TW202018872A - Ferroelectric memory and manufacturing method thereof - Google Patents

Ferroelectric memory and manufacturing method thereof Download PDF

Info

Publication number
TW202018872A
TW202018872A TW107140212A TW107140212A TW202018872A TW 202018872 A TW202018872 A TW 202018872A TW 107140212 A TW107140212 A TW 107140212A TW 107140212 A TW107140212 A TW 107140212A TW 202018872 A TW202018872 A TW 202018872A
Authority
TW
Taiwan
Prior art keywords
layer
filling material
material layer
conductive layer
ferroelectric memory
Prior art date
Application number
TW107140212A
Other languages
Chinese (zh)
Other versions
TWI673831B (en
Inventor
王志耀
李亨元
葉伯淳
林雨德
徐建華
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW107140212A priority Critical patent/TWI673831B/en
Priority to CN201811489789.6A priority patent/CN111180445B/en
Application granted granted Critical
Publication of TWI673831B publication Critical patent/TWI673831B/en
Publication of TW202018872A publication Critical patent/TW202018872A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A ferroelectric memory is provided. The ferroelectric memory includes a substrate and one or more trench are formed the substrate. A first conductive layer, a second conductive layer, and a ferroelectric thin film layer disposed between the first conductive layer and the second conductive layer disposed on a surface of the trench. A first filling material layer, a second filling material layer and a third filling material layer disposed on the second conductive layer. The second filling material layer of a thermal expansion coefficient is more than the first filling material layer and the third filling material layer of the thermal expansion coefficient. When the ferroelectric thin film layer is subjected to heat treatment process to form a crystalline state, and a compressive stress is applied to the ferroelectric thin film layer by the first filling material layer, the second filling material layer, and the third filling material layer in response to heat treatment expansion characteristics. The invention further a ferroelectric memory of manufacturing method is provided.

Description

鐵電記憶體及其製造方法 Ferroelectric memory and its manufacturing method

本發明係關於一種鐵電記憶體及其製造方法。 The invention relates to a ferroelectric memory and a manufacturing method thereof.

在非揮發性存儲器中,要再縮小浮柵(Floating Gate)型閃存或金屬/氧化物/氮化物/氧化物/矽(MONOS)型閃存變得困難。因此,不斷尋找使用與這些存儲器不同的操作原理的尺寸微縮。諸如鐵電隨機存取存儲器(FeRAM)、電阻隨機存取存儲器(ReRAM)、相變隨機存取存儲器(PCRAM)、磁隨機存取存儲器(MRAM)或三維記憶體皆已被使用。在這些存儲器中,其中FeRAM裡,如FeFET(鐵電場效應晶體管)、FTJ(鐵電隧道結構)、鍊式FeRAM(鐵電隨機存取存儲器)等鐵電存儲器,如使用含鉛鐵電存儲器的厚度減小是困難的。 In non-volatile memory, it is difficult to shrink the floating gate (Floating Gate) flash memory or the metal/oxide/nitride/oxide/silicon (MONOS) flash memory. Therefore, there is a constant search for miniaturization using different operating principles from these memories. Such as ferroelectric random access memory (FeRAM), resistance random access memory (ReRAM), phase change random access memory (PCRAM), magnetic random access memory (MRAM) or three-dimensional memory have been used. Among these memories, in FeRAM, such as FeFET (ferroelectric field effect transistor), FTJ (ferroelectric tunnel structure), chain-type FeRAM (ferroelectric random access memory) and other ferroelectric memory, such as the use of lead-containing ferroelectric memory It is difficult to reduce the thickness.

在FeRAM這樣的僵局中,作為不含鉛的強電介質膜,容易製造,且低電壓動作能夠進行長時間記錄,故使用氧化鉿膜來實現具有大容量的鐵電存儲器是可以被實現的。 In a deadlock like FeRAM, a ferroelectric film that does not contain lead is easy to manufacture, and low-voltage operation enables long-term recording. Therefore, it is possible to use a hafnium oxide film to realize a ferroelectric memory with a large capacity.

本發明之目的是在利用兩種熱膨脹係數不同之填充材料於鐵電材料熱處理過程中會因熱膨脹係數的不同而產生形變,來對鐵電材料進行一壓縮應力,致使鐵電材料在經壓力與溫度重新晶格排列後,鐵電特 性因此獲得大幅改善。 The purpose of the present invention is to use two kinds of fillers with different thermal expansion coefficients during the heat treatment process of the ferroelectric materials to produce deformation due to the different thermal expansion coefficients, to apply a compressive stress to the ferroelectric materials, so that the ferroelectric materials undergo pressure and After the temperature is rearranged, the ferroelectric Sex has thus been greatly improved.

本發明提供一種鐵電記憶體,包括有一基板,並於該基板上形成一溝槽,該溝槽的表面上設置有一第一導電層與一第二導電層及位於該第一導電層與該第二導電層間的一鐵電薄膜層,該第二導電層上堆疊有一第一填充材料層、一第二填充材料層及一第三填充材料層,該第二填充材料層的熱膨脹係數大於第一填充材料層與第三填充材料層的熱膨脹係數;及該鐵電薄膜層經過熱處理形成結晶態時,利用該第一填充材料層、該第二填充材料層及該第三填充材料層遇熱處理膨脹特性而對鐵電薄膜層施加一壓縮應力。 The invention provides a ferroelectric memory, including a substrate, and a groove is formed on the substrate, a first conductive layer and a second conductive layer are provided on the surface of the groove, and the first conductive layer and the A ferroelectric thin film layer between the second conductive layers, a first filling material layer, a second filling material layer and a third filling material layer stacked on the second conductive layer, the thermal expansion coefficient of the second filling material layer is greater than the A coefficient of thermal expansion of a filler material layer and a third filler material layer; and when the ferroelectric thin film layer undergoes heat treatment to form a crystalline state, the first filler material layer, the second filler material layer, and the third filler material layer are subjected to heat treatment The expansion characteristic applies a compressive stress to the ferroelectric thin film layer.

該熱處理溫度為200℃-900℃,較佳為300℃-600℃。 The heat treatment temperature is 200°C-900°C, preferably 300°C-600°C.

