TW202021126A - Semiconductor devices and methods for fabricating the same - Google Patents

Semiconductor devices and methods for fabricating the same Download PDF

Info

Publication number
TW202021126A
TW202021126A TW107141856A TW107141856A TW202021126A TW 202021126 A TW202021126 A TW 202021126A TW 107141856 A TW107141856 A TW 107141856A TW 107141856 A TW107141856 A TW 107141856A TW 202021126 A TW202021126 A TW 202021126A
Authority
TW
Taiwan
Prior art keywords
recess
barrier layer
layer
semiconductor device
gate
Prior art date
Application number
TW107141856A
Other languages
Chinese (zh)
Other versions
TWI693716B (en
Inventor
陳志諺
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107141856A priority Critical patent/TWI693716B/en
Application granted granted Critical
Publication of TWI693716B publication Critical patent/TWI693716B/en
Publication of TW202021126A publication Critical patent/TW202021126A/en

Links

Images

Abstract

A semiconductor device includes a channel layer, a first barrier layer, a second barrier layer, a source electrode, a drain electrode and a gate structure. The channel layer, the first barrier layer, the second barrier layer sequentially stacked over a substrate. The source electrode, a drain electrode and the gate structure at least extend through a portion of the second barrier layer. The source electrode, a drain electrode and the gate structure have respective bottom surfaces located at substantially the same level and adjacent to the first barrier layer.

Description

半導體裝置及其製造方法 Semiconductor device and its manufacturing method

本發明是有關於半導體裝置,且特別是有關於高電子遷移率電晶體及其製造方法。 The present invention relates to semiconductor devices, and in particular to high electron mobility transistors and methods of manufacturing the same.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。 GaN-based semiconductor materials have many excellent material characteristics, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, GaN-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, GaN-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterointerface structures ).

導通電阻(Ron)為影響半導體裝置之耗電量的重要因素,其電阻值正比於半導體裝置的耗電量。導通電阻(Ron)包含源極/汲極接觸電阻(Rcontact)以及通道電阻(Rchannel)。高電子遷移率電晶體(HEMT)具有高電子遷移率和高載子密度的二維電子氣(two-dimensional electron gas,2DEG)形成於異質界面上,使得高電子遷移率電晶體(HEMT)具有低通道電阻(Rchannel)。而高電子遷移率電晶體(HEMT)的源極/汲極接觸電阻(Rcontact)大小將影響導通電阻(Ron)的整體性能。 The on-resistance (R on ) is an important factor affecting the power consumption of the semiconductor device, and its resistance value is proportional to the power consumption of the semiconductor device. The on-resistance (R on ) includes source/drain contact resistance (R contact ) and channel resistance (R channel ). High Electron Mobility Transistor (HEMT) Two-dimensional electron gas (2DEG) with high electron mobility and high carrier density is formed on the heterogeneous interface, so that the high electron mobility transistor (HEMT) has Low channel resistance (R channel ). The size of the source/drain contact resistance (R contact ) of the high electron mobility transistor (HEMT) will affect the overall performance of the on- resistance (R on ).

隨著氮化鎵系半導體材料的發展,這些使用氮化 鎵系半導體材料的半導體裝置應用於更嚴苛工作環境中,例如更高頻、更高溫、或更高電壓。因此,具有氮化鎵系半導體裝置之製程條件也面臨許多新的挑戰。 With the development of GaN-based semiconductor materials, these use of nitride Semiconductor devices of gallium-based semiconductor materials are used in more severe working environments, such as higher frequencies, higher temperatures, or higher voltages. Therefore, the process conditions for GaN-based semiconductor devices also face many new challenges.

本發明的一些實施例提供半導體裝置,此半導體裝置包含設置於基底之上的通道層、設置於通道層之上的第一阻障層、以及設置於第一阻障層之上的第二阻障層。此半導體裝置還包含至少延伸穿過部分的第二阻障層的源極電極、汲極電極、和介於源極電極與汲極電極之間的閘極結構。源極電極、汲極電極、和閘極結構具有位於大抵相同的水平高度且鄰近第一阻障層的各自底面。 Some embodiments of the present invention provide a semiconductor device including a channel layer disposed on a substrate, a first barrier layer disposed on the channel layer, and a second resistor disposed on the first barrier layer Barrier. The semiconductor device further includes a source electrode extending at least through a portion of the second barrier layer, a drain electrode, and a gate structure interposed between the source electrode and the drain electrode. The source electrode, the drain electrode, and the gate structure have respective bottom surfaces located at approximately the same level and adjacent to the first barrier layer.

本發明的一些實施例提供半導體裝置的製造方法,此方法包含在基底之上依序形成通道層、第一阻障層、以及第二阻障層,凹蝕第二阻障層和第一阻障層,以形成至少穿過部分的第一阻障層的源極凹陷、汲極凹陷、和介於源極凹陷與汲極凹陷之間的閘極凹陷,以及在源極凹陷、汲極凹陷、和閘極凹陷中分別形成源極電極、汲極電極、和閘極結構。源極凹陷、汲極凹陷、和閘極凹陷具有位於大抵相同的水平高度的各自底面。 Some embodiments of the present invention provide a method for manufacturing a semiconductor device. The method includes sequentially forming a channel layer, a first barrier layer, and a second barrier layer on a substrate, and etching the second barrier layer and the first barrier A barrier layer to form a source recess, a drain recess, and a gate recess between the source recess and the drain recess at least through a portion of the first barrier layer, and the source recess and the drain recess The source electrode, the drain electrode, and the gate structure are respectively formed in the gate depression. The source recess, the drain recess, and the gate recess have respective bottom surfaces located at approximately the same level.

為讓本發明之特徵和優點能更明顯易懂,下文特舉出一些實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the present invention more comprehensible, some embodiments are given below, and in conjunction with the accompanying drawings, detailed descriptions are as follows.

10A、10B、100、200、300‧‧‧半導體裝置 10A, 10B, 100, 200, 300 ‧‧‧ semiconductor device

12、102‧‧‧基底 12, 102‧‧‧ base

14、104‧‧‧緩衝層 14, 104‧‧‧ buffer layer

16、106‧‧‧通道層 16, 106‧‧‧ Channel layer

18、110‧‧‧第二阻障層 18.110‧‧‧Second barrier layer

20A、20B、114‧‧‧源極凹陷 20A, 20B, 114‧‧‧Source depression

22A、22B、116‧‧‧汲極凹陷 22A, 22B, 116‧‧‧ Jiji depression

24A、24B、118‧‧‧閘極凹陷 24A, 24B, 118‧‧‧ Gate depression

26A、26B、122‧‧‧源極電極 26A, 26B, 122 ‧‧‧ source electrode

28A、28B、124‧‧‧汲極電極 28A, 28B, 124‧‧‧ Drain electrode

30A、30B、130‧‧‧閘極結構 30A, 30B, 130 ‧‧‧ gate structure

50A‧‧‧第一區 50A‧‧‧District 1

50B‧‧‧第二區 50B‧‧‧District 2

108‧‧‧第一阻障層 108‧‧‧The first barrier layer

112‧‧‧蓋層 112‧‧‧cover

120‧‧‧襯層 120‧‧‧lining

126‧‧‧介電層 126‧‧‧dielectric layer

128‧‧‧閘極電極 128‧‧‧Gate electrode

132‧‧‧層間介電層 132‧‧‧Interlayer dielectric layer

134‧‧‧接觸件 134‧‧‧Contact

D1、D1’‧‧‧第一蝕刻深度 D1, D1’‧‧‧ First etching depth

D2、D2’‧‧‧第二蝕刻深度 D2, D2’‧‧‧Second etching depth

D3、D4‧‧‧尺寸 D3, D4‧‧‧ size

藉由以下詳細描述和範例配合所附圖式,可以更加理解本發明實施例。為了使圖式清楚顯示,圖式中各個不同 的元件可能未依照比例繪製,其中:第1圖是根據本發明的一些實施例之半導體裝置於基底的不同區域的剖面示意圖。 Through the following detailed description and examples in conjunction with the accompanying drawings, the embodiments of the present invention can be better understood. In order to make the diagram clear, the diagrams are different The elements may not be drawn to scale, wherein: FIG. 1 is a schematic cross-sectional view of a semiconductor device in different regions of a substrate according to some embodiments of the present invention.

第2A-2G圖是根據本發明的一些實施例,說明形成半導體裝置在各個不同製程階段的剖面示意圖。 2A-2G are schematic cross-sectional views illustrating various stages of forming a semiconductor device according to some embodiments of the present invention.

第3和4圖是根據本發明的另一些實施例之半導體裝置的剖面示意圖。 3 and 4 are schematic cross-sectional views of semiconductor devices according to other embodiments of the present invention.

