TW202029546A - 發光裝置、發光設備、電子裝置及照明裝置 - Google Patents

發光裝置、發光設備、電子裝置及照明裝置 Download PDF

Info

Publication number
TW202029546A
TW202029546A TW108136207A TW108136207A TW202029546A TW 202029546 A TW202029546 A TW 202029546A TW 108136207 A TW108136207 A TW 108136207A TW 108136207 A TW108136207 A TW 108136207A TW 202029546 A TW202029546 A TW 202029546A
Authority
TW
Taiwan
Prior art keywords
organic compound
light
layer
emitting device
abbreviation
Prior art date
Application number
TW108136207A
Other languages
English (en)
Other versions
TWI813784B (zh
Inventor
瀬尾哲史
鈴木恒徳
奧山拓夢
滝田悠介
橋本明
瀬尾広美
大澤信晴
佐佐木俊毅
山崎舜平
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202029546A publication Critical patent/TW202029546A/zh
Application granted granted Critical
Publication of TWI813784B publication Critical patent/TWI813784B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

提供一種新穎的發光器件。提供一種發光效率良好的發光器件。提供一種壽命長的發光器件。提供一種驅動電壓低的發光器件。提供一種發光器件,其中EL層從陽極一側依次包括第一層、第二層、第三層、發光層及第四層,所述第一層包含第一有機化合物和第二有機化合物,第四層包含第七有機化合物,所述第一有機化合物對所述第二有機化合物呈現電子接受性,第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下。所述第七有機化合物的HOMO能階為-6.0eV以上。