較佳地,該第一填充材料層與該第三填充材料層的材料為氮化鈦或鈦之熱膨脹係數小的材料,而該第二填充材料層的材料為氮化鉭之熱膨脹係數大的材料。其中該第二填充材料層的材料熱膨脹係數大於該第一填充材料層與該第三填充材料層的材料熱膨脹係數。 Preferably, the material of the first filling material layer and the third filling material layer is titanium nitride or titanium with a small thermal expansion coefficient, and the material of the second filling material layer is tantalum nitride with a large thermal expansion coefficient material. The material thermal expansion coefficient of the second filling material layer is greater than the material thermal expansion coefficients of the first filling material layer and the third filling material layer.

較佳地,該第一填充材料層、該第二填充材料層與該第三填充材料層構成的第二三明治結構在熱處理時,對該第一導電層、該鐵電薄膜層與該第二導電層的第一三明治結構形成壓力,並對該鐵電薄膜層施加壓力。 Preferably, during heat treatment, the second sandwich structure formed by the first filling material layer, the second filling material layer and the third filling material layer, the first conductive layer, the ferroelectric thin film layer and the The first sandwich structure of the second conductive layer forms pressure and applies pressure to the ferroelectric thin film layer.

本發明另提供一種鐵電記憶體之製造方法,其步驟包括:提供一基板;於該基板上形成一第一氧化層,該第一氧化層上形成一金屬層,圖案化形成一下電極;形成一第二氧化層於該下電極上,並於該第二氧化層形成一或多個溝槽;形成一第一導電層、一鐵電薄膜層與一第二導電層 於該溝槽及該第二氧化層的表面上,使該第一導電層與該下電極接觸;形成一第一填充材料層、一第二填充材料層與一第三填充材料層於該第二導電層上;及形成一上電極於該第三填充材料層上,並進行熱處理處理。 The invention also provides a method for manufacturing a ferroelectric memory. The steps include: providing a substrate; forming a first oxide layer on the substrate, forming a metal layer on the first oxide layer, and patterning to form a lower electrode; forming A second oxide layer is formed on the lower electrode, and one or more trenches are formed in the second oxide layer; a first conductive layer, a ferroelectric thin film layer and a second conductive layer are formed On the surfaces of the trench and the second oxide layer, the first conductive layer is in contact with the lower electrode; a first filling material layer, a second filling material layer and a third filling material layer are formed on the first On the two conductive layers; and forming an upper electrode on the third filling material layer, and performing heat treatment.

較佳地,於該下電極與該第一氧化層上以低溫狀態下形成一第二氧化層。 Preferably, a second oxide layer is formed on the lower electrode and the first oxide layer at a low temperature.

較佳地,本發明步驟更包括一步驟係研磨該第二氧化層使平坦化。 Preferably, the step of the present invention further includes a step of grinding the second oxide layer to planarize it.

較佳地,該第一導電層、該鐵電薄膜層與該第二導電層之製作步驟為:於該第一導電層形成於該溝槽的表面,該鐵電薄膜層形成於該第一導電層的表面,該第二導電層形成於該鐵電薄膜層表面上,使該第一導電層可與該下電極接觸。 Preferably, the manufacturing steps of the first conductive layer, the ferroelectric thin film layer and the second conductive layer are: the first conductive layer is formed on the surface of the trench, and the ferroelectric thin film layer is formed on the first On the surface of the conductive layer, the second conductive layer is formed on the surface of the ferroelectric thin film layer so that the first conductive layer can be in contact with the lower electrode.

較佳地,該第一填充材料層、該第二填充材料層與該第三填充材料層的製作步驟為:於該第一填充材料層形成於該第二導電層的表面,該第二填充材料層形成於該第一填充材料層的表面,該第三填充材料層形成於該第二填充材料層的表面並填滿該溝槽。 Preferably, the manufacturing steps of the first filling material layer, the second filling material layer and the third filling material layer are: the first filling material layer is formed on the surface of the second conductive layer, and the second filling The material layer is formed on the surface of the first filling material layer, and the third filling material layer is formed on the surface of the second filling material layer and fills the trench.

較佳地,該第一填充材料層的材料及該第三填充材料層的材料可為相同或不同,其中該第二填充材料層的材料熱膨脹係數大於該第一填充材料層與該第三填充材料層的材料熱膨脹係數。 Preferably, the material of the first filling material layer and the material of the third filling material layer may be the same or different, wherein the material of the second filling material layer has a coefficient of thermal expansion greater than that of the first filling material layer and the third filling material The material thermal expansion coefficient of the material layer.

較佳地,該熱處理溫度為200℃-900℃,較佳為300℃-600℃。 Preferably, the heat treatment temperature is 200°C-900°C, preferably 300°C-600°C.

較佳地,本發明之步驟更包括於該第二氧化層表面上之該上電極、該第一導電層、該鐵電薄膜層與該第二導電層及該第一填充材料層、該第二填充材料層與該第三填充材料層的兩端側邊形成一間隙壁,該間隙 壁的材料為一二氧化矽。 Preferably, the steps of the present invention further include the upper electrode, the first conductive layer, the ferroelectric thin film layer and the second conductive layer and the first filling material layer, the first on the surface of the second oxide layer A gap wall is formed between the two filling material layers and the two sides of the third filling material layer, the gap The material of the wall is silicon dioxide.

較佳地,本發明之步驟更包括:形成一上金屬層於最上方的表面;圖案化使該導孔上端表面形成一金屬墊,及該上電極與該間隙壁上方形成一上金屬墊。 Preferably, the steps of the present invention further include: forming an upper metal layer on the uppermost surface; patterning to form a metal pad on the upper end surface of the via hole, and forming an upper metal pad above the upper electrode and the spacer.

