O型偏光器(在3維方向空間中與至一維對應的單軸材料中)抑制非尋常的光波。然而,E型偏光器抑制了在3-D方向空間中佔據二維的普通光學波且效果會更好。可使用多種E型偏光器。一種範例為根據美國專利第5,739,296號中描述的方法製造的單層E型偏光器,其內容以引用的方式併入本文中。Since it is difficult and costly to manufacture an efficient collimated light source (for example, due to limited light recycling and complicated structure manufacturing), other methods for reducing the high incident angle used in QDCF are also disclosed. Referring to the exemplary QDCF structure 500 shown in FIG. 5, according to embodiments, one or both of the top and bottom top polarizers 560, 540 can be E-type polarizers instead of O-type polarizers used in conventional QDCF elements . O-type polarizer (in the uniaxial material corresponding to one dimension in the 3-dimensional directional space) suppresses unusual light waves. However, the E-type polarizer suppresses ordinary optical waves occupying two dimensions in the 3-D direction space and the effect is better. A variety of E-type polarizers can be used. One example is a single-layer E-type polarizer manufactured according to the method described in US Patent No. 5,739,296, the content of which is incorporated herein by reference.

在一些實施例中,亦能將設計用於消除高入射角光的補償薄膜與本文揭露內容中的一個或多個用於QDCF的新穎增強性(特徵)組合到QDCF結構500中。舉例而言,能將補償薄膜與準直的光組合而被併入QDCF結構中,以便降低QDCF結構中的黑暗狀態光洩漏。美國專利第6,995,816號揭露了此種補償薄膜的範例,其內容以引用的方式併入本文中。美國專利第6,9956,816號揭露了使用不同的A板、C板、及雙軸板的組合作為補償薄膜的偏光器封包的範例。此一對偏光器封包能被用於QDCF結構500中的頂部偏光器560及底部偏光器540。T.Ishikawa及Mi Xiang-Dong的「正O板補償各種LCD模式」,SID 06 DIGEST(2006)中揭露了補償薄膜的另一個範例,其內容以引用的方式併入本文中。因為補償薄膜取代了頂部及底部偏光器560及540,所以補償薄膜及E型偏光器不會同時被併入QDCF結構中。In some embodiments, it is also possible to combine a compensation film designed to eliminate high incident angle light with one or more of the novel enhancements (features) disclosed herein for QDCF into the QDCF structure 500. For example, the compensation film can be combined with the collimated light to be incorporated into the QDCF structure in order to reduce the dark state light leakage in the QDCF structure. US Patent No. 6,995,816 discloses an example of such a compensation film, the content of which is incorporated herein by reference. US Patent No. 6,9956,816 discloses an example of using different combinations of A-plates, C-plates, and biaxial plates as compensation films for polarizer packages. This pair of polarizer packages can be used for the top polarizer 560 and the bottom polarizer 540 in the QDCF structure 500. T. Ishikawa and Mi Xiang-Dong's "Positive O Plate Compensation for Various LCD Modes", SID 06 DIGEST (2006) discloses another example of compensation film, the content of which is incorporated herein by reference. Because the compensation film replaces the top and bottom polarizers 560 and 540, the compensation film and the E-type polarizer will not be incorporated into the QDCF structure at the same time.

在一些實施例中,亦能將隱私濾光器薄膜併入QDCF結構500中,並與一個或更多個上述的技術組合,以降低QDCF結構中的黑暗狀態光洩漏。隱私濾光器薄膜為採用微百葉窗的透射式光學薄膜,其功能類似於直接指向觀看者的百葉窗。因此,隱私濾光器薄膜將濾色器濾出高發射角度光並允許低發射角度光被傳輸。如圖5所示,能在QD層580之前的頂部偏光器560與短通濾光器570之間放置隱私濾光器薄膜。In some embodiments, the privacy filter film can also be incorporated into the QDCF structure 500 and combined with one or more of the above-mentioned technologies to reduce dark state light leakage in the QDCF structure. The privacy filter film is a transmissive optical film that uses micro-blinds, and its function is similar to a blind that points directly at the viewer. Therefore, the privacy filter film filters the color filter out of high emission angle light and allows low emission angle light to be transmitted. As shown in FIG. 5, a privacy filter film can be placed between the top polarizer 560 and the short pass filter 570 before the QD layer 580.

參考圖5及6,根據另一實施例,一種改進的QDCF結構500包括在CF層590與QD層580之間的低折射率材料層(LIML)層585,以最小化或消除由於TIR效應引起的光效率損失。當從頂部觀看時,QDCF結構500包含一系列排列的像素區域,圖6為QDCF結構500的像素區域中某些相關層的示意性垂直截面圖示。圖6顯示了短通濾光器570層並在短通濾光器570層之上直至覆蓋玻璃595(的示意性截面圖)。像素區域包含紅色子像素R、綠色子像素G、及藍色子像素B,分別由在QD層580上的各個濾色器(紅色濾色器591、綠色濾色器592、及藍色濾色器593)界定。黑矩陣600阻障物位於濾色器591、592、及593之間,向下延伸通過QD層580,界定了子像素區域R、G、及B。背光單元中的準直的藍色光(BLU)由圖6下部分中的垂直箭頭表示。藍色光由QD層580的R、G、及B子像素區域中的量子點釋放,並藉由各個別的濾色器591、592、593、及覆蓋玻璃595傳輸。如圖6所示,QD層580與CF層590之間的LIML層585與子像素濾色器591、592、及593一起被像素化。子像素濾色器591、592、及593之間的黑矩陣600向下延伸到LIML層585,將LIML 585定義為與子像素濾色器591、592、及593相對應的子區域。LIML 585改善了LCD的光發射效率。參考圖7A及7B進一步說明了此種效果。5 and 6, according to another embodiment, an improved QDCF structure 500 includes a low refractive index material layer (LIML) layer 585 between the CF layer 590 and the QD layer 580 to minimize or eliminate the TIR effect caused by Loss of light efficiency. When viewed from the top, the QDCF structure 500 includes a series of arrayed pixel areas. FIG. 6 is a schematic vertical cross-sectional view of some related layers in the pixel area of the QDCF structure 500. Figure 6 shows the short-pass filter 570 layer and above the short-pass filter 570 layer up to the cover glass 595 (a schematic cross-sectional view). The pixel area includes the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B, which are respectively determined by the respective color filters on the QD layer 580 (the red filter 591, the green filter 592, and the blue filter器593) defined. The black matrix 600 barriers are located between the color filters 591, 592, and 593, extend downward through the QD layer 580, and define sub-pixel regions R, G, and B. The collimated blue light (BLU) in the backlight unit is represented by the vertical arrow in the lower part of FIG. 6. The blue light is released by the quantum dots in the R, G, and B sub-pixel regions of the QD layer 580, and is transmitted through the respective color filters 591, 592, 593, and the cover glass 595. As shown in FIG. 6, the LIML layer 585 between the QD layer 580 and the CF layer 590 is pixelated together with the sub-pixel color filters 591, 592, and 593. The black matrix 600 between the sub-pixel color filters 591, 592, and 593 extends down to the LIML layer 585, and the LIML 585 is defined as the sub-regions corresponding to the sub-pixel color filters 591, 592, and 593. LIML 585 improves the light emission efficiency of LCD. This effect is further explained with reference to FIGS. 7A and 7B.