以下揭露提供了許多的實施例或範例,用於實施所提供的半導體裝置之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。 The following disclosure provides many embodiments or examples for implementing different elements of the provided semiconductor device. Specific examples of components and their configurations are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, if the first element is formed on the second element in the description, it may include an embodiment where the first and second elements are in direct contact, or may include additional elements formed between the first and second elements , So that they do not directly contact the embodiment. In addition, the embodiments of the present invention may repeat reference numerals and/or letters in different examples. This repetition is for conciseness and clarity, not for expressing the relationship between the different embodiments discussed.

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標明相似的元件。可以理解的是,在方法的前、中、後可以提供額外的步驟,且一些敘述的步驟可為了該方法的其他實施例被取代或刪除。 Some variations of the embodiments are described below. In the different drawings and illustrated embodiments, similar element symbols are used to indicate similar elements. It can be understood that additional steps may be provided before, during, and after the method, and some of the described steps may be replaced or deleted for other embodiments of the method.

請參考第1圖,第1圖是根據本發明的一些實施例之半導體裝置10A和半導體裝置10B於基底102的不同區域的剖面示意圖。在此實施例中,半導體裝置10A和10B為高電子 遷移率電晶體(HEMT)。 Please refer to FIG. 1, which is a schematic cross-sectional view of a semiconductor device 10A and a semiconductor device 10B in different regions of a substrate 102 according to some embodiments of the present invention. In this embodiment, the semiconductor devices 10A and 10B are high electrons Mobility Transistor (HEMT).

請參考第1圖,提供基底12,基底12包含多個區域,例如,第一區50A和第二區50B。儘管未顯示,基底12可包含任何其他區域。在基底12上依序形成緩衝層14、通道層16、和阻障層18。通道層16與阻障層18之間的異質界面可產生二維電子氣(2DEG),以做為半導體裝置10A和10B的導電載子。在一些實施例中,通道層16的材料可以是二元(binary)III-V族化合物半導體,例如GaN。阻障層18的材料可以是三元(ternary)III-V族化合物半導體,例如AlGaN。一般而言,二維電子氣(2DEG)存在於平行於異質界面的橫向方向上,而幾乎不存在於垂直於異質界面的縱向方向上。 Referring to FIG. 1, a substrate 12 is provided. The substrate 12 includes multiple regions, for example, a first region 50A and a second region 50B. Although not shown, the substrate 12 may include any other area. The buffer layer 14, the channel layer 16, and the barrier layer 18 are formed on the substrate 12 in this order. The heterogeneous interface between the channel layer 16 and the barrier layer 18 can generate two-dimensional electron gas (2DEG) as conductive carriers of the semiconductor devices 10A and 10B. In some embodiments, the material of the channel layer 16 may be a binary group III-V compound semiconductor, such as GaN. The material of the barrier layer 18 may be a ternary III-V compound semiconductor, such as AlGaN. Generally speaking, two-dimensional electron gas (2DEG) exists in the lateral direction parallel to the heterogeneous interface, but hardly exists in the longitudinal direction perpendicular to the heterogeneous interface.

接著,透過第一蝕刻製程,形成源極凹陷20A和汲極凹陷22A於第一區50A中,以及源極凹陷20B和汲極凹陷22B於第二區50B中。源極凹陷20A、20B和汲極凹陷22A、22B穿過阻障層18,並且延伸至通道層16中。第一區50A中的源極凹陷20A和汲極凹陷22A具有第一蝕刻深度D1,而第二區50B中的源極凹陷20B和汲極凹陷22B具有第一蝕刻深度D1’。在基底12之不同區域的蝕刻深度具有一定程度的變異(即蝕刻深度均勻度),例如,第一區50A中的第一蝕刻深度D1可能不等於第二區中50B的第一蝕刻深度D1’,這主要取決於蝕刻製程的能力。 Next, through the first etching process, the source recess 20A and the drain recess 22A are formed in the first region 50A, and the source recess 20B and the drain recess 22B are formed in the second region 50B. The source recesses 20A, 20B and the drain recesses 22A, 22B pass through the barrier layer 18 and extend into the channel layer 16. The source recess 20A and the drain recess 22A in the first region 50A have a first etching depth D1, and the source recess 20B and the drain recess 22B in the second region 50B have a first etching depth D1'. The etching depth in different regions of the substrate 12 has a certain degree of variation (ie, etching depth uniformity), for example, the first etching depth D1 in the first region 50A may not be equal to the first etching depth D1' in the second region 50B , This mainly depends on the ability of the etching process.

接著,在源極凹陷20A和汲極凹陷22A中分別形成源極電極26A和汲極電極28A,並且在源極凹陷20B和汲極凹陷22B中分別形成源極電極26B和汲極電極28B。 Next, the source electrode 26A and the drain electrode 28A are formed in the source recess 20A and the drain recess 22A, respectively, and the source electrode 26B and the drain electrode 28B are formed in the source recess 20B and the drain recess 22B, respectively.

接著,透過第二蝕刻製程,形成閘極凹陷24A於第 一區50A中,以及閘極凹陷24B於第二區50B中。閘極凹陷24A和24B穿過阻障層18,並且延伸至通道層16中。第一區50A的閘極凹陷24A具有第二蝕刻深度D2,而第二區50B的閘極凹陷24B具有第二蝕刻深度D2’。相似地,第一區50A中的第二蝕刻深度D2可能不等於第二區50B中的第二蝕刻深度D2’。 Next, through the second etching process, a gate recess 24A is formed on the first In one area 50A, the gate recess 24B is in the second area 50B. The gate recesses 24A and 24B pass through the barrier layer 18 and extend into the channel layer 16. The gate recess 24A of the first region 50A has a second etching depth D2, and the gate recess 24B of the second region 50B has a second etching depth D2'. Similarly, the second etch depth D2 in the first region 50A may not be equal to the second etch depth D2' in the second region 50B.

接著,在閘極凹陷24A中形成閘極結構30A,並且在閘極凹陷24B中形成閘極結構30B。在形成閘極結構30A和30B之後,形成了半導體裝置10A和10B。 Next, a gate structure 30A is formed in the gate recess 24A, and a gate structure 30B is formed in the gate recess 24B. After forming the gate structures 30A and 30B, the semiconductor devices 10A and 10B are formed.

值得注意的是,當半導體裝置操作時,電流E或E’自汲極電極流向源極電極。二維電子氣(2DEG)幾乎不存在於電流E或E’的縱向路徑上(虛線表示),這導致半導體裝置的汲極與源極的接觸電阻(Rc)增加,連帶導致半導體裝置的整體導通電阻(Ron)增加。 It is worth noting that when the semiconductor device is operating, current E or E'flows from the drain electrode to the source electrode. Two-dimensional electron gas (2DEG) is almost absent in the longitudinal path of current E or E'(dashed line), which leads to an increase in the contact resistance (Rc) of the drain and source of the semiconductor device, which together leads to the overall conduction of the semiconductor device The resistance (R on ) increases.

再者,源極凹陷和汲極凹陷由第一蝕刻製程形成,而閘極凹陷由第二蝕刻製程形成,使得所形成的源極、汲極電極的底面與閘極電極的底面可能無法位於相同的水平高度上。底面的水平高度差異造成了通道耦合(channel coupling)效應,進一步使半導體裝置的通道電阻(Rchannel)增加。再者,兩道蝕刻製程具有各自的蝕刻均勻度,這導致不同區域的半導體裝置(例如,半導體裝置10A與半導體裝置10B)之間之通道電阻(Rchannel)的差異增加,進而降低半導體裝置的製造穩定性。 Furthermore, the source recess and the drain recess are formed by the first etching process, and the gate recess is formed by the second etching process, so that the bottom surfaces of the formed source and drain electrodes and the bottom surface of the gate electrode may not be located at the same On the level. The difference in level of the bottom surface causes a channel coupling effect, which further increases the channel resistance (R channel ) of the semiconductor device. Furthermore, the two etching processes have respective etching uniformities, which leads to an increase in the difference in channel resistance (R channel ) between semiconductor devices in different regions (eg, semiconductor device 10A and semiconductor device 10B), thereby reducing the semiconductor device Manufacturing stability.

第2A-2G圖是根據本發明的一些實施例,說明形成第2G圖所示之半導體裝置100在各個不同製程階段的剖面示意圖。在第2A-2G圖的實施例中,透過一道蝕刻製程同時形成源 極凹陷、汲極凹陷、和閘極凹陷,以具有位於大抵相同的水平高度的各自底面。因此,避免了通道耦合(channel coupling)效應,而降低半導體裝置的通道電阻(Rchannel),並且降低不同區域的半導體裝置之間之通道電阻(Rchannel)的差異。 FIGS. 2A-2G are schematic cross-sectional views illustrating various stages of the process of forming the semiconductor device 100 shown in FIG. 2G according to some embodiments of the present invention. In the embodiment of FIGS. 2A-2G, the source recess, the drain recess, and the gate recess are simultaneously formed through an etching process to have respective bottom surfaces located at approximately the same level. Therefore, the channel coupling effect is avoided, and the channel resistance (R channel ) of the semiconductor device is reduced, and the difference in channel resistance (R channel ) between semiconductor devices in different regions is reduced.