10‧‧‧基板 10‧‧‧ substrate

12‧‧‧溝槽 12‧‧‧Groove

14‧‧‧第一三明治結構 14‧‧‧The first sandwich structure

142‧‧‧第一導電層 142‧‧‧The first conductive layer

144‧‧‧鐵電薄膜層 144‧‧‧Ferroelectric thin film layer

146‧‧‧第二導電層 146‧‧‧Second conductive layer

16‧‧‧第二三明治結構 16‧‧‧Second sandwich structure

162‧‧‧第一填充材料層 162‧‧‧First filling material layer

164‧‧‧第二填充材料層 164‧‧‧Second filling material layer

166‧‧‧第三填充材料層 166‧‧‧third filling material layer

102‧‧‧基板 102‧‧‧ substrate

104‧‧‧第一氧化層 104‧‧‧First oxide layer

106‧‧‧金屬層 106‧‧‧Metal layer

108‧‧‧下電極 108‧‧‧Lower electrode

110‧‧‧第二氧化層 110‧‧‧second oxide layer

112‧‧‧溝槽、孔洞 112‧‧‧Groove, hole

114‧‧‧上電極 114‧‧‧Upper electrode

116‧‧‧間隙壁 116‧‧‧Gap

118‧‧‧導孔 118‧‧‧Guide hole

120‧‧‧金屬墊 120‧‧‧Metal pad

122‧‧‧上金屬墊 122‧‧‧Upper metal pad

第1圖係本發明鐵電記憶體的側面剖視示意圖。 Figure 1 is a schematic side sectional view of the ferroelectric memory of the present invention.

第2A-2K圖為本發明鐵電記憶體的製造流程示意圖。 2A-2K are schematic diagrams of the manufacturing process of the ferroelectric memory of the present invention.

本章節所敘述的是實施本發明之最佳方式,目的在於說明本發明之精神而非用以限定本發明之保護範圍,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 This section describes the best way to implement the present invention, the purpose is to illustrate the spirit of the present invention and not to limit the scope of protection of the present invention, the scope of protection of the present invention shall be subject to the scope of the attached patent application shall prevail .

請參閱第1圖係本發明鐵電記憶體的側面剖視示意圖,本發明鐵電記憶體包括有一基板10,並於該基板10上形成一溝槽12。該基板10的材料可為一二氧化矽材料(SiO2 Material)。該溝槽12的表面上依序設置有一第一導電層142與一第二導電層146及位於該第一導電層142與該第二導電層146間的一鐵電薄膜層144形成第一三明治結構14。該第二導電層146上依序堆疊有一第一填充材料層162、一第二填充材料層164及一第三填充材料層166形成第二三明治結構16。該第二填充材料層164的熱膨脹係數大於第一填充材料層162與第三填充材料層166的熱膨脹係數。本發明係在該鐵電薄膜層144經過熱處理200℃-900℃,較佳為300℃-600℃形成結晶態時,利用該第一填充材料層162、該第二填充材料層164及該第三填充材料層166 之第二三明治結構16遇熱處理膨脹特性而對該鐵電薄膜層144增加一壓縮應力,以增加其鐵電特性。 Please refer to FIG. 1, which is a schematic side sectional view of the ferroelectric memory of the present invention. The ferroelectric memory of the present invention includes a substrate 10, and a groove 12 is formed on the substrate 10. The material of the substrate 10 may be silicon dioxide material (SiO 2 Material). A first conductive layer 142 and a second conductive layer 146 and a ferroelectric thin film layer 144 between the first conductive layer 142 and the second conductive layer 146 are sequentially formed on the surface of the trench 12 to form a first three Meiji structure 14. A first filling material layer 162, a second filling material layer 164, and a third filling material layer 166 are sequentially stacked on the second conductive layer 146 to form a second sandwich structure 16. The thermal expansion coefficient of the second filling material layer 164 is greater than the thermal expansion coefficients of the first filling material layer 162 and the third filling material layer 166. The present invention utilizes the first filling material layer 162, the second filling material layer 164, and the first The second sandwich structure 16 of the three-filled material layer 166 encounters thermal expansion characteristics and adds a compressive stress to the ferroelectric thin film layer 144 to increase its ferroelectric properties.

由於該第一填充材料層162與該第三填充材料層166和該第二填充材料層164的材料熱膨脹係數不同,故在熱處理的過程中會產生形變進而對該鐵電材料層144有一壓縮應力,該鐵電薄膜層144透過熱處理與一壓縮應力的作用下,進而增加其鐵電特性。 Since the materials of the first filling material layer 162 and the third filling material layer 166 and the second filling material layer 164 have different thermal expansion coefficients, deformation will occur during the heat treatment process and there will be a compressive stress on the ferroelectric material layer 144 Through the heat treatment and a compressive stress, the ferroelectric thin film layer 144 further increases its ferroelectric properties.

該第一導電層142與該第二導電層146的材料可為氮化鈦(TiN)、氮化鉭(TaN)、鎢化鈦(TiW)、氮化鉿(HfN)、氮化鋯(ZrN)、氮化鉭鋁(TaAlN)、氮化鎢鋁(WAlN)、氮化鉿鋁(HfAlN)、氮化鋯鋁(ZrAlN)等金屬。 The materials of the first conductive layer 142 and the second conductive layer 146 may be titanium nitride (TiN), tantalum nitride (TaN), titanium tungsten (TiW), hafnium nitride (HfN), zirconium nitride (ZrN) ), tantalum aluminum nitride (TaAlN), tungsten aluminum nitride (WAlN), hafnium aluminum nitride (HfAlN), zirconium aluminum nitride (ZrAlN) and other metals.

該鐵電薄膜層144的材料可為氧化鉿鋯(HfZrOx)、氧化鍶鈦(SrTiOx)、氧化鍶鈣鈦(SrCaTiOx)、氧化銀鈮鉭(Ag(Nb1-xTax)Ox)、氧化鋇鍶鈦(BaSrTiO3)、氧化鋇鈦(BaTiO3)等。 The material of the ferroelectric thin film layer 144 may be hafnium zirconium oxide (HfZrOx), strontium titanium oxide (SrTiOx), strontium calcium titanium oxide (SrCaTiOx), silver niobium tantalum oxide (Ag(Nb1-xTax) Ox), barium strontium titanium oxide (BaSrTiO3), barium titanium oxide (BaTiO3), etc.

該第一填充材料層162與該第三填充材料層166的材料可為氮化鈦(TiN)、鈦(Ti)等熱膨脹係數(Thermal expansion coefficient,TEC)小的材料,而該第二填充材料層164的材料可為氮化鉭(TaN)等熱膨脹係數(Thermal expansion coefficient,TEC)大的材料。藉熱處理對該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14形成壓力。 The material of the first filling material layer 162 and the third filling material layer 166 may be a material with a small thermal expansion coefficient (TEC) such as titanium nitride (TiN), titanium (Ti), and the second filling material The material of the layer 164 may be a material with a large thermal expansion coefficient (TEC) such as tantalum nitride (TaN). The first sandwich structure 14 of the first conductive layer 142, the ferroelectric thin film layer 144 and the second conductive layer 146 is pressed by heat treatment.