如圖7A的示意性圖示所示,在沒有LIML層的習知QDCF結構中,由於CF層590及覆蓋玻璃595內的全內反射(TIR)及內部回收,損失了來自QD層580具有高發射角的許多光。此效果由代表來自QD層580的高發射角度光的箭頭LB 表示。高發射角光LB 將以高入射角到達覆蓋玻璃-空氣交界597,因此在覆蓋玻璃-空氣交界597處經歷TIR。覆蓋玻璃595通常由具有約1.5的反射指數的高指數玻璃製成。因為此等光線很有可能會被CF層590中的濾色器吸收,此等光線中的大部分光線不會離開LCD面板。因為典型的CF具有80%至90%的透射率,吸收作用能藉由不同顏色或相同顏色的濾色器實現。As shown in the schematic diagram of FIG. 7A, in the conventional QDCF structure without the LIML layer, due to the total internal reflection (TIR) and internal recycling in the CF layer 590 and the cover glass 595, the loss from the QD layer 580 has high Lots of light emitting at an angle. Arrow high emission angle of light from the representative of this effect by the QD layer 580 is represented by L B. High emission angle of light L B will reach high incidence angle of the cover glass - air boundary 597, so the cover glass - air junction 597 experiences TIR. The cover glass 595 is generally made of high-index glass having a reflection index of about 1.5. Because this light is likely to be absorbed by the color filter in the CF layer 590, most of the light in this light will not leave the LCD panel. Because a typical CF has a transmittance of 80% to 90%, absorption can be achieved by color filters of different colors or the same color.

參考圖7B,QD層580全方位地產生光,並因此以所有可能的角度發出光。在QD層發射的光中,具有法線發射角(即,與QD層580正交)或通常以LA 發射的低角度發射的光射線將穿過覆蓋玻璃595傳輸並離開LCD面板。Referring to FIG. 7B, the QD layer 580 generates light in all directions, and therefore emits light at all possible angles. QD light emitting layer, the emission angle having a normal (i.e., perpendicular to the QD layer 580) or at a low angle light ray is generally L A emitted from the emission through the cover glass 595 and away from the LCD panel transmission.

當LIML 585在QD層580與CF 590之間時,QD層580與LIML 585之間的邊界處的TIR回收QD層580內的高角度發射射線LB ,並將它們轉換為能離開高指數覆蓋玻璃595的低角度射線LB '。QD層580內的高角度射線LB 的回收是QD層內的散射的結果。因此,這增加了QDCF結構500的整體效率。When LIML 585 is between QD layer 580 and CF 590, TIR at the boundary between QD layer 580 and LIML 585 recovers the high-angle emission rays L B in QD layer 580 and converts them to leave the high index coverage Low-angle ray L B 'of glass 595. High angle rays in the QD layer 580 recovered L B is the result of scattering in the QD layer. Therefore, this increases the overall efficiency of the QDCF structure 500.

在一些實施例中,QDCF LCD面板500能進一步在QD層580與短通濾光器層(SPF)570之間包含額外的LIML。如此額外的LIML能幫助SPF 570反射高角度入射光。此額外的LIML無需像素化,且能直接黏貼到SPF 570上。In some embodiments, the QDCF LCD panel 500 can further include an additional LIML between the QD layer 580 and the short pass filter layer (SPF) 570. Such additional LIML can help SPF 570 reflect high-angle incident light. This additional LIML does not require pixelation and can be directly pasted onto SPF 570.

優選地,LIML 585與QD層580之間的交界不應引入太多散射。優選地,為了控制LIML 585與QD層580之間的交界處的光的散射,應控制LIML與QD層交界處的平坦度,以使散射到具有足夠大角度以在覆蓋玻璃-空氣交界597處遇到TIR的射線的光能量被最小化。來自LIML 585的體積散射及LIML 585與QD層580之間的交界587的表面散射被有利地控制,使得散射成具有足夠大的角度以藉此在覆蓋玻璃與空氣的交界597處遇到TIR的角度的光能量最小化。薄膜的散射的特徵是(在傳輸中的)霧度,同時考慮體積及表面散射。控制LIML 585與QD層580之間的交界587的平坦度,以將根據ASTM D1003標準測得的霧度值限制為小於或等於50%、優選地小於或等於30%、而最優選地小於或等於5%。Preferably, the interface between the LIML 585 and the QD layer 580 should not introduce too much scattering. Preferably, in order to control the light scattering at the interface between LIML 585 and QD layer 580, the flatness of the interface between LIML and QD layer should be controlled so that the scattering has a large enough angle to be at the cover glass-air interface 597 The light energy of the rays that encounter TIR is minimized. The volume scattering from LIML 585 and the surface scattering at the interface 587 between LIML 585 and QD layer 580 are advantageously controlled so that the scattering has a large enough angle to thereby encounter TIR at the interface 597 between the cover glass and the air. The angle of light energy is minimized. The characteristic of the scattering of the film is the haze (in transmission), considering the volume and surface scattering. The flatness of the interface 587 between the LIML 585 and the QD layer 580 is controlled to limit the haze value measured according to the ASTM D1003 standard to be less than or equal to 50%, preferably less than or equal to 30%, and most preferably less than or Equal to 5%.