請參考第2A圖,提供基底102。在一些實施例中,基底102可以是摻雜的(例如以p型或n型摻雜物進行摻雜)或未摻雜的半導體基底,例如矽基底、矽鍺基底、或類似半導體基底。在一些實施例中,基底102可以是半導體位於絕緣體之上的基底,例如絕緣層上的矽(silicon on insulator,SOI)基底。在一些實施例中,基底102可以是玻璃基底或陶瓷基底,例如碳化矽(SiC)基底、氮化鋁(AlN)基底、或藍寶石(Sapphire)基底。 Please refer to FIG. 2A to provide the substrate 102. In some embodiments, the substrate 102 may be a doped (eg, doped with p-type or n-type dopant) or an undoped semiconductor substrate, such as a silicon substrate, a silicon germanium substrate, or a similar semiconductor substrate. In some embodiments, the substrate 102 may be a semiconductor-on-insulator substrate, such as a silicon on insulator (SOI) substrate. In some embodiments, the substrate 102 may be a glass substrate or a ceramic substrate, such as a silicon carbide (SiC) substrate, an aluminum nitride (AlN) substrate, or a sapphire (Sapphire) substrate.

在基底102之上依序形成緩衝層104、通道層106、第一阻障層108、第二阻障層110、以及蓋層112。在一些實施例中,在基底102與緩衝層104之間可形成晶種層(未顯示)。 A buffer layer 104, a channel layer 106, a first barrier layer 108, a second barrier layer 110, and a cap layer 112 are formed on the substrate 102 in this order. In some embodiments, a seed layer (not shown) may be formed between the substrate 102 and the buffer layer 104.

緩衝層104可減緩後續形成於緩衝層104上方的通道層106的應變(strain),以防止缺陷形成於通道層106中,應變是由通道層106與基底102之間的不匹配造成。在一些實施例中,緩衝層104的材料可包含或者是AlN、GaN、AlGaN、AlInN、前述之組合、或類似材料。緩衝層104可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。儘管在第1A圖所示的實施例中,緩衝層104為單層結構,然而緩衝層104也可以是多層結構。此外,在一些實施例中,緩衝層104的材料是由晶種層的材料和磊晶製程時通入的氣體所決 定。 The buffer layer 104 can reduce the strain of the channel layer 106 formed subsequently on the buffer layer 104 to prevent defects from being formed in the channel layer 106. The strain is caused by the mismatch between the channel layer 106 and the substrate 102. In some embodiments, the material of the buffer layer 104 may include or be AlN, GaN, AlGaN, AlInN, a combination of the foregoing, or similar materials. The buffer layer 104 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing, or similar methods. Although the buffer layer 104 has a single-layer structure in the embodiment shown in FIG. 1A, the buffer layer 104 may have a multi-layer structure. In addition, in some embodiments, the material of the buffer layer 104 is determined by the material of the seed layer and the gas introduced during the epitaxial process set.

在一些實施例中,通道層106的材料可包含二元(binary)III-V族化合物半導體材料,例如,III族氮化物。在一些實施例中,通道層106的材料是GaN。在一些實施例中,通道層106的厚度可在約0.01微米(μm)至約10微米的範圍內。在一些實施例中,通道層106可具有摻雜物,例如n型摻雜物或p型摻雜物。通道層106可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。 In some embodiments, the material of the channel layer 106 may include a binary group III-V compound semiconductor material, for example, a group III nitride. In some embodiments, the material of the channel layer 106 is GaN. In some embodiments, the thickness of the channel layer 106 may range from about 0.01 micrometer (μm) to about 10 micrometers. In some embodiments, the channel layer 106 may have dopants, such as n-type dopants or p-type dopants. The channel layer 106 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing, or similar methods.

在一些實施例中,第一阻障層108的材料可包含二元(binary)III-V族化合物半導體材料,例如氮化鋁(AlN)。在一些實施例中,第一阻障層108可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。在一些實施例中,第一阻障層108的厚度在約0.5奈米(nm)至約10奈米的範圍內,例如2奈米。第一阻障層108亦可作為蝕刻停止層,此部分將於後續說明。 In some embodiments, the material of the first barrier layer 108 may include a binary group III-V compound semiconductor material, such as aluminum nitride (AlN). In some embodiments, the first barrier layer 108 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), Combination of the foregoing, or similar methods. In some embodiments, the thickness of the first barrier layer 108 is in the range of about 0.5 nanometer (nm) to about 10 nanometers, for example, 2 nanometers. The first barrier layer 108 can also serve as an etch stop layer, which will be described later.

在一些實施例中,第二阻障層110的材料可包含三元(ternary)III-V族化合物半導體,例如,III族氮化物。在一些實施例中,第二阻障層110的材料可以是AlGaN、AlInN、或前述之組合。在一些實施例中,第二阻障層110可具有摻雜物,例如n型摻雜物或p型摻雜物。第二阻障層110可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法 。在一些實施例中,第二阻障層110的厚度大於第一阻障層108的厚度,並且第二阻障層110的厚度在約1奈米至約80奈米的範圍內。 In some embodiments, the material of the second barrier layer 110 may include a ternary group III-V compound semiconductor, for example, a group III nitride. In some embodiments, the material of the second barrier layer 110 may be AlGaN, AlInN, or a combination of the foregoing. In some embodiments, the second barrier layer 110 may have dopants, such as n-type dopants or p-type dopants. The second barrier layer 110 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing, or the like method . In some embodiments, the thickness of the second barrier layer 110 is greater than the thickness of the first barrier layer 108, and the thickness of the second barrier layer 110 is in the range of about 1 nanometer to about 80 nanometers.

透過通道層106與第一和第二阻障層108和110之間不同能帶所引發之自發性極化及壓電極化效應,形成二維電子氣(2DEG)(未顯示)於通道層106與第一阻障層108之間的異質界面上。如第2G圖所示之半導體裝置100是利用二維電子氣(2DEG)作為導電載子的高電子遷移率電晶體(HEMT)。此外,相較於三元三五族化合物半導體,第一阻障層108的材料選擇二元三五族化合物半導體可引起較低的合金散射(alloy scattering),可形成二維電子氣(2DEG)具有較高的電子遷移率,以降低半導體裝置的通道電阻(Rchannel)。 Through the spontaneous polarization and piezoelectric polarization effects caused by different energy bands between the channel layer 106 and the first and second barrier layers 108 and 110, a two-dimensional electron gas (2DEG) (not shown) is formed on the channel layer 106 On the hetero interface with the first barrier layer 108. The semiconductor device 100 shown in FIG. 2G is a high electron mobility transistor (HEMT) using two-dimensional electron gas (2DEG) as a conductive carrier. In addition, compared to the ternary ternary compound semiconductor, the material selection of the first barrier layer 108 is the ternary ternary compound semiconductor, which can cause lower alloy scattering and can form a two-dimensional electron gas (2DEG). It has a higher electron mobility to reduce the channel resistance (R channel ) of semiconductor devices.

在一些實施例中,蓋層112的材料可包含或者是氮化鎵(GaN),例如未摻雜的氮化鎵。在一些實施例中,於第二阻障層110上設置蓋層112可用以防止含有鋁(Al)的第二阻障層110的表面氧化。在一些實施例中,蓋層112的厚度在約1奈米至約100奈米的範圍內。在一些實施例中,蓋層112可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。 In some embodiments, the material of the capping layer 112 may include or be gallium nitride (GaN), such as undoped gallium nitride. In some embodiments, the cap layer 112 is disposed on the second barrier layer 110 to prevent the surface of the second barrier layer 110 containing aluminum (Al) from oxidizing. In some embodiments, the thickness of the cap layer 112 is in the range of about 1 nanometer to about 100 nanometers. In some embodiments, the cap layer 112 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing , Or similar methods.

在一些實施例中,可於相同的沉積腔室中原位(in-situ)沉積緩衝層104、通道層106、第一阻障層108、第二阻障層110、以及蓋層112。 In some embodiments, the buffer layer 104, the channel layer 106, the first barrier layer 108, the second barrier layer 110, and the cap layer 112 may be deposited in-situ in the same deposition chamber.

接著,對蓋層112、第二阻障層110、和第一阻障 層108執行圖案化製程。 Next, the cap layer 112, the second barrier layer 110, and the first barrier The layer 108 performs a patterning process.