Description

發光裝置、發光設備、電子裝置及照明裝置
本發明的一個實施方式係關於一種發光元件、發光器件、顯示模組、照明模組、顯示裝置、發光裝置、電子裝置及照明設備。注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。或者,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或者組合物( composition of matter)。因此,更明確而言,作為本說明書所公開的本發明的一個實施方式的技術領域的例子,可以舉出半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、攝像裝置、它們的驅動方法或者它們的製造方法。
近年來,使用有機化合物且利用電致發光(EL:Electroluminescence)的發光器件(有機EL元件)的實用化非常活躍。在這些發光器件的基本結構中,在一對電極之間夾有包含發光材料的有機化合物層(EL層)。藉由對該元件施加電壓,注入載子,利用該載子的再結合能量,可以獲得來自發光材料的發光。
因為這種發光器件是自發光型發光器件,所以當用於顯示器的像素時比起液晶有可見度更高、不需要背光源等優勢。因此,該發光器件適合於平板顯示器元件。另外,使用這種發光器件的顯示器可以被製造成薄且輕,這也是極大的優點。再者,非常高速的回應也是該發光器件的特徵之一。
此外,因為這種發光器件的發光層可以在二維上連續地形成,所以可以獲得面發光。因為這是在以白熾燈或LED為代表的點光源或者以螢光燈為代表的線光源中難以得到的特徵,所以作為可應用於照明等的面光源,上述發光器件的利用價值也高。
如上所述,雖然使用發光器件的顯示器或照明設備適用於各種各樣的電子裝置,但是為了追求具有更良好的效率及壽命的發光器件的研究開發日益活躍。
專利文獻1公開了在接觸於電洞注入層的第一電洞傳輸層與發光層之間設置其HOMO能階介於第一電洞注入層的HOMO能階與主體材料的HOMO能階之間的電洞傳輸材料的結構。
發光器件的特性明顯得到了提高,但是還不足以對應對效率和耐久性等各種特性的高度要求。
[專利文獻1] 國際公開第2011/065136號小冊子
於是,本發明的一個實施方式的目的是提供一種新穎的發光器件。另外,本發明的一個實施方式的目的是提供一種發光效率良好的發光器件。另外,本發明的一個實施方式的目的是提供一種壽命良好的發光器件。另外,本發明的一個實施方式的目的是提供一種驅動電壓低的發光器件。
另外,本發明的另一個實施方式的目的是提供一種可靠性高的發光裝置、電子裝置及顯示裝置。另外,本發明的另一個實施方式的目的是提供一種功耗低的發光裝置、電子裝置及顯示裝置。
本發明的一個實施方式只要實現上述目的中的任一個即可。
本發明的一個實施方式的發光器件包括陽極、陰極、位於所述陽極與所述陰極間的EL層。所述EL層包括發光層。示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
另外,本發明的另一個實施方式的發光器件包括陽極、陰極、位於所述陽極與所述陰極間的EL層。在該發光器件中,所述EL層從陽極側依次包括第一層、第二層、第三層、發光層和第四層。所述第一層與所述陽極接觸,並且所述第一層包含第一有機化合物和第二有機化合物。所述第二層包含第三有機化合物。所述第三層包含第四有機化合物。所述發光層包含第五有機化合物和第六有機化合物。所述第四層包含第七有機化合物。所述第一有機化合物是對所述第二有機化合物呈現電子接受性的有機化合物。所述第五有機化合物是發光中心物質。所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下。所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10-7 cm2 /Vs以上且5×10-5 cm2 /Vs以下。示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為 -5.7eV以上且-5.4eV以下,所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10- 7 cm2 /Vs以上且5×10- 5 cm2 /Vs以下,所述第七有機化合物的HOMO能階為-6.0eV以上,並且,示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為 -5.7eV以上且-5.4eV以下,所述第三有機化合物與所述第二有機化合物的HOMO能階差為0.2eV以下,所述第三有機化合物的HOMO能階與所述第二有機化合物的HOMO能階相同或更深,所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為10×10- 7 cm2 /Vs以上且5× 10- 5 cm2 /Vs以下,所述第七有機化合物的HOMO能階為 -6.0eV以上,並且,示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第二有機化合物包含第一電洞傳輸性骨架,所述第三有機化合物包含第二電洞傳輸性骨架,所述第四有機化合物包含第三電洞傳輸性骨架,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下,所述第一電洞傳輸性骨架、所述第二電洞傳輸性骨架及所述第三電洞傳輸性骨架分別獨立為咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架和蒽骨架中的任一個,所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10- 7 cm2 /Vs以上且5×10- 5 cm2 /Vs以下,所述第七有機化合物的HOMO能階為-6.0eV以上,並且,示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物和第八物質,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下,所述第七有機化合物是具有蒽骨架的有機化合物,所述第八物質是鹼金屬或鹼土金屬的有機錯合物,並且,示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物和第八物質,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下,所述第三有機化合物與所述第二有機化合物的HOMO能階差為0.2eV以下,所述第三有機化合物的HOMO能階與所述第二有機化合物的HOMO能階相同或更深,所述第七有機化合物是具有蒽骨架的有機化合物,所述第八物質是鹼金屬或鹼土金屬的有機錯合物,並且,示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物及第八物質,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第二有機化合物包含第一電洞傳輸性骨架,所述第三有機化合物包含第二電洞傳輸性骨架,所述第四有機化合物包含第三電洞傳輸性骨架,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且 -5.4eV以下,所述第一電洞傳輸性骨架、所述第二電洞傳輸性骨架及所述第三電洞傳輸性骨架分別獨立為咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架和蒽骨架中的任一個,所述第七有機化合物是具有蒽骨架的有機化合物,所述第八物質是鹼金屬或鹼土金屬的有機錯合物,並且,示出當向所述發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
本發明的另一個實施方式是具有上述結構的發光器件,其中所述劣化曲線具有亮度超過100%的部分。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為 -5.7eV以上且-5.4eV以下,所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10- 7 cm2 /Vs以上且5×10- 5 cm2 /Vs以下,並且,所述第七有機化合物的HOMO能階為-6.0eV以上。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為 -5.7eV以上且-5.4eV以下,所述第三有機化合物與所述第二有機化合物的HOMO能階差為0.2eV以下,所述第三有機化合物的HOMO能階與所述第二有機化合物的HOMO能階相同或更深,所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10- 7 cm2 /Vs以上且5×10- 5 cm2 /Vs以下,並且,所述第七有機化合物的HOMO能階為 -6.0eV以上。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第二有機化合物包含第一電洞傳輸性骨架,所述第三有機化合物包含第二電洞傳輸性骨架,所述第四有機化合物包含第三電洞傳輸性骨架,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下,所述第一電洞傳輸性骨架、所述第二電洞傳輸性骨架及所述第三電洞傳輸性骨架分別獨立為咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架和蒽骨架中的任一個,所述第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10- 7 cm2 /Vs以上且5×10- 5 cm2 /Vs以下,並且,所述第七有機化合物的HOMO能階為-6.0eV以上。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物和第八物質,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下,所述第七有機化合物是具有蒽骨架的有機化合物,並且,所述第八物質是鹼金屬或鹼土金屬的有機錯合物。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物和第八物質,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且-5.4eV以下,所述第三有機化合物與所述第二有機化合物的HOMO能階差為0.2eV以下,所述第三有機化合物的HOMO能階與所述第二有機化合物的HOMO能階相同或更深,所述第七有機化合物是具有蒽骨架的有機化合物,並且,所述第八物質是鹼金屬或鹼土金屬的有機錯合物。
本發明的另一個實施方式是一種發光器件,包括:陽極;陰極;以及所述陽極與所述陰極之間的EL層,其中,所述EL層從陽極一側依次包括第一層、第二層、第三層、發光層、第四層,所述第一層與所述陽極接觸,所述第四層與所述發光層接觸,所述第一層包含第一有機化合物及第二有機化合物,所述第二層包含第三有機化合物,所述第三層包含第四有機化合物,所述發光層包含第五有機化合物及第六有機化合物,所述第四層包含第七有機化合物及第八物質,所述第一有機化合物為對所述第二有機化合物呈現電子接受性的有機化合物,所述第二有機化合物包含第一電洞傳輸性骨架,所述第三有機化合物包含第二電洞傳輸性骨架,所述第四有機化合物包含第三電洞傳輸性骨架,所述第五有機化合物為發光中心物質,所述第二有機化合物的HOMO能階為-5.7eV以上且 -5.4eV以下,所述第一電洞傳輸性骨架、所述第二電洞傳輸性骨架及所述第三電洞傳輸性骨架分別獨立為咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架和蒽骨架中的任一個,所述第七有機化合物是具有蒽骨架的有機化合物,並且,所述第八物質是鹼金屬或鹼土金屬的有機錯合物。
另外,本發明的另一個實施方式是在上述結構中所述第七有機化合物是具有蒽骨架和雜環骨架的有機化合物的發光器件。
另外,本發明的另一個實施方式是在上述結構中所述第七有機化合物的電子移動率小於所述第六有機化合物的電子移動率的發光器件。
另外,本發明的另一個實施方式是在上述結構中所述第四有機化合物的HOMO能階與所述第三有機化合物的HOMO能階之差為0.2eV以下的發光器件。
另外,本發明的另一個實施方式是在上述結構中所述第四有機化合物的HOMO能階比所述第三有機化合物的HOMO能階深的發光器件。
另外,本發明的另一個實施方式是在上述結構中所述第二有機化合物為具有二苯并呋喃骨架的有機化合物的發光器件。
另外,本發明的另一個實施方式是在上述結構中所述第二有機化合物與所述第三有機化合物為相同物質的發光器件。
另外,本發明的另一個實施方式是在上述結構中所述第五有機化合物為藍色螢光材料的發光器件。
另外,本發明的另一個實施方式是在上述結構中包括感測器、操作按鈕、揚聲器或麥克風的電子裝置。
另外,本發明的另一個實施方式是在上述結構中包括電晶體或基板的發光裝置。
另外,本發明的另一個實施方式是在上述結構中包括外殼的照明設備。
在本說明書中,發光裝置包括使用發光器件的影像顯示器件。另外,發光裝置有時還包括如下模組:發光器件安裝有連接器諸如異方性導電膜或TCP(Tape Carrier Package:捲帶式封裝)的模組;在TCP的端部設置有印刷線路板的模組;或者藉由COG(Chip On Glass:晶粒玻璃接合)方式在發光器件上直接安裝有IC(積體電路)的模組。再者,照明設備等有時包括發光裝置。
本發明的一個實施方式能夠提供一種新穎的發光器件。另外,本發明的一個實施方式能夠提供一種壽命良好的發光器件。另外,本發明的一個實施方式能夠提供一種發光效率良好的發光器件。
另外,本發明的另一個實施方式能夠提供一種可靠性高的發光裝置、電子裝置及顯示裝置。另外,本發明的另一個實施方式能夠提供一種功耗低的發光裝置、電子裝置及顯示裝置。
注意,這些效果的記載不妨礙其他效果的存在。另外,本發明的一個實施方式並不需要具有所有上述效果。另外,這些效果以外的效果從說明書、圖式、申請專利範圍等的記載是顯然的,並可以從所述記載中衍生。
以下,參照圖式詳細地說明本發明的實施方式。但是,本發明不侷限於以下說明,而所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明的一個實施方式不應該被解釋為僅侷限在以下所示的實施方式所記載的內容中。
實施方式1 圖1A是示出本發明的一個實施方式的發光器件的圖。本發明的一個實施方式的發光器件包括陽極101、陰極102、EL層103,該EL層包括電洞注入層111、電洞傳輸層112、發光層113以及電子傳輸層114。
注意,雖然在圖1A中的EL層103中除了上述以外還示出電子注入層115,但是發光器件的結構不侷限於此。只要具有上述結構,就也可以包括具有其他功能的層。
電洞注入層111包括第一有機化合物及第二有機化合物。第一有機化合物是對第二有機化合物呈現電子接受性的物質。另外,第二有機化合物是HOMO能階為 -5.7eV以上且-5.4eV以下的具有較深HOMO能階的物質。藉由使第二有機化合物具有較深的HOMO能階可以容易地向電洞傳輸層112注入電洞。
第一有機化合物可以使用具有拉電子基團(尤其是氟基那樣的鹵基或氰基)的有機化合物等,可以從這樣的物質中適當地選擇對上述第二有機化合物呈現電子接受性的物質。作為這種有機化合物,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4 -TCNQ)、氯醌、2, 3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(簡稱:F6-TCNNQ)、2-(7-二氰基亞甲基-1,3,4,5,6,8,9,10-八氟-7H-芘-2-亞基)丙二腈等。尤其是,拉電子基團鍵合於具有多個雜原子的稠合芳香環的化合物諸如HAT-CN等熱穩定,所以是較佳的。另外,包括拉電子基團(尤其是如氟基等鹵基、氰基)的[3]軸烯衍生物的電子接收性非常高所以特別較佳的,明確而言,可以舉出:α,α’,α”-1,2,3-環丙烷三亞基三[4-氰-2,3, 5,6-四氟苯乙腈]、α,α’,α”-1,2,3-環丙烷三亞基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-環丙烷三亞基三[2,3,4,5,6-五氟苯乙腈]等。
第二有機化合物較佳為具有電洞傳輸性的有機化合物,較佳為具有咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架中的任意個。尤其是,可以為具有包括二苯并呋喃環或二苯并噻吩環的取代基的芳香胺、包括萘環的芳香單胺、或者9-茀基藉由伸芳基鍵合於胺的氮的芳香單胺。注意,當這些第二有機化合物是包括N,N-雙(4-聯苯)胺基的物質時,可以製造壽命良好的發光器件,所以是較佳的。作為上述第二有機化合物,明確而言,可以舉出N-(4-聯苯)-6,N-二苯基苯并[b]萘并[1,2-d]呋喃-8-胺(簡稱:BnfABP)、N,N-雙(4-聯苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)、4,4’-雙(6-苯基苯并[b]萘并[1,2-d]呋喃-8-基)-4”-苯基三苯基胺(簡稱:BnfBB1BP )、N,N-雙(4-聯苯)苯并[b]萘并[1,2-d]呋喃-6-胺(簡稱:BBABnf(6))、N,N-雙(4-聯苯)苯并[b]萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf(8))、N,N-雙(4-聯苯)苯并[b]萘并[2,3-d]呋喃-4-胺(簡稱:BBABnf(II)(4))、N,N-雙[4-(二苯并呋喃-4-基)苯基]-4-胺基-p-三聯苯基(簡稱:DBfBB1TP)、N-[4-(二苯并噻吩-4-基)苯基]-N-苯基-4-聯苯胺(簡稱:ThBA1BP)、4-(2-萘基)-4’,4”-二苯基三苯基胺(簡稱:BBAβNB)、4-[4-(2-萘基)苯基]-4’,4”-二苯基三苯基胺(簡稱:BBAβNBi)、4-(2;1’-聯萘基-6-基)-4’,4”-二苯基三苯基胺(簡稱:BBAαNβNB)、4,4’-二苯基-4”-(7;1’-聯萘基-2-基)三苯基胺(簡稱:BBAαNβNB-03)、4,4’-二苯基-4”-(7-苯基)萘基-2-基三苯基胺(簡稱:BBAPβNB-03)、4-(6;2’-聯萘基-2-基)-4’,4”-二苯基三苯基胺(簡稱:BBA (βN2)B)、4-(2;2’-聯萘基-7-基)-4’,4”-二苯基三苯基胺(簡稱:BBA(βN2)B-03)、4-(1;2’-聯萘基-4-基)-4’,4”-二苯基三苯基胺(簡稱:BBAβNαNB)、4-(1;2’-聯萘基-5-基)-4’,4”-二苯基三苯基胺(簡稱:BBAβNαNB-02)、4-(4-聯苯基)-4’-(2-萘基)-4”-苯基三苯基胺(簡稱:TPBiAβNB)、4-(3-聯苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(簡稱:mTPBiAβNBi)、4-(4-聯苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(簡稱:TPBiAβNBi)、4-(1-萘基)-4’-苯基三苯基胺(簡稱:αNBA1BP)、4,4’-雙(1-萘基)三苯基胺(簡稱:αNBB1BP)、4,4’-二苯基-4”-[4’-(咔唑-9-基)聯苯-4-基]三苯基胺(簡稱:YGTBi1BP)、4’-[4-(3-苯基-9H-咔唑-9-基)苯基]三(1,1’-聯苯-4-基)胺(簡稱:YGTBi1BP-02)、4-[4’-(咔唑-9-基)聯苯-4-基]-4’-(2-萘基)-4”-苯基三苯基胺(簡稱:YGTBiβNB)、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-[4-(1-萘基)苯基]-9,9’-螺雙[9H-茀]-2-胺(簡稱:PCBNBSF)、N,N-雙([1,1’-聯苯基]-4-基)-9,9’-螺雙[9H-茀]-2-胺(簡稱:BBASF)、N,N-雙([1,1’-聯苯基]-4-基)-9,9’-螺雙[9H-茀]-4-胺(簡稱:BBASF(4))、N-(1,1’-聯苯-2-基)-N-(9,9-二甲基-9H-茀-2-基)-9,9’-螺-雙(9H-茀)-4-胺(簡稱:oFBiSF)、N-(4-聯苯基)-N-(9,9-二甲基-9H-茀-2-基)二苯并呋喃-4-胺(簡稱:FrBiF)、N-[4-(1-萘基)苯基]-N-[3-(6-苯基二苯并呋喃-4-基)苯基]-1-萘基胺(簡稱:mPDBfBNBN)、4-苯基-4’-(9-苯基茀-9-基)三苯基胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯基胺(簡稱:mBPAFLP)、4-苯基-4’-[4-(9-苯基茀-9-基)苯基]三苯基胺(簡稱:BPAFLBi)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(簡稱:PCBNBB)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9’-螺雙[9H-茀]-2-胺(簡稱:PCBASF)、N-(1,1’-聯苯-4-基)-9,9-二甲基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9H-茀-2-胺(簡稱:PCBBiF)等。
電洞傳輸層112包括第一電洞傳輸層112-1和第二電洞傳輸層112-2。第一電洞傳輸層112-1位於比第二電洞傳輸層112-2更靠近陽極101一側。注意,有時第二電洞傳輸層112-2還同時具有電子障壁層的功能。
第一電洞傳輸層112-1包括第三有機化合物,第二電洞傳輸層112-2包括第四有機化合物。
第三有機化合物及第四有機化合物較佳為具有電洞傳輸性的有機化合物。第三有機化合物及第四有機化合物可以同樣地使用能夠用作上述第二有機化合物的有機化合物。
作為第二有機化合物的HOMO能階和第三有機化合物的HOMO能階,較佳為以第三有機化合物的HOMO能階更深且其差為0.2eV以下的方式選擇各個材料。另外,更佳的是,第二有機化合物和第三有機化合物為相同物質。
另外,作為第三有機化合物的HOMO能階和第四有機化合物的HOMO能階,較佳為第四有機化合物的HOMO能階更深。再者,較佳為以其差為0.2eV以下的方式選擇各自的材料。藉由使第二有機化合物至第四有機化合物的HOMO能階具有上述關係,可以使電洞順利地注入到各層中,由此可以防止驅動電壓上升及發光層中電洞過少的狀態。
另外,第二有機化合物至第四有機化合物較佳為分別具有電洞傳輸性骨架。作為該電洞傳輸性骨架,較佳為使用不會使上述有機化合物的HOMO能階過淺的咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架。另外,當相鄰層的材料(例如第二有機化合物和第三有機化合物或第三有機化合物和第四有機化合物)中共用上述電洞傳輸性骨架時,可以順利地進行電洞注入,所以是較佳的。作為上述電洞傳輸性骨架尤其較佳為使用二苯并呋喃骨架。
另外,藉由使相鄰層包含的材料(例如第二有機化合物和第三有機化合物或第三有機化合物和第四有機化合物)為相同材料可以順利地進行電洞的注入,因此是較佳的結構。尤其較佳為第二有機化合物和第三有機化合物為相同材料。
發光層113包括第五有機化合物和第六有機化合物。第五有機化合物為發光中心物質,第六有機化合物是用來分散第五有機化合物的主體材料。
發光中心材料可以是螢光發光物質、磷光發光物質、呈現熱活化延遲螢光(TADF)的物質或其他發光材料。另外,可以為單層,也可以由包含不同發光材料的多個層構成。在本發明的一個實施方式中,較佳為將發光層113用作呈現螢光發光的層,尤其是,呈現藍色螢光發光的層。
在發光層113中,作為可以用作螢光發光物質的材料,例如,可以舉出5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯基-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱: 1,6mMemFLPAPrn)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、N,N”-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)、N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯并[g,p]䓛(chrysene)-2,7,10,15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-[9,10-雙(1,1’-聯苯基-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N, N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPABPhA)、9,10-雙(1,1’-聯苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(簡稱:2YGABPhA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素545T、N,N’-二苯基喹吖酮(簡稱:DPQd)、紅螢烯、5,12-雙(1,1’-聯苯-4-基)-6,11-二苯基稠四苯(簡稱:BPT)、2-(2-{2-[4-(二甲胺基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCM2)、N,N,N’,N’-四(4-甲基苯基)稠四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊并[1,2-a]丙二烯合茀-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTI)、2-{2-三級丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTB)、2-(2,6-雙{2-[4-(二甲胺基)苯基]乙烯基}-4H-吡喃-4-亞基)丙二腈(簡稱:BisDCM)、2-{2,6-雙[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM) 、N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)、3,10-雙[N-(9-苯基-9H-咔唑-2-基)-N-苯基胺基]萘并[2,3-b;6,7-b’]雙苯并呋喃(簡稱:3,10PCA2Nbf(IV)-02)、3,10-雙[N-(二苯并呋喃-3-基)-N-苯基胺基]萘并[2,3-b;6,7-b’]雙苯并呋喃(簡稱: 3,10FrA2Nbf(IV)-02)等。尤其是,以1,6FLPAPrn、 1,6mMemFLPAPrn、1,6BnfAPrn-03等芘二胺衍化合物為代表的稠合芳族二胺化合物具有合適的電洞俘獲性且良好的發光效率及可靠性,所以是較佳的。
在發光層113中,當作為發光中心材料使用磷光發光物質時,例如可以使用如下材料,三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3 ])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:[Ir(Mptz)3 ])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPrptz-3b)3 ])等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:[Ir(Mptz1-mp)3 ])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:[Ir(Prptz1-Me)3 ])等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi)3 ])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根( phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me)3 ])等具有咪唑骨架的有機金屬銥錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)吡啶甲酸酯(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’ }銥(III)吡啶甲酸酯(簡稱:[Ir(CF3 ppy)2 (pic)])、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基的苯基吡啶衍生物為配體的有機金屬銥錯合物。上述物質是發射藍色磷光的化合物,並且是在440nm至520nm具有發光峰的化合物。
另外,可以舉出:三(4-甲基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(mppm)3 ])、三(4-三級丁基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)3 ])、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶根)銥(III)(簡稱:[Ir(mppm)2 (acac)])、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)2 (acac)])、(乙醯丙酮根)雙[6-(2-降莰基)-4-苯基嘧啶根]銥(III)(簡稱:[Ir(nbppm)2 (acac)])、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]銥(III)(簡稱:Ir(mpmppm)2 (acac))、(乙醯丙酮根)雙(4,6-二苯基嘧啶根)銥(III)(簡稱:[Ir(dppm)2 (acac)])等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪根)銥(III)(簡稱:[Ir(mppr-Me)2 (acac)])、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪根)銥(III)(簡稱:[Ir(mppr-iPr)2 (acac)])等具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶根-N,C2’ )銥(III)(簡稱:[Ir(ppy)3 ])、雙(2-苯基吡啶根-N,C2’ )銥(III)乙醯丙酮(簡稱: [Ir(ppy)2 (acac)])、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:[Ir(bzq)2 (acac)])、三(苯并[h]喹啉)銥(III)(簡稱:[Ir(bzq)3 ])、三(2-苯基喹啉-N,C2’ ]銥(III)(簡稱:[Ir(pq)3 ])、雙(2-苯基喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱: [Ir(pq)2 (acac)])等具有吡啶骨架的有機金屬銥錯合物;以及三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:[Tb(acac)3 (Phen)] )等稀土金屬錯合物。上述物質主要是發射綠色磷光的化合物,並且在500nm至600nm具有發光峰。另外,由於具有嘧啶骨架的有機金屬銥錯合物具有特別優異的可靠性及發光效率,所以是特別較佳的。