LIML在QDCF的發光效率中的改善程度取決於LIML 585的反射指數。任何具有低於CF與QD層580的折射率的反射指數的材料都能用作LIML 585。QD層580與LIML 585之間的折射率的差異越大,LIML的性能就越好。折射指數的此種關係意味著能用高於1.5(覆蓋玻璃595的反射指數)的反射指數來製造QD層580,這將為LIML材料提供更大的可能的折射指數範圍(window)。覆蓋玻璃595通常具有1.5的反射指數。The improvement degree of LIML in the luminous efficiency of QDCF depends on the reflection index of LIML 585. Any material with a reflection index lower than the refractive index of the CF and QD layers 580 can be used as LIML 585. The greater the difference in refractive index between the QD layer 580 and the LIML 585, the better the performance of the LIML. This relationship of refractive index means that the QD layer 580 can be manufactured with a reflection index higher than 1.5 (the reflection index of the cover glass 595), which will provide a larger possible refractive index window for LIML materials. The cover glass 595 generally has a reflection index of 1.5.

計算(結果)表明,隨著LIML 585的反射係數從1.5降低到1.0,QDCF的發光效率將逐漸增加。此數據繪製在圖8中。當LIML的反射指數在x軸上從1.5變為1.0時,相對發光效率從0.65變為約1.025。根據實施例,具有在1.5至1.0範圍(包含端點)內的折射率值的LIML是符合需求的。根據一些實施例,LIML的反射指數在1.4至1.0的範圍內、優選地在1.3至1.0的範圍內、更優選地在1.2至1.0的範圍內。The calculation (result) shows that as the reflection coefficient of LIML 585 decreases from 1.5 to 1.0, the luminous efficiency of QDCF will gradually increase. This data is plotted in Figure 8. When the reflection index of LIML changes from 1.5 to 1.0 on the x-axis, the relative luminous efficiency changes from 0.65 to about 1.025. According to the embodiment, LIML having a refractive index value in the range of 1.5 to 1.0 (inclusive) is satisfactory. According to some embodiments, the reflection index of LIML is in the range of 1.4 to 1.0, preferably in the range of 1.3 to 1.0, more preferably in the range of 1.2 to 1.0.

Werdehausen等人揭露了一些能用於LIML的具有低指數及低散射特性的奈米-多孔性材料的範例,「基於奈米合成物的可定製材料的設計規則」,光學材料Express 8(11),3456(2018)。下表提供了LIML 585可能的材料的其他範例: 材料 反射指數 範例 聚合物 1.3-1.4 丙烯酸酯、丙酸酯、乙酸酯、及矽氧烷。 多孔性材料 1.07-1.16 在Masato Yamaguchi、Hiroyuki Nakayama、Kazuhiro Yamada、及Hiroaki Imai中描述的反射率低至1.07的多孔性材料,「由中觀多孔性二氧化矽奈米粒子組成的超低反射指數塗層」,34(13),2009)。一個範例為帶有氣孔的二氧化矽。 奈米粒子-聚合物合成物在分解溫度以上形成疏水薄膜,其折射指數低至1.048,在Venumadhav Korampally、Minseong Yun、Thiruvengadathan Rajagopalan、Purnendu K Dasgupta、Keshab Gangopadhyay、及Shubhra Gangopadhyay(奈米技術雜誌,第20卷,第42期,2009年)。一個範例為聚甲基倍半矽氧烷奈米粒子。 超低反射指數(低至1.04),無裂紋的厚塗層(厚至3.6微米)基於有機矽酸鹽奈米粒子(NPO)網絡,由Venumadhav Korampally、Maruf Hossain開發,例如 ,Minseong Yun、Keshab Gangopadhyay、Luis Polo-Parada、及Shubhra Gangopadhyay(第十二屆化學及生命科學小型系統國際會議,2008年10月12日至16日,美國加利福尼亞州聖地亞哥)。一個範例為有機矽酸鹽奈米粒子網絡。 用於2D光子晶體波導系統的折射率為1.14的中孔二氧化矽薄膜,如在Frank Marlow、Denan Konjhodzic、Helmut Bretinger、及Li Hongliang(固態物理學進展,2006年,第45/2006卷,149-161)。 Werdehausen et al. revealed some examples of nano-porous materials with low index and low scattering properties that can be used in LIML, "Design rules for customizable materials based on nanocomposites," Optical Materials Express 8 (11 ), 3456 (2018). The following table provides other examples of possible materials for LIML 585: material Reflection index example polymer 1.3-1.4 Acrylate, propionate, acetate, and silicone. Porous materials 1.07-1.16 Masato Yamaguchi, Hiroyuki Nakayama, Kazuhiro Yamada, and Hiroaki Imai describe porous materials with reflectance as low as 1.07, "ultra-low reflection index coatings composed of mesoporous silica nanoparticles", 34( 13), 2009). An example is silicon dioxide with pores. The nanoparticle-polymer composite forms a hydrophobic film above the decomposition temperature, and its refractive index is as low as 1.048. It is found in Venumadhav Korampally, Minseong Yun, Thiruvengadathan Rajagopalan, Purnendu K Dasgupta, Keshab Gangopadhyay, and Shubhra Gangopadhyay (Journal of Nano Technology, No. Volume 20, Issue 42, 2009). One example is polymethylsilsesquioxane nanoparticles. Ultra-low reflection index (as low as 1.04), crack-free thick coating (thickness to 3.6 microns) based on organosilicate nanoparticle (NPO) network, developed by Venumadhav Korampally, Maruf Hossain, for example, Minseong Yun, Keshab Gangopadhyay , Luis Polo-Parada, and Shubhra Gangopadhyay (The 12th International Conference on Small Systems in Chemistry and Life Sciences, October 12-16, 2008, San Diego, California, USA). An example is the organosilicate nanoparticle network. Mesoporous silica films with a refractive index of 1.14 used in 2D photonic crystal waveguide systems, such as those in Frank Marlow, Denan Konjhodzic, Helmut Bretinger, and Li Hongliang (Progress in Solid State Physics, 2006, Vol. 45/2006, 149 -161).