請參考第2B圖,透過圖案化製程凹蝕蓋層112、第二阻障層110、和第一阻障層108,以形成穿過蓋層112、第二阻障層110、和第一阻障層108的源極凹陷114、汲極凹陷116、和閘極凹陷118,閘極凹陷118介於源極凹陷114與汲極凹陷116之間。在圖案化製程之後,源極凹陷114、汲極凹陷116、和閘極凹陷118暴露出通道層106之部分的上表面。 Referring to FIG. 2B, the capping layer 112, the second barrier layer 110, and the first barrier layer 108 are etched through the patterning process to form the capping layer 112, the second barrier layer 110, and the first resistance The source recess 114, the drain recess 116, and the gate recess 118 of the barrier layer 108 are between the source recess 114 and the drain recess 116. After the patterning process, the source recess 114, the drain recess 116, and the gate recess 118 expose the upper surface of the portion of the channel layer 106.

在一些實施例中,對蓋層112、第二阻障層110、和第一阻障層108執行的圖案化製程包含在蓋層112之上形成圖案化遮罩層(未顯示),其中圖案化遮罩層具有開口暴露出蓋層112之部分上表面,通過圖案化遮罩層的開口對蓋層112、第二阻障層110、和第一阻障層108執行蝕刻製程,移除蓋層112、第二阻障層110、和第一阻障層108未被圖案化遮罩層覆蓋的部分,以同時形成源極凹陷114、汲極凹陷116、和閘極凹陷118,之後移除圖案化遮罩層,例如透過灰化(ashing)製程或剝除製程。在一些實施例中,蝕刻製程可以是乾式蝕刻製程,例如反應性離子蝕刻(reactive ion etch,RIE)、電子迴旋共振式(electron cyclotron resonance,ERC)蝕刻、感應耦合式電漿(inductively-coupled plasma,ICP)蝕刻、中子束蝕刻(neutral beam etch,NBE)、前述之組合、或類似乾式蝕刻製程。 In some embodiments, the patterning process performed on the cap layer 112, the second barrier layer 110, and the first barrier layer 108 includes forming a patterned mask layer (not shown) on the cap layer 112, wherein the pattern The mask layer has an opening that exposes a portion of the upper surface of the cap layer 112, and an etching process is performed on the cap layer 112, the second barrier layer 110, and the first barrier layer 108 through the patterned mask layer opening to remove the cap The portions of the layer 112, the second barrier layer 110, and the first barrier layer 108 that are not covered by the patterned mask layer to form the source recess 114, the drain recess 116, and the gate recess 118 at the same time, and then removed The mask layer is patterned, for example, through an ashing process or a stripping process. In some embodiments, the etching process may be a dry etching process, such as reactive ion etching (RIE), electron cyclotron resonance (ERC) etching, or inductively-coupled plasma , ICP) etching, neutron beam etching (neutral beam etch, NBE), a combination of the foregoing, or a similar dry etching process.

在本發明實施例中,透過一道蝕刻製程同時形成源極凹陷114、汲極凹陷116、和閘極凹陷118,使得源極凹陷114、汲極凹陷116、和閘極凹陷118可具有大抵相同的水平高度的各自底面。 In the embodiment of the present invention, the source recess 114, the drain recess 116, and the gate recess 118 are simultaneously formed through an etching process, so that the source recess 114, the drain recess 116, and the gate recess 118 may have substantially the same The respective bottom surface of the level.

在此,「大抵相同的水平高度」之用語表示這些凹陷114、116、118之底面的水平高度差異在2奈米的範圍內、或1奈米的範圍內、或0.5奈米的範圍內。或者,「大抵相同的水平高度」之用語表示這些凹陷114、116、118之底面的水平高度差異為凹陷114之深度的在5%以內。 Here, the term "approximately the same level" means that the difference in the level of the bottom surface of these depressions 114, 116, 118 is within a range of 2 nm, or within a range of 1 nm, or within a range of 0.5 nm. Or, the phrase "approximately the same level" means that the difference in the level of the bottom surfaces of these recesses 114, 116, 118 is within 5% of the depth of the recess 114.

第一阻障層108可作為蝕刻停止層。舉例而言,在一些實施例中,第一阻障層108包含氮化鋁(AlN),第二阻障層110包含氮化鎵鋁(AlGaN)。在蝕刻製程中,第二阻障層110相較於第一阻障層108具有較高的蝕刻速度。舉例而言,在以Cl2或SF6作為蝕刻劑執行的蝕刻製程中,第二阻障層110的蝕刻速率對第一阻障層108的蝕刻速率的比值為約1.5至約50的範圍內。第一阻障層108減緩蝕刻製程的蝕刻速率,以控制源極凹陷114、汲極凹陷116、和閘極凹陷118之底面停止的位置。因此,蝕刻製程之後,源極凹陷114、汲極凹陷116、和閘極凹陷118剛好穿過第一阻障層108,但未延伸至通道層106中。換言之,源極凹陷114、汲極凹陷116、和閘極凹陷118的各自底面的水平高度等於第一阻障層108的底面的水平高度。 The first barrier layer 108 may serve as an etch stop layer. For example, in some embodiments, the first barrier layer 108 includes aluminum nitride (AlN), and the second barrier layer 110 includes aluminum gallium nitride (AlGaN). In the etching process, the second barrier layer 110 has a higher etching speed than the first barrier layer 108. For example, in an etching process performed with Cl 2 or SF 6 as an etchant, the ratio of the etching rate of the second barrier layer 110 to the etching rate of the first barrier layer 108 is in the range of about 1.5 to about 50 . The first barrier layer 108 slows down the etching rate of the etching process to control where the bottom surfaces of the source recess 114, the drain recess 116, and the gate recess 118 stop. Therefore, after the etching process, the source recess 114, the drain recess 116, and the gate recess 118 just pass through the first barrier layer 108, but do not extend into the channel layer 106. In other words, the horizontal height of the respective bottom surfaces of the source recess 114, the drain recess 116, and the gate recess 118 is equal to the horizontal height of the bottom surface of the first barrier layer 108.

儘管第2B圖的實施例顯示這些凹陷114、116、118剛好穿過第一阻障層108,但未延伸至通道層106中,但本發明實施例並不以此為限。在另一些實施例中,這些凹陷114、116、118可些許延伸至通道層106中(如第3圖所示)。在另一些實施例中,這些凹陷114、116、118可僅穿過部分的第一阻障層108,而未暴露出通道層106(如第4圖所示)。 Although the embodiment in FIG. 2B shows that these recesses 114, 116, and 118 just pass through the first barrier layer 108, but do not extend into the channel layer 106, the embodiments of the present invention are not limited thereto. In other embodiments, these recesses 114, 116, 118 may extend slightly into the channel layer 106 (as shown in FIG. 3). In other embodiments, the recesses 114, 116, and 118 may only pass through a portion of the first barrier layer 108 without exposing the channel layer 106 (as shown in FIG. 4).

請參考第2C圖,在蓋層112的上表面上且在源極凹 陷114、汲極凹陷116、和閘極凹陷118中順應性地(conformally)形成襯層120。襯層120順應性地形成於源極凹陷114的底面和側壁上、汲極凹陷116的底面和側壁上、和閘極凹陷118的底面和側壁上,並且部分填充源極凹陷114、汲極凹陷116、和閘極凹陷118。在一些實施例中,襯層120的厚度可在約0.5奈米至約4奈米的範圍內,例如2奈米。在一些實施例中,襯層120的材料可包含或者是六方晶系(hexagonal crystal)的二元(binary)化合物半導體,例如,氮化鋁(AlN)、氧化鋅(ZnO)、氮化銦(InN)、前述之組合、或類似材料,並且可透過原子層沉積(ALD)或磊晶成長製程,例如金屬有機化學氣相沉積(MOCVD),在基底102之上全面地形成襯層120。 Please refer to FIG. 2C, on the upper surface of the cap layer 112 and the source electrode is concave The liner 120 is conformally formed in the recess 114, the drain recess 116, and the gate recess 118. The liner 120 is compliantly formed on the bottom and side walls of the source recess 114, the bottom and side walls of the drain recess 116, and the bottom and side walls of the gate recess 118, and partially fills the source recess 114 and the drain recess 116, and the gate depression 118. In some embodiments, the thickness of the liner 120 may be in the range of about 0.5 nanometers to about 4 nanometers, such as 2 nanometers. In some embodiments, the material of the liner layer 120 may include or be a binary compound semiconductor of a hexagonal crystal system (for example, aluminum nitride (AlN), zinc oxide (ZnO), indium nitride ( InN), the aforementioned combination, or similar materials, and can form a liner layer 120 on the substrate 102 through atomic layer deposition (ALD) or epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD).

請參考第2D圖,在源極凹陷114和汲極凹陷116的各自剩餘部分中形成源極電極122和汲極電極124於襯層120上。源極電極122具有位於蓋層112之上表面上方的上部,以及位於源極凹陷114中的下部。汲極電極124具有位於蓋層112之上表面上方的上部。以及位於汲極凹陷116中的下部。 Please refer to FIG. 2D, the source electrode 122 and the drain electrode 124 are formed on the liner layer 120 in the respective remaining portions of the source recess 114 and the drain recess 116. The source electrode 122 has an upper portion located above the upper surface of the cap layer 112 and a lower portion located in the source recess 114. The drain electrode 124 has an upper portion above the upper surface of the cap layer 112. And the lower portion located in the dip recess 116.