本發明係在該鐵電薄膜層144經過熱處理形成結晶態時,利用填充材料(例如該第一填充材料層162、該第二填充材料層164及該第三填充材料層166之第二三明治結構16)遇熱處理膨脹特性而對該鐵電薄膜144層直接實施垂直壓力,以增加其鐵電特性。其中結晶態為例如Pbc2等。 In the present invention, when the ferroelectric thin film layer 144 undergoes heat treatment to form a crystalline state, filler materials (such as the second filler material layer 162, the second filler material layer 164, and the third filler material layer 166 are used Governance structure 16) Directly apply vertical pressure to the 144 layer of the ferroelectric thin film in order to increase its ferroelectric characteristics in case of thermal expansion. The crystalline state is, for example, Pbc2.

該第二填充材料層164的材料熱膨脹係數大於該第一填充材 料層162與該第三填充材料層166的材料熱膨脹係數。其中該第一填充材料層162的材料及該第三填充材料層166的材料可為相同或不同。 The material thermal expansion coefficient of the second filler material layer 164 is greater than that of the first filler material The material thermal expansion coefficients of the material layer 162 and the third filling material layer 166. The material of the first filling material layer 162 and the material of the third filling material layer 166 may be the same or different.

本發明係以一垂直金屬層/絕緣層/金屬層(MIM)之鐵電記憶體(vertical MIM FeRAM)之改進發明,文獻(Effect of external stress on polarization in ferroelectric tin films,APL(1998))指出鐵電材料在外加一壓縮應力(Compress stress)會對其鐵電特性有幫助,故鐵電材料在堆疊完後經過一熱處理才會得到好的鐵電特性。當該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16在熱處理時,同時對該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14形成壓力,同時,也是對該鐵電薄膜層144施加壓力,因此可以得到更好的鐵電特性。 The present invention is an improved invention of a vertical metal layer/insulating layer/metal layer (MIM) ferroelectric memory (vertical MIM FeRAM), which is pointed out in the literature (Effect of external stress on polarization in ferroelectric tin films, APL (1998)) Applying a compressive stress (Compress stress) to the ferroelectric material will help its ferroelectric properties, so the ferroelectric materials will get good ferroelectric properties after a stack of heat treatment. When the second sandwich structure 16 composed of the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166 is heat-treated, the first conductive layer 142 and the ferroelectric thin film The layer 144 forms pressure with the first sandwich structure 14 of the second conductive layer 146, and at the same time, it also applies pressure to the ferroelectric thin film layer 144, so that better ferroelectric characteristics can be obtained.

由於該鐵電薄膜層144是對應力敏感的材料,並且其特性由於形成在鐵電電容器上部的各種薄膜的應力的影響而使其晶格排列有所不同。當對該鐵電薄膜層144施加壓縮方向的應力時,諸如洩漏電流和殘餘電介質極化的特性得到改善。 Since the ferroelectric thin film layer 144 is a stress-sensitive material, and its characteristics are different due to the stress of various thin films formed on the upper part of the ferroelectric capacitor, its crystal lattice arrangement is different. When stress in the compression direction is applied to the ferroelectric thin film layer 144, characteristics such as leakage current and residual dielectric polarization are improved.

請參閱第2A-2K圖為本發明鐵電記憶體的製造流程示意圖,如第2A圖所示,於一矽晶圓(Si wafer)基板102上形成一第一氧化層104,例如二氧化矽(SiO2),以爐管生成該第一氧化層104。接著,於該第一氧化層104上形成一金屬層106,該金屬層106為例如是Ti/TiN。 Please refer to FIGS. 2A-2K for a schematic diagram of the manufacturing process of the ferroelectric memory of the present invention. As shown in FIG. 2A, a first oxide layer 104, such as silicon dioxide, is formed on a silicon wafer substrate 102 (SiO 2 ), the first oxide layer 104 is formed in a furnace tube. Next, a metal layer 106 is formed on the first oxide layer 104, and the metal layer 106 is, for example, Ti/TiN.

如第2B圖所示,於該金屬層106上以一第一光罩層(圖中未示,光罩層以下均未示於圖式)遮蓋,將該金屬層106圖案化,使該金屬層106形成一下電極108。然後移除該第一光罩層。 As shown in FIG. 2B, the metal layer 106 is covered with a first photomask layer (not shown in the figure, the photomask layer is not shown in the drawings below), and the metal layer 106 is patterned to make the metal Layer 106 forms lower electrode 108. Then the first mask layer is removed.

如第2C圖所示,於該下電極108與該第一氧化層104上以低溫狀態下形成一第二氧化層110(Low Temperature Oxide Department,LTO Dep.)。該第二氧化層110可為二氧化矽(SiO2)、氧化矽(SiOx)等。如第2D圖所示,研磨該第二氧化層110使平坦化。 As shown in FIG. 2C, a second oxide layer 110 (Low Temperature Oxide Department, LTO Dep.) is formed on the lower electrode 108 and the first oxide layer 104 at a low temperature. The second oxide layer 110 may be silicon dioxide (SiO 2 ), silicon oxide (SiOx), or the like. As shown in FIG. 2D, the second oxide layer 110 is polished to be planarized.

如第2E圖所示,於平坦化後之該第二氧化層110上以一第二光罩層遮蓋,將該第二氧化層110以乾蝕刻方式蝕刻出一或多數個溝槽112(Trench),或於該第二氧化層110圖案化出一或多數個孔洞112(Hole pattemed)。該溝槽112或該孔洞112位於該下電極108上。以下均以溝槽112代表說明。接著,移除該第二光罩層。 As shown in FIG. 2E, the second oxide layer 110 after being planarized is covered with a second photomask layer, and the second oxide layer 110 is dry-etched to etch one or more trenches 112 (Trench ), or one or more holes 112 (Hole pattemed) are patterned in the second oxide layer 110. The trench 112 or the hole 112 is located on the lower electrode 108. In the following, the groove 112 is used for representative description. Next, the second mask layer is removed.