位於R、G、及B子之間的黑矩陣阻擋了與顯示器無關的光,否則此光會出現在QDCF面板的觀看側,從而降低總體CR。通常,藉由黑矩陣材料反射入射光來實現黑矩陣對不符合需求的光的阻擋。習知黑矩陣包含反射性金屬層,如鉻。儘管黑矩陣反射的大部分光都無法進入最終圖像,其中一些還是會轉經LCD面板結構內部的幾個光學交界處的散射及反射並最後對最終圖像有所影響,從而降低了對比度,即CR降低。因此,在範例性QDCF面板結構中,黑矩陣塗佈有一層光吸收材料(如聚合物或氧化物),以大致降低黑矩陣的有害反射。在其他範例中,黑矩陣由光阻樹脂製成,其中已將黑色素分散以降低反射率。The black matrix located between R, G, and B blocks light that has nothing to do with the display, otherwise this light will appear on the viewing side of the QDCF panel, thereby reducing the overall CR. Generally, the black matrix material reflects the incident light to achieve the black matrix blocking the light that does not meet the requirements. The conventional black matrix contains a reflective metal layer, such as chromium. Although most of the light reflected by the black matrix cannot enter the final image, some of it will pass through the scattering and reflection at several optical junctions inside the LCD panel structure and finally affect the final image, thereby reducing the contrast. That is, CR decreases. Therefore, in the exemplary QDCF panel structure, the black matrix is coated with a layer of light absorbing material (such as polymer or oxide) to substantially reduce the harmful reflection of the black matrix. In other examples, the black matrix is made of photoresist resin in which melanin has been dispersed to reduce reflectivity.

參考圖9,根據本揭露內容的實施例,黑矩陣結構600為配置成具有傾斜的側邊並且為部分反射性的,這也獨立地改善了QDCF結構的光發射效率。此處,如上文提到的,「部分反射性」特徵僅係指黑矩陣包含暴露於QD層580的反射性表面,而黑矩陣的其餘表面為習知光吸收或非反射性表面。圖9為此類黑矩陣結構600的範例的示意圖。黑矩陣600是濾色器層590中濾色器之間的阻障物,並向下延伸通過QD層580,從而界定了子像素區域R、G、及B(見圖6)。黑矩陣600包含以角度α傾斜的側邊602,因此在圖9所示的平面剖視圖中,黑矩陣600具有大致地梯形,黑矩陣600在覆蓋玻璃595附近的頂部處比在底部處窄。另外,面對CF層590與QD層580的側邊602為反射性,而面對覆蓋玻璃595的頂部603的其餘側邊是非反射性。側邊602的傾斜角度α為45度,偏差為小於或等於+/-20度、優選地小於或等於+/-10度、且更優選地小於或等於+/-5度。在使用藍色來源光的QDCF元件中,傾斜的側邊602致使QD層580中的QD層中產生的紅色及綠色光被「引導」或「局限」,以被再次朝向觀看者。藍色來源光可由黑矩陣600朝向觀看者反射並由濾色器(RG)吸收,亦可由黑矩陣吸收。Referring to FIG. 9, according to an embodiment of the present disclosure, the black matrix structure 600 is configured to have inclined sides and is partially reflective, which also independently improves the light emission efficiency of the QDCF structure. Here, as mentioned above, the "partially reflective" feature only means that the black matrix includes a reflective surface exposed to the QD layer 580, while the remaining surfaces of the black matrix are conventional light-absorbing or non-reflective surfaces. FIG. 9 is a schematic diagram of an example of such a black matrix structure 600. The black matrix 600 is a barrier between the color filters in the color filter layer 590, and extends downward through the QD layer 580, thereby defining sub-pixel regions R, G, and B (see FIG. 6). The black matrix 600 includes sides 602 inclined at an angle α, so in the plan sectional view shown in FIG. 9, the black matrix 600 has a substantially trapezoidal shape, and the black matrix 600 is narrower at the top near the cover glass 595 than at the bottom. In addition, the side 602 facing the CF layer 590 and the QD layer 580 is reflective, while the remaining side facing the top 603 of the cover glass 595 is non-reflective. The inclination angle α of the side 602 is 45 degrees, and the deviation is less than or equal to +/-20 degrees, preferably less than or equal to +/-10 degrees, and more preferably less than or equal to +/-5 degrees. In the QDCF element using blue source light, the inclined side 602 causes the red and green light generated in the QD layer in the QD layer 580 to be "guided" or "limited" to be directed toward the viewer again. The blue source light can be reflected by the black matrix 600 toward the viewer and absorbed by the color filter (RG), or can be absorbed by the black matrix.

根據一些實施例,揭露了一種QDCF LCD設備500,包括:覆蓋玻璃595;後反射器層510;在覆蓋玻璃與後反射器層之間的液晶面板層550;在液晶面板層550與後反射器510之間的背光單元520(包括藍色LED光源及光導板),背光單元配置成產生用於液晶面板層的圖像形成光;在覆蓋玻璃與液晶面板層之間的圖案化量子點層580;在覆蓋玻璃與量子點層之間的濾色器層590,濾色器590與量子點層580組合配置成,藉由轉換來自背光單元及穿過液晶面板550的圖像形成光的波長來形成顏色;底部偏光器層540位於液晶面板層550與背光單元520之間;在液晶面板層與量子點層之間設置有頂部偏光器層560。在此QDCF LCD設備的實施例中,亦併入了以下多個增強性特徵的一個:(a)設置在濾色器層590與量子點層580之間的LIML 585;(b)配置成產生用於液晶面板層的準直的圖像形成光的背光單元;(c)底部偏光器540與頂部偏光器560的一者或兩者由E型偏光器材料製成;(d)底部偏光器540與頂部偏光器560分別由包含A板、C板、及雙軸板的一個或更多個補償薄膜製成;(e)設置在頂部偏光器560與量子點層580之間的隱私濾光器薄膜。According to some embodiments, a QDCF LCD device 500 is disclosed, including: a cover glass 595; a back reflector layer 510; a liquid crystal panel layer 550 between the cover glass and the back reflector layer; between the liquid crystal panel layer 550 and the back reflector layer The backlight unit 520 (including the blue LED light source and the light guide plate) between 510, the backlight unit is configured to generate image forming light for the liquid crystal panel layer; the patterned quantum dot layer 580 between the cover glass and the liquid crystal panel layer In the color filter layer 590 between the cover glass and the quantum dot layer, the color filter 590 and the quantum dot layer 580 are combined and configured to convert the wavelength of the image forming light from the backlight unit and through the liquid crystal panel 550 to The color is formed; the bottom polarizer layer 540 is located between the liquid crystal panel layer 550 and the backlight unit 520; the top polarizer layer 560 is provided between the liquid crystal panel layer and the quantum dot layer. In this embodiment of the QDCF LCD device, one of the following enhancement features is also incorporated: (a) LIML 585 disposed between the color filter layer 590 and the quantum dot layer 580; (b) configured to produce A backlight unit for collimated image forming light of the liquid crystal panel layer; (c) one or both of the bottom polarizer 540 and the top polarizer 560 are made of E-type polarizer material; (d) the bottom polarizer 540 and top polarizer 560 are respectively made of one or more compensation films including A plate, C plate, and biaxial plate; (e) privacy filter arranged between the top polarizer 560 and the quantum dot layer 580器膜。 Film.