在一些實施例中,源極和汲極電極122和124的材料可包含或者是導電材料,例如金屬、金屬矽化物、半導體材料、或前述之組合。金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、氮化鈦(TiN)、前述之組合、前述之合金、或前述之多層。半導體材料可以是多晶矽或多晶鍺。在一些實施例中,形成源極和汲極電極122和124的步驟可包含沉積用於源極和汲極電極122和124的導電材料(未顯示)於基底102之上且填入源極凹陷114和汲極凹陷 116的剩餘部分中,以及對導電材料執行圖案化製程,以形成源極和汲極電極122和124。形成導電材料的沉積製程可以是原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD),例如濺鍍、前述之組合、或類似製程。 In some embodiments, the materials of the source and drain electrodes 122 and 124 may include or be conductive materials, such as metals, metal silicides, semiconductor materials, or a combination of the foregoing. The metal can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu), titanium nitride (TiN), the aforementioned combination, the aforementioned alloy, or the aforementioned multilayer. The semiconductor material may be polycrystalline silicon or polycrystalline germanium. In some embodiments, the step of forming the source and drain electrodes 122 and 124 may include depositing a conductive material (not shown) for the source and drain electrodes 122 and 124 on the substrate 102 and filling the source recess 114 and Jiji depression In the remaining part of 116, a patterning process is performed on the conductive material to form source and drain electrodes 122 and 124. The deposition process for forming the conductive material may be atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), such as sputtering, a combination of the foregoing, or a similar process.

請參考第2E圖,在閘極凹陷118的剩餘部分中順應性地形成介電層126於襯層120上,以作為閘極介電層。介電層126還形成於蓋層120之上表面上方的襯層120上。介電層126還形成於源極電極122的上表面和側壁、以及汲極電極124的上表面和側壁上。在一些實施例中,介電層126的材料可包含或者是氧化矽(SiO2)、氮化矽(SiN)、氧化鋁(Al2O3)、氮化鋁(AlN)、氧化鉿(HfO2)、前述之組合、前述之多層、或類似材料,並且可透過原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD),例如濺鍍,在基底102之上全面地形成介電層126。 Referring to FIG. 2E, a dielectric layer 126 is compliantly formed on the liner layer 120 in the remaining portion of the gate recess 118 as a gate dielectric layer. The dielectric layer 126 is also formed on the liner layer 120 above the upper surface of the cap layer 120. The dielectric layer 126 is also formed on the upper surface and sidewalls of the source electrode 122 and the upper surface and sidewalls of the drain electrode 124. In some embodiments, the material of the dielectric layer 126 may include or be silicon oxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), hafnium oxide (HfO 2 ), the aforementioned combination, the aforementioned multiple layers, or similar materials, and may be through atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), such as sputtering, on the substrate 102 The dielectric layer 126 is formed comprehensively.

請參考第2F圖,在閘極凹陷118的剩餘部分中形成閘極電極128於介電層126上。閘極電極128具有位於蓋層112之上表面上方的上部,以及位於閘極凹陷118中的下部。閘極電極128與介電層126共同作為閘極結構130。在一些實施例中,閘極電極128的材料可包含或者是導電材料,例如金屬、金屬矽化物、半導體材料、或前述之組合。金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、氮化鈦(TiN)、前述之組合、前述之合金、或前述之多層。半導體材料可以是多晶矽或多晶鍺。形成閘極電極128的步驟可包含在基底102之上沉積用於閘極電極128的導電材料層(未顯示),以及對導電材料層執行圖案化製程,以形成閘極 電極128。形成導電材料的沉積製程可以是原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD),例如濺鍍、前述之組合、或類似製程。 Referring to FIG. 2F, a gate electrode 128 is formed on the dielectric layer 126 in the remaining portion of the gate recess 118. The gate electrode 128 has an upper portion located above the upper surface of the cap layer 112 and a lower portion located in the gate recess 118. The gate electrode 128 and the dielectric layer 126 together serve as the gate structure 130. In some embodiments, the material of the gate electrode 128 may include or be a conductive material, such as metal, metal silicide, semiconductor material, or a combination of the foregoing. The metal can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu), titanium nitride (TiN), the aforementioned combination, the aforementioned alloy, or the aforementioned multilayer. The semiconductor material may be polycrystalline silicon or polycrystalline germanium. The step of forming the gate electrode 128 may include depositing a conductive material layer (not shown) for the gate electrode 128 on the substrate 102 and performing a patterning process on the conductive material layer to form the gate electrode Electrode 128. The deposition process for forming the conductive material may be atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), such as sputtering, a combination of the foregoing, or a similar process.

請參考第2G圖,在基底102之上形成層間介電層(inter layer dielectric,ILD)132,並且層間介電層132覆蓋閘極結構130、源極電極122、和汲極電極124。接著,在層間介電層132中形成多個接觸件134,這些接觸件134分別與閘極結構130、源極電極122和汲極電極124電性連接。 Referring to FIG. 2G, an interlayer dielectric (ILD) 132 is formed on the substrate 102, and the interlayer dielectric layer 132 covers the gate structure 130, the source electrode 122, and the drain electrode 124. Next, a plurality of contacts 134 are formed in the interlayer dielectric layer 132. These contacts 134 are electrically connected to the gate structure 130, the source electrode 122 and the drain electrode 124, respectively.

在一些實施例中,層間介電層132的材料可以是氧化矽、氮化矽、氮氧化矽、氧化鋁、前述之組合、前述之多層、或類似材料。可透過化學氣相沉積(CVD),例如電漿增強化學氣相沉積(plasma-enhanced CVD,PECVD)、原子層沉積(ALD)、或類似方法,在基底102之上全面地形成層間介電層132。 In some embodiments, the material of the interlayer dielectric layer 132 may be silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, a combination of the foregoing, the foregoing multilayer, or the like. An interlayer dielectric layer can be formed on the substrate 102 by chemical vapor deposition (CVD), such as plasma-enhanced CVD (PECVD), atomic layer deposition (ALD), or similar methods 132.

在一些實施例中,接觸件134的材料可以是金屬材料,例如金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、前述之組合、或前述之多層。形成接觸件134的步驟可包含透過圖案化製程形成各自對應於源極電極122、汲極電極124、和閘極電極128的多個開口(未顯示),其穿過層間介電層132以及源極電極122、汲極電極124之上的介電層126,並且暴露出源極電極122、汲極電極124、和閘極電極128之部分上表面,沉積金屬材料(未顯示)於層間介電層132上且填入這些開口,以及執行例如化學機械研磨(chemical mechanical polish,CMP)的平坦化製程,移除金屬材料在層間介電層130上方的部分。 In some embodiments, the material of the contact 134 may be a metal material, such as gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr ), tungsten (W), aluminum (Al), copper (Cu), a combination of the foregoing, or a multilayer of the foregoing. The step of forming the contact 134 may include forming a plurality of openings (not shown) corresponding to the source electrode 122, the drain electrode 124, and the gate electrode 128 through the patterning process, which pass through the interlayer dielectric layer 132 and the source The dielectric layer 126 above the electrode 122, the drain electrode 124, and a portion of the upper surface of the source electrode 122, the drain electrode 124, and the gate electrode 128 are exposed, and a metal material (not shown) is deposited on the interlayer dielectric The layer 132 is filled with these openings, and a planarization process such as chemical mechanical polish (CMP) is performed to remove the metal material above the interlayer dielectric layer 130.

在形成層間介電層132和接觸件134之後,形成了半導體裝置100。半導體裝置100也可稱作金屬絕緣體半導體型場效電晶體(metal-insulator-semiconductor field effect transistor,MIS-FET)。 After forming the interlayer dielectric layer 132 and the contact 134, the semiconductor device 100 is formed. The semiconductor device 100 may also be referred to as a metal-insulator-semiconductor field effect transistor (MIS-FET).

在第2A-2G圖所示的實施例中,半導體裝置100包含依序堆疊於基底102之上的通道層106、第一阻障層108、以及第二阻障層110。半導體裝置100還包含源極電極122、汲極電極124、和介於源極電極122與汲極電極124之間的閘極結構130。源極電極124、汲極電極124、和閘極結構130至少延伸穿過部分的第二阻障層110。源極電極124、汲極電極124、和閘極結構130具有位於大抵相同的水平高度的各自底面。半導體裝置100還包含襯層120,其順應性地設置於源極電極122、汲極電極124、和閘極結構130的各自下部上。襯層120的底面的水平高度等於第一阻障層108的底面的水平高度。 In the embodiment shown in FIGS. 2A-2G, the semiconductor device 100 includes a channel layer 106, a first barrier layer 108, and a second barrier layer 110 sequentially stacked on the substrate 102. The semiconductor device 100 further includes a source electrode 122, a drain electrode 124, and a gate structure 130 interposed between the source electrode 122 and the drain electrode 124. The source electrode 124, the drain electrode 124, and the gate structure 130 extend at least through a portion of the second barrier layer 110. The source electrode 124, the drain electrode 124, and the gate structure 130 have respective bottom surfaces located at approximately the same level. The semiconductor device 100 further includes a liner layer 120 compliantly disposed on the respective lower portions of the source electrode 122, the drain electrode 124, and the gate structure 130. The horizontal height of the bottom surface of the liner layer 120 is equal to the horizontal height of the bottom surface of the first barrier layer 108.