另外,可以舉出:(二異丁醯基甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶基]銥(III)(簡稱: [Ir(5mdppm)2 (dibm)])、雙[4,6-雙(3-甲基苯基)嘧啶根)(二新戊醯基甲烷根)銥(III)(簡稱:[Ir(5mdppm)2 (dpm)])、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:[Ir(d1npm)2 (dpm)])等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:[Ir(tppr)2 (acac)])、雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷根)銥(III)(簡稱:[Ir(tppr)2 (dpm)])、(乙醯丙酮根)雙[2,3-雙(4-氟苯基)喹㗁啉合]銥(III)(簡稱: [Ir(Fdpq)2 (acac)])等具有吡嗪骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C2’ )銥(III)(簡稱:[Ir(piq)3 ])、雙(1-苯基異喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(piq)2 (acac)])等具有吡啶骨架的有機金屬銥錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等的鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:[Eu(DBM)3 (Phen)])、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱: [Eu(TTA)3 (Phen)])等稀土金屬錯合物。上述物質是發射紅色磷光的化合物,並且在600nm至700nm具有發光峰。另外,具有吡嗪骨架的有機金屬銥錯合物可以獲得色度良好的紅色發光。
另外,除了上述磷光化合物以外,還可以選擇已知的磷光發光材料而使用。
作為TADF材料可以使用富勒烯及其衍生物、吖啶及其衍生物以及伊紅衍生物等。另外,還可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等含金屬卟啉。作為該含金屬卟啉,例如,也可以舉出由下述結構式表示的原卟啉-氟化錫錯合物(SnF2 (Proto IX))、中卟啉-氟化錫錯合物(SnF2 (Meso IX))、血卟啉-氟化錫錯合物(SnF2 (Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(SnF2 (Copro III-4Me)、八乙基卟啉-氟化錫錯合物(SnF2 (OEP))、初卟啉-氟化錫錯合物(SnF2 (Etio I))以及八乙基卟啉-氯化鉑錯合物(PtCl2 OEP)等。
Figure 02_image001
另外,還可以使用由下述結構式表示的2-(聯苯-4-基)-4,6-雙(12-苯基吲哚[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、9-(4,6-二苯基-1,3,5-三嗪-2-基)-9’-苯基-9H,9’H-3,3’-聯咔唑(簡稱:PCCzTzn)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-啡㗁𠯤-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡𠯤-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]硫碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)等具有富π電子型雜芳環和缺π電子型雜芳環的一者或兩者的雜環化合物。該雜環化合物具有富π電子型雜芳環和缺π電子型雜芳環,電子傳輸性和電洞傳輸性都高,所以是較佳的。尤其是,在具有缺π電子雜芳環的骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、嗒𠯤骨架)及三嗪骨架穩定且可靠性良好,所以是較佳的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的電子接受性高且可靠性良好,所以是較佳的。另外,在具有富π電子雜芳環的骨架中,吖啶骨架、啡㗁𠯤骨架、啡噻𠯤骨架、呋喃骨架、噻吩骨架及吡咯骨架穩定且可靠性良好,所以較佳為具有上述骨架中的至少一個。另外,作為呋喃骨架較佳為使用二苯并呋喃骨架,作為噻吩骨架較佳為使用二苯并噻吩骨架。作為吡咯骨架,特別較佳為使用吲哚骨架、咔唑骨架、吲哚咔唑骨架、聯咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。在富π電子型芳雜環和缺π電子型芳雜環直接鍵合的物質中,富π電子芳雜環的電子供給性和缺π電子型芳雜環的電子接受性都高而S1 能階與T1 能階之間的能量差變小,可以高效地獲得熱活化延遲螢光,所以是特別較佳的。注意,也可以使用鍵合有氰基等拉電子基團的芳環代替缺π電子型芳雜環。此外,作為富π電子骨架,可以使用芳香胺骨架、吩嗪骨架等。此外,作為缺π電子骨架,可以使用氧雜蒽骨架、二氧化噻噸(thioxanthene dioxide)骨架、㗁二唑骨架、三唑骨架、咪唑骨架、蒽醌骨架、苯基硼烷或boranthrene等含硼骨架、苯甲腈或氰苯等具有腈基或氰基的芳香環或雜芳環、二苯甲酮等羰骨架、氧化膦骨架、碸骨架等。如此,可以使用缺π電子骨架及富π電子骨架代替缺π電子雜芳環以及富π電子雜芳環中的至少一個。
Figure 02_image003
另外,TADF材料較佳為由下述通式(G1)至通式(G11)表示的物質。
Figure 02_image005
Figure 02_image007
但是,在上述通式(G1)中,R1 至R5 中的至少一個表示氰基,R1 至R5 中的至少一個表示取代或未取代的9-咔唑基、取代或未取代的1,2,3,4-四氫-9-咔唑基、取代或未取代的1-吲哚基或者取代或未取代的二芳基胺基,剩下的R1 至R5 分別獨立地表示氫原子或取代基。
另外,在上述通式(G2)中,R11 及R12 分別獨立地表示氫原子或任意取代基,A表示可具有取代基的雜芳基或可具有取代基的芳基胺基的至少一個直接或者藉由其他的芳香基與吡啶環的4位碳鍵合在一起的取代基。
另外,在上述上述通式(G3)中,Ar1 至Ar3 表示芳基、其中至少一個表示被二苯并-1,4-噁嗪基或二苯并-1,4-噻嗪基取代的芳基。
另外,在上述通式(G4)中,X表示取代或未取代的芳烴基、取代或未取代的芳族雜環基、取代或未取代的稠合多環芳族基或者被選自芳烴基、芳族雜環基或稠合多環芳族基中的基取代的二取代胺基,Y表示氫原子、氘原子、氟原子、氯原子、氰基、硝基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷基、可具有取代基的碳原子數為5至10的環烷基、可具有取代基的碳原子數為2至6的直鏈狀或支鏈狀的烯基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷氧基、可具有取代基的碳原子數為5至10的環烷氧基、取代或未取代的芳烴基、取代或未取代的芳族雜環基、取代或未取代的稠合多環芳族基、取代或未取代的芳氧基、或被選自芳烴基、芳族雜環基或稠合多環芳族基中的基取代的二取代胺基,R21 、R22 、R25 至R28 可以彼此相同也可以彼此不同,其分別獨立地表示氫原子、氘原子、氟原子、氯原子、氰基、硝基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷基、可具有取代基的碳原子數為5至10的環烷基、可具有取代基的碳原子數為2至6的直鏈狀或支鏈狀的烯基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷氧基、可具有取代基的碳原子數為5至10的環烷氧基、取代或未取代的芳烴基、取代或未取代的芳族雜環基、取代或未取代的稠合多環芳族基、取代或未取代的芳氧基、或被選自芳烴基、芳族雜環基或稠合多環芳族基中的基取代的二取代胺基,R21 、R22 、R25 至R28 也可以藉由單鍵、取代或未取代的亞甲基、氧原子或硫原子彼此鍵合形成環。
另外,在上述通式(G5)中,A1 至A3 分別獨立地表示取代或未取代的二苯并呋喃基。
另外,在上述通式(G6)中,R31 至R34 及a至h分別獨立地表示氫原子、取代或未取代的碳原子數為1至20的烷基、取代或未取代的碳原子數為1至20的烷氧基、取代或未取代的碳原子數為6至20的芳基、或胺基。
另外,在上述通式(G7)中,R41 至R48 分別獨立地為氫原子或供電子基團,至少其中一個表示供電子基團。R49 至R56 分別獨立地為氫原子或三嗪(triazino)基以外的拉電子基團,至少其中一個表示三嗪(triazino)基以外的拉電子基團。注意,R41 至R56 中的11至14個為氫原子。
另外,在上述通式(G8)中,R61 至R68 及R77 分別獨立地為氫原子或供電子基團,至少其中一個表示供電子基團。R69 至R76 分別獨立地為氫原子或α位不具有非共用電子對的拉電子基團。Z表示單鍵或=C=Y,Y表示S、C(CN)2 或C(COOH)2 。注意,Z為單鍵時,R69 至R76 中的至少一個為α位不具有非共用電子對的拉電子基團。
另外,在上述通式(G9)中,環α表示與相鄰環在任意位置稠合的由式(g9-1)表示的芳香環,環β表示與相鄰環在任意位置稠合的由式(g9-2)表示的雜環。式(G9)和式(g9-2)中的Ar獨立地表示芳烴基或芳族雜環基。式(G9)和式(g9-1)中的R獨立地表示氫或選自碳原子數為1至10的烷基、碳原子數為1至10的烷氧基、碳原子數為1至10的烷硫基、碳原子數為1至10的烷基胺基、碳原子數為2至10的醯基、碳原子數為7至20的芳烷基、取代或未取代的碳原子數為6至30的芳烴基及取代或未取代的碳原子數為3至30的芳香族六元雜環基中的1價取代基,相鄰的取代基可以彼此鍵合形成環。n表示1以上且4以下的整數。
另外,在上述通式(G10)中,X1 、X2 、X3 可以相同也可以不同,其分別獨立地表示氫原子、氘原子、氟原子、氯原子、氰基、硝基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷基、可具有取代基的碳原子數為5至10的環烷基、可具有取代基的碳原子數為2至6的直鏈狀或支鏈狀的烯基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷氧基、可具有取代基的碳原子數為5至10的環烷氧基、取代或未取代的芳烴基、取代或未取代的芳族雜環基、取代或未取代的稠合多環芳族基、取代或未取代的芳氧基或者被選自芳烴基、芳族雜環基或稠合多環芳族基中的基取代的二取代胺基,至少X1 、X2 、X3 中的一個為取代或未取代的芳烴基、取代或未取代的芳族雜環基、取代或未取代的稠合多環芳族基、或被選自芳烴基、芳族雜環基或稠合多環芳族基中的基取代的二取代胺基,Ar4 表示取代或未取代的2價芳烴基、取代或未取代的2價雜芳烴基、或取代或未取代的2價稠合多環芳烴基,R81 至R86 、R89 至R94 可以彼此相同也可以彼此不同,其分別獨立地表示氫原子、氘原子、氟原子、氯原子、氰基、硝基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷基、可具有取代基的碳原子數為5至10的環烷基、可具有取代基的碳原子數為2至6的直鏈狀或支鏈狀的烯基、可具有取代基的碳原子數為1至6的直鏈狀或支鏈狀的烷氧基、可具有取代基的碳原子數為5至10的環烷氧基、取代或未取代的芳烴基、取代或未取代的芳族雜環基、取代或未取代的稠合多環芳族基、取代或未取代的芳氧基、或被選自芳烴基、芳族雜環基或稠合多環芳族基中的基取代的二取代胺基,R81 至R86 、R89 至R94 也可以藉由單鍵、取代或未取代的亞甲基、氧原子或硫原子彼此鍵合形成環。
另外,在上述通式(G11)中,R101 至R104 分別獨立地表示取代或未取代的芳基、取代或未取代的雜芳基、取代或未取代的烷基或取代或未取代的環烷基,R105 及R106 分別獨立地表示取代或未取代的烷基,R107 、R108 及R109 分別獨立地表示取代或未取代的芳基或者取代或未取代的烷基,n1至n4及n7分別獨立地表示0至4中的任意整數,n5及n6分別獨立地表示0至3中的任意整數,n8及n9分別獨立地表示0至5中的任意整數。當分別與R101 至R109 對應的n1至n9為2以上的整數時,多個R101 可以彼此相同也可以彼此不同,R102 至R109 也是同樣的。
TADF材料是指S1能階和T1能階之差較小且具有藉由反系間竄越將三重激發能轉換為單重激發能的功能的材料。因此,能夠藉由微小的熱能量將三重激發能上轉換(up-convert)為單重激發能(反系間竄越)並能夠高效地產生單重激發態。此外,可以將三重激發能轉換為發光。
以兩種物質形成激發態的激態錯合物( Exciplex)因S1能階和T1能階之差極小而具有將三重激發能轉換為單重激發能的TADF材料的功能。
注意,作為T1能階的指標,可以使用在低溫(例如,77K至10K)下觀察到的磷光光譜。關於TADF材料,較佳的是,當以藉由在螢光光譜的短波長側的尾處引切線得到的外推線的波長能量為S1能階並以藉由在磷光光譜的短波長側的尾處引切線得到的外推線的波長能量為T1能階時,S1與T1之差為0.3eV以下,更佳為0.2eV以下。
此外,當使用TADF材料作為發光中心材料時,主體材料的S1能階較佳為比TADF材料的S1能階高。此外,主體材料的T1能階較佳為比TADF材料的T1能階高。
作為發光層的主體材料,可以使用具有電子傳輸性的材料或具有電洞傳輸性的材料、上述TADF材料等各種載子傳輸材料。
作為具有電洞傳輸性的材料,可以舉出:4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9’-螺雙[9H-茀]-2-胺(簡稱:PCBASF)等具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱: DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱: mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物、具有咔唑骨架的化合物具有良好的可靠性和高電洞傳輸性並有助於降低驅動電壓,所以是較佳的。此外,也可以使用作為上述第二有機化合物的例子舉出的有機化合物。
例如,作為具有電子傳輸性的材料,例如可以舉出:雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、1,3-雙[5-(對三級丁基苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)、2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)等具有多唑骨架的雜環化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mCzBPDBq)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)等具有二嗪骨架的雜環化合物;以及3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)-苯基]苯(簡稱:TmPyPB)等的具有吡啶骨架的雜環化合物。其中,具有二嗪骨架的雜環化合物或具有吡啶骨架的雜環化合物具有良好的可靠性,所以是較佳的。尤其是,具有二嗪(嘧啶或吡嗪)骨架的雜環化合物具有高電子傳輸性,也有助於降低驅動電壓。
作為能夠用作主體材料的TADF材料,可以使用與上述同樣的材料。當使用TADF材料作為主體材料時,由TADF材料生成的三重激發能經反系間竄躍轉換為單重激發能並進一步能量轉移到發光中心物質,由此可以提高發光元件的發光效率。此時,TADF材料被用作能量施體,發光中心物質被用作能量受體。
當上述發光中心物質為螢光發光物質時這是非常有效的。此外,此時,為了得到高發光效率,TADF材料的S1能階較佳為比螢光發光物的S1能階高。此外,TADF材料的T1能階較佳為比螢光發光物質的S1能階高。因此,TADF材料的T1能階較佳為比螢光發光物質的T1能階高。
此外,較佳為使用呈現與螢光發光物質的最低能量一側的吸收帶的波長重疊的發光的TADF材料。由此,激發能順利地從TADF材料轉移到螢光發光物質,可以高效地得到發光,所以是較佳的。
為了高效地從三重激發能藉由反系間竄躍生成單重激發能,較佳為在TADF材料中產生載子再結合。此外,較佳的是在TADF材料中生成的三重激發能不轉移到螢光發光物質。為此,螢光發光物質較佳為在螢光發光物質所具有的發光體(成為發光的原因的骨架)的周圍具有保護基。作為該保護基,較佳為不具有π鍵的取代基,較佳為飽和烴,明確而言,可以舉出碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基、碳原子數為3以上且10以下的三烷基矽基,更佳為具有多個保護基。不具有π鍵的取代基由於幾乎沒有傳輸載子的功能,所以對載子傳輸或載子再結合幾乎沒有影響,可以使TADF材料與螢光發光物質的發光體彼此遠離。在此,發光體是指在螢光發光物質中成為發光的原因的原子團(骨架)。發光體較佳為具有π鍵的骨架,較佳為包含芳香環,並較佳為具有稠合芳香環或稠合雜芳環。作為稠合芳香環或稠合雜芳環,可以舉出菲骨架、二苯乙烯骨架、吖啶酮骨架、啡㗁𠯤骨架、啡噻𠯤骨架等。尤其是,具有萘骨架、蒽骨架、茀骨架、䓛骨架、聯伸三苯骨架、稠四苯骨架、芘骨架、苝骨架、香豆素骨架、喹吖啶酮骨架、萘并雙苯并呋喃骨架的螢光發光物質具有高螢光量子產率,所以是較佳的。
在將螢光發光物質用作發光中心物質的情況下,作為主體材料,較佳為使用具有蒽骨架的材料。藉由將具有蒽骨架的物質用作螢光發光物質的主體材料,可以實現發光效率及耐久性都良好的發光層。在用作主體材料的具有蒽骨架的物質中,具有二苯基蒽骨架(尤其是9,10-二苯基蒽骨架)的物質在化學上穩定,所以是較佳的。另外,在主體材料具有咔唑骨架的情況下,電洞的注入/傳輸性得到提高,所以是較佳的,尤其是,在包含苯環稠合到咔唑的苯并咔唑骨架的情況下,其HOMO能階比咔唑淺0.1eV左右,電洞容易注入,所以是更佳的。尤其是,在主體材料具有二苯并咔唑骨架的情況下,其HOMO能階比咔唑淺0.1eV左右,不僅電洞容易注入,而且電洞傳輸性及耐熱性也得到提高,所以是較佳的。因此,進一步較佳為用作主體材料的物質是具有9,10-二苯基蒽骨架及咔唑骨架(或者苯并咔唑骨架或二苯并咔唑骨架)的物質。注意,從上述電洞注入/傳輸性的觀點來看,也可以使用苯并茀骨架或二苯并茀骨架代替咔唑骨架。作為這種物質的例子,可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、9-[4-(10-苯基蒽-9-基)苯基]-9H-咔唑(簡稱:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)-聯苯-4’-基}-蒽(簡稱:FLPPA)、9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(簡稱:αN-βNPAnth)等。尤其是,CzPA、cgDBCzPA、2mBnfPPA、PCzPA呈現非常良好的特性,所以是較佳的。
另外,主體材料也可以是混合多種物質的材料,當使用混合的主體材料時,較佳為混合具有電子傳輸性的材料和具有電洞傳輸性的材料。藉由混合具有電子傳輸性的材料和具有電洞傳輸性的材料,可以使發光層113的傳輸性的調整變得更加容易,也可以更簡便地進行再結合區域的控制。具有電洞傳輸性的材料和具有電子傳輸性的材料的含量的重量比例為1:19至19:1即可。
注意,作為上述混合的材料的一部分,可以使用磷光發光物質。磷光發光物質在作為發光中心材料使用螢光發光物質時可以被用作對螢光發光物質供應激發能的能量施體。
另外,也可以使用這些混合了的材料形成激態錯合物。藉由以形成發射與發光材料的最低能量一側的吸收帶的波長重疊的光的激態錯合物的方式選擇混合材料,可以使能量轉移變得順利,從而高效地得到發光,所以是較佳的。另外,藉由採用該結構可以降低驅動電壓,因此是較佳的。
注意,形成激態錯合物的材料的至少一個可以為磷光發光物質。由此,可以高效地將三重激發能經反系間竄躍轉換為單重激發能。
關於高效地形成激態錯合物的材料的組合,具有電洞傳輸性的材料的HOMO能階較佳為具有電子傳輸性的材料的HOMO能階以上。此外,具有電洞傳輸性的材料的LUMO能階較佳為具有電子傳輸性的材料的LUMO能階以上。注意,材料的LUMO能階及HOMO能階可以從藉由循環伏安(CV)測定測得的材料的電化學特性(還原電位及氧化電位)求出。
注意,激態錯合物的形成例如可以藉由如下方法確認:對具有電洞傳輸性的材料的發射光譜、具有電子傳輸性的材料的發射光譜及混合這些材料而成的混合膜的發射光譜進行比較,當觀察到混合膜的發射光譜比各材料的發射光譜向長波長一側漂移(或者在長波長一側具有新的峰值)的現象時說明形成有激態錯合物。或者,對具有電洞傳輸性的材料的瞬態光致發光(PL)、具有電子傳輸性的材料的瞬態PL及混合這些材料而成的混合膜的瞬態PL進行比較,當觀察到混合膜的瞬態PL壽命與各材料的瞬態PL壽命相比具有長壽命成分或者延遲成分的比率變大等瞬態回應不同時說明形成有激態錯合物。此外,可以將上述瞬態PL稱為瞬態電致發光(EL)。換言之,與對具有電洞傳輸性的材料的瞬態EL、具有電子傳輸性的材料的瞬態EL及這些材料的混合膜的瞬態EL進行比較,觀察瞬態回應的不同,可以確認激態錯合物的形成。
電子傳輸層114與發光層113接觸地設置。另外,電子傳輸層114具有電子傳輸性且包括HOMO能階為 -6.0eV以上的第七有機化合物。第七有機化合物是具有電子傳輸性的有機化合物,較佳為包含蒽骨架。另外,電子傳輸層114也可以包含為鹼金屬或鹼土金屬的有機錯合物的第八物質。也就是說,電子傳輸層114既可以僅由第七有機化合物構成,也可以由如第七有機化合物和第八物質的混合材料等由第七有機化合物及其他物質形成的混合材料構成。
另外,更佳的是上述第七有機化合物包含蒽骨架和雜環骨架,作為該雜環骨架較佳為含氮五員環骨架。作為含氮五員環骨架,尤其較佳的是含有如吡唑環、咪唑環、㗁唑環、噻唑環那樣的環中含有兩個雜原子的含氮五員環骨架。
作為其他的可以用作第七有機化合物的具有電子傳輸性的有機化合物,可以使用能夠用於上述主體材料的具有電子傳輸性的有機化合物或能夠用於上述螢光發光物質的主體材料的有機化合物。
另外,作為上述鹼金屬或鹼土金屬的有機錯合物,較佳為使用鋰的有機錯合物,尤其較佳為8-羥基喹啉鋰(簡稱:Liq)。
另外,較佳為構成電子傳輸層114的材料在電場強度[V/cm]的平方根為600時的電子移動率為1×10-7 cm2 /Vs以上且5×10-5 cm2 /Vs以下。
另外,較佳為構成電子傳輸層114的材料在電場強度[V/cm]的平方根為600時的電子移動率低於第六有機化合物或構成發光層113的材料在電場強度[V/cm]的平方根為600時的電子移動率。藉由降低電子傳輸層中的電子的傳輸性可以控制向發光層的電子的注入量,由此可以防止發光層變成電子過多的狀態。
當發光層變為電子過多的狀態時,如圖2A所示,發光區域113-1被限定在部分區域中而使該部分的負擔變大導致劣化加速。此外,電子不能進行再結合而穿過發光層也會導致壽命及發光效率下降。在本發明的一個實施方式中,藉由降低電子傳輸層114中的電子的傳輸性,如圖2B所示,可以使發光區域113-1變寬以使對構成發光層113的材料的負擔得以分散,由此可以提供壽命長且發光效率良好的發光器件。
另外,在具有上述結構的發光器件中,在藉由電流密度恆定的條件下的驅動測試得到的亮度的劣化曲線中有時示出具有極大值的形狀。也就是說,本發明的一個實施方式的發光器件的劣化曲線有時成為隨著時間推移具有亮度上升部分的形狀。呈現該劣化舉動的發光器件可以利用該亮度上升使其與驅動初期的急劇劣化(亦即,所謂的初始劣化)相抵,由此可以實現初始劣化小且具有非常良好的驅動壽命的發光器件。
注意,當取這種具有極大值的劣化曲線的微分時,存在該值為0的部分,換言之,存在劣化曲線的微分為0的部分的本發明的一個實施方式的發光器件可以為初始劣化小壽命非常長的發光器件。
另外,如圖3A所示,可以認為該現象是對發光無用的再結合發生在非發光再結合區域114-1而產生的。在具有上述結構的本發明的發光器件中,在驅動初期由於電洞的注入能障小及電子傳輸層114的電子傳輸性較低,所以發光區域113-1(亦即,再結合區域)以靠近電子傳輸層114一側的狀態形成。另外,由於電子傳輸層114中的第七有機化合物的HOMO能階為-6.0eV以上較高,所以部分電洞到達電子傳輸層114而在電子傳輸層114中發生再結合,由此形成非發光再結合區域114-1。注意,當第六有機化合物與第七有機化合物的HOMO能階之差為0.2eV以內時也有可能發生該現象。
在此,隨著驅動時間的推移載子的平衡發生變化,如圖3B所示發光區域113-1(再結合區域)逐漸向電洞傳輸層112一側移動。由於非發光再結合區域114-1減少,再結合的載子的能量可以有效地用於發光而使亮度上升。該亮度上升與發光器件的驅動初期出現的亮度急劇下降(亦即,所謂的初始劣化)相抵消,由此可以提供初始劣化小驅動壽命長的發光器件。
另外,由於可以抑制初始劣化,由此可以大幅減少有機EL裝置的巨大缺點之一的燒屏(burn-in)問題以及為了減少該問題在出貨前進行的老化(aging)製程所需的時間及勞力。
具有如上那樣的結構的本發明的一個實施方式的發光器件可以為壽命長的發光器件。
實施方式2 接著,對上述發光器件的詳細結構和材料的例子進行說明。如上所述本發明的一個實施方式的發光器件在陽極101和陰極102這一對電極間包括由多個層構成的EL層103,並且該EL層103從陽極101一側包括電洞注入層111、第一電洞傳輸層112-1、第二電洞傳輸層112-2、發光層113以及電子傳輸層。
對EL層103中的其他層沒有特別的限制,可以採用電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、載子障壁層、激子障壁層、電荷產生層等各種層結構。
陽極101較佳為使用功函數大(具體為4.0eV以上)的金屬、合金、導電化合物以及它們的混合物等形成。明確地說,例如可以舉出氧化銦-氧化錫(ITO: Indium Tin Oxide,銦錫氧化物)、包含矽或氧化矽的氧化銦-氧化錫、氧化銦-氧化鋅、包含氧化鎢及氧化鋅的氧化銦(IWZO)等。雖然通常藉由濺射法形成這些導電金屬氧化物膜,但是也可以應用溶膠-凝膠法等來形成。作為形成方法的例子,可以舉出使用對氧化銦添加有1wt%至20wt%的氧化鋅的靶材藉由濺射法形成氧化銦-氧化鋅的方法等。另外,可以使用對氧化銦添加有0.5wt%至5wt%的氧化鎢和0.1wt%至1wt%的氧化鋅的靶材藉由濺射法形成包含氧化鎢及氧化鋅的氧化銦(IWZO)。另外,可以舉出金(Au)、鉑(Pt)、鎳(Ni)、鎢(W)、鉻(Cr)、鉬(Mo)、鐵(Fe)、鈷(Co)、銅(Cu)、鈀(Pd)或金屬材料的氮化物(例如,氮化鈦)等。此外,也可以使用石墨烯。注意,雖然在此舉出功函數大且典型地用於形成陽極的材料的物質,但是在本發明的一個實施方式中,作為電洞注入層111使用包含具有電洞傳輸性的有機化合物和對該有機化合物呈現電子接受性的物質的複合材料,因此可以在選擇電極材料時無需顧及功函數。
在本實施方式中,作為EL層103的疊層結構,對如下兩種結構進行說明:如圖1A所示,採用包括電洞注入層111、第一電洞傳輸層112-1、第二電洞傳輸層112-2、發光層113、電子傳輸層114及電子注入層115的結構;如圖1B所示,採用包括電洞注入層111、第一電洞傳輸層112-1、第二電洞傳輸層112-2、發光層113、電子傳輸層114及電荷產生層116的結構。下面具體地示出構成各層的材料。
因為對電洞注入層111、電洞傳輸層112(第一電洞傳輸層112-1、第二電洞傳輸層112-2)、發光層113及電子傳輸層114在實施方式1中詳細地進行了說明,所以省略重複記載。參照實施方式1的記載。
可以在電子傳輸層114和陰極102之間設置由氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2 )等的鹼金屬、鹼土金屬或它們的化合物形成的電子注入層115。電子注入層115可以使用將鹼金屬、鹼土金屬或它們的化合物包含在由具有電子傳輸性的物質構成的層中的層或電子化合物(electride)。作為電子化合物,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。
另外,可以在電子傳輸層114與陰極102之間設置電荷產生層116,而代替電子注入層115(圖1B)。電荷產生層116是藉由施加電位,可以對與該層的陰極一側接觸的層注入電洞,並且對與該層的陽極一側接觸的層注入電子的層。電荷產生層116至少包括P型層117。P型層117較佳為使用上述構成電洞注入層111的複合材料來形成。另外,P型層117也可以將作為構成複合材料的材料包含上述呈現電子接受性的物質的膜和包含電洞傳輸材料的膜層疊來形成。藉由對P型層117施加電位,電子和電洞分別注入到電子傳輸層114和用作陰極的陰極102,使得發光器件工作。
另外,電荷產生層116除了包括P型層117之外,較佳為還包括電子中繼層118及電子注入緩衝層119中的任一個或兩個。
電子中繼層118至少包含具有電子傳輸性的物質,並且能夠防止電子注入緩衝層119和P型層117的相互作用,並順利地傳遞電子。較佳為將電子中繼層118所包含的具有電子傳輸性的物質的LUMO能階設定在P型層117中的電子接受性物質的LUMO能階與電子傳輸層114中的接觸於電荷產生層116的層所包含的物質的LUMO能階之間。明確而言,電子中繼層118中的具有電子傳輸性的物質的LUMO能階較佳為-5.0eV以上,更佳為-5.0eV以上且-3.0eV以下。另外,作為電子中繼層118中的具有電子傳輸性的物質,較佳為使用酞青類材料或具有金屬-氧鍵合和芳香配體的金屬錯合物。
電子注入緩衝層119可以使用鹼金屬、鹼土金屬、稀土金屬以及這些物質的化合物(鹼金屬化合物(包括氧化鋰等氧化物、鹵化物、碳酸鋰或碳酸銫等碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬的化合物(包括氧化物、鹵化物、碳酸鹽))等電子注入性高的物質。