在其他實施例中,QDCF LCD設備500在濾色器層590與量子點層580之間包含LIML 585,且亦併入了以下一個或更多個增強特性:(a)底部偏光器540與頂部偏光器560的一者或兩者由E型偏光器材料製成;(b)配置成產生用於液晶面板層的準直的圖像形成光的背光單元;(c)底部偏光器540與頂部偏光器560分別由包含A板、C板、及雙軸板的補償薄膜製成;(d)設置在頂部偏光器560與量子點層580之間的隱私濾光器薄膜。In other embodiments, the QDCF LCD device 500 includes LIML 585 between the color filter layer 590 and the quantum dot layer 580, and also incorporates one or more of the following enhancement features: (a) Bottom polarizer 540 and top One or both of the polarizers 560 are made of E-type polarizer materials; (b) a backlight unit configured to generate collimated image forming light for the liquid crystal panel layer; (c) bottom polarizer 540 and top The polarizers 560 are respectively made of compensation films including A plate, C plate, and biaxial plate; (d) a privacy filter film disposed between the top polarizer 560 and the quantum dot layer 580.

儘管已經描述了本揭露內容的實施例,但應當理解,所述的實施例僅為範例性的,且當被賦予所有均等範圍時,本發明的範圍僅由所附請求項限定,從本文的細讀中,熟習該技藝者自然會發生許多變化及修改。Although the embodiments of the present disclosure have been described, it should be understood that the described embodiments are only exemplary, and when all equal scopes are assigned, the scope of the present invention is limited only by the appended claims, from In close reading, those who are familiar with the art will naturally undergo many changes and modifications.

500:QDCF LCD面板結構 510:後反射器層 520:後反射器層光導板/LGP 530:光學片材 540:底部偏光器 550:液晶/LC 560:頂部偏光器 570:短通濾光器/SPF 580:圖案化量子點/QD 585:低折射率材料層/LIML 587:交界 590:濾色器/CF 591:紅色濾色器 592:綠色濾色器 593:藍色濾色器 595:覆蓋玻璃 597:覆蓋玻璃-空氣交界 600:黑矩陣 602:側邊500: QDCF LCD panel structure 510: rear reflector layer 520: Rear reflector layer light guide plate/LGP 530: Optical sheet 540: bottom polarizer 550: LCD/LC 560: Top polarizer 570: Short pass filter/SPF 580: Patterned quantum dots/QD 585: Low refractive index material layer/LIML 587: Boundary 590: Color filter/CF 591: Red filter 592: Green color filter 593: Blue filter 595: cover glass 597: Cover glass-air junction 600: black matrix 602: side

提供此等圖係出於圖示的目的,應當理解,本文揭露及討論的實施例不限於所示的佈置及手段。These figures are provided for the purpose of illustration, and it should be understood that the embodiments disclosed and discussed herein are not limited to the arrangements and means shown.

圖1A及1B顯示了當像素分別為「開啟」及「關閉」時,穿過一對交叉偏光器的光傳輸的角度依賴性。Figures 1A and 1B show the angular dependence of light transmission through a pair of crossed polarizers when the pixels are "on" and "off", respectively.

圖2A為傳統LCD的對比比率的繪製圖。Figure 2A is a plot of the contrast ratio of a conventional LCD.

圖2B為習知QDCF LCD的對比比率的繪製圖。Figure 2B is a plot of the contrast ratio of the conventional QDCF LCD.

圖3為作為來源光準直度的函數之QDCF的對比比率改善趨勢的繪製圖。Figure 3 is a plot of the improvement trend of the QDCF contrast ratio as a function of source light collimation.

圖4A為具有非準直光的常規QDCF LCD的對比比率的繪製圖。Figure 4A is a plot of the contrast ratio of a conventional QDCF LCD with non-collimated light.

圖4B為具有準直光的QDCF LCD的對比比率的繪製圖。Fig. 4B is a plot of the contrast ratio of the QDCF LCD with collimated light.

圖5為根據本揭露內容的範例性QDCF LCD結構的示意圖。FIG. 5 is a schematic diagram of an exemplary QDCF LCD structure according to the disclosure.

圖6為根據本揭露內容的QDCF LCD結構中的像素區域的示意性截面圖。FIG. 6 is a schematic cross-sectional view of a pixel area in a QDCF LCD structure according to the present disclosure.

圖7A為先前技藝的QDCF結構中的像素區域的一部分的示意性截面圖。FIG. 7A is a schematic cross-sectional view of a part of the pixel area in the QDCF structure of the prior art.

圖7B為根據本揭露內容的實施例,具有LIML的QDCF結構中的像素區域的一部分的示意性截面圖。FIG. 7B is a schematic cross-sectional view of a part of a pixel area in a QDCF structure with LIML according to an embodiment of the present disclosure.

圖8為LIML相對發光效率對折射率之繪製圖。Figure 8 is a plot of LIML's relative luminous efficiency versus refractive index.

圖9為根據本揭露內容的實施例的黑矩陣結構的範例的示意圖。FIG. 9 is a schematic diagram of an example of a black matrix structure according to an embodiment of the disclosure.