在第2A-2G圖所示的實施例中,用於形成源極電極122、汲極電極124、和閘極結構130的凹陷114、116和118穿過第一和第二阻障層108和110,使得第一阻障層108與通道層106之間的異質界面不存在於此區域中,而減少或消滅了所形成之源極電極122、汲極電極124、和閘極結構130下方的二維電子氣(2DEG)。值得注意的是,由於襯層120包含六方晶系二元化合物半導體,並且襯層120形成於源極電極122、汲極電極124、和閘極結構130之底部與通道層106之間,故襯層120與通道層106之間可引發自發性極化及壓電極化效應,以回復因前述異質界面消失所減少的二維電子氣(2DEG)。因此,襯層120可作 為二維電子氣回復(2DEG recovery)層,以改善源極電極122和汲極電極124與通道層106之間的接觸電阻(Rcontact),且改善閘極結構130下方的導通電阻(Ron)。 In the embodiment shown in FIGS. 2A-2G, the recesses 114, 116, and 118 for forming the source electrode 122, the drain electrode 124, and the gate structure 130 pass through the first and second barrier layers 108 and 110, so that the heterogeneous interface between the first barrier layer 108 and the channel layer 106 does not exist in this area, and the formed source electrode 122, the drain electrode 124, and the gate structure 130 are reduced or eliminated Two-dimensional electron gas (2DEG). It is worth noting that since the liner layer 120 includes a hexagonal binary compound semiconductor, and the liner layer 120 is formed between the source electrode 122, the drain electrode 124, and the bottom of the gate structure 130 and the channel layer 106, the liner layer The spontaneous polarization and piezoelectric polarization effects can be induced between the layer 120 and the channel layer 106 to restore the 2D electron gas (2DEG) reduced by the disappearance of the aforementioned heterogeneous interface. Therefore, the liner layer 120 can serve as a two-dimensional electron gas recovery (2DEG recovery) layer to improve the contact resistance (R contact ) between the source electrode 122 and the drain electrode 124 and the channel layer 106, and improve the underside of the gate structure 130 On resistance (R on ).

此外,在第2A-2G圖所示的實施例中,透過一道蝕刻製程同時形成源極凹陷114、汲極凹陷116、和閘極凹陷118,這降低不同區域的半導體裝置之間之通道電阻(Rchannel)的差異,進而提升半導體裝置的製造穩定性。再者,減少一道圖案化製程來形成閘極凹陷,不僅提升半導體裝置的製造效率,也降低化學品(例如圖案化製程中的光阻或顯影劑)對於閘極結構的傷害,進而提升半導體裝置100的效能。 In addition, in the embodiment shown in FIGS. 2A-2G, the source recess 114, the drain recess 116, and the gate recess 118 are simultaneously formed through an etching process, which reduces the channel resistance between semiconductor devices in different regions ( R channel ), which further improves the manufacturing stability of semiconductor devices. Furthermore, reducing the patterning process to form the gate recesses not only improves the manufacturing efficiency of the semiconductor device, but also reduces the damage of chemicals (such as photoresist or developer in the patterning process) to the gate structure, thereby improving the semiconductor device 100 effectiveness.

再者,源極凹陷114、汲極凹陷116、和閘極凹陷118具有位於大抵相同的水平高度的各自底面,這避免了第1圖所述之通道耦合(channel coupling)效應,而降低半導體裝置的通道電阻(Rchannel),進而提升半導體裝置100的效能。 Furthermore, the source recess 114, the drain recess 116, and the gate recess 118 have respective bottom surfaces at approximately the same level, which avoids the channel coupling effect described in FIG. 1 and reduces the semiconductor device Channel resistance (R channel ) to further improve the performance of the semiconductor device 100.

再者,在通道層106和第二阻障層110之間設置第一阻障層108以作為蝕刻停止層,使得源極凹陷114、汲極凹陷116、和閘極凹陷118的這些各自底面的水平高度等於第一阻障層108的底面的水平高度。因此,當半導體裝置100操作時,自汲極電極124流向源極電極122的電流E可以是與異質界面平行的水平路徑,而幾乎不具有與異質界面垂直的縱向路徑,這進一步降低半導體裝置100的通道電阻(Rchannel)。 Furthermore, a first barrier layer 108 is provided between the channel layer 106 and the second barrier layer 110 as an etch stop layer, so that the respective bottom surfaces of the source recess 114, the drain recess 116, and the gate recess 118 are The horizontal height is equal to the horizontal height of the bottom surface of the first barrier layer 108. Therefore, when the semiconductor device 100 is operating, the current E flowing from the drain electrode 124 to the source electrode 122 may be a horizontal path parallel to the heterointerface, and hardly have a longitudinal path perpendicular to the heterointerface, which further reduces the semiconductor device 100 The channel resistance (R channel ).

第2A-2G圖所示之實施例為一範例,本發明之實施例並不以此為限。除上述第2A-2G圖所示之實施例以外,本發明實施例的方法亦可應用於其他半導體裝置。 The embodiment shown in FIGS. 2A-2G is an example, and the embodiment of the present invention is not limited thereto. In addition to the embodiments shown in FIGS. 2A-2G described above, the method of the embodiments of the present invention can also be applied to other semiconductor devices.

第3圖是根據本發明的另一些實施例之半導體裝置200的剖面示意圖,其中相同於前述第2A-2G圖的實施例的部件係使用相同的標號並省略其說明。第3圖所示之實施例與前述第2G圖之實施例的差別在於,第3圖中位於源極凹陷114、汲極凹陷116、和閘極凹陷118中之襯層120,其底面的水平高度低於第一阻障層108的底面的水平高度。 FIG. 3 is a schematic cross-sectional view of a semiconductor device 200 according to some other embodiments of the present invention, in which components identical to those in the foregoing embodiments of FIGS. 2A-2G are denoted by the same reference numerals and their descriptions are omitted. The difference between the embodiment shown in FIG. 3 and the previous embodiment shown in FIG. 2G is that the bottom surface of liner 120 in source recess 114, drain recess 116, and gate recess 118 in FIG. 3 is horizontal The height is lower than the horizontal height of the bottom surface of the first barrier layer 108.

請參考第3圖,透過與前述第2B圖相似的圖案化製程,凹蝕蓋層112、第二阻障層110、第一阻障層108、和通道層106,以形成源極凹陷114、汲極凹陷116、和閘極凹陷118,其穿過蓋層112、第二阻障層110、和第一阻障層108,且更延伸至通道層106中至尺寸D3,例如在約1奈米至約50奈米的範圍內。 Please refer to FIG. 3, through a patterning process similar to the aforementioned FIG. 2B, the capping layer 112, the second barrier layer 110, the first barrier layer 108, and the channel layer 106 are etched to form the source recess 114, The drain recess 116 and the gate recess 118 pass through the capping layer 112, the second barrier layer 110, and the first barrier layer 108, and further extend into the channel layer 106 to a dimension D3, for example, about 1 nanometer Meters to about 50 nanometers.

在第3圖的實施例中,源極凹陷114、汲極凹陷116、和閘極凹陷118的這些各自底面的水平高度些許低於第一阻障層108的底面的水平高度。因此,當半導體裝置200操作時,自汲極電極124流向源極電極122的電流E具有與異質界面垂直的縱向路徑,使得半導體裝置200的通道電阻(Rchannel)略高於第2G圖所示之半導體裝置100的通道電阻。然而,蝕刻製程將凹陷116、118和120延伸至通道層106中以產生較深的蝕刻深度,使得基底102之不同區域的凹陷116、118和120之間可具有較佳的蝕刻深度均勻度(即均勻度的數值較低)。較佳的蝕刻深度均勻度可降低半導體裝置在基底102之不同區域之間通道電阻(Rchannel)的差異,進而提升半導體裝置的製造穩定性。 In the embodiment of FIG. 3, the horizontal heights of the respective bottom surfaces of the source recess 114, the drain recess 116, and the gate recess 118 are slightly lower than the horizontal height of the bottom surface of the first barrier layer 108. Therefore, when the semiconductor device 200 is operating, the current E flowing from the drain electrode 124 to the source electrode 122 has a vertical path perpendicular to the hetero interface, so that the channel resistance (R channel ) of the semiconductor device 200 is slightly higher than that shown in FIG. 2G Channel resistance of the semiconductor device 100. However, the etching process extends the recesses 116, 118, and 120 into the channel layer 106 to create a deeper etching depth, so that the recesses 116, 118, and 120 in different regions of the substrate 102 can have better etching depth uniformity ( That is, the value of uniformity is lower). The better uniformity of the etching depth can reduce the difference in the channel resistance (R channel ) of the semiconductor device between different regions of the substrate 102, thereby improving the manufacturing stability of the semiconductor device.