如第2F圖所示,形成一第一導電層142、一鐵電薄膜層144與一第二導電層146的第一三明治結構14於該溝槽112及該第二氧化層110的表面上。該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14製作步驟可為於該第一導電層142形成於該溝槽112的表面,接著,該鐵電薄膜層144形成於該第一導電層142的表面,然後該第二導電層146形成於該鐵電薄膜層144表面上。此步驟可利用ALD(原子層化學氣相沉積),CVD(化學氣相沉積),PVD(物理氣相沉積)等方法製作。因此,該第一導電層142可與該下電極108接觸。於該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14上形成一第一填充材料層162、一第二填充材料層164與一第三填充材料層166構成的第二三明治結構16。該第一填充材料層162、該第二填充材料層164與該第三填充材料層166的第二三明治結構16製作步驟可為於該第一填充材料層162形成於該第二導電層146的表面,接著,該第二填充材料層164形成於該第一填充材料層162的表 面,然後該第三填充材料層166形成於該第二填充材料層164的表面並填滿該溝槽。此步驟可利用ALD(原子層化學氣相沉積),CVD(化學氣相沉積),PVD(物理氣相沉積))等方法製作。為得到更好的鐵電特性,於熱處理時,該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16對該第一導電層142、該鐵電薄膜層144與該第二導電層146構成的第一三明治結構14形成壓力,同時,也是對該鐵電薄膜層144施加壓力,使得到更好的鐵電特性。其中該第一填充材料層142的材料及該第三填充材料層146的材料可為相同或不同。 As shown in FIG. 2F, a first sandwich structure 14 of a first conductive layer 142, a ferroelectric thin film layer 144, and a second conductive layer 146 is formed on the surface of the trench 112 and the second oxide layer 110 on. The first sandwich layer 14 of the first conductive layer 142, the ferroelectric thin film layer 144, and the second conductive layer 146 may be formed by forming the first conductive layer 142 on the surface of the trench 112, and then, The ferroelectric thin film layer 144 is formed on the surface of the first conductive layer 142, and then the second conductive layer 146 is formed on the surface of the ferroelectric thin film layer 144. This step can be made by ALD (atomic layer chemical vapor deposition), CVD (chemical vapor deposition), PVD (physical vapor deposition) and other methods. Therefore, the first conductive layer 142 may be in contact with the lower electrode 108. A first filling material layer 162, a second filling material layer 164 and a third are formed on the first sandwich layer 14 of the first conductive layer 142, the ferroelectric thin film layer 144 and the second conductive layer 146 The second sandwich structure 16 constituted by the filling material layer 166. The manufacturing step of the second sandwich structure 16 of the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166 may be that the first filling material layer 162 is formed on the second conductive layer 146 surface, and then, the second filling material layer 164 is formed on the surface of the first filling material layer 162 Then, the third filling material layer 166 is formed on the surface of the second filling material layer 164 and fills the trench. This step can be made by ALD (atomic layer chemical vapor deposition), CVD (chemical vapor deposition), PVD (physical vapor deposition) and other methods. In order to obtain better ferroelectric properties, during heat treatment, the second sandwich structure 16 formed by the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166 is conductive to the first The layer 142, the first sandwich structure 14 formed by the ferroelectric thin film layer 144 and the second conductive layer 146 form a pressure, and at the same time, the pressure is also applied to the ferroelectric thin film layer 144 to achieve better ferroelectric characteristics. The material of the first filling material layer 142 and the material of the third filling material layer 146 may be the same or different.

如第2G圖所示,將該填充材料(該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16)研磨平坦化。但不完全研磨掉該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16。 As shown in FIG. 2G, the filler material (the second sandwich structure 16 composed of the first filler material layer 162, the second filler material layer 164, and the third filler material layer 166) is polished and planarized. However, the second sandwich structure 16 formed by the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166 is not completely ground away.

如第2H圖所示,於該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14與該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16的表面上形成一上電極114。於該上電極114表面上形成一第三光罩層,經圖案化後保留該上電極114、該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14與該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16突出於該第二氧化層110表面上。 As shown in FIG. 2H, the first sandwich structure 14 on the first conductive layer 142, the ferroelectric thin film layer 144, and the second conductive layer 146, the first filling material layer 162, and the second filling material An upper electrode 114 is formed on the surface of the second sandwich structure 16 formed by the layer 164 and the third filling material layer 166. A third mask layer is formed on the surface of the upper electrode 114, and after patterning, the first three layers of the upper electrode 114, the first conductive layer 142, the ferroelectric thin film layer 144 and the second conductive layer 146 are retained The second sandwich structure 16 formed by the governance structure 14, the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166 protrudes from the surface of the second oxide layer 110.

如第2I圖所示,於突出該第二氧化層110表面上之該上電極114、該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明 治結構14與該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16的兩端側邊形成一間隙壁116(Spacer),該間隙壁116的材料可為氧化物如二氧化矽。該間隙壁116製程可為在該上電極114與該第二氧化物110的表面上形成一氧化物層,再蝕刻後於突出該第二氧化層110表面上之該上電極114、該第一導電層142、該鐵電薄膜層144與該第二導電層146的第一三明治結構14與該第一填充材料層162、該第二填充材料層164與該第三填充材料層166構成的第二三明治結構16的兩端側邊形成該間隙壁116。 As shown in FIG. 2I, the first electrode of the upper electrode 114, the first conductive layer 142, the ferroelectric thin film layer 144 and the second conductive layer 146 protruding on the surface of the second oxide layer 110 A gap 116 (Spacer) is formed on both sides of the second sandwich structure 16 formed by the governance structure 14 and the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166, The material of the spacer 116 may be an oxide such as silicon dioxide. The process of the spacer 116 may be to form an oxide layer on the surface of the upper electrode 114 and the second oxide 110, and then etch the upper electrode 114 and the first on the surface of the second oxide layer 110 after etching The conductive layer 142, the ferroelectric thin film layer 144 and the second conductive layer 146 are formed by the first sandwich structure 14 and the first filling material layer 162, the second filling material layer 164 and the third filling material layer 166 The two sides of the second sandwich structure 16 form the partition wall 116.