另外,在電子注入緩衝層119包含具有電子傳輸性的物質及電子施體性物質的情況下,作為電子施體性物質,除了鹼金屬、鹼土金屬、稀土金屬和這些物質的化合物(鹼金屬化合物(包括氧化鋰等氧化物、鹵化物、碳酸鋰或碳酸銫等碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬的化合物(包括氧化物、鹵化物、碳酸鹽))以外,還可以使用四硫稠四苯( tetrathianaphthacene)(簡稱:TTN)、二茂鎳、十甲基二茂鎳等有機化合物。另外,作為具有電子傳輸性的物質,可以使用與上面所說明的用於電子傳輸層114的材料同樣的材料形成。
作為形成陰極102的物質,可以使用功函數小(具體為3.8eV以下)的金屬、合金、導電化合物以及它們的混合物等。作為這種陰極材料的具體例子,可以舉出鋰(Li)或銫(Cs)等鹼金屬、鎂(Mg)、鈣(Ca)或者鍶(Sr)等的屬於元素週期表中的第1族或第2族的元素、包含它們的合金(MgAg、AlLi)、銪(Eu)、鐿(Yb)等稀土金屬以及包含它們的合金等。然而,藉由在陰極102和電子傳輸層之間設置電子注入層,可以不顧及功函率的大小而將各種導電材料諸如Al、Ag、ITO、包含矽或氧化矽的氧化銦-氧化錫等用作陰極102。這些導電材料可以藉由真空蒸鍍法、濺射法等乾處理、噴墨法、旋塗法等形成。另外,電極可以藉由利用溶膠-凝膠法等濕處理或利用金屬材料的膏劑的濕處理形成。
另外,作為EL層103的形成方法,不論乾處理或濕處理,都可以使用各種方法。例如,也可以使用真空蒸鍍法、凹版印刷法、照相凹版印刷法、網版印刷法、噴墨法或旋塗法等。
另外,也可以藉由使用不同成膜方法形成上面所述的各電極或各層。
注意,設置在陽極101與陰極102之間的層的結構不侷限於上述結構。但是,較佳為採用在離陽極101及陰極102遠的部分設置電洞與電子再結合的發光區域的結構,以便抑制由於發光區域與用於電極或載子注入層的金屬接近而發生的淬滅。
另外,為了抑制從在發光層中產生的激子的能量轉移,接觸於發光層113的如電洞傳輸層和電子傳輸層,尤其是靠近發光層113中的再結合區域的載子傳輸層較佳為使用如下物質構成,亦即,具有比構成發光層的發光材料或者包含在發光層中的發光材料所具有的能帶間隙大的能帶間隙的物質。
接著,參照圖1C說明具有層疊有多個發光單元的結構的發光器件(以下也稱為疊層型元件或串聯元件)的方式。該發光器件是在陽極和陰極之間具有多個發光單元的發光器件。一個發光單元具有與圖1A所示的EL層103大致相同的結構。就是說,可以說,圖1C所示的發光器件是具有多個發光單元的發光器件,而圖1A或圖1B所示的發光器件是具有一個發光單元的發光器件。
在圖1C中,在陽極501和陰極502之間層疊有第一發光單元511和第二發光單元512,並且在第一發光單元511和第二發光單元512之間設置有電荷產生層513。陽極501和陰極502分別相當於圖1A中的陽極101和陰極102,並且可以應用與圖1A的說明同樣的材料。另外,第一發光單元511和第二發光單元512可以具有相同結構,也可以具有不同結構。
電荷產生層513具有在對陽極501及陰極502施加電壓時,對一個發光單元注入電子並對另一個發光單元注入電洞的功能。就是說,在圖1C中,在以陽極的電位比陰極的電位高的方式施加電壓的情況下,電荷產生層513只要是對第一發光單元511注入電子並對第二發光單元512注入電洞的層即可。
電荷產生層513較佳為具有與圖1B所示的電荷產生層116同樣的結構。因為有機化合物與金屬氧化物的複合材料具有良好的載子注入性及載子傳輸性,從而能夠實現低電壓驅動及低電流驅動。注意,在發光單元的陽極一側的面接觸於電荷產生層513的情況下,電荷產生層513可以具有發光單元的電洞注入層的功能,所以在發光單元中也可以不設置電洞注入層。
另外,當在電荷產生層513中設置電子注入緩衝層119時,因為該電子注入緩衝層119具有陽極一側的發光單元中的電子注入層的功能,所以在陽極一側的發光單元中不一定必須設置電子注入層。
雖然在圖1C中說明了具有兩個發光單元的發光器件,但是可以同樣地應用層疊三個以上的發光單元的發光器件。如根據本實施方式的發光器件,藉由在一對電極之間將多個發光單元使用電荷產生層513隔開並配置,該元件可以在保持低電流密度的同時實現高亮度發光,並且能夠實現壽命長的元件。另外,可以實現能夠進行低電壓驅動且低功耗的發光裝置。
另外,藉由使各發光單元的發光顏色不同,可以以整個發光器件得到所希望的顏色的發光。例如,藉由在具有兩個發光單元的發光器件中獲得來自第一發光單元的紅色和綠色的發光顏色以及來自第二發光單元的藍色的發光顏色,可以得到在整個發光器件中進行白色發光的發光器件。另外,作為層疊三個以上的發光單元的發光器件的結構,例如,可以採用第一發光單元包括第一藍色發光層,第二發光單元包括黃色或黃綠色發光層及紅色發光層,第三發光單元包括第二藍色發光層的串聯型裝置。該串聯型裝置與上述發光器件同樣可以得到白色發光。
另外,上述EL層103、第一發光單元511、第二發光單元512及電荷產生層等各層及電極例如可以利用蒸鍍法(包括真空蒸鍍法)、液滴噴射法(也稱為噴墨法)、塗佈法、凹版印刷法等方法形成。此外,其也可以包含低分子材料、中分子材料(包括低聚物、樹枝狀聚合物)或者高分子材料。
實施方式3 在本實施方式中,對使用實施方式1及實施方式2所示的發光器件的發光裝置進行說明。
在本實施方式中,參照圖4A和圖4B對使用實施方式1及實施方式2所示的發光器件而製造的發光裝置進行說明。注意,圖4A是示出發光裝置的俯視圖,並且圖4B是沿圖4A中的線A-B及線C-D切斷的剖面圖。該發光裝置作為用來控制發光器件的發光的單元包括由虛線表示的驅動電路部(源極線驅動電路)601、像素部602、驅動電路部(閘極線驅動電路)603。另外,元件符號604是密封基板,元件符號605是密封材料,由密封材料605圍繞的內側是空間607。
注意,引導佈線608是用來傳送輸入到源極線驅動電路601及閘極線驅動電路603的信號的佈線,並且從用作外部輸入端子的FPC(軟性印刷電路)609接收視訊信號、時脈信號、啟動信號、重設信號等。注意,雖然在此只圖示出FPC,但是該FPC還可以安裝有印刷線路板(PWB)。本說明書中的發光裝置不僅包括發光裝置主體,而且還包括安裝有FPC或PWB的發光裝置。
下面,參照圖4B說明剖面結構。雖然在元件基板610上形成有驅動電路部及像素部,但是在此示出作為驅動電路部的源極線驅動電路601和像素部602中的一個像素。
除了可以使用由玻璃、石英、有機樹脂、金屬、合金、半導體等構成的基板以外,還可以使用由FRP (Fiber Reinforced Plastics:玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板,而製造元件基板610。
對用於像素或驅動電路的電晶體的結構沒有特別的限制。例如,可以採用反交錯型電晶體或交錯型電晶體。另外,頂閘極型電晶體或底閘極型電晶體都可以被使用。對用於電晶體的半導體材料沒有特別的限制,例如可以使用矽、鍺、碳化矽、氮化鎵等。或者可以使用In-Ga-Zn類金屬氧化物等的包含銦、鎵、鋅中的至少一個的氧化物半導體。
對用於電晶體的半導體材料的結晶性也沒有特別的限制,可以使用非晶半導體或結晶半導體(微晶半導體、多晶半導體、單晶半導體或其一部分具有結晶區域的半導體)。當使用結晶半導體時可以抑制電晶體的特性劣化,所以是較佳的。
在此,氧化物半導體較佳為用於設置在上述像素或驅動電路中的電晶體和用於在後面說明的觸控感測器等的電晶體等半導體裝置。尤其較佳為使用其能帶間隙比矽寬的氧化物半導體。藉由使用能帶間隙比矽寬的氧化物半導體,可以降低電晶體的關態電流(off-state current)。
上述氧化物半導體較佳為至少包含銦(In)或鋅(Zn)。另外,上述氧化物半導體更佳為包含以In-M-Zn類氧化物(M為Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf等金屬)表示的氧化物的氧化物半導體。
在此,以下對能夠用於本發明的一個實施方式的氧化物半導體進行說明。
氧化物半導體被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體,例如可以舉出CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nano crystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
CAAC-OS具有c軸配向性,其多個奈米晶在a-b面方向上連結而結晶結構具有畸變。畸變是指在多個奈米晶連結的區域中晶格排列一致的區域與其他晶格排列一致的區域之間的晶格排列的方向變化的部分。
奈米晶基本上為六角形,但是不侷限於正六角形,有時為非正六角形。另外,奈米晶有時在畸變中具有五角形或七角形等晶格排列。另外,在CAAC-OS中,即使在畸變附近也觀察不到明確的晶界(也稱為grain boundary)。亦即,可知由於晶格排列畸變,可抑制晶界的形成。這是由於CAAC-OS因為a-b面方向上的氧原子排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等而能夠包容畸變。
CAAC-OS有具有層狀結晶結構(也稱為層狀結構)的傾向,在該層狀結晶結構中層疊有包含銦及氧的層(下面稱為In層)和包含元素M、鋅及氧的層(下面稱為(M,Zn)層)。另外,銦和元素M彼此可以取代,在用銦取代(M,Zn)層中的元素M的情況下,也可以將該層表示為(In,M,Zn)層。另外,在用元素M取代In層中的銦的情況下,也可以將該層表示為(In,M)層。
CAAC-OS是結晶性高的氧化物半導體。另一方面,在CAAC-OS中不容易觀察明確的晶界,因此不容易發生起因於晶界的電子移動率的下降。另外,氧化物半導體的結晶性有時因雜質的進入或缺陷的生成等而降低,因此可以說CAAC-OS是雜質或缺陷(氧空位(也稱為VO (oxygen vacancy))等)少的氧化物半導體。因此,具有CAAC-OS的氧化物半導體的物理性質穩定。因此,包含CAAC-OS的氧化物半導體具有高耐熱性及高可靠性。
在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的奈米晶之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。
另外,在包含銦、鎵和鋅的氧化物半導體的一種的銦-鎵-鋅氧化物(以下,IGZO)有時在由上述奈米晶構成時具有穩定的結構。尤其是,IGZO有在大氣中不容易進行晶體生長的傾向,所以有時與由大結晶(在此,幾mm的結晶或者幾cm的結晶)形成時相比由小結晶(例如,上述奈米結晶)形成時在結構上穩定。
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物半導體。a-like OS包含空洞或低密度區域。也就是說,a-like OS的結晶性比nc-OS及CAAC-OS的結晶性低。
氧化物半導體具有各種結構及各種特性。本發明的一個實施方式的氧化物半導體也可以包括非晶氧化物半導體、多晶氧化物半導體、a-like OS、nc-OS、CAAC-OS中的兩種以上。
另外,除了上述氧化物半導體之外還可以使用CAC(Cloud-Aligned Composite)-OS。
另外,CAC-OS在材料的一部分中具有導電性的功能,在材料的另一部分中具有絕緣性的功能,作為材料的整體具有半導體的功能。此外,在將CAC-OS用於電晶體的半導體層的情況下,導電性的功能是使被用作載子的電子(或電洞)流過的功能,絕緣性的功能是不使被用作載子的電子流過的功能。藉由導電性的功能和絕緣性的功能的互補作用,可以使CAC-OS具有開關功能(開啟/關閉的功能)。藉由在CAC-OS中使各功能分離,可以最大限度地提高各功能。
另外,CAC-OS具有導電性區域及絕緣性區域。導電性區域具有上述導電性的功能,絕緣性區域具有上述絕緣性的功能。此外,在材料中,導電性區域和絕緣性區域有時以奈米粒子級分離。另外,導電性區域和絕緣性區域有時在材料中不均勻地分佈。此外,有時觀察到其邊緣模糊而以雲狀連接的導電性區域。
此外,在CAC-OS中,導電性區域和絕緣性區域有時以0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下的尺寸分散在材料中。
此外,CAC-OS由具有不同能帶間隙的成分構成。例如,CAC-OS由具有起因於絕緣性區域的寬隙的成分及具有起因於導電性區域的窄隙的成分構成。在該結構中,當使載子流過時,載子主要在具有窄隙的成分中流過。此外,具有窄隙的成分與具有寬隙的成分互補作用,與具有窄隙的成分聯動地在具有寬隙的成分中載子流過。因此,在將上述CAC-OS用於電晶體的通道形成區域時,在電晶體的導通狀態中可以得到高電流驅動力,亦即,大通態電流及高場效移動率。
也就是說,也可以將CAC-OS稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。
藉由作為半導體層使用上述氧化物半導體材料,可以實現電特性的變動被抑制的可靠性高的電晶體。
另外,由於具有上述半導體層的電晶體的關態電流較低,因此能夠長期間保持經過電晶體而儲存於電容器中的電荷。藉由將這種電晶體用於像素,能夠在保持各顯示區域所顯示的影像的灰階的狀態下,停止驅動電路。其結果是,可以實現功耗極低的電子裝置。
為了實現電晶體的特性穩定化等,較佳為設置基底膜。作為基底膜,可以使用氧化矽膜、氮化矽膜、氧氮化矽膜、氮氧化矽膜等無機絕緣膜並以單層或疊層製造。基底膜可以藉由濺射法、CVD(Chemical Vapor Deposition:化學氣相沉積)法(電漿CVD法、熱CVD法、MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法等)或ALD(Atomic Layer Deposition:原子層沉積)法、塗佈法、印刷法等形成。注意,基底膜若不需要則也可以不設置。
注意,FET623示出形成在驅動電路部601中的電晶體的一個。另外,驅動電路也可以利用各種CMOS電路、PMOS電路或NMOS電路形成。另外,雖然在本實施方式中示出在基板上形成有驅動電路的驅動器一體型,但是不一定必須採用該結構,驅動電路也可以形成在外部,而不形成在基板上。
另外,像素部602由多個像素形成,該多個像素都包括開關FET 611、電流控制FET 612以及與該電流控制FET 612的汲極電連接的陽極613,但是並不侷限於此,也可以採用組合三個以上的FET和電容器的像素部。
注意,形成絕緣物614來覆蓋陽極613的端部。在此,可以使用正型感光丙烯酸形成絕緣物614。
另外,將絕緣物614的上端部或下端部形成為具有曲率的曲面,以獲得後面形成的EL層等的良好的覆蓋性。例如,在使用正型感光丙烯酸樹脂作為絕緣物614的材料的情況下,較佳為只使絕緣物614的上端部包括具有曲率半徑(0.2μm至3μm)的曲面。另外,作為絕緣物614,可以使用負型感光樹脂或者正型感光樹脂。
在陽極613上形成有EL層616及陰極617。在此,較佳為使用具有高功函數的材料作為用於陽極613的材料。例如,除了可以使用諸如ITO膜、包含矽的銦錫氧化物膜、包含2wt%至20wt%的氧化鋅的氧化銦膜、氮化鈦膜、鉻膜、鎢膜、Zn膜、Pt膜等的單層膜以外,還可以使用由氮化鈦膜和以鋁為主要成分的膜構成的疊層膜以及由氮化鈦膜、以鋁為主要成分的膜和氮化鈦膜構成的三層結構等。注意,如果這裡採用疊層結構,由於佈線的電阻值較低,因此可以得到良好的歐姆接觸,另外,其可用作陽極。
另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋塗法等各種方法形成。EL層616包括實施方式1及實施方式2所示的結構。另外,作為構成EL層616的其他材料,也可以使用低分子化合物或高分子化合物(包含低聚物、樹枝狀聚合物)。
另外,作為用於形成在EL層616上的陰極617的材料,較佳為使用具有功函數小的材料(Al、Mg、Li、Ca、或它們的合金或化合物(MgAg、MgIn、AlLi等)等)。注意,當使產生在EL層616中的光透過陰極617時,較佳為使用由膜厚度減薄了的金屬薄膜和透明導電膜(ITO、包含2wt%至20wt%的氧化鋅的氧化銦、包含矽的銦錫氧化物、氧化鋅(ZnO)等)構成的疊層作為陰極617。
另外,發光器件由陽極613、EL層616、陰極617形成。該發光器件是實施方式1及實施方式2所示的發光器件。另外,像素部由多個發光器件構成,本實施方式的發光裝置也可以包括實施方式1及實施方式2所示的發光器件和具有其他結構的發光器件的兩者。
另外,藉由使用密封材料605將密封基板604貼合到元件基板610,將發光器件618設置在由元件基板610、密封基板604以及密封材料605圍繞的空間607中。注意,空間607中填充有填料,作為該填料,可以使用惰性氣體(氮或氬等),還可以使用密封劑。藉由在密封基板中形成凹部且在其中設置乾燥劑,可以抑制水分所導致的劣化,所以是較佳的。
另外,較佳為使用環氧類樹脂或玻璃粉作為密封材料605。另外,這些材料較佳為儘可能地不使水或氧透過的材料。另外,作為用於密封基板604的材料,除了可以使用玻璃基板或石英基板以外,還可以使用由FRP (Fiber Reinforced Plastics;玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯、丙烯酸樹脂等構成的塑膠基板。
雖然在圖4A和圖4B中沒有示出,但是也可以在陰極上設置保護膜。保護膜可以由有機樹脂膜或無機絕緣膜形成。另外,也可以以覆蓋密封材料605的露出部分的方式形成保護膜。另外,保護膜可以覆蓋一對基板的表面及側面、密封層、絕緣層等的露出側面而設置。
作為保護膜可以使用不容易透過水等雜質的材料。因此,可以能夠高效地抑制水等雜質從外部擴散到內部。
作為構成保護膜的材料,可以使用氧化物、氮化物、氟化物、硫化物、三元化合物、金屬或聚合物等。例如,該材料可以含有氧化鋁、氧化鉿、矽酸鉿、氧化鑭、氧化矽、鈦酸鍶、氧化鉭、氧化鈦、氧化鋅、氧化鈮、氧化鋯、氧化錫、氧化釔、氧化鈰、氧化鈧、氧化鉺、氧化釩、氧化銦、氮化鋁、氮化鉿、氮化矽、氮化鉭、氮化鈦、氮化鈮、氮化鉬、氮化鋯、氮化鎵、含有鈦及鋁的氮化物、含有鈦及鋁的氧化物、含有鋁及鋅的氧化物、含有錳及鋅的硫化物、含有鈰及鍶的硫化物、含有鉺及鋁的氧化物、含有釔及鋯的氧化物等。
保護膜較佳為藉由步階覆蓋性(step coverage )良好的成膜方法來形成。這種方法中之一個是原子層沉積(ALD:Atomic Layer Deposition)法。較佳為將可以藉由ALD法形成的材料用於保護膜。藉由ALD法可以形成緻密且裂縫或針孔等缺陷被減少或具備均勻的厚度的保護膜。另外,可以減少當形成保護膜時加工部材受到的損傷。
例如,藉由ALD法可以將均勻且缺陷少的保護膜形成在具有複雜的凹凸形狀的表面或觸控面板的頂面、側面以及背面上。
如上所述,可以得到使用實施方式1及實施方式2所示的發光器件製造的發光裝置。
因為本實施方式中的發光裝置使用實施方式1及實施方式2所示的發光器件,所以可以得到具有優良特性的發光裝置。明確而言,實施方式1及實施方式2所示的發光器件是壽命長的發光器件,從而可以實現可靠性良好的發光裝置。另外,使用實施方式1及實施方式2所示的發光器件的發光裝置的發光效率良好,由此可以實現低功耗的發光裝置。
圖5A和圖5B示出藉由形成呈現白色發光的發光器件設置彩色層(濾色片)等來實現全彩色化的發光裝置的例子。圖5A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部1042、像素部1040、驅動電路部1041、發光器件的陽極1024W、1024R、1024G、1024B、分隔壁1025、EL層1028、發光器件的陰極1029、密封基板1031、密封材料1032等。
另外,在圖5A中,將彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)設置在透明基材1033上。另外,還可以設置黑矩陣1035。對設置有彩色層及黑矩陣的透明基材1033進行對準而將其固定到基板1001上。另外,彩色層及黑矩陣1035被保護層1036覆蓋。另外,圖5A示出具有光不透過彩色層而透射到外部的發光層及光透過各顏色的彩色層而透射到外部的發光層,不透過彩色層的光成為白色光且透過彩色層的光成為紅色光、綠色光、藍色光,因此能夠以四個顏色的像素呈現影像。
圖5B示出將彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)形成在閘極絕緣膜1003和第一層間絕緣膜1020之間的例子。如上述那樣,也可以將彩色層設置在基板1001和密封基板1031之間。
另外,在以上說明的發光裝置中,雖然說明了具有從形成有FET的基板1001一側取出光的結構(底部發射型)的發光裝置,但是也可以採用具有從密封基板1031一側取出發光的結構(頂部發射型)的發光裝置。圖6示出頂部發射型發光裝置的剖面圖。在此情況下,基板1001可以使用不使光透過的基板。到製造用來使FET與發光器件的陽極連接的連接電極為止的製程與底部發射型發光裝置同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該絕緣膜也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜相同的材料或其他公知材料形成。
雖然在此發光器件的陽極1024W、1024R、1024G、1024B都是陽極,但是也可以形成為陰極。另外,在採用如圖6所示那樣的頂部發射型發光裝置的情況下,陽極較佳為反射電極。EL層1028的結構採用實施方式1及實施方式2所示的EL層103的結構,並且採用能夠獲得白色發光的元件結構。
在採用圖6所示的頂部發射結構的情況下,可以使用設置有彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)的密封基板1031進行密封。密封基板1031也可以設置有位於像素和像素之間的黑矩陣1035。彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)、黑矩陣1035也可以被保護層1036覆蓋。另外,作為密封基板1031,使用具有透光性的基板。另外,雖然在此示出了以紅色、綠色、藍色、白色的四個顏色進行全彩色顯示的例子,但是並不侷限於此,也可以以紅色、黃色、綠色、藍色的四個顏色或紅色、綠色、藍色的三個顏色進行全彩色顯示。
在頂部發射型的發光裝置中,可以較佳地適用微腔結構。將反射電極用作陽極且將半透射式電極用作陰極,由此可以得到具有微腔結構的發光器件。在反射電極與半透射式電極之間至少含有EL層,並且至少含有成為發光區域的發光層。
注意,反射電極是其可見光反射率為40%至100%,較佳為70%至100%,並且其電阻率為1×10-2 Ωcm以下的膜。另外,半透射式電極是其可見光反射率為20%至80%,較佳為40%至70%,並且其電阻率為1×10-2 Ωcm以下的膜。
從EL層所包含的發光層射出的光被反射電極和半透射式電極反射,並且諧振。
在該發光器件中,藉由改變透明導電膜、上述複合材料或載子傳輸材料等的厚度而可以改變反射電極與半透射式電極之間的光程。由此,可以在反射電極與半透射式電極之間加強諧振的波長的光且使不諧振的波長的光衰減。
注意,被反射電極反射回來的光(第一反射光)會給從發光層直接入射到半透射式電極的光(第一入射光)帶來很大的干涉,因此較佳為將反射電極與發光層的光程調節為(2n-1)λ/4(注意,n為1以上的自然數,λ為要放大的光的波長)。藉由調節該光程,可以使第一反射光與第一入射光的相位一致,由此可以進一步放大從發光層發射的光。
另外,在上述結構中,EL層可以含有多個發光層,也可以只含有一個發光層。例如,也可以採用如下結構:組合上述串聯型發光器件的結構,在一個發光器件中夾著電荷產生層設置多個EL層,在每個EL層中形成一個或多個發光層。
藉由採用微腔結構,可以加強指定波長的正面方向上的發光強度,由此可以實現低功耗化。注意,在為使用紅色、黃色、綠色以及藍色的四個顏色的子像素顯示影像的發光裝置的情況下,因為可以獲得由於黃色發光的亮度提高效果,而且可以在所有的子像素中採用適合各顏色的波長的微腔結構,所以能夠實現具有良好的特性的發光裝置。
因為本實施方式中的發光裝置使用實施方式1及實施方式2所示的發光器件,所以可以得到具有優良特性的發光裝置。明確而言,實施方式1及實施方式2所示的發光器件是壽命長的發光器件,從而可以實現可靠性良好的發光裝置。另外,使用實施方式1及實施方式2所示的發光器件的發光裝置的發光效率良好,由此可以實現低功耗的發光裝置。
雖然到這裡說明了主動矩陣型發光裝置,但是下面說明被動矩陣型發光裝置。圖7A和圖7B示出藉由使用本發明製造的被動矩陣型發光裝置。注意,圖7A是示出發光裝置的透視圖,並且圖7B是沿圖7A的線X-Y切斷而獲得的剖面圖。在圖7A和圖7B中,在基板951上的電極952與電極956之間設置有EL層955。電極952的端部被絕緣層953覆蓋。在絕緣層953上設置有隔離層954。隔離層954的側壁具有如下傾斜,亦即,越接近基板表面,兩個側壁之間的間隔越窄。換句話說,隔離層954的短邊方向的剖面是梯形,底邊(朝向與絕緣層953的面方向相同的方向並與絕緣層953接觸的邊)比上邊(朝向與絕緣層953的面方向相同的方向並與絕緣層953不接觸的邊)短。如此,藉由設置隔離層954,可以防止起因於靜電等的發光器件的不良。另外,在被動矩陣型發光裝置中,藉由使用實施方式1及實施方式2所示的發光器件,也可以得到可靠性良好的發光裝置或者低功耗的發光裝置。
以上說明的發光裝置能夠控制配置為矩陣狀的微小的多個發光器件中的每一個,所以該發光裝置適用於進行影像顯示的顯示裝置。
另外,本實施方式可以與其他實施方式自由地組合。
實施方式4 在本實施方式中,參照圖8A和圖8B對將實施方式1及實施方式2所示的發光器件用於照明設備的例子進行說明。圖8B是照明設備的俯視圖,圖8A是沿著圖8B的線e-f切斷的剖面圖。
在本實施方式的照明設備中,在用作支撐體的具有透光性的基板400上形成有陽極401。陽極401相當於實施方式2中的陽極101。當從陽極401一側取出光時,陽極401使用具有透光性的材料形成。
在基板400上形成用來對陰極404供應電壓的焊盤412。
在陽極401上形成有EL層403。EL層403相當於實施方式1及實施方式2中的EL層103的結構或組合發光單元511、發光單元512以及電荷產生層513的結構等。注意,作為它們的結構,參照各記載。
以覆蓋EL層403的方式形成陰極404。陰極404相當於實施方式2中的陰極102。當從陽極401一側取出光時,陰極404使用反射率高的材料形成。藉由使陰極404與焊盤412連接,將電壓供應到陰極404。
如上所述,本實施方式所示的照明設備具備包括陽極401、EL層403以及陰極404的發光器件。由於該發光器件是發光效率高的發光器件,所以本實施方式的照明設備可以提供低功耗的照明設備。
使用密封材料405、406將形成有具有上述結構的發光器件的基板400和密封基板407固定來進行密封,由此製造照明設備。可以僅使用密封材料405和406中的一個。另外,也可以使內側的密封材料406(在圖8B中未圖示)與乾燥劑混合,由此可以吸收水分而提高可靠性。
另外,藉由以延伸到密封材料405、406的外部的方式設置焊盤412和陽極401的一部分,可以將其用作外部輸入端子。另外,也可以在外部輸入端子上設置安裝有轉換器等的IC晶圓420等。
以上,本實施方式所記載的照明設備在EL元件中使用實施方式1及實施方式2所示的發光器件,可以實現可靠性良好的發光裝置。另外,可以實現低功耗的發光裝置。
實施方式5 在本實施方式中,對在其一部分包括實施方式1及實施方式2所示的發光器件的電子裝置的例子進行說明。實施方式1及實施方式2所示的發光器件是壽命良好且可靠性良好的發光器件。其結果是,本實施方式所記載的電子裝置可以實現包括可靠性良好的發光部的電子裝置。
作為採用上述發光器件的電子裝置,例如可以舉出電視機(也稱為電視機或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈珠機等大型遊戲機等。以下,示出這些電子裝置的具體例子。
圖9A示出電視機的一個例子。在電視機中,外殼7101中組裝有顯示部7103。另外,在此示出利用支架7105支撐外殼7101的結構。可以利用顯示部7103顯示影像,並且將實施方式1及實施方式2所示的發光器件排列為矩陣狀而構成顯示部7103。
可以藉由利用外殼7101所具備的操作開關或另行提供的遙控器7110進行電視機的操作。藉由利用遙控器7110所具備的操作鍵7109,可以控制頻道及音量,由此可以控制顯示在顯示部7103中的影像。另外,也可以採用在遙控器7110中設置用來顯示從該遙控器7110輸出的資訊的顯示部7107的結構。
另外,電視機採用具備接收機、數據機等的結構。可以藉由接收機接收一般的電視廣播。再者,藉由數據機連接到有線或無線方式的通訊網路,能夠進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通訊。
圖9B1示出電腦,該電腦包括主體7201、外殼7202、顯示部7203、鍵盤7204、外部連接埠7205、指向裝置7206等。另外,該電腦藉由將實施方式1及實施方式2所示的發光器件排列為矩陣狀並用於顯示部7203而製造。圖9B1中的電腦也可以為如圖9B2所示的方式。圖9B2所示的電腦設置有第二顯示部7210代替鍵盤7204及指向裝置7206。第二顯示部7210是觸控面板,藉由利用指頭或專用筆操作顯示在第二顯示部7210上的輸入用顯示,能夠進行輸入。另外,第二顯示部7210不僅能夠顯示輸入用顯示,而且可以顯示其他影像。另外,顯示部7203也可以是觸控面板。因為兩個螢幕藉由鉸鏈部連接,所以可以防止當收納或搬運時發生問題如螢幕受傷、破壞等。
圖9C示出可攜式終端的一個例子。可攜式終端具備組裝在外殼7401中的顯示部7402、操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。另外,可攜式終端包括將實施方式1及實施方式2所示的發光器件排列為矩陣狀而製造的顯示部7402。
圖9C所示的可攜式終端也可以具有用指頭等觸摸顯示部7402來輸入資訊的結構。在此情況下,能夠用指頭等觸摸顯示部7402來進行打電話或編寫電子郵件等的操作。
顯示部7402主要有三種螢幕模式。第一是以影像的顯示為主的顯示模式,第二是以文字等的資訊的輸入為主的輸入模式,第三是混合顯示模式和輸入模式的兩個模式的顯示輸入模式。
例如,在打電話或編寫電子郵件的情況下,可以採用將顯示部7402主要用於輸入文字的文字輸入模式而輸入在螢幕上顯示的文字。在此情況下,較佳為在顯示部7402的螢幕的大多部分中顯示鍵盤或號碼按鈕。
另外,藉由在可攜式終端內部設置具有陀螺儀和加速度感測器等檢測傾斜度的感測器的檢測裝置,可以判斷可攜式終端的方向(縱或橫)而自動進行顯示部7402的螢幕顯示的切換。
另外,藉由觸摸顯示部7402或對外殼7401的操作按鈕7403進行操作,來進行螢幕模式的切換。此外,也可以根據顯示在顯示部7402上的影像的種類切換螢幕模式。例如,當顯示在顯示部上的影像信號為動態影像的資料時,將螢幕模式切換成顯示模式,而當該影像信號為文字資料時,將螢幕模式切換成輸入模式。
另外,當在輸入模式下藉由檢測出顯示部7402的光感測器所檢測的信號而得知在一定期間內沒有顯示部7402的觸摸操作輸入時,也可以進行控制以將螢幕模式從輸入模式切換成顯示模式。