第4圖是根據本發明的另一些實施例之半導體裝 置300的剖面示意圖,其中相同於前述第2A-2G圖的實施例的部件係使用相同的標號並省略其說明。第4圖所示之實施例與前述第2G圖之實施例的差別在於,第4圖中位於源極凹陷114、汲極凹陷116、和閘極凹陷118中之襯層120,其底面的水平高度高於第一阻障層108的底面的水平高度。詳細而言,凹陷114、116和118之底面的水平高度介於第一阻障層108的底面與上表面之間。 Figure 4 is a semiconductor device according to other embodiments of the present invention A schematic cross-sectional view of the device 300, wherein the same components as those in the foregoing embodiments of FIGS. 2A-2G are denoted by the same reference numerals and their description is omitted. The difference between the embodiment shown in FIG. 4 and the previous embodiment shown in FIG. 2G is that the bottom surface of the liner 120 in the source recess 114, the drain recess 116, and the gate recess 118 in FIG. 4 is horizontal The height is higher than the horizontal height of the bottom surface of the first barrier layer 108. In detail, the horizontal height of the bottom surfaces of the recesses 114, 116, and 118 is between the bottom surface and the upper surface of the first barrier layer 108.

請參考第4圖,透過與前述第2B圖相似的圖案化製程,凹蝕蓋層112、第二阻障層110、和第一阻障層108,以形成源極凹陷114、汲極凹陷116、和閘極凹陷118,其穿過蓋層112、第二阻障層110和部分的第一阻障層108。這些凹陷114、116和118的底面停止於第一阻障層108中,並且第一阻障層108在這些凹陷114、116和118下方的部分具有尺寸D4,例如在約0.5奈米至約5奈米的範圍內。在圖案化製程的蝕刻製程之後,源極凹陷114、汲極凹陷116、和閘極凹陷118的底面高於第一阻障層108的底面的水平高度。 Please refer to FIG. 4, through a patterning process similar to the aforementioned FIG. 2B, the capping layer 112, the second barrier layer 110, and the first barrier layer 108 are etched to form the source recess 114 and the drain recess 116 , And the gate recess 118, which passes through the capping layer 112, the second barrier layer 110, and part of the first barrier layer 108. The bottom surfaces of these recesses 114, 116, and 118 stop in the first barrier layer 108, and the portion of the first barrier layer 108 below these recesses 114, 116, and 118 has a dimension D4, for example, about 0.5 nm to about 5 Nano range. After the etching process of the patterning process, the bottom surfaces of the source recess 114, the drain recess 116, and the gate recess 118 are higher than the horizontal height of the bottom surface of the first barrier layer 108.

綜上所述,在本發明實施例中,透過一道蝕刻製程同時形成源極凹陷、汲極凹陷、和閘極凹陷,以具有位於大抵相同的水平高度的各自底面。因此,避免了通道耦合效應,而降低半導體裝置的通道電阻(Rchannel),並且降低不同區域的半導體裝置之間之通道電阻(Rchannel)的差異。 In summary, in the embodiment of the present invention, the source recess, the drain recess, and the gate recess are simultaneously formed through an etching process to have respective bottom surfaces located at approximately the same level. Therefore, the channel coupling effect is avoided, and the channel resistance (R channel ) of the semiconductor device is reduced, and the difference in channel resistance (R channel ) between semiconductor devices in different regions is reduced.

此外,在本發明實施例中,設置於源極電極、汲極電極、和閘極電極之底部上的襯層可回復或提升源極電極、汲極電極和閘極電極下方的二維電子氣(2DEG),因而降低半導 體裝置的導通電阻(Ron)和通道電阻(Rchannel)。 In addition, in the embodiment of the present invention, the liner provided on the bottom of the source electrode, the drain electrode, and the gate electrode can restore or enhance the two-dimensional electron gas under the source electrode, the drain electrode, and the gate electrode (2DEG), thereby reducing the on-resistance (R on ) and channel resistance (R channel ) of the semiconductor device.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。 Several embodiments are summarized above, so that those with ordinary knowledge in the technical field to which the present invention belongs can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which the present invention belongs should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and they can do so without departing from the spirit and scope of the present invention, Do all kinds of changes, substitutions, and replacements.

100‧‧‧半導體裝置 100‧‧‧Semiconductor device

102‧‧‧基底 102‧‧‧ base

104‧‧‧緩衝層 104‧‧‧buffer layer

106‧‧‧通道層 106‧‧‧Channel layer

108‧‧‧第一阻障層 108‧‧‧The first barrier layer

110‧‧‧第二阻障層 110‧‧‧The second barrier

112‧‧‧蓋層 112‧‧‧cover

114‧‧‧源極凹陷 114‧‧‧Source depression

116‧‧‧汲極凹陷 116‧‧‧ Jiji depression

118‧‧‧閘極凹陷 118‧‧‧Gate depression

120‧‧‧襯層 120‧‧‧lining

122‧‧‧源極電極 122‧‧‧Source electrode

124‧‧‧汲極電極 124‧‧‧Drain electrode

126‧‧‧介電層 126‧‧‧dielectric layer

128‧‧‧閘極電極 128‧‧‧Gate electrode

130‧‧‧閘極結構 130‧‧‧Gate structure

132‧‧‧層間介電層 132‧‧‧Interlayer dielectric layer

134‧‧‧接觸件 134‧‧‧Contact

Claims (20)