儘管此描述能包含細節,但此等不應被解釋成對範圍的限制,而應解釋成能針對特定實施例的特徵的描述。Although this description can include details, these should not be construed as limitations on the scope, but as a description of the features of specific embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic deposit information (please note in the order of deposit institution, date and number) no Foreign hosting information (please note in the order of hosting country, institution, date and number) no

500:QDCF LCD面板結構 500: QDCF LCD panel structure

510:後反射器層 510: rear reflector layer

520:後反射器層光導板/LGP 520: Rear reflector layer light guide plate/LGP

530:光學片材 530: Optical sheet

540:底部偏光器 540: bottom polarizer

550:液晶/LC 550: LCD/LC

560:頂部偏光器 560: Top polarizer

570:短通濾光器/SPF 570: Short pass filter/SPF

580:圖案化量子點/QD 580: Patterned quantum dots/QD

590:濾色器/CF 590: Color filter/CF

595:覆蓋玻璃 595: cover glass

600:黑矩陣 600: black matrix

Claims (34)

一種量子點濾色器(QDCF)液晶顯示(LCD)設備,包括: 一覆蓋玻璃; 一後反射器層; 在該覆蓋玻璃與該後反射器層之間的一液晶面板層; 在該液晶面板層與該後反射器之間的一背光單元,該背光單元配置成向該液晶面板層產生一圖像形成光; 在該覆蓋玻璃與該液晶面板層之間的一量子點層; 在該覆蓋玻璃與該量子點層之間的一濾色器層,該濾色器及該量子點層組合配置成藉由轉換該準直的圖像形成光的一波長來形成一顏色; 位於該液晶面板層與該背光單元之間的一底部偏光器層; 位於該液晶面板層與該量子點層之間的一頂部偏光器層;及 進一步包括以下一項或更多項: (a)   在該濾色器層與該量子點層之間的一低折射率材料層(LIML); (b)  配置成向該液晶面板層產生準直的圖像形成光的一背光單元; (c)   該底部偏光器與該頂部偏光器中的一者或兩者包括一E型偏光器材料; (d)  該底部偏光器與該頂部偏光器各自包括一補償薄膜,該補償薄膜包括A板、C板、及雙軸板中的一個或多個;及 (e)   在該頂部偏光器與該量子點層之間的一隱私濾光器薄膜。A quantum dot color filter (QDCF) liquid crystal display (LCD) device, including: A cover glass; A rear reflector layer; A liquid crystal panel layer between the cover glass and the back reflector layer; A backlight unit between the liquid crystal panel layer and the back reflector, the backlight unit being configured to generate an image forming light to the liquid crystal panel layer; A quantum dot layer between the cover glass and the liquid crystal panel layer; A color filter layer between the cover glass and the quantum dot layer, the color filter and the quantum dot layer are combined and configured to form a color by converting a wavelength of the collimated image forming light; A bottom polarizer layer located between the liquid crystal panel layer and the backlight unit; A top polarizer layer located between the liquid crystal panel layer and the quantum dot layer; and Further include one or more of the following: (a) A low refractive index material layer (LIML) between the color filter layer and the quantum dot layer; (b) A backlight unit configured to generate collimated image forming light to the liquid crystal panel layer; (c) One or both of the bottom polarizer and the top polarizer include an E-type polarizer material; (d) The bottom polarizer and the top polarizer each include a compensation film, and the compensation film includes one or more of an A plate, a C plate, and a biaxial plate; and (e) A privacy filter film between the top polarizer and the quantum dot layer. 如請求項1所述之QDCF LCD設備,包括:(a)且該LIML與該量子點層之間的該交界的ASTM D1003霧度值小於或等於50%。The QDCF LCD device according to claim 1, including: (a) and the ASTM D1003 haze value of the interface between the LIML and the quantum dot layer is less than or equal to 50%. 如請求項2所述之QDCF LCD設備,其中該LIML與該量子點層之間的該交界的該ASTM D1003霧度值小於或等於30%。The QDCF LCD device according to claim 2, wherein the ASTM D1003 haze value of the interface between the LIML and the quantum dot layer is less than or equal to 30%. 如請求項2所述之QDCF LCD設備,其中該LIML與該量子點層之間的該交界的該ASTM D1003霧度值小於或等於5%。The QDCF LCD device according to claim 2, wherein the ASTM D1003 haze value of the interface between the LIML and the quantum dot layer is less than or equal to 5%. 如請求項1所述之QDCF LCD設備,包括(a)且該LIML的該折射率值在1.5至1.0的一範圍內。The QDCF LCD device according to claim 1, including (a) and the refractive index value of the LIML is in a range of 1.5 to 1.0. 如請求項5所述之QDCF LCD設備,其中該LIML的折射指數值在1.4至1.0的一範圍內。The QDCF LCD device according to claim 5, wherein the refractive index value of the LIML is in a range of 1.4 to 1.0. 如請求項5所述之QDCF LCD設備,其中該LIML的折射指數值在1.3至1.0的一範圍內。The QDCF LCD device according to claim 5, wherein the refractive index value of the LIML is in a range of 1.3 to 1.0. 如請求項5所述之QDCF LCD設備,其中該LIML的折射指數值在1.2至1.0的一範圍內。The QDCF LCD device according to claim 5, wherein the refractive index value of the LIML is in a range of 1.2 to 1.0. 如請求項1所述之QDCF LCD設備,包括(a);進一步包括:在該量子點層與該頂部偏光器之間的一短通濾光器;及在該量子點層與該短通濾光器層之間的一額外LIML。The QDCF LCD device according to claim 1, comprising (a); further comprising: a short-pass filter between the quantum dot layer and the top polarizer; and between the quantum dot layer and the short-pass filter An extra LIML between the optical device layers. 如請求項1所述之QDCF LCD設備,包括(e);進一步包括在該量子點層與該頂部偏光器之間的一短通濾光器;且該隱私濾光器薄膜位在該頂部偏光器及該短通濾光器層之間。The QDCF LCD device according to claim 1, comprising (e); further comprising a short-pass filter between the quantum dot layer and the top polarizer; and the privacy filter film is located on the top polarizer Between the filter and the short-pass filter layer. 如請求項1所述之QDCF LCD設備,其中藉由該背光單元產生的該準直的成像光具有小於或等於±30度的一半頂角。The QDCF LCD device according to claim 1, wherein the collimated imaging light generated by the backlight unit has a half apex angle less than or equal to ±30 degrees. 如請求項1所述之QDCF LCD設備,其中藉由該背光單元產生的該準直的成像光具有小於等於±20度的一半頂角。The QDCF LCD device according to claim 1, wherein the collimated imaging light generated by the backlight unit has a half apex angle less than or equal to ±20 degrees. 如請求項1所述之QDCF LCD設備,其中藉由該背光單元產生的該準直的成像光具有小於或等於±15度的一半頂角。The QDCF LCD device according to claim 1, wherein the collimated imaging light generated by the backlight unit has a half apex angle less than or equal to ±15 degrees. 如請求項1所述之QDCF LCD設備,其中該濾色器層與該量子點層共同包括複數個像素區域,每個像素區域包括一紅色子像素區域、一綠色子像素區域、及一藍色子像素區域;及 該設備進一步包括一黑矩陣阻障物結構,該黑矩陣阻障物結構延伸通過該濾色器層及該量子點層,將兩個相鄰的子像素區域分開,其中該黑矩陣包括與該濾色器層及一量子點層接觸的側表面; 其中該黑矩陣的該等側面以一45度角傾斜,該傾斜具有小於或等於±20度的一偏差。The QDCF LCD device according to claim 1, wherein the color filter layer and the quantum dot layer together include a plurality of pixel areas, and each pixel area includes a red sub-pixel area, a green sub-pixel area, and a blue Sub-pixel area; and The device further includes a black matrix barrier structure that extends through the color filter layer and the quantum dot layer to separate two adjacent sub-pixel regions, wherein the black matrix includes and The side surface where the color filter layer and a quantum dot layer contact; The side surfaces of the black matrix are inclined at an angle of 45 degrees, and the inclination has a deviation less than or equal to ±20 degrees. 如請求項14所述之QDCF LCD設備,其中該等側面以一45度角傾斜,該傾斜具有小於或等於±10度一偏差。The QDCF LCD device according to claim 14, wherein the sides are inclined at an angle of 45 degrees, and the inclination has a deviation less than or equal to ±10 degrees. 如請求項14所述之QDCF LCD設備,其中該等側面以一45度角傾斜,該傾斜具有小於或等於±5度的一偏差。