也可以將顯示部7402用作影像感測器。例如,藉由用手掌或指頭觸摸顯示部7402,來拍攝掌紋、指紋等,能夠進行個人識別。另外,藉由在顯示部中使用發射近紅外光的背光源或發射近紅外光的感測用光源,也能夠拍攝指靜脈、手掌靜脈等。
另外,本實施方式所示的結構可以與實施方式1至實施方式4所示的結構適當地組合來使用。
如上所述,具備實施方式1及實施方式2所示的發光器件的發光裝置的應用範圍極為廣泛,而能夠將該發光裝置用於各種領域的電子裝置。藉由使用實施方式1及實施方式2所示的發光器件,可以得到可靠性高的電子裝置。
圖10A為示出掃地機器人的一個例子的示意圖。
掃地機器人5100包括頂面上的顯示器5101及側面上的多個照相機5102、刷子5103及操作按鈕5104。雖然未圖示,但是掃地機器人5100的底面設置有輪胎和吸入口等。此外,掃地機器人5100還包括紅外線感測器、超音波感測器、加速度感測器、壓電感測器、光感測器、陀螺儀感測器等各種感測器。另外,掃地機器人5100包括無線通訊單元。
掃地機器人5100可以自動行走,檢測垃圾5120,可以從底面的吸入口吸引垃圾。
另外,掃地機器人5100對照相機5102所拍攝的影像進行分析,可以判斷牆壁、家具或步階等障礙物的有無。另外,在藉由影像分析檢測佈線等可能會繞在刷子5103上的物體的情況下,可以停止刷子5103的旋轉。
可以在顯示器5101上顯示電池的剩餘電量和所吸引的垃圾的量等。可以在顯示器5101上顯示掃地機器人5100的行走路徑。另外,顯示器5101可以是觸控面板,可以將操作按鈕5104顯示在顯示器5101上。
掃地機器人5100可以與智慧手機等可攜式電子裝置5140互相通訊。照相機5102所拍攝的影像可以顯示在可攜式電子裝置5140上。因此,掃地機器人5100的擁有者在出門時也可以知道房間的情況。另外,可以使用智慧手機等可攜式電子裝置確認顯示器5101的顯示內容。
可以將本發明的一個實施方式的發光裝置用於顯示器5101。
圖10B所示的機器人2100包括運算裝置2110、照度感測器2101、麥克風2102、上部照相機2103、揚聲器2104、顯示器2105、下部照相機2106、障礙物感測器2107及移動機構2108。
麥克風2102具有檢測使用者的聲音及周圍的聲音等的功能。另外,揚聲器2104具有發出聲音的功能。機器人2100可以使用麥克風2102及揚聲器2104與使用者交流。
顯示器2105具有顯示各種資訊的功能。機器人2100可以將使用者所希望的資訊顯示在顯示器2105上。顯示器2105可以安裝有觸控面板。顯示器2105可以是可拆卸的資訊終端,藉由將該資訊終端設置在機器人2100的所定位置,可以進行充電及資料的收發。
上部照相機2103及下部照相機2106具有對機器人2100的周圍環境進行攝像的功能。另外,障礙物感測器2107可以檢測機器人2100使用移動機構2108移動時的前方的障礙物的有無。機器人2100可以使用上部照相機2103、下部照相機2106及障礙物感測器2107認知周圍環境而安全地移動。可以將本發明的一個實施方式的發光裝置用於顯示器2105。
圖10C是示出護目鏡型顯示器的一個例子的圖。護目鏡型顯示器例如包括外殼5000、顯示部5001、揚聲器5003、LED燈5004、連接端子5006、感測器5007(它具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風5008、顯示部5002、支撐部5012、耳機5013等。
可以將本發明的一個實施方式的發光裝置用於顯示部5001及顯示部5002。
圖11示出將實施方式1及實施方式2所示的發光器件用於作為照明設備的檯燈的例子。圖11所示的檯燈包括外殼2001和光源2002,並且作為光源2002使用實施方式3所記載的照明設備。
圖12示出將實施方式1及實施方式2所示的發光器件用於室內的照明設備3001的例子。實施方式1及實施方式2所示的發光器件是可靠性高的發光器件,從而可以實現可靠性良好的照明設備。另外,因為實施方式1及實施方式2所示的發光器件能夠實現大面積化,所以能夠用於大面積的照明設備。另外,因為實施方式1及實施方式2所示的發光器件的厚度薄,所以能夠製造實現薄型化的照明設備。
還可以將實施方式1及實施方式2所示的發光器件安裝在汽車的擋風玻璃或儀表板上。圖13示出將實施方式1及實施方式2所示的發光器件用於汽車的擋風玻璃或儀表板的一個實施方式。顯示區域5200至顯示區域5203是使用實施方式1及實施方式2所示的發光器件設置的顯示區域。
顯示區域5200和顯示區域5201是設置在汽車的擋風玻璃上的安裝有實施方式1及實施方式2所示的發光器件的顯示裝置。藉由使用具有透光性的電極製造陽極和陰極,可以將實施方式1及實施方式2所示的發光器件形成為能看到對面的景色的所謂的透視式顯示裝置。若採用透視式顯示,即使設置在汽車的擋風玻璃上,也不妨礙視界。另外,在設置用來驅動的電晶體等的情況下,較佳為使用具有透光性的電晶體,諸如使用有機半導體材料的有機電晶體或使用氧化物半導體的電晶體等。
顯示區域5202是設置在支柱部分的安裝有實施方式1及實施方式2所示的發光器件的顯示裝置。藉由在顯示區域5202上顯示來自設置在車廂上的成像單元的影像,可以補充被支柱遮擋的視界。另外,同樣地,設置在儀表板部分上的顯示區域5203藉由顯示來自設置在汽車外側的成像單元的影像,能夠補充被車廂遮擋的視界的死角,而提高安全性。藉由顯示影像以補充不看到的部分,更自然且簡單地確認安全。
顯示區域5203還可以藉由顯示導航資訊、速度表、轉速表、行車距離、加油量、排檔狀態、空調的設定等提供各種資訊。使用者可以適當地改變顯示內容及佈置。另外,這些資訊也可以顯示在顯示區域5200至顯示區域5202上。另外,也可以將顯示區域5200至顯示區域5203用作照明設備。
圖14A和圖14B示出可折疊的可攜式資訊終端5150。可折疊的可攜式資訊終端5150包括外殼5151、顯示區域5152及彎曲部5153。圖14A示出展開狀態的可攜式資訊終端5150。圖14B示出折疊狀態的可攜式資訊終端5150。雖然可攜式資訊終端5150具有較大的顯示區域5152,但是藉由將可攜式資訊終端5150折疊,可攜式資訊終端5150變小而可攜性好。
可以由彎曲部5153將顯示區域5152折疊成一半。彎曲部5153由可伸縮的構件和多個支撐構件構成,在折疊時,可伸縮的構件被拉伸,以彎曲部5153具有2mm以上,較佳為3mm以上的曲率半徑的方式進行折疊。
另外,顯示區域5152也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入/輸出裝置)。可以將本發明的一個實施方式的發光裝置用於顯示區域5152。
此外,圖15A至圖15C示出能夠折疊的可攜式資訊終端9310。圖15A示出展開狀態的可攜式資訊終端9310。圖15B示出從展開狀態和折疊狀態中的一個狀態變為另一個狀態的中途的狀態的可攜式資訊終端9310。圖15C示出折疊狀態的可攜式資訊終端9310。可攜式資訊終端9310在折疊狀態下可攜性好,在展開狀態下因為具有無縫拼接的較大的顯示區域所以顯示一覽性強。
顯示面板9311由鉸鏈部9313所連接的三個外殼9315支撐。注意,顯示面板9311也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入輸出裝置)。另外,藉由在兩個外殼9315之間的鉸鏈部9313處彎折顯示面板9311,可以使可攜式資訊終端9310從展開狀態可逆性地變為折疊狀態。可以將本發明的一個實施方式的發光裝置用於顯示面板9311。 實施例1
在本實施例中對本發明的一個實施方式的發光器件1進行說明。以下示出發光器件1使用的有機化合物的結構式。
Figure 02_image009
(發光器件1的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為2mm×2mm。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社(Analysis Atelier Corporation),材料序號: 1S20170124)的重量比為1:0.1(=BBABnf:NDP-9)且厚度為10nm的方式進行共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為20nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為10nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑)(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,以上述結構式(iii)所表示的9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(簡稱:αN-βNPAnth)與(iv)所表示的3,10-雙[N-(9-苯基-9H-咔唑-2-基)-N-苯基胺基]萘并[2,3-b;6,7-b’]雙苯并呋喃(簡稱:3,10PCA2Nbf(IV)-02)的重量比為1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)且厚度為25nm的方式進行共蒸鍍,由此形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與上述結構式(vi)所示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:0.9(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍,來形成電子傳輸層114。
在形成電子傳輸層114之後,以1nm的厚度蒸鍍Liq來形成電子注入層115,接著,以200nm的厚度蒸鍍鋁來形成陰極102,由此製造本實施例的發光器件1。
發光器件1的元件結構如下表所示。
Figure 02_image011
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image013
在氮氛圍的手套箱中,以不使該發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對該發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖16示出發光器件1的亮度-電流密度特性,圖17示出電流效率-亮度特性,圖18示出亮度-電壓特性,圖19示出電流-電壓特性,圖20示出外部量子效率-亮度特性,圖21示出發射光譜。另外,表3示出發光器件1的1000cd/m2 附近的主要特性。
Figure 02_image015
由圖16至圖21及表3可知,本發明的一個實施方式的發光器件1是特性良好的藍色發光器件。
另外,圖22是示出電流密度為50mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表。如圖22所示,作為本發明的一個實施方式的發光器件的發光器件1在經過600小時時也保持初始亮度的90%左右的亮度,由此可知隨著驅動時間的累積的亮度下降極小且壽命非常長。
另外,已知發光器件1的劣化曲線是在發生一次亮度下降後亮度上升。也就是說,劣化曲線具有極大點。由於具有該劣化舉動,所以發光器件1是壽命非常長的發光器件。 實施例2
在本實施例中,對本發明的一個實施方式的發光器件2進行說明。以下示出在發光器件2中使用的有機化合物的結構式。
Figure 02_image017
(發光器件2的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為2mm×2mm。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b] 萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.1 (=BBABnf:NDP-9)且厚度為10nm的方式共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為20nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為10nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,將由上述結構式(vii)表示的7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)與由(viii)表示的N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)以重量比為1:0.03(=cgDBCzPA:1,6BnfAPrn-03)且厚度為25 nm的方式進行共蒸鍍形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與由上述結構式(vi)表示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:1(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍形成電子傳輸層114。
形成電子傳輸層114之後以Liq的厚度為1nm的方式進行蒸鍍形成電子注入層115,然後以鋁的膜度為200nm的方式進行蒸鍍形成陰極102,由此製造本實施例的發光器件2。
發光器件2的元件結構如下表所示。
Figure 02_image019
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image021
在氮氛圍的手套箱中,以不使發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對該發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖23示出發光器件2的亮度-電流密度特性,圖24示出電流效率-亮度特性,圖25示出亮度-電壓特性,圖26示出電流-電壓特性,圖27示出外部量子效率-亮度特性,圖28示出發射光譜。另外,表6示出發光器件2的1000cd/m2 附近的主要特性。
Figure 02_image023
由圖23至圖28及表6可知,本發明的一個實施方式的發光器件2是特性良好的藍色發光器件。
另外,圖29示出電流密度50mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表。如圖29所示,作為本發明的一個實施方式的發光器件的發光器件2在經過300小時時也保持初始亮度的97%以上的亮度,由此可知隨著驅動時間的累積的亮度下降特別小且壽命非常長。
另外,由發光器件2的劣化曲線可知發生一次亮度下降後亮度上升並具有極大值。藉由具有上述那樣的劣化舉動,發光器件2的初始劣化得到抑制而具有非常長的壽命。 實施例3
在本實施例中,對本發明的一個實施方式的發光器件3進行說明。以下示出在發光器件3中使用的有機化合物的結構式。
Figure 02_image025
(發光器件3的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為2mm×2mm。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b] 萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.1( =BBABnf:NDP-9)且厚度為10nm的方式共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為20nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為10nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,將由上述結構式(vii)表示的7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA )與由(iv)表示的3,10-雙[N-(9-苯基-9H-咔唑-2-基)-N-苯基胺基]萘并[2,3-b;6,7-b’]雙苯并呋喃(簡稱: 3,10PCA2Nbf(IV)-02)以重量比為1:0.015(=cgDBCzPA: 3,10PCA2Nbf(IV)-02)且厚度為25nm的方式進行共蒸鍍形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與由上述結構式(vi)表示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:1(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍形成電子傳輸層114。
形成電子傳輸層114之後以Liq的厚度為1nm的方式進行蒸鍍形成電子注入層115,然後以鋁的膜度為200nm的方式進行蒸鍍形成陰極102,由此製造本實施例的發光器件3。
發光器件3的元件結構如下表所示。
Figure 02_image027
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image029
在氮氛圍的手套箱中,以不使該發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖30示出發光器件3的亮度-電流密度特性,圖31示出電流效率-亮度特性,圖32示出亮度-電壓特性,圖33示出電流-電壓特性,圖34示出外部量子效率-亮度特性,圖35示出發射光譜。另外,表9示出發光器件3的1000cd/m2 附近的主要特性。
Figure 02_image031
由圖30至圖35及表9可知,本發明的一個實施方式的發光器件3是特性良好的藍色發光器件。
另外,圖36示出電流密度50mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表。如圖36所示,作為本發明的一個實施方式的發光器件的發光器件3在經過300小時時也保持初始亮度的94%以上的亮度,由此可知隨著驅動時間的累積的亮度下降特別小且壽命非常長。
另外,由發光器件3的劣化曲線可知在其初期發生亮度上升而具有極大值。藉由具有上述那樣的劣化舉動,發光器件3的初始劣化得到抑制而具有非常長的壽命。 實施例4
本實施例中對本發明的一個實施方式的發光器件4進行說明。以下示出發光器件4使用的有機化合物的結構式。
Figure 02_image033
(發光器件4的製造方法) 首先,在玻璃基板上作為反射電極利用濺射法形成100nm厚的銀(Ag)、鈀(Pd)、銅(Cu)的合金膜(Ag-Pd-Cu(APC)膜),然後作為透明電極利用濺射法形成85nm厚的含有氧化矽的銦錫氧化物(ITSO),由此形成陽極101。電極面積為4mm2 (2mm×2mm)。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.05( =BBABnf:NDP-9)且厚度為10nm的方式進行共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為25nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為10nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑)(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,以上述結構式(iii)所表示的9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(簡稱:αN-βNPAnth)與(iv)所表示的3,10-雙[N-(9-苯基-9H-咔唑-2-基)-N-苯基胺基]萘并[2,3-b;6,7-b’]雙苯并呋喃(簡稱:3,10PCA2Nbf(IV)-02)的重量比為1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)且厚度為25nm的方式進行共蒸鍍,由此形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與上述結構式(vi)所示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:1(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍,來形成電子傳輸層114。
形成電子傳輸層114之後,以厚度為1nm的方式蒸鍍Liq形成電子注入層115,以銀(Ag)與鎂(Mg)的體積比為1:0.1且厚度為15nm的方式進行蒸鍍形成陰極102,由此製造出發光器件4。注意,陰極102是具有反射光的功能及使光透過的功能的半透射式電極,本實施例的發光器件4是從陰極102取出光的頂部發射元件。另外,陰極102上蒸鍍有80nm厚的由上述結構式(ix)表示的1,3,5-三(二苯并噻吩-4-基)-苯(簡稱:DBT3P-II),由此提高取出效率。
發光器件4的元件結構如下表所示。
Figure 02_image035
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image037
在氮氛圍的手套箱中,以不使發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對發光器件4的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖42示出發光器件4的亮度-電流密度特性,圖43示出電流效率-亮度特性,圖44示出亮度-電壓特性,圖45示出電流-電壓特性,圖46示出外部量子效率-亮度特性,圖47示出發射光譜。另外,表12示出發光器件4的1000cd/m2 附近的主要特性。
Figure 02_image039
由圖42至圖47及表12可知,本發明的一個實施方式的發光器件4是特性良好的藍色發光器件。
另外,圖48示出初期亮度為1300cd/m2 時電流密度恆定的條件下的相對於驅動時間的亮度變化的圖表。如圖48所示,作為本發明的一個實施方式的發光器件的發光器件4在經過1000小時時也保持初始亮度的95%左右的亮度,由此可知隨著驅動時間的累積的亮度下降極小且壽命非常長。 實施例5
在本實施例中,對本發明的一個實施方式的發光器件5進行說明。以下示出在發光器件5中使用的有機化合物的結構式。
Figure 02_image041
(發光器件5的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為2mm×2mm。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b] 萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.1( =BBABnf:NDP-9)且厚度為10nm的方式共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為20nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為80nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑)(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,將由上述結構式(x)表示的9-[(3’-二苯并噻吩-4-基)聯苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(簡稱:9mDBtBPNfpr)、由上述結構式(xi)表示的N-[4-(9-苯基-9H-咔唑-3-基)苯基]-雙(9,9-二甲基-9H-茀-2-基)胺(簡稱:PCBFF)、由上述結構式(xii)表示的雙[4,6-二甲基-2-(7-(2-甲基丙基)-2-喹啉-κN)苯基-κC](2,4-戊二酮根-κ2 O,O’)銥(III)(簡稱:RS003))以重量比為0.5:0.5:0.05( =9mDBtBPNfpr:PCBFF:RS003)且厚度為65nm的方式進行共蒸鍍形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與由上述結構式(vi)表示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:1(=ZADN:Liq)且厚度為20nm的方式進行共蒸鍍形成電子傳輸層114。
形成電子傳輸層114之後以Liq的厚度為1nm的方式進行蒸鍍形成電子注入層115,然後以鋁的膜度為200nm的方式進行蒸鍍形成陰極102,由此製造本實施例的發光器件5。
發光器件5的元件結構如下表所示。
Figure 02_image043
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image045
在氮氛圍的手套箱中,以不使發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖49示出發光器件5的亮度-電流密度特性,圖50示出電流效率-亮度特性,圖51示出亮度-電壓特性,圖52示出電流-電壓特性,圖53示出外部量子效率-亮度特性,圖54示出發射光譜。另外,表15示出發光器件5的1000cd/m2 附近的主要特性。
Figure 02_image047
由圖49至圖54及表15可知,本發明的一個實施方式的發光器件5是特性良好的紅色發光器件。
另外,圖55示出電流密度75mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表(劣化曲線)。如圖55所示,作為本發明的一個實施方式的發光器件的發光器件5在經過100小時時也保持初始亮度的99%以上的亮度,由此可知隨著驅動時間的累積的亮度下降特別小且壽命非常長。另外,發光器件5的該劣化曲線呈現具有極大值的特徵形狀,藉由具有該劣化舉動,能夠成為壽命非常長的發光元件。 實施例6
在本實施例中,對本發明的一個實施方式的發光器件6進行說明。以下示出在發光器件6中使用的有機化合物的結構式。
Figure 02_image049
(發光器件6的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為4mm2 (2mm×2mm)。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b] 萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.1( =BBABnf:NDP-9)且厚度為10nm的方式共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為15nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為40nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑)(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,將由上述結構式(xiii)表示的8-(1,1’-聯苯-4-基)-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃[3,2-d]嘧啶(簡稱:8BP-4mDBtPBfpm)、由上述結構式(xiv)表示的3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、由上述結構式(xv)表示的[2-(4-甲基-5-苯基-2-吡啶基-κN)苯基-κC]雙[2-(2-吡啶基-κN)苯基-κC]銥(III)(簡稱:[Ir(ppy)2 (mdppy)] )以重量比為0.4:0.6:0.1(=8BP-4mDBtPBfpm:PCCP:[Ir(ppy)2 (mdppy)])且厚度為45nm的方式進行共蒸鍍形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與由上述結構式(vi)表示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:0.9(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍形成電子傳輸層114。
形成電子傳輸層114之後以Liq的厚度為1nm的方式進行蒸鍍形成電子注入層115,然後以鋁的膜度為200nm的方式進行蒸鍍形成陰極102,由此製造本實施例的發光器件6。
發光器件6的元件結構如下表所示。
Figure 02_image051
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image053
在氮氛圍的手套箱中,以不使發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖56示出發光器件6的亮度-電流密度特性,圖57示出電流效率-亮度特性,圖58示出亮度-電壓特性,圖59示出電流-電壓特性,圖60示出外部量子效率-亮度特性,圖61示出發射光譜。另外,表18示出發光器件6的1000cd/m2 附近的主要特性。
Figure 02_image055
由圖56至圖61及表18可知,本發明的一個實施方式的發光器件6是特性良好的綠色發光器件。
另外,圖62示出電流密度50mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表。如圖62所示,作為本發明的一個實施方式的發光器件的發光器件6在經過200小時時也保持初始亮度的80%以上的亮度,由此可知隨著驅動時間的累積的亮度下降特別小且壽命長。 實施例7
在本實施例中,對本發明的一個實施方式的發光器件7進行說明。以下示出在發光器件7中使用的有機化合物的結構式。
Figure 02_image057