一種半導體裝置,包括:一通道層,設置於一基底之上;一第一阻障層,設置於該通道層之上;一第二阻障層,設置於該第一阻障層之上;以及一源極電極、一汲極電極、和介於該源極電極與該汲極電極之間的一閘極結構,至少延伸穿過部分的該第二阻障層,其中該源極電極、該汲極電極、和該閘極結構具有位於大抵相同的水平高度且鄰近該第一阻障層的各自底面。 A semiconductor device includes: a channel layer disposed on a substrate; a first barrier layer disposed on the channel layer; a second barrier layer disposed on the first barrier layer; And a source electrode, a drain electrode, and a gate structure interposed between the source electrode and the drain electrode, extending at least through a portion of the second barrier layer, wherein the source electrode, The drain electrode and the gate structure have respective bottom surfaces located at approximately the same level and adjacent to the first barrier layer. 如申請專利範圍第1項所述之半導體裝置,更包括:一襯層,順應性地設置於該源極電極、該汲極電極、和該閘極結構的各自下部上,其中該襯層的底面的水平高度等於、或低於該第一阻障層的底面的水平高度。 The semiconductor device as described in item 1 of the patent application scope further includes: a liner layer compliantly disposed on the respective lower portions of the source electrode, the drain electrode, and the gate structure, wherein the liner layer The horizontal height of the bottom surface is equal to or lower than the horizontal height of the bottom surface of the first barrier layer. 如申請專利範圍第2項所述之半導體裝置,更包括:一襯層,順應性地設置於該源極電極、該汲極電極、和該閘極結構的各自下部上,其中該襯層的底面的水平高度高於該第一阻障層的底面的水平高度。 The semiconductor device as described in item 2 of the patent application scope further includes: a liner layer compliantly disposed on the respective lower portions of the source electrode, the drain electrode, and the gate structure, wherein the liner layer The horizontal height of the bottom surface is higher than the horizontal height of the bottom surface of the first barrier layer. 如申請專利範圍第2項所述之半導體裝置,其中該襯層的底面的水平高度介於該第一阻障層的底面與上表面之間。 The semiconductor device as described in item 2 of the patent application range, wherein the horizontal height of the bottom surface of the liner layer is between the bottom surface and the upper surface of the first barrier layer. 如申請專利範圍第2項所述之半導體裝置,其中該襯層更形成於該第二阻障層的上表面之上。 The semiconductor device as described in item 2 of the patent application range, wherein the liner layer is further formed on the upper surface of the second barrier layer. 如申請專利範圍第2項所述之半導體裝置,其中該襯層的材料包含六方晶系(hexagonal crystal)的二元化合物半導體。 The semiconductor device as described in item 2 of the patent application range, wherein the material of the underlayer comprises a hexagonal crystal (binary compound semiconductor). 如申請專利範圍第6項所述之半導體裝置,其中該二元化合 物半導體包含氮化鋁(AlN)、氧化鋅(ZnO)或氮化銦(InN)。 The semiconductor device as described in item 6 of the patent application scope, wherein the binary compound The semiconductor includes aluminum nitride (AlN), zinc oxide (ZnO), or indium nitride (InN). 如申請專利範圍第2項所述之半導體裝置,其中該閘極結構包括:一介電層;以及一閘極電極,設置於該介電層上,其中該介電層介於該襯層與該閘極電極之間。 The semiconductor device as described in item 2 of the patent application scope, wherein the gate structure includes: a dielectric layer; and a gate electrode disposed on the dielectric layer, wherein the dielectric layer is interposed between the liner layer and Between the gate electrodes. 如申請專利範圍第8項所述之半導體裝置,其中該介電層更設置於該源極電極的上表面和側壁、以及該汲極電極的上表面和側壁上。 The semiconductor device as described in item 8 of the patent application range, wherein the dielectric layer is further disposed on the upper surface and the side wall of the source electrode, and the upper surface and the side wall of the drain electrode. 如申請專利範圍第1項所述之半導體裝置,其中該第一阻障層的材料為氮化鋁(AlN)。 The semiconductor device as described in item 1 of the patent application range, wherein the material of the first barrier layer is aluminum nitride (AlN). 一種半導體裝置的製造方法,包括:在一基底之上依序形成一通道層、一第一阻障層、以及一第二阻障層;凹蝕該第二阻障層和該第一阻障層,以形成至少穿過部分的該第一阻障層的一源極凹陷、一汲極凹陷、和介於該源極凹陷與該汲極凹陷之間的一閘極凹陷,其中該源極凹陷、該汲極凹陷、和該閘極凹陷具有位於大抵相同的水平高度的各自底面;以及在該源極凹陷、該汲極凹陷、和該閘極凹陷中分別形成一源極電極、一汲極電極、和一閘極結構。 A method for manufacturing a semiconductor device includes: sequentially forming a channel layer, a first barrier layer, and a second barrier layer on a substrate; etching the second barrier layer and the first barrier Layer to form a source recess, a drain recess, and a gate recess between the source recess and the drain recess at least through a portion of the first barrier layer, wherein the source electrode The recess, the drain recess, and the gate recess have respective bottom surfaces at approximately the same level; and a source electrode, a drain, and a drain are formed in the source recess, the drain recess, and the gate recess, respectively Pole electrode, and a gate structure. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中凹蝕該第二阻障層和該第一阻障層的步驟包含:對該第二阻障層和該第一阻障層執行一蝕刻製程,以同時形成該 源極凹陷、該汲極凹陷、和該閘極凹陷。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the step of etching the second barrier layer and the first barrier layer includes: the second barrier layer and the first barrier layer Perform an etching process to simultaneously form the The source recess, the drain recess, and the gate recess. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該源極凹陷、該汲極凹陷、和該閘極凹陷的該些各自底面的水平高度等於或低於該第一阻障層的底面的水平高度。 The method of manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the respective bottom surfaces of the source recess, the drain recess, and the gate recess are equal to or lower than the first barrier layer The horizontal height of the bottom surface. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該源極凹陷、該汲極凹陷、和該閘極凹陷的該些各自底面的水平高度介於該第一阻障層的底面與上表面之間。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the respective bottom surfaces of the source recess, the drain recess, and the gate recess are between the bottom surfaces of the first barrier layer With the upper surface. 如申請專利範圍第11項所述之半導體裝置的製造方法,更包括:在該源極凹陷的底面和側壁上、該汲極凹陷的底面和側壁上、以及該閘極凹陷的底面和側壁上順應性地形成一襯層。 The method for manufacturing a semiconductor device as described in item 11 of the patent application scope further includes: on the bottom surface and side walls of the source recess, on the bottom surface and side walls of the drain recess, and on the bottom surface and side walls of the gate recess A lining is formed compliantly. 如申請專利範圍第15項所述之半導體裝置的製造方法,其中該襯層的材料包含六方晶系(hexagonal crystal)的二元化合物半導體。 The method for manufacturing a semiconductor device as described in item 15 of the patent application range, wherein the material of the liner layer includes a hexagonal crystal (hexagonal crystal) binary compound semiconductor. 如申請專利範圍第16項所述之半導體裝置的製造方法,其中該二元化合物半導體包含氮化鋁(AlN)、氧化鋅(ZnO)或氮化銦(InN)。 The method for manufacturing a semiconductor device as described in item 16 of the patent application range, wherein the binary compound semiconductor includes aluminum nitride (AlN), zinc oxide (ZnO), or indium nitride (InN). 如申請專利範圍第15項所述之半導體裝置的製造方法,其中形成該閘極結構的步驟包括:在該閘極凹陷中順應性地形成一介電層於該襯層上;以及在該閘極凹陷中形成一閘極電極於該介電層上。 The method for manufacturing a semiconductor device as described in item 15 of the patent application range, wherein the step of forming the gate structure includes: conformally forming a dielectric layer on the liner layer in the gate recess; and the gate A gate electrode is formed on the dielectric layer in the pole recess. 如申請專利範圍第18項所述之半導體裝置的製造方法,其中該介電層更形成於該源極電極的上表面和側壁、以及該 汲極電極的上表面和側壁上。 The method for manufacturing a semiconductor device as described in item 18 of the patent application range, wherein the dielectric layer is further formed on the upper surface and the side wall of the source electrode, and the The upper surface and the side wall of the drain electrode. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該第一阻障層的材料為氮化鋁(AlN)。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the material of the first barrier layer is aluminum nitride (AlN).
TW107141856A 2018-11-23 2018-11-23 Semiconductor devices and methods for fabricating the same TWI693716B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107141856A TWI693716B (en) 2018-11-23 2018-11-23 Semiconductor devices and methods for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141856A TWI693716B (en) 2018-11-23 2018-11-23 Semiconductor devices and methods for fabricating the same

Publications (2)

Publication Number Publication Date
TWI693716B TWI693716B (en) 2020-05-11
TW202021126A true TW202021126A (en) 2020-06-01

Family

ID=71896177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141856A TWI693716B (en) 2018-11-23 2018-11-23 Semiconductor devices and methods for fabricating the same

Country Status (1)

Country Link
TW (1) TWI693716B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768413B (en) * 2020-07-24 2022-06-21 世界先進積體電路股份有限公司 Semiconductor device and operation circuit
US11569224B2 (en) 2020-12-14 2023-01-31 Vanguard International Semiconductor Corporation Semiconductor device and operation circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500157B (en) * 2012-08-09 2015-09-11 Univ Nat Central Field effect transistor device and method for fabricating the same
US9425301B2 (en) * 2014-04-30 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Sidewall passivation for HEMT devices
TWI569439B (en) * 2015-03-31 2017-02-01 晶元光電股份有限公司 Semiconductor cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768413B (en) * 2020-07-24 2022-06-21 世界先進積體電路股份有限公司 Semiconductor device and operation circuit
US11569224B2 (en) 2020-12-14 2023-01-31 Vanguard International Semiconductor Corporation Semiconductor device and operation circuit

Also Published As

Publication number Publication date
TWI693716B (en) 2020-05-11

Similar Documents

Publication Publication Date Title
US11127847B2 (en) Semiconductor devices having a gate field plate including an extension portion and methods for fabricating the semiconductor device
US10707322B2 (en) Semiconductor devices and methods for fabricating the same
US11664430B2 (en) Semiconductor device
US20210043724A1 (en) Semiconductor devices and methods for fabricating the same
CN109103098B (en) Gallium nitride insulated gate high electron mobility transistor and manufacturing method thereof
US10971579B2 (en) Semiconductor device and fabrication method thereof
TWI676293B (en) Semiconductor devices and methods for forming same
TWI693716B (en) Semiconductor devices and methods for fabricating the same
TWI676216B (en) Semiconductor devices and methods for fabricating the same
CN103296078B (en) Enhancement mode GaN HEMT device having grid spacer and method for fabricating GaN HEMT device
TWI673868B (en) Semiconductor devices and methods for fabricating the same
CN110690275B (en) Semiconductor device and method for manufacturing the same
TWI686873B (en) Semiconductor devices and methods for fabricating the same
CN110875383B (en) Semiconductor device and method for manufacturing the same
TW202125829A (en) Semiconductor structure
US20220359695A1 (en) Semiconductor device structure with metal gate stack
TW202044356A (en) Manufacturing method of semiconductor device
US10644128B1 (en) Semiconductor devices with reduced channel resistance and methods for fabricating the same
TW202329461A (en) High electron mobility transistor and method for fabricating the same
TWI740058B (en) Semiconductor devices and methods for forming same
US11201225B2 (en) Structure and formation method of semiconductor device with stressor
TWI768270B (en) Semiconductor structures and the method for forming the same
TWI692039B (en) Manufacturing method of semiconductor device
CN111276538B (en) Semiconductor device and method for manufacturing the same
CN111987141A (en) Semiconductor device and method for manufacturing the same