The QDCF LCD device according to claim 14, wherein the side surfaces are inclined at an angle of 45 degrees, and the inclination has a deviation less than or equal to ±5 degrees. 如請求項14所述之QDCF LCD設備,其中該黑矩陣的該等側面及該底表面為反射性的。The QDCF LCD device according to claim 14, wherein the side surfaces and the bottom surface of the black matrix are reflective. 一種量子點濾色器(QDCF)液晶顯示(LCD)設備,包括: 一覆蓋玻璃; 一後反射器層; 在該覆蓋玻璃與該後反射器層之間的一液晶面板層; 在該液晶面板層與該後反射器之間的一背光單元,該背光單元配置成向該液晶層產生一圖像形成光; 在該覆蓋玻璃與該液晶面板層之間的一量子點層; 在該覆蓋玻璃與該量子點層之間的一濾色器層,該濾色器及該量子點層組合配置成藉由轉換來自該背光單元並通過該液晶面板的一準直圖像形成光的一波長來形成顏色; 位於該液晶面板層與該背光單元之間的一底部偏光器層; 位於該液晶面板層與該量子點層之間的一頂部偏光器層; 提供在該濾色器層與該量子點層之間的一低折射率材料層(LIML);及 進一步包括以下一項或更多項: (a)   底部偏光器與頂部偏光器中的一者或兩者由E型偏光器材料製成; (b)  配置成向該液晶面板層產生準直的圖像形成光的一背光單元; (c)   底部偏光器與頂部偏光器各自由補償薄膜製成,補償薄膜包括A板、C板、及雙軸板中的一個或多個;及 (d)  提供在頂部偏光器與量子點層之間的隱私濾光器薄膜。A quantum dot color filter (QDCF) liquid crystal display (LCD) device, including: A cover glass; A rear reflector layer; A liquid crystal panel layer between the cover glass and the back reflector layer; A backlight unit between the liquid crystal panel layer and the back reflector, the backlight unit being configured to generate an image forming light to the liquid crystal layer; A quantum dot layer between the cover glass and the liquid crystal panel layer; A color filter layer between the cover glass and the quantum dot layer. The color filter and the quantum dot layer are combined to form light by converting a collimated image from the backlight unit and passing through the liquid crystal panel A wavelength of to form the color; A bottom polarizer layer located between the liquid crystal panel layer and the backlight unit; A top polarizer layer located between the liquid crystal panel layer and the quantum dot layer; Providing a low refractive index material layer (LIML) between the color filter layer and the quantum dot layer; and Further include one or more of the following: (a) One or both of the bottom polarizer and the top polarizer are made of E-type polarizer materials; (b) A backlight unit configured to generate collimated image forming light to the liquid crystal panel layer; (c) The bottom polarizer and the top polarizer are each made of compensation film, which includes one or more of A plate, C plate, and biaxial plate; and (d) Provide a privacy filter film between the top polarizer and the quantum dot layer. 如請求項18所述之QDCF LCD設備,其中LIML與該量子點層之間的該交界的ASTM D1003霧度值小於或等於50%。The QDCF LCD device according to claim 18, wherein the ASTM D1003 haze value of the interface between the LIML and the quantum dot layer is less than or equal to 50%. 如請求項19所述之QDCF LCD設備,其中該LIML與該量子點層之間的該交界的該ASTM D1003霧度值小於或等於30%。The QDCF LCD device according to claim 19, wherein the ASTM D1003 haze value of the interface between the LIML and the quantum dot layer is less than or equal to 30%. 如請求項19所述之QDCF LCD設備,其中該LIML與該量子點層之間的該交界的該ASTM D1003霧度值小於或等於5%。The QDCF LCD device according to claim 19, wherein the ASTM D1003 haze value of the interface between the LIML and the quantum dot layer is less than or equal to 5%. 如請求項18所述之QDCF LCD設備,其中該LIML的折射指數值在1.5至1.0的一範圍內。The QDCF LCD device according to claim 18, wherein the refractive index value of the LIML is in a range of 1.5 to 1.0. 如請求項22所述之QDCF LCD設備,其中該LIML的折射指數值在1.4至1.0的一範圍內。The QDCF LCD device according to claim 22, wherein the refractive index value of the LIML is in a range of 1.4 to 1.0. 如請求項22所述之QDCF LCD設備,其中該LIML的折射指數值在1.3至1.0的一範圍內。The QDCF LCD device according to claim 22, wherein the refractive index value of the LIML is in a range of 1.3 to 1.0. 如請求項22所述之QDCF LCD設備,其中該LIML的折射指數值在1.2至1.0的一範圍內。The QDCF LCD device according to claim 22, wherein the refractive index value of the LIML is in a range of 1.2 to 1.0. 如請求項18所述之QDCF LCD設備,進一步包括在該量子點層與該頂部偏光器之間的一短通濾光器;及 在該量子點層與該短通濾光器層之間進一步包括一額外的LIML。The QDCF LCD device according to claim 18, further comprising a short-pass filter between the quantum dot layer and the top polarizer; and An additional LIML is further included between the quantum dot layer and the short-pass filter layer. 如請求項18所述之QDCF LCD設備,包括(d);進一步包括在該量子點層與該頂部偏光器之間的一短通濾光器;且該隱私濾光器薄膜位在該頂部偏光器及該短通濾光器層之間。The QDCF LCD device according to claim 18, comprising (d); further comprising a short-pass filter between the quantum dot layer and the top polarizer; and the privacy filter film is located on the top polarizer Between the filter and the short-pass filter layer. 如請求項18所述之QDCF LCD設備,其中藉由該背光單元產生的該準直的成像光具有小於或等於±30度的一半頂角。The QDCF LCD device according to claim 18, wherein the collimated imaging light generated by the backlight unit has a half apex angle less than or equal to ±30 degrees. 如請求項18所述之QDCF LCD設備,其中藉由該背光單元產生的該準直的成像光具有小於或等於±20度的一半頂角。The QDCF LCD device according to claim 18, wherein the collimated imaging light generated by the backlight unit has a half apex angle less than or equal to ±20 degrees. 如請求項18所述之QDCF LCD設備,其中藉由該背光單元產生的該準直的成像光具有小於或等於±15度的一半頂角。The QDCF LCD device according to claim 18, wherein the collimated imaging light generated by the backlight unit has a half apex angle less than or equal to ±15 degrees. 如請求項18所述之QDCF LCD設備,其中該濾色器層與該量子點層共同包括複數個像素區域,每個像素區域包括一紅色子像素區域、一綠色子像素區域、及一藍色子像素區域;及 該設備進一步包括一黑矩陣阻障物結構,該黑矩陣阻障物結構延伸通過該濾色器層及該量子點層,將兩個相鄰的子像素區域分開,其中該黑矩陣包括與該濾色器層及該量子點層接觸的一側表面; 其中該黑矩陣的該等側面以一45度角傾斜,該傾斜具有小於或等於±20度的一偏差。The QDCF LCD device according to claim 18, wherein the color filter layer and the quantum dot layer together include a plurality of pixel areas, and each pixel area includes a red sub-pixel area, a green sub-pixel area, and a blue Sub-pixel area; and The device further includes a black matrix barrier structure that extends through the color filter layer and the quantum dot layer to separate two adjacent sub-pixel regions, wherein the black matrix includes and The color filter layer and the side surface of the quantum dot layer in contact; The side surfaces of the black matrix are inclined at an angle of 45 degrees, and the inclination has a deviation less than or equal to ±20 degrees. 如請求項31所述之QDCF LCD設備,其中該等側面以一45度角傾斜,該傾斜具有小於或等於±10度的一偏差。The QDCF LCD device according to claim 31, wherein the side surfaces are inclined at an angle of 45 degrees, and the inclination has a deviation less than or equal to ±10 degrees. 如請求項31所述之QDCF LCD設備,其中該等側面以一45度角傾斜,該傾斜具有小於或等於±5度的一偏差。The QDCF LCD device according to claim 31, wherein the side surfaces are inclined at an angle of 45 degrees, and the inclination has a deviation less than or equal to ±5 degrees. 如請求項31所述之QDCF LCD設備,其中該黑矩陣的該等側面及該底表面為反射性的。The QDCF LCD device according to claim 31, wherein the side surfaces and the bottom surface of the black matrix are reflective.
TW108143598A 2018-11-30 2019-11-29 Enhanced quantum dot on color filter lcd TWI840460B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862773449P 2018-11-30 2018-11-30
US62/773,449 2018-11-30
US201962798607P 2019-01-30 2019-01-30
US62/798,607 2019-01-30