(發光器件7的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為2mm×2mm。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以上述結構式(i)所表示的N,N-雙(4-聯苯)-6-苯基苯并[b] 萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.1( =BBABnf:NDP-9)且厚度為10nm的方式共蒸鍍,由此形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為55nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為30nm的方式蒸鍍上述結構式(ii)所表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑)(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,將由上述結構式(x)表示的9-[(3’-二苯并噻吩-4-基)聯苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(簡稱:9mDBtBPNfpr)、由上述結構式(xvi)表示的N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、由上述結構式(xvii)表示的雙{4,6-二甲基-2-[5-(5-氰-2-甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(dmdppr-m5CP)2 (dpm)])以重量比為0.8:0.2:0.1(=9mDBtBPNfpr:PCBBiF: [Ir(dmdppr-m5CP)2 (dpm)])且厚度為60nm的方式進行共蒸鍍形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與由上述結構式(vi)表示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:0.9(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍形成電子傳輸層114。
形成電子傳輸層114之後以Liq的厚度為1nm的方式進行蒸鍍形成電子注入層115,然後以鋁的膜度為200nm的方式進行蒸鍍形成陰極102,由此製造本實施例的發光器件7。
發光器件7的元件結構如下表所示。
Figure 02_image059
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image061
在氮氛圍的手套箱中,以不使發光器件暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖63示出發光器件7的亮度-電流密度特性,圖64示出電流效率-亮度特性,圖65示出亮度-電壓特性,圖66示出電流-電壓特性,圖67示出外部量子效率-亮度特性,圖68示出發射光譜。另外,表21示出發光器件7的1000cd/m2 附近的主要特性。
Figure 02_image063
由圖63至圖68及表21可知,本發明的一個實施方式的發光器件7是特性良好的紅色發光器件。
另外,圖69示出電流密度75mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表。如圖69所示,作為本發明的一個實施方式的發光器件的發光器件7在經過400小時時也保持初始亮度的90%以上的亮度,由此可知隨著驅動時間的累積的亮度下降特別小且壽命非常長。 實施例8
在本實施例中,對本發明的一個實施方式的發光器件8及發光器件9進行說明。以下示出在發光器件8及發光器件9中使用的有機化合物的結構式。
Figure 02_image065
(發光器件8的製造方法) 首先,在玻璃基板上藉由濺射法形成含氧化矽的氧化錫銦(ITSO)來形成陽極101。注意,其厚度為70nm,電極面積為4mm2 (2mm×2mm)。
接著,作為用來在基板上形成發光器件的預處理,用水洗滌基板表面,以200℃烘烤1小時,然後進行370秒的UV臭氧處理。
然後,將基板放入其內部被減壓到10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空烘烤30分鐘,然後對基板進行冷卻30分鐘左右。
接著,以使形成有陽極101的面朝下的方式將形成有陽極101的基板固定在設置於真空蒸鍍裝置內的基板支架上,並且在陽極101上藉由利用電阻加熱的蒸鍍法以由上述結構式(i)表示的N,N-雙(4-聯苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(簡稱:BBABnf)與NDP-9(分析工房株式會社,材料序號:1S20170124)的重量比為1:0.05( =BBABnf:NDP-9)且厚度為10nm的方式進行共蒸鍍形成電洞注入層111。
接著,在電洞注入層111上作為第一電洞傳輸層112-1以厚度為40nm的方式蒸鍍BBABnf,然後作為第二電洞傳輸層112-2以厚度為20nm的方式蒸鍍由上述結構式(ii)表示的3,3’-(萘-1,4-二基)雙(9-苯基-9H-咔唑)(簡稱:PCzN2),由此形成電洞傳輸層112。注意,第二電洞傳輸層112-2也被用作電子障壁層。
接著,將由上述結構式(xviii)表示的4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)、由上述結構式(xix)表示的8-(二苯并噻吩-4-基)-4-苯基-2-(9’-苯基-3,3’-聯-9H-咔唑-9-基)-[1]苯并呋喃[3,2-d]嘧啶(簡稱:4Ph-8DBt-2PCCzBfpm)、由上述結構式(xx)表示的2,8-二-三級丁基-5,11-雙(4-三級丁基苯基)-6,12-二苯基稠四苯(簡稱:TBRb)以重量比為1.0:0.1:0.01(=4,6mCzP2Pm:4Ph-8DBt-2PCCzBfpm:TBRb)且厚度為40nm的方式進行共蒸鍍形成發光層113。
然後,在發光層113上以由上述結構式(v)表示的2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(簡稱:ZADN)與由上述結構式(vi)表示的8-羥基喹啉鋰(簡稱:Liq)的重量比為1:1(=ZADN:Liq)且厚度為25nm的方式進行共蒸鍍形成電子傳輸層114。
在形成電子傳輸層114之後,以1nm的厚度蒸鍍Liq來形成電子注入層115,接著,以200nm的厚度蒸鍍鋁來形成陰極102,由此製造本實施例的發光器件8。
(發光器件9的製造方法) 除了將發光器件8中的第一電洞傳輸層112-1形成為30nm厚並不使用TBRb形成發光層113之外,發光器件9與發光器件8以同樣的方法製造。
發光器件8及發光器件9的元件結構如下表所示。
Figure 02_image067
另外,發光層中使用的4Ph-8DBt- 2PCCzBfpm是呈現熱活化延遲螢光(TADF)的物質,發光器件8將4Ph-8DBt-2PCCzBfpm用作主體材料的一部分並具有能量被轉移到作為螢光發光物質的TBRb的發光機制,而在發光器件9中,作為TADF材料的4Ph-8DBt-2PCCzBfpm自身發光。
這裡,以下示出在本實施例中使用的有機化合物的HOMO能階、LUMO能階及電場強度[V/cm]的平方根為600時的電子移動率的表。
Figure 02_image069
在氮氛圍的手套箱中,以不暴露於大氣的方式使用玻璃基板進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理並在80℃的溫度下進行1小時的熱處理),然後對發光器件的初期特性及可靠性進行測量。注意,測定在室溫下進行。
圖70示出發光器件8及發光器件9的亮度-電流密度特性,圖71示出電流效率-亮度特性,圖72示出亮度-電壓特性,圖73示出電流密度-電壓特性,圖74示出外部量子效率-亮度特性,圖75示出發射光譜。另外,表24示出發光器件8及發光器件9的1000cd/m2 附近的主要特性。
Figure 02_image071
由圖70至圖75及表24可知,本發明的一個實施方式的發光器件8及發光器件9具有良好的發光效率。
另外,圖76示出電流密度50mA/cm2 的條件下的相對於驅動時間的亮度變化的圖表。如圖76所示,藉由分別將TADF用於主體材料和發光材料,作為本發明的一個實施方式的發光器件的發光器件8及發光器件9可以具有長壽命。
〈參考例1〉 在本參考例中,對在各實施例中使用的有機化合物的HOMO能階、LUMO能階以及電子移動率的算出方法進行說明。
HOMO能階及LUMO能階可以根據循環伏安法(CV)測定算出。
作為測定裝置,使用電化學分析儀(BAS株式會社(BAS Inc.)製造的ALS型號600A或600C)。以如下方法調變用於CV測定的溶液:作為溶劑,使用脫水二甲基甲醯胺(DMF)(株式會社Aldrich製造,99.8%,目錄號碼:22705-6),使作為支援電解質的過氯酸四正丁銨(n- Bu4 NClO4 )(東京化成工業株式會社(Tokyo Chemical Industry Co., Ltd.)製造,目錄號碼:T0836)以100mmol/L的濃度溶解,且使測定物件以2mmol/L的濃度溶解而調變。(BAS株式會社(BAS Inc.)制,PTE鉑電極),作為輔助電極使用鉑電極(BAS株式會社(BAS Inc.)制,VC-3用Pt對電極(5cm)),作為參比電極使用Ag/Ag+ 電極(BAS株式會社(BAS Inc.)制,RE7非水溶劑型參比電極)。注意,在室溫下(20℃至25℃)進行測量。將CV測定時的掃描速度統一為0.1V/sec,測量出相對於參考電極的氧化電位Ea[V]及還原電位Ec[V]。Ea為氧化-還原波之間的中間電位,Ec為還原-氧化波之間的中間電位。在此,已知在本實施例中使用的參考電極的相對於真空能階的勢能為-4.94[eV],因此利用HOMO能階[eV]=-4.94-Ea、LUMO能階[eV]=-4.94-Ec這兩個公式分別求得HOMO能階及LUMO能階。
電子移動率可以藉由阻抗譜法(Impedance Spectroscopy:IS法)測定。
作為EL材料的載子移動率的測定方法,已知有飛行時間法(Time-of-flight:TOF法)或從空間電荷限制電流(Space-charge-limited current:SCLC)的I-V特性來求出的方法(SCLC法)等。TOF法與實際上的有機EL元件相比需要膜厚度更厚的樣本。SCLC法具有不能得到載子移動率的電場強度依賴性等的缺點。在IS法中,由於測定所需要的有機膜的厚度薄,亦即,幾百nm左右,所以可以使用較少量的EL材料形成膜,可以在採用近於實際上的EL元件的膜厚度的情況下測定移動率,可以得到載子移動率的電場強度依賴性。
在IS法中,對EL元件施加微小正弦波電壓信號(V=V0 [exp(jωt)]),從其回應電流信號(I=I0 exp[j(ωt+ϕ)] )的電流振幅與輸入信號的相位差求出EL元件的阻抗(Z=V/I)。藉由從高頻電壓變化到低頻電壓而將其施加到元件,可以使具有有助於阻抗的各種弛豫時間的成分分離並進行測定。
這裡,阻抗的倒數的導納Y(=1/Z)如下述公式(1)那樣可以由導電G及電納B表示。
Figure 02_image073
再者,藉由單一電荷注入(single injection)模型,可以算出下述公式(2)及(3)。這裡,g(公式(4))為微分電導。注意,在公式中,C表示靜電電容(電容),θ表示渡越角(ωt),ω表示角頻率。t為渡越時間。作為分析使用電流方程、泊松方程、電流連續方程,並忽略擴散電流及陷阱態的存在。
Figure 02_image075
從靜電電容的頻率特性算出移動率的方法為-∆B法。此外,從導電的頻率特性算出移動率的方法為ω∆G法。
實際上,首先,製造想要算出電子移動率的材料的僅電子元件。僅電子元件是以作為載子只流過電子的方式設計的元件。在本說明書中,對從靜電電容的頻率特性算出移動率的方法(-∆B法)進行說明。圖37示出所使用的僅電子元件的示意圖。
這次為了用於測定製造的僅電子元件如圖37所示那樣在陽極201與陰極202之間包括第一層210、第二層211及第三層212。將要求出其電子移動率的材料用作第二層211的材料。這次以ZADN與Liq為1:1(重量比)的共蒸鍍膜的電子移動率的測定為例進行說明。具體的結構例子如下表所示。
Figure 02_image077
圖38示出了使用ZADN及Liq的共蒸鍍膜作為第二層211形成的僅電子元件的電流密度-電壓特性。
阻抗測定在5.0V至9.0V的範圍內施加直流電壓的同時在交流電壓為70mV、頻率為1Hz至3MHz的條件下進行測定。從這裡得到的阻抗的倒數的導納(上述(1)公式)算出電容。圖39示出施加電壓為7.0V時算出的電容C的頻率特性。
由於由微小電壓信號注入的載子所產生的空間電荷不能完全跟上微小交流電壓,電容C的頻率特性是從電流產生相位差得到的。這裡,膜中的載子的走行時間被所注入的載子到達相對電極的時間T定義,由以下公式(5)表示。
Figure 02_image079
負電納變化(-∆B)對應於靜電電容變化-∆C乘以角頻率ω的值(-ω∆C)。由公式(3)導出最低頻率一側的峰頻率f’max (=ωmax /2π)與走行時間T之間滿足以下公式(6)的關係。
Figure 02_image081
圖40示出從上述測定算出的(亦即,直流電壓為7.0V時的)-∆B的頻率特性。在圖式中以箭頭示出從圖40求出的最低頻率一側的峰頻率f’max
由於從由上述測定及分析得到的f’max 求出走行時間T(參照上述公式(6)),所以可以從上述公式(5)求出這裡的電壓為7.0V時的電子移動率。藉由在直流電壓為5.0V至9.0V範圍內進行同樣的測定,可以算出各電壓(電場強度)的電子移動率,因此也可以測定移動率的電場強度依賴性。
圖41示出藉由上述算出法獲得的各有機化合物的電子移動率的最終電場強度依賴性,表10示出從圖41讀出的電場強度[V/cm]的平方根為600[V/cm]1/2 時的電子移動率的值。
Figure 02_image083
如上所述可以算出電子移動率。注意,關於詳細的測定方法,參照Takayuki Okachi等人的“Japanese Journal of Applied Physics” Vol. 47, No. 12, 2008, pp. 8965-8972。
〈參考例2〉 實施例中使用的9mDBtBPNfpr及8BP-4mDBtPBfpm為未公開的物質,對各個合成方法進行說明。
≪9mDBtBPNfpr的合成方法≫ 在實施例1中,對由結構式(x)所示的9-[(3’-二苯并噻吩-4-基)聯苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(簡稱:9mDBtBPNfpr)的合成方法進行說明。以下示出 9mDBtBPNfpr的結構。
Figure 02_image085
(步驟1:6-氯-3-(2-甲氧基萘-1-基)吡嗪-2-胺的合成) 首先,將3-溴-6-氯吡嗪-2-胺4.37g、2-甲氧基萘-1-硼酸4.23g、氟化鉀4.14g及脫水四氫呋喃75mL放入安裝有回流管的三頸燒瓶內,對其內部進行氮置換。在減壓下攪拌燒瓶內以進行脫氣,然後添加三(二亞苄基丙酮)二鈀(0)(簡稱:Pd2 (dba)3 )0.57g及三三級丁基膦(簡稱:P(tBu)3 ) 4.5mL,以80℃攪拌54小時使其反應。
經過指定時間之後,對所得到的混合物進行吸引過濾,濃縮濾液。然後,藉由以甲苯:乙酸乙酯=9:1為展開溶劑的矽膠管柱層析法進行純化,得到目的物的吡嗪衍生物(以36%的產率得到黃白色粉末2.19g)。以下示出步驟1的合成方案。
Figure 02_image087
(步驟2:9-氯萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪的合成) 接著,將上述步驟1中得到的6-氯-3-(2-甲氧基萘-1-基)吡嗪-2-胺2.18g、脫水四氫呋喃63mL及冰醋酸84mL放入三頸燒瓶內,對其內部進行氮置換。在將燒瓶冷卻到 -10℃之後,滴加亞硝酸三級丁酯2.8mL,以-10℃攪拌30分鐘且以0℃攪拌3小時。經過指定時間之後,對所得到的懸浮液添加水250mL並進行吸引過濾,來得到目的物的吡嗪衍生物(以77%的產率得到黃白色粉末1.48g)。以下示出步驟2的合成方案。
Figure 02_image089
(步驟3:9-[(3’-二苯并噻吩-4-基)聯苯-3-基]萘并[1’,2’: 4,5]呋喃并[2,3-b]吡嗪(簡稱:9mDBtBPNfpr)的合成) 接著,將上述步驟2中得到的9-氯萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪1.48g、3’-(4-二苯并噻吩)-1,1’-聯苯-3-硼酸3.41g、2M碳酸鉀水溶液8.8mL、甲苯100mL及乙醇10mL放入三頸燒瓶內,對其內部進行氮置換。在減壓下攪拌燒瓶內以進行脫氣,然後添加雙(三苯基膦)二氯化鈀(II)(簡稱:Pd(PPh3 )2 Cl2 )0.84g,以80℃攪拌18小時以使其反應。
經過指定時間之後,對所得到的懸浮液進行吸引過濾並使用水及乙醇進行洗滌。將所得到的固體溶解於甲苯,經過依次層疊矽藻土、礬土、矽藻土的助濾劑進行過濾,然後使用甲苯及己烷的混合溶劑進行再結晶,來得到目的物(以82%的產率得到淡黃色固體2.66g)。
利用梯度昇華法對所得到的淡黃色固體2.64g進行昇華純化。昇華純化條件為如下:在壓力為2.6Pa且氬氣體流量為15mL/分的條件下,以315℃對固體進行加熱。在昇華純化之後,以89%的產率獲得目的物的淡黃色固體2.34g。以下示出步驟3的合成方案。
Figure 02_image091
以下示出上述步驟3中得到的淡黃色固體的核磁共振光譜法(1 H-NMR)的分析結果。由該結果可知獲得9mDBtBPNfpr。
1 H-NMR.δ(CD2 Cl2 ):7.47-7.51(m,2H),7.60-7.69(m,5H),7.79-7.89(m,6H),8.05(d,1H),8.10-8.11(m,2H),8.18-8.23(m,3H),8.53(s,1H),9.16 (d,1H),9.32(s,1H)。
≪8BP-4mDBtPBfpm的合成方法≫ 在實施例中,對由結構式(xiii)所示的8-(1,1’-聯苯-4-基)-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃[3,2-d]嘧啶(簡稱:8BP-4mDBtPBfpm)的合成方法進行說明。以下示出8BP-4mDBtPBfpm的結構。
Figure 02_image093
(8-(1,1’-聯苯-4-基)-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃[3,2-d]嘧啶的合成) 將8-氯-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃[3,2 -d]嘧啶1.37g、4-聯苯基硼酸0.657g、磷酸三鉀1.91g、二甘醇二甲醚30mL、t-丁醇0.662g放入三頸燒瓶中,在減壓下攪拌來進行脫氣,用氮氣置換燒瓶內的空氣。
將該混合物加熱至60℃,加入醋酸鈀(II) 23.3mg、二(1-金剛烷)-正丁基膦66.4mg,以120℃進行攪拌27小時。對該反應液加入水,進行吸引過濾,利用水、乙醇及甲苯對所得到的濾渣進行洗滌。將該濾渣溶解於加熱了的甲苯中,使用依次填充有矽藻土、礬土及矽藻土的助濾劑進行過濾。將所得到的溶液濃縮並乾燥,利用甲苯進行重結晶,由此以74%的產率得到目的物的白色固體1.28g。
藉由梯度昇華法,使1.26g的該白色固體昇華純化。在昇華純化中,在以10mL/min的流量使氬氣體流過且壓力為2.56Pa的條件下,以310℃對固體進行加熱。在昇華純化之後,以80%的產率得到1.01g的目的物的淡黃色固體。以下示出該合成方案。
Figure 02_image095
以下示出上述反應中得到的淡黃色固體的利用核磁共振光譜法(1 H-NMR)的分析結果。由該結果可知獲得8BP-4mDBtPBfpm。
1 H-NMR.δ(CDCl3 ):7.39(t,1H)、7.47-7.53 (m,4H)、7.63-7.67(m,2H)、7.68(d,2H)、7.75(d,2H)、7.79-7.83(m,4H)、7.87(d,1H)、7.98(d,1H)、8.02(d,1H)、8.23-8.26(m,2H)、8.57(s,1H)、8.73(d,1H)、9.05(s,1H)、9.34(s,1H)。
《4Ph-8DBt-2PCCzBfpm的合成方法》 在實施例中,對由結構式(xix)所示的8-(二苯并噻吩-4-基)-4-苯基-2-(9’-苯基-3,3’-聯-9H-咔唑-9-基)-[1]苯并呋喃[3,2-d]嘧啶(簡稱:4Ph-8DBt-2PCCzBfpm)的合成方法進行說明。以下示出4Ph-8DBt-2PCCzBfpm的結構。
Figure 02_image097
(步驟1;2,8-二氯-4-苯基[1]苯并呋喃[3,2-d]嘧啶的合成) 將2,4,8-三氯[1]苯并呋喃[3,2-d]嘧啶10g(37mmol)、苯基硼酸4.5g(371mmol)、2M碳酸鉀水溶液37mL、甲苯180mL、乙醇18mL放入500mL的三頸燒瓶中,進行脫氣,用氮氣置換燒瓶內的空氣。對該混合物加入1.3g(1.8mmol)的雙(三苯基膦)二氯化鈀(II),以80℃攪拌16小時。
經過指定時間之後,濃縮所得到的反應混合物,添加水並進行吸引過濾。使用乙醇對所得到的濾渣進行洗滌,而得到固體。將該固體溶解於甲苯,藉由依次層疊矽藻土、礬土、矽藻土而成的過濾劑進行吸引過濾。濃縮所得到的濾液,以91%的產率得到11g的目的物的白色固體。以下示出步驟1的合成方案。
Figure 02_image099
(步驟2;8-氯-4-苯基-2-(9’-苯基-3,3’-聯-9H-咔唑-9-基)-[1]苯并呋喃[3,2-d]嘧啶的合成) 接著,將5.0g(16mmol)的藉由步驟1得到的2,8-二氯-4-苯基[1]苯并呋喃并[3,2-d]嘧啶、6.5g(16mmol)的9-苯基-3,3’-聯-9H-咔唑、3.1g(32mmol)的三級丁醇鈉以及150mL的二甲苯放在300mL三頸燒瓶中,用氮氣置換燒瓶內的空氣。其中加入224mg(0.64mmol)的二三級丁基(1-甲基-2,2-二苯基環丙)膦(簡稱:cBRIDP)以及58mg(0.16mmol)的氯化烯丙基鈀(II)二聚物,以90℃攪拌7小時。
對所得到的反應混合物添加水,使用甲苯對水層進行萃取。將所得到的萃取溶液和有機層合併,使用飽和食鹽水進行洗滌,對有機層添加無水硫酸鎂以進行乾燥。對所得到的混合物進行重力過濾,濃縮濾液以得到固體。藉由矽膠管柱層析法對該固體進行精煉。作為展開溶劑,使用甲苯:己烷=1:1的混合溶劑。濃縮所得到的餾分,以50%的產率得到5.5g的目的物的黃色固體。以下示出步驟2的合成方案。
Figure 02_image101
(步驟3:4Ph-8DBt-2PCCzBfpm的合成) 將2.25g(3.3mmol)的藉由上述步驟2得到的8-氯-4-苯基-2-(9’-苯基-3,3’-聯-9H-咔唑-9-基)-[1]苯并呋喃并[3,2-d]嘧啶、0.82g(3.6mmol)的4-二苯并噻吩硼酸、1.5g(9.8 mmol)的氟化銫以及35mL的二甲苯放在三頸燒瓶中,用氮氣置換燒瓶內的空氣。
將該混合物的溫度上升到60℃,其中加入60 mg(0.065mmol)的三(二亞苄基丙酮)二鈀(0)及77 mg(0.2mmol)的2’-(二環己基膦基)苯乙酮乙烯縮酮,以100℃加熱並攪拌16小時。再者,其中加入30mg(0.032mmol)的三(二亞苄基丙酮)二鈀(0)及36mg(0.1mmol)的2’-(二環己基膦基)苯乙酮乙烯縮酮,以110℃加熱並攪拌7小時,並且以120℃加熱並攪拌7小時。
對所得到的反應物添加水並進行吸引過濾,使用乙醇對濾渣進行洗滌。將該固體溶解於甲苯,藉由依次層疊矽藻土、礬土、矽藻土而成的過濾劑進行吸引過濾。濃縮所得到的濾液,使用甲苯進行重結晶,以68%的產率得到1.87g的目的物的黃色固體。以下示出合成方案。
Figure 02_image103
藉由梯度昇華法,使0.90g的所得到的黃色固體昇華純化。昇華純化在壓力為1.58×10-2 Pa、加熱溫度400℃的條件下對固體進行加熱。昇華純化後,以86%的產率獲得0.78g的目的物的黃色固體。
以下示出上述反應中得到的黃色固體的利用核磁共振光譜法(1 H-NMR)的分析結果。由該結果可知在本合成例中得到了4Ph-8DBt-2PCCzBfpm。
1 H-NMR.δ(CDCl3 ):7.33(t,1H),7.41-7.53 (m,7H),7.59(t,1H),7.62-7.70(m,7H),7.72-7.75 (m,2H),7.83(dd,1H),7.87(dd,1H),7.93-7.95(m,2H),8.17(dd,1H),8.23-8.26(m,4H),8.44(d,1H),8.52(d,1H),8.75(d,1H),8.2(d,2H),9.02(d,1H),9.07(d,1H)。
101:陽極 102:陰極 103:EL層 111:電洞注入層 112:電洞傳輸層 112-1:第一電洞傳輸層 112-2:第二電洞傳輸層 113:發光層 113-1:發光區域 114:電子傳輸層 114-1:非發光再結合區域 115:電子注入層 116:電荷產生層 117:P型層 118:電子中繼層 119:電子注入緩衝層 201:陽極 202:陰極 210:第一層 211:第二層 212:第三層 400:基板 401:陽極 403:EL層 404:陰極 405:密封劑 406:密封劑 407:密封基板 412:焊盤 420:IC晶圓 501:陽極 502:陰極 511:第一發光單元 512:第二發光單元 513:電荷產生層 601:驅動電路部(源極線驅動電路) 602:像素部 603:驅動電路部(閘極線驅動電路) 604:密封基板 605:密封劑 607:空間 608:佈線 609:FPC(軟性印刷電路) 610:元件基板 611:開關FET 612:電流控制FET 613:陽極 614:絕緣物 616:EL層 617:陰極 618:發光器件 951:基板 952:電極 953:絕緣層 954:隔離層 955:EL層 956:電極 1001:基板 1002:基底絕緣膜 1003:閘極絕緣膜 1006:閘極電極 1007:閘極電極 1008:閘極電極 1020:第一層間絕緣膜 1021:第二層間絕緣膜 1022:電極 1024W:陽極 1024R:陽極 1024G:陽極 1024B:陽極 1025:分隔壁 1028:EL層 1029:陰極 1031:密封基板 1032:密封劑 1033:透明基材 1034R:紅色彩色層 1034G:綠色彩色層 1034B:藍色彩色層 1035:黑矩陣 1036:保護層 1037:第三層間絕緣膜 1040:像素部 1041:驅動電路部 1042:周邊部 2001:外殼 2002:光源 2100:機器人 2110:運算裝置 2101:照度感測器 2102:麥克風 2103:上部照相機 2104:揚聲器 2105:顯示器 2106:下部照相機 2107:障礙物感測器 2108:移動機構 3001:照明設備 5000:外殼 5001:顯示部 5002:顯示部 5003:揚聲器 5004:LED燈 5006:連接端子 5007:感測器 5008:麥克風 5012:支撐部 5013:耳機 5100:掃地機器人 5101:顯示器 5102:照相機 5103:刷子 5104:操作按鈕 5150:可攜式資訊終端 5151:外殼 5152:顯示區域 5153:彎曲部 5120:垃圾 5200:顯示區域 5201:顯示區域 5202:顯示區域 5203:顯示區域 7101:外殼 7103:顯示部 7105:支架 7107:顯示部 7109:操作鍵 7110:遙控器 7201:主體 7202:外殼 7203:顯示部 7204:鍵盤 7205:外部連接埠 7206:指向裝置 7210:第二顯示部 7401:外殼 7402:顯示部 7403:操作按鈕 7404:外部連接埠 7405:揚聲器 7406:麥克風 9310:可攜式資訊終端 9311:顯示面板 9313:鉸鏈 9315:外殼
在圖式中: 圖1A至圖1C是發光器件的示意圖; 圖2A和圖2B是說明長壽命化的圖; 圖3A和圖3B是說明亮度上升的圖; 圖4A和圖4B是主動矩陣型發光裝置的示意圖; 圖5A和圖5B是主動矩陣型發光裝置的示意圖; 圖6是主動矩陣型發光裝置的示意圖; 圖7A和圖7B是被動矩陣型發光裝置的示意圖; 圖8A和圖8B是示出照明設備的圖; 圖9A、圖9B1、圖9B2和圖9C是示出電子裝置的圖; 圖10A至圖10C是示出電子裝置的圖; 圖11是示出照明設備的圖; 圖12是示出照明設備的圖; 圖13是示出車載顯示裝置及照明設備的圖; 圖14A和圖14B是示出電子裝置的圖; 圖15A至圖15C是示出電子裝置的圖; 圖16示出發光器件1的亮度-電流密度特性; 圖17示出發光器件1的電流效率-亮度特性; 圖18示出發光器件1的亮度-電壓特性; 圖19示出發光器件1的電流-電壓特性; 圖20示出發光器件1的外部量子效率-亮度特性; 圖21示出發光器件1的發射光譜; 圖22示出發光器件1的正規化亮度-時間變化特性; 圖23示出發光器件2的亮度-電流密度特性; 圖24示出發光器件2的電流效率-亮度特性; 圖25示出發光器件2的亮度-電壓特性; 圖26示出發光器件2的電流-電壓特性; 圖27示出發光器件2的外部量子效率-亮度特性; 圖28示出發光器件2的發射光譜; 圖29示出發光器件2的正規化亮度-時間變化特性; 圖30示出發光器件3的亮度-電流密度特性; 圖31示出發光器件3的電流效率-亮度特性; 圖32示出發光器件3的亮度-電壓特性; 圖33示出發光器件3的電流-電壓特性; 圖34示出發光器件3的外部量子效率-亮度特性; 圖35示出發光器件3的發射光譜; 圖36示出發光器件3的正規化亮度-時間變化特性; 圖37是示出僅電子元件的結構的圖; 圖38示出僅電子元件的電流密度-電壓特性; 圖39示出直流電壓為7.0V且ZADN:Liq為1:1時算出的電容C的頻率特性; 圖40示出直流電壓為7.0V且ZADN:Liq為1:1時的-∆B的頻率特性; 圖41示出各有機化合物的電子移動率的電場強度依賴性; 圖42示出發光器件4的亮度-電流密度特性; 圖43示出發光器件4的電流效率-亮度特性; 圖44示出發光器件4的亮度-電壓特性; 圖45示出發光器件4的電流-電壓特性; 圖46示出發光器件4的外部量子效率-亮度特性; 圖47示出發光器件4的發射光譜; 圖48示出發光器件4的正規化亮度-時間變化特性; 圖49示出發光器件5的亮度-電流密度特性; 圖50示出發光器件5的電流效率-亮度特性; 圖51示出發光器件5的亮度-電壓特性; 圖52示出發光器件5的電流-電壓特性; 圖53示出發光器件5的外部量子效率-亮度特性; 圖54示出發光器件5的發射光譜; 圖55示出發光器件5的正規化亮度-時間變化特性; 圖56示出發光器件6的亮度-電流密度特性; 圖57示出發光器件6的電流效率-亮度特性; 圖58示出發光器件6的亮度-電壓特性; 圖59示出發光器件6的電流-電壓特性; 圖60示出發光器件6的外部量子效率-亮度特性; 圖61示出發光器件6的發射光譜; 圖62示出發光器件6的正規化亮度-時間變化特性; 圖63示出發光器件7的亮度-電流密度特性; 圖64示出發光器件7的電流效率-亮度特性; 圖65示出發光器件7的亮度-電壓特性; 圖66示出發光器件7的電流-電壓特性; 圖67示出發光器件7的外部量子效率-亮度特性; 圖68示出發光器件7的發射光譜; 圖69示出發光器件7的正規化亮度-時間變化特性; 圖70示出發光器件8及發光器件9的亮度-電流密度特性; 圖71示出發光器件8及發光器件9的電流效率-亮度特性; 圖72示出發光器件8及發光器件9的亮度-電壓特性; 圖73示出發光器件8及發光器件9的電流-電壓特性; 圖74示出發光器件8及發光器件9的外部量子效率-亮度特性; 圖75示出發光器件8及發光器件9的發射光譜; 圖76示出發光器件8及發光器件9的正規化亮度-時間變化特性。
101:陽極
102:陰極
103:EL層
111:電洞注入層
112:電洞傳輸層
112-1:第一電洞傳輸層
112-2:第二電洞傳輸層
113:發光層
114:電子傳輸層
115:電子注入層