如第2J圖所示,形成一第四光罩層於前述結構最上方的表面,並於該下電極108上的位置且位於該溝槽112的一側形成一導孔118(Via),使該導孔118接觸該下電極108。移除該第四光罩層。 As shown in FIG. 2J, a fourth mask layer is formed on the uppermost surface of the aforementioned structure, and a via hole 118 (Via) is formed on the position of the lower electrode 108 and on the side of the trench 112, so that The via hole 118 contacts the lower electrode 108. Remove the fourth mask layer.

如第2K圖所示,形成一上金屬層於前述結構最上方的表面,然後,形成一第五光罩層於該上金屬層表面上,圖案化使該導孔118上端表面形成一金屬墊120,及該上電極114與該間隙壁116上方及兩側形成一上金屬墊122。移除該第五光罩層。 As shown in FIG. 2K, an upper metal layer is formed on the uppermost surface of the aforementioned structure, and then, a fifth mask layer is formed on the surface of the upper metal layer, and a metal pad is formed on the upper surface of the via 118 by patterning 120, and an upper metal pad 122 is formed above and on both sides of the upper electrode 114 and the spacer 116. Remove the fifth mask layer.

最後,進行熱處理,使該鐵電薄膜層144形成結晶態,利用該第一填充材料層162、該第二填充材料層164及該第三填充材料層166之材料遇熱處理的膨脹特性對該鐵電薄膜層144施加壓力,因此可以得到更好的鐵電特性。 Finally, heat treatment is performed to form the crystalline state of the ferroelectric thin film layer 144, and the expansion characteristics of the first filling material layer 162, the second filling material layer 164, and the third filling material layer 166 are heat treated to the iron The electric thin film layer 144 applies pressure, so that better ferroelectric characteristics can be obtained.

以上段落使用多種層面描述。顯然的,本文的教示可以多種方式實現,而在範例中揭露之任何特定架構或功能為一代表性之狀況。根據本文之教示,任何熟知此技藝之人士應理解在本文揭露之各層面可獨立 實作或兩種以上之層面可以合併實作。 The above paragraphs use multiple levels of description. Obviously, the teachings in this article can be implemented in many ways, and any specific architecture or function disclosed in the examples is a representative situation. According to the teaching of this article, anyone who is familiar with this skill should understand that each level disclosed in this article can be independent Implementation or two or more levels can be combined and implemented.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some changes and modifications within the spirit and scope of the present invention, so the protection of the present invention The scope shall be as defined in the appended patent application scope.

10‧‧‧基板 10‧‧‧ substrate

12‧‧‧溝槽 12‧‧‧Groove

14‧‧‧第一三明治結構 14‧‧‧The first sandwich structure

142‧‧‧第一導電層 142‧‧‧The first conductive layer

144‧‧‧鐵電薄膜層 144‧‧‧Ferroelectric thin film layer

146‧‧‧第二導電層 146‧‧‧Second conductive layer

16‧‧‧第二三明治結構 16‧‧‧Second sandwich structure

162‧‧‧第一填充材料層 162‧‧‧First filling material layer

164‧‧‧第二填充材料層 164‧‧‧Second filling material layer

166‧‧‧第三填充材料層 166‧‧‧third filling material layer

Claims (20)