Publications (2)

Publication Number Publication Date
TW202030535A true TW202030535A (en) 2020-08-16
TWI840460B TWI840460B (en) 2024-05-01

Family

ID=

Also Published As

Publication number Publication date
CN113272728A (en) 2021-08-17
JP2022510940A (en) 2022-01-28
WO2020112470A9 (en) 2020-07-09
WO2020112470A1 (en) 2020-06-04
KR20210087543A (en) 2021-07-12

Similar Documents

Publication Publication Date Title
JP4760275B2 (en) Liquid crystal display
JP2007004104A5 (en)
US8891169B2 (en) Optical sheet and display device
KR101640719B1 (en) Module for liquid crystal display apparatus and liquid crystal display apparatus comprising the same
JP2021018412A (en) Optical structure, polarizing plate with optical structure and display device
JP2013235141A (en) Color liquid crystal display unit
TWI485466B (en) Liquid crystal display
JP4402111B2 (en) Liquid crystal display panel and liquid crystal display device
JP4121997B2 (en) Viewing angle control sheet and image display apparatus using the same
JP2019008906A (en) Wavelength conversion film and backlight unit
CN111025742B (en) Display panel and display device
JP7161687B2 (en) Optical structure and display device
TW202030535A (en) Enhanced quantum dot on color filter lcd
JP2017019971A (en) Quantum dot sheet, backlight and liquid crystal display device
JPH11295705A (en) Polymer dispersed liquid crystal display element
US11868036B2 (en) Transmissive screen and video image display device
TWI840460B (en) Enhanced quantum dot on color filter lcd
CN114512505A (en) Display backboard and display device
JP2023510059A (en) Color film substrates, display panels and display devices
WO2013061907A1 (en) Display device
JP2021039145A (en) Optical structure, polarizing plate with optical structure, display device, and manufacturing method for optical structure
JP2014016408A (en) Color conversion substrate and display device having the same
JP4385646B2 (en) Liquid crystal display
US20090290112A1 (en) Display device
US20240085739A1 (en) Wavelength conversion element and backlight module