Claims (20)

  1. 一種發光器件,包括: 陽極; 陰極;以及 位於該陽極與該陰極之間的EL層, 其中,該EL層包括發光層, 並且,示出當向該發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
  2. 一種發光器件,包括: 陽極; 陰極;以及 位於該陽極與該陰極之間的EL層, 其中,該EL層從陽極一側依次包括第一層、第二層、第三層、發光層及第四層, 該第一層與該陽極接觸, 該第一層包含第一有機化合物和第二有機化合物, 該第二層包含第三有機化合物, 該第三層包含第四有機化合物, 該發光層包含第五有機化合物和第六有機化合物, 該第四層包含第七有機化合物, 該第一有機化合物對該第二有機化合物呈現電子接受性, 該第五有機化合物是發光中心物質, 該第二有機化合物的HOMO能階為-5.7eV以上且-5.4 eV以下, 該第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10-7 cm2 /Vs以上且5×10-5 cm2 /Vs以下, 並且,示出當向該發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
  3. 一種根據申請專利範圍第1或2項之發光器件,其中該劣化曲線具有亮度超過100%的部分。
  4. 一種發光器件,包括: 陽極; 陰極;以及 位於該陽極與該陰極之間的EL層, 其中,該EL層從陽極一側依次包括第一層、第二層、第三層、發光層及第四層, 該第一層與該陽極接觸, 該第四層與該發光層接觸, 該第一層包含第一有機化合物和第二有機化合物, 該第二層包含第三有機化合物, 該第三層包含第四有機化合物, 該發光層包含第五有機化合物和第六有機化合物, 該第四層包含第七有機化合物, 該第一有機化合物對該第二有機化合物呈現電子接受性, 該第五有機化合物是發光中心物質, 該第二有機化合物的HOMO能階為-5.7eV以上且-5.4 eV以下, 該第七有機化合物在電場強度[V/cm]的平方根為600時的電子移動率為1×10-7 cm2 /Vs以上且5×10-5 cm2 /Vs以下, 並且,該第七有機化合物的HOMO能階為-6.0eV以上。
  5. 根據申請專利範圍第4項之發光器件, 其中該第三有機化合物與該第二有機化合物的HOMO能階之差為0.2eV以下, 並且該第三有機化合物的HOMO能階與該第二有機化合物的HOMO能階相同或更深。
  6. 根據申請專利範圍第4項之發光器件, 其中該第二有機化合物包含第一電洞傳輸性骨架, 該第三有機化合物包含第二電洞傳輸性骨架, 該第四有機化合物包含第三電洞傳輸性骨架, 並且該第一電洞傳輸性骨架、該第二電洞傳輸性骨架及該第三電洞傳輸性骨架分別獨立為咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架和蒽骨架中的任一個。
  7. 一種發光器件,包括: 陽極; 陰極;以及 位於該陽極與該陰極之間的EL層, 其中,該EL層從陽極一側依次包括第一層、第二層、第三層、發光層及第四層, 該第一層與該陽極接觸, 該第四層與該發光層接觸, 該第一層包含第一有機化合物和第二有機化合物, 該第二層包含第三有機化合物, 該第三層包含第四有機化合物, 該發光層包含第五有機化合物和第六有機化合物, 該第四層包含第七有機化合物和第八物質, 該第一有機化合物對該第二有機化合物呈現電子接受性, 該第五有機化合物是發光中心物質, 該第二有機化合物的HOMO能階為-5.7eV以上且-5.4 eV以下, 該第七有機化合物包含蒽骨架, 並且,該第八物質是鹼金屬或鹼土金屬的有機錯合物。
  8. 根據申請專利範圍第7項之發光器件, 其中該第三有機化合物與該第二有機化合物的HOMO能階之差為0.2eV以下, 並且該第三有機化合物的HOMO能階與該第二有機化合物的HOMO能階相同或更深。
  9. 根據申請專利範圍第7項之發光器件, 其中該第二有機化合物包含第一電洞傳輸性骨架, 該第三有機化合物包含第二電洞傳輸性骨架, 該第四有機化合物包含第三電洞傳輸性骨架, 並且該第一電洞傳輸性骨架、該第二電洞傳輸性骨架及該第三電洞傳輸性骨架分別獨立為咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架和蒽骨架中的任一個。
  10. 根據申請專利範圍第4或7項之發光器件,其中示出當向該發光器件提供恆定電流時獲得的發光亮度變化的劣化曲線具有極大值。
  11. 一種根據申請專利範圍第10項之發光器件,其中該劣化曲線具有亮度超過100%的部分。
  12. 根據申請專利範圍第2或4項之發光器件,其中該第七有機化合物包含蒽骨架和雜環骨架。
  13. 根據申請專利範圍第2、4和7項中任一項之發光器件,其中該第七有機化合物的電子移動率小於該第六有機化合物的電子移動率。
  14. 根據申請專利範圍第2、4和7項中任一項之發光器件,其中該第四有機化合物的HOMO能階與該第三有機化合物的HOMO能階之差為0.2eV以下。
  15. 根據申請專利範圍第2、4和7項中任一項之發光器件,其中該第四有機化合物的HOMO能階比該第三有機化合物的HOMO能階深。
  16. 根據申請專利範圍第2、4和7項中任一項之發光器件,其中該第二有機化合物包含二苯并呋喃骨架。
  17. 根據申請專利範圍第2、4和7項中任一項之發光器件,其中該第二有機化合物與該第三有機化合物是相同物質。
  18. 根據申請專利範圍第2、4和7項中任一項之發光器件,其中該第五有機化合物為藍色螢光材料。
  19. 一種電子裝置,包括: 申請專利範圍第1、2、4和7項中任一項之發光器件;以及 感測器、操作按鈕、揚聲器或麥克風。
  20. 一種照明設備,包括: 申請專利範圍第1、2、4和7項中任一項之發光器件;以及 外殼。
TW108136207A 2018-10-10 2019-10-07 發光器件、發光裝置、電子裝置及照明設備 TWI813784B (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2018191887 2018-10-10
JP2018-191887 2018-10-10
JP2018191678 2018-10-10
JP2018-191678 2018-10-10
JP2018191681 2018-10-10
JP2018-191681 2018-10-10
JP2018225260 2018-11-30
JP2018-225260 2018-11-30
JP2019-020057 2019-02-06
JP2019020057 2019-02-06
JP2019087060 2019-04-30
JP2019-087060 2019-04-30