一種鐵電記憶體,包括有一基板,並於該基板上形成一溝槽,該溝槽的表面上設置有一第一導電層與一第二導電層及位於該第一導電層與該第二導電層間的一鐵電薄膜層,該第二導電層上堆疊有一第一填充材料層、一第二填充材料層及一第三填充材料層,該第二填充材料層的熱膨脹係數大於第一填充材料層與第三填充材料層的熱膨脹係數;及該鐵電薄膜層經過熱處理形成結晶態時,利用該第一填充材料層、該第二填充材料層及該第三填充材料層遇熱處理膨脹特性而對鐵電薄膜層施加一壓縮應力。 A ferroelectric memory includes a substrate, and a groove is formed on the substrate, a first conductive layer and a second conductive layer are provided on the surface of the groove, and the first conductive layer and the second conductive A ferroelectric thin film layer between the layers, a first filling material layer, a second filling material layer and a third filling material layer stacked on the second conductive layer, the thermal expansion coefficient of the second filling material layer is greater than the first filling material Thermal expansion coefficients of the layer and the third filling material layer; and when the ferroelectric thin film layer undergoes heat treatment to form a crystalline state, the first filling material layer, the second filling material layer, and the third filling material layer are subjected to thermal expansion expansion characteristics A compressive stress is applied to the ferroelectric thin film layer. 如申請專利範圍第1項所述之鐵電記憶體,其中該熱處理溫度為200℃-900℃,較佳為300℃-600℃。 The ferroelectric memory as described in item 1 of the patent application range, wherein the heat treatment temperature is 200°C-900°C, preferably 300°C-600°C. 如申請專利範圍第1項所述之鐵電記憶體,其中該基板的材料為一二氧化矽材料(SiO2 Material)。 The ferroelectric memory as described in item 1 of the patent application scope, wherein the material of the substrate is silicon dioxide material (SiO 2 Material). 如申請專利範圍第1項所述之鐵電記憶體,其中該第一導電層與該第二導電層的材料為氮化鈦、氮化鉭、鎢化鈦、氮化鉿、氮化鋯、氮化鉭鋁、氮化鎢鋁、氮化鉿鋁或氮化鋯鋁。 The ferroelectric memory as described in item 1 of the patent application scope, wherein the materials of the first conductive layer and the second conductive layer are titanium nitride, tantalum nitride, titanium tungsten, hafnium nitride, zirconium nitride, Tantalum aluminum nitride, tungsten aluminum nitride, hafnium aluminum nitride, or zirconium aluminum nitride. 如申請專利範圍第1項所述之鐵電記憶體,其中該鐵電薄膜層的材料為氧化鉿鋯、氧化鍶鈦、氧化鍶鈣鈦、氧化銀鈮鉭、氧化鋇鍶鈦或氧化鋇鈦。 The ferroelectric memory as described in item 1 of the patent application range, wherein the material of the ferroelectric thin film layer is hafnium zirconium oxide, strontium titanium oxide, strontium calcium titanium oxide, silver niobium tantalum oxide, barium strontium titanium oxide or barium titanium oxide . 如申請專利範圍第1項所述之鐵電記憶體,其中該第一填充材料層與該第三填充材料層的材料為氮化鈦或鈦之熱膨脹係數小的材料,而該第二填充材料層的材料為氮化鉭之熱膨脹係數大的材料,其中該第二填充材料層的材料熱膨脹係數大於該第一填充材料層與該第三填充材料層的材料熱膨脹係數。 The ferroelectric memory as described in item 1 of the patent application range, wherein the material of the first filling material layer and the third filling material layer is a material with a small thermal expansion coefficient of titanium nitride or titanium, and the second filling material The material of the layer is a material with a large thermal expansion coefficient of tantalum nitride, wherein the material thermal expansion coefficient of the second filling material layer is greater than the material thermal expansion coefficients of the first filling material layer and the third filling material layer. 如申請專利範圍第1項所述之鐵電記憶體,其中該第一填充材料層、該第 二填充材料層與該第三填充材料層構成的第二三明治結構在熱處理時,對該第一導電層、該鐵電薄膜層與該第二導電層的第一三明治結構形成壓力,並對該鐵電薄膜層施加壓力。 The ferroelectric memory as described in item 1 of the patent scope, wherein the first filling material layer, the first During heat treatment, the second sandwich structure formed by the two filling material layers and the third filling material layer exerts pressure on the first sandwich structure of the first conductive layer, the ferroelectric thin film layer and the second conductive layer And apply pressure to the ferroelectric thin film layer. 一種鐵電記憶體之製造方法,其步驟包括:提供一基板;於該基板上形成一第一氧化層,該第一氧化層上形成一金屬層,圖案化形成一下電極;形成一第二氧化層於該下電極上,並於該第二氧化層形成一或多個溝槽;形成一第一導電層、一鐵電薄膜層與一第二導電層於該溝槽及該第二氧化層的表面上,使該第一導電層與該下電極接觸;形成一第一填充材料層、一第二填充材料層與一第三填充材料層於該第二導電層上;及形成一上電極於該第三填充材料層上,並進行熱處理處理。 A method for manufacturing a ferroelectric memory, the steps of which include: providing a substrate; forming a first oxide layer on the substrate, forming a metal layer on the first oxide layer, patterning to form a lower electrode; and forming a second oxide A layer on the lower electrode and forming one or more trenches in the second oxide layer; forming a first conductive layer, a ferroelectric thin film layer and a second conductive layer on the trench and the second oxide layer On the surface, the first conductive layer is in contact with the lower electrode; forming a first filling material layer, a second filling material layer and a third filling material layer on the second conductive layer; and forming an upper electrode On the third filling material layer, heat treatment is performed. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該基板為一矽晶圓基板。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application, wherein the substrate is a silicon wafer substrate. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該第一氧化層為一二氧化矽,而該金屬層為一鈦或一氮化鈦。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application, wherein the first oxide layer is a silicon dioxide, and the metal layer is a titanium or a titanium nitride. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中於該下電極與該第一氧化層上以低溫狀態下形成一第二氧化層,該第二氧化層為二氧化矽或氧化矽。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application scope, wherein a second oxide layer is formed on the lower electrode and the first oxide layer at a low temperature, and the second oxide layer is silicon dioxide Or silicon oxide. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,更包括一步驟係研磨該第二氧化層使平坦化。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application further includes a step of polishing the second oxide layer to planarize it. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該溝槽位於該下電極上。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application, wherein the groove is located on the lower electrode. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該第一導電層、該鐵電薄膜層與該第二導電層之製作步驟為:於該第一導電層形成於該溝槽的表面,該鐵電薄膜層形成於該第一導電層的表面,該第二導電層形成於該鐵電薄膜層表面上,使該第一導電層可與該下電極接觸。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application scope, wherein the manufacturing steps of the first conductive layer, the ferroelectric thin film layer and the second conductive layer are: the first conductive layer is formed on the On the surface of the trench, the ferroelectric thin film layer is formed on the surface of the first conductive layer, and the second conductive layer is formed on the surface of the ferroelectric thin film layer so that the first conductive layer can contact the lower electrode. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該第一填充材料層、該第二填充材料層與該第三填充材料層的製作步驟為:於該第一填充材料層形成於該第二導電層的表面,該第二填充材料層形成於該第一填充材料層的表面,該第三填充材料層形成於該第二填充材料層的表面並填滿該溝槽。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application scope, wherein the manufacturing steps of the first filling material layer, the second filling material layer and the third filling material layer are: A layer is formed on the surface of the second conductive layer, the second filling material layer is formed on the surface of the first filling material layer, and the third filling material layer is formed on the surface of the second filling material layer and fills the trench . 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該第一填充材料層的材料及該第三填充材料層的材料可為相同或不同,其中該第二填充材料層的材料熱膨脹係數大於該第一填充材料層與該第三填充材料層的材料熱膨脹係數。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application scope, wherein the material of the first filling material layer and the material of the third filling material layer may be the same or different, wherein the material of the second filling material layer The material thermal expansion coefficient is greater than the material thermal expansion coefficients of the first filling material layer and the third filling material layer. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中該熱處理溫度為200℃-900℃,較佳為300℃-600℃。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application range, wherein the heat treatment temperature is 200°C-900°C, preferably 300°C-600°C. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,更包括於該第二氧化層表面上之該上電極、該第一導電層、該鐵電薄膜層與該第二導電層及該第一填充材料層、該第二填充材料層與該第三填充材料層的兩端側邊形成一間隙壁,該間隙壁的材料為一二氧化矽。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application scope further includes the upper electrode, the first conductive layer, the ferroelectric thin film layer and the second conductive layer on the surface of the second oxide layer And the first filling material layer, the second filling material layer and the third filling material layer are formed on both sides of the gap wall, the gap wall material is silicon dioxide. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,其中於該下電極上的位置且位於該溝槽的一側形成一導孔,使該導孔接觸該下電極。 A method for manufacturing a ferroelectric memory as described in item 8 of the patent application, wherein a via hole is formed at a position on the lower electrode and located on one side of the trench, so that the via hole contacts the lower electrode. 如申請專利範圍第8項所述之鐵電記憶體之製造方法,更包括:形成一上金屬層於最上方的表面;圖案化使該導孔上端表面形成一金屬墊,及該上電極與該間隙壁上方形成一上金屬墊。 The method for manufacturing a ferroelectric memory as described in item 8 of the patent application scope further includes: forming an upper metal layer on the uppermost surface; patterning to form a metal pad on the upper end surface of the via hole, and the upper electrode and An upper metal pad is formed above the partition wall.
TW107140212A 2018-11-13 2018-11-13 Ferroelectric memory and manufacturing method thereof TWI673831B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107140212A TWI673831B (en) 2018-11-13 2018-11-13 Ferroelectric memory and manufacturing method thereof
CN201811489789.6A CN111180445B (en) 2018-11-13 2018-12-06 Ferroelectric memory and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107140212A TWI673831B (en) 2018-11-13 2018-11-13 Ferroelectric memory and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI673831B TWI673831B (en) 2019-10-01
TW202018872A true TW202018872A (en) 2020-05-16

Family

ID=69023473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140212A TWI673831B (en) 2018-11-13 2018-11-13 Ferroelectric memory and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN111180445B (en)
TW (1) TWI673831B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729986B2 (en) 2020-05-28 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric memory device and method of forming the same
DE102020133683A1 (en) * 2020-05-28 2021-12-02 Taiwan Semiconductor Manufacturing Co. Ltd. FERROELECTRIC STORAGE DEVICE AND METHOD FOR MANUFACTURING THEREOF
US11695073B2 (en) 2020-05-29 2023-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array gate structures
US11710790B2 (en) 2020-05-29 2023-07-25 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array channel regions
US11729987B2 (en) 2020-06-30 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array source/drain electrode structures
US11640974B2 (en) 2020-06-30 2023-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array isolation structures
CN113689904A (en) * 2020-07-03 2021-11-23 长江存储科技有限责任公司 Method for reading and writing memory cells in a three-dimensional FeRAM
CN112382719B (en) * 2020-10-10 2023-10-10 清华大学 Device structure for improving ferroelectric tunneling junction performance and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324316B1 (en) * 1999-03-26 2002-02-16 김영환 Capacitor in semiconductor device and fabrication method thereof
JP4282245B2 (en) * 2001-01-31 2009-06-17 富士通株式会社 Capacitor element, manufacturing method thereof, and semiconductor device
KR100455375B1 (en) * 2001-09-17 2004-11-12 삼성전자주식회사 Method for manufacturing capacitor of semiconductor memory device including control of thermal budget
US6829157B2 (en) * 2001-12-05 2004-12-07 Korea Institute Of Science And Technology Method of controlling magnetization easy axis in ferromagnetic films using voltage, ultrahigh-density, low power, nonvolatile magnetic memory using the control method, and method of writing information on the magnetic memory
JP4218350B2 (en) * 2002-02-01 2009-02-04 パナソニック株式会社 Ferroelectric thin film element and manufacturing method thereof, thin film capacitor and piezoelectric actuator using the same
JP2006008476A (en) * 2004-06-29 2006-01-12 Nippon Electric Glass Co Ltd Glass article for use in building, and manufacturing method for glass article for use in building
KR101408743B1 (en) * 2007-12-11 2014-06-18 삼성전자주식회사 Semiconductor package and method of manufacturing a semiconductor package
US7848135B2 (en) * 2008-09-19 2010-12-07 International Business Machines Corporation Piezo-driven non-volatile memory cell with hysteretic resistance
JP5623134B2 (en) * 2010-05-27 2014-11-12 富士フイルム株式会社 Perovskite oxide, oxide composition, oxide body, piezoelectric element, and liquid ejection device
JP6121819B2 (en) * 2013-07-04 2017-04-26 株式会社東芝 Semiconductor device and dielectric film
CN107086214B (en) * 2017-03-06 2019-06-25 电子科技大学 Capacitor and preparation method

Also Published As

Publication number Publication date
CN111180445B (en) 2022-02-25
TWI673831B (en) 2019-10-01
CN111180445A (en) 2020-05-19

Similar Documents

Publication Publication Date Title
TWI673831B (en) Ferroelectric memory and manufacturing method thereof
US11424253B2 (en) Device including a floating gate electrode and a layer of ferroelectric material and method for the formation thereof
KR102034260B1 (en) Semiconductor device and manufacturing method thereof
US9362487B2 (en) Ferroelectric memory and manufacturing method of the same
CN105845821B (en) Autoregistration magnetic random access memory (MRAM) structure that technique damage minimizes
TWI635578B (en) Methods of fabricating an f-ram
KR100509851B1 (en) Capacitor and method for fabricating the same, and semiconductor device
US10304731B2 (en) Damascene oxygen barrier and hydrogen barrier for ferroelectric random-access memory
WO2012162867A1 (en) Resistive random access memory using electric field enhancement layer and method for manufacturing same
US9006808B2 (en) Eliminating shorting between ferroelectric capacitors and metal contacts during ferroelectric random access memory fabrication
KR20020076369A (en) Feram having aluminum oxide layer as oxygen diffusion barrier and method for forming the same
US10256321B2 (en) Semiconductor device including enhanced low-k spacer
TW202201650A (en) Memory device and method of forming the same
WO2019171884A1 (en) Semiconductor storage device, manufacturing method for semiconductor storage device, and electronic instrument
CN107710412A (en) The method that ferroelectric RAM is manufactured on the bottom electrode and barrier oxide layer being pre-patterned
JP2012151292A (en) Semiconductor device and method of manufacturing the same
JP2010093064A (en) Semiconductor device and method of manufacturing the same
KR102548657B1 (en) Memory array gate structures
KR100472731B1 (en) Method for forming semiconductor device capable of omitting seed layer etch process
JPWO2004053991A1 (en) Ferroelectric capacitor and manufacturing method thereof
KR100465832B1 (en) Ferroelectric Random Access Memory and fabricating method of the same
JP2010080523A (en) Semiconductor memory device
TW202245234A (en) Integrated chip and method for forming the same
JP2011066145A (en) Semiconductor device and method of manufacturing semiconductor device
KR20070081713A (en) Non-volatile memory device and method for fabricating the same