Publications (2)

Publication Number Publication Date
TW202029546A true TW202029546A (zh) 2020-08-01
TWI813784B TWI813784B (zh) 2023-09-01

Family

ID=70164510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136207A TWI813784B (zh) 2018-10-10 2019-10-07 發光器件、發光裝置、電子裝置及照明設備

Country Status (7)

Country Link
US (1) US20210249619A1 (zh)
JP (3) JP6918068B2 (zh)
KR (1) KR20210060369A (zh)
CN (2) CN111989793A (zh)
DE (1) DE112019005070T5 (zh)
TW (1) TWI813784B (zh)
WO (1) WO2020075014A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330596A (zh) 2019-01-22 2021-08-31 株式会社半导体能源研究所 发光器件、发光装置、电子设备及照明装置
TW202110778A (zh) 2019-06-14 2021-03-16 日商半導體能源研究所股份有限公司 發光器件、發光裝置、電子裝置及照明設備

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286405A1 (en) * 2005-06-17 2006-12-21 Eastman Kodak Company Organic element for low voltage electroluminescent devices
EP2435399B1 (en) * 2009-05-29 2018-01-24 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
WO2011065136A1 (ja) 2009-11-27 2011-06-03 シャープ株式会社 有機エレクトロルミネッセンス素子、およびその製造方法、ならびに有機エレクトロルミネッセンス表示装置
WO2012046560A1 (en) * 2010-10-04 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
WO2012070596A1 (en) * 2010-11-26 2012-05-31 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US8421346B2 (en) * 2011-01-28 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, lighting device, electronic device, and fluorene derivative
WO2012111579A1 (en) * 2011-02-16 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR102336769B1 (ko) * 2014-02-21 2021-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102030377B1 (ko) * 2014-07-28 2019-10-10 에스에프씨주식회사 헤테로고리를 포함하는 축합 플루오렌 유도체
US10439146B2 (en) * 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR20180095916A (ko) * 2015-12-21 2018-08-28 이데미쓰 고산 가부시키가이샤 헤테로 축합된 페닐퀴나졸린 및 전자 소자에서의 그의 용도
KR102119354B1 (ko) * 2016-01-29 2020-06-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2020061390A (ja) * 2016-12-26 2020-04-16 出光興産株式会社 組成物、有機エレクトロルミネッセンス素子用材料、組成物膜、有機エレクトロルミネッセンス素子、及び電子機器
CN108336237B (zh) * 2017-01-20 2020-01-31 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件

Also Published As

Publication number Publication date
JP2023179700A (ja) 2023-12-19
JP2021168421A (ja) 2021-10-21
JP2020184608A (ja) 2020-11-12
CN114300628A (zh) 2022-04-08
CN111989793A (zh) 2020-11-24
US20210249619A1 (en) 2021-08-12
KR20210060369A (ko) 2021-05-26
DE112019005070T5 (de) 2021-07-15
JP7369742B2 (ja) 2023-10-26
JP6918068B2 (ja) 2021-08-11
TWI813784B (zh) 2023-09-01
WO2020075014A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
TWI748959B (zh) 發光元件,發光裝置,電子裝置及照明設備
TWI827686B (zh) 發光裝置、發光器件、電子裝置及照明設備
TW202144319A (zh) 芳基胺化合物、電洞傳輸層用材料、電洞注入層用材料、發光器件、發光裝置、電子裝置及照明設備
JP2023179700A (ja) 発光デバイス、発光装置および照明装置
JP2024061839A (ja) 発光デバイス、発光装置、電子機器及び照明装置
KR20240038127A (ko) 다이벤조[c,g]카바졸 유도체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
TW202216957A (zh) 發光器件、發光裝置、電子裝置及照明設備
TW202110821A (zh) 發光器件、發光裝置、電子裝置、照明設備及化合物
TW202110778A (zh) 發光器件、發光裝置、電子裝置及照明設備
JP2020167411A (ja) 発光デバイス、発光装置、電子機器および照明装置
CN113785410A (zh) 发光器件、发光装置、电子设备及照明装置
TWI842812B (zh) 發光器件、發光裝置、電子裝置及照明設備
TW202029550A (zh) 發光器件、發光裝置、電子裝置及照明設備
TW202416813A (zh) 發光器件、發光裝置、電子裝置及照明設備
TW202132322A (zh) 有機金屬錯合物、頂部發射用發光材料、發光器件、發光裝置、電子裝置以及照明設備
CN113748529A (zh) 发光器件、发光装置、电子设备及照明装置
CN113228329A (zh) 发光器件、发光装置、电子设备及照明装置