TW202018132A - Control method, device and system for growing crystal and computer storage medium - Google Patents

Control method, device and system for growing crystal and computer storage medium Download PDF

Info

Publication number
TW202018132A
TW202018132A TW108121630A TW108121630A TW202018132A TW 202018132 A TW202018132 A TW 202018132A TW 108121630 A TW108121630 A TW 108121630A TW 108121630 A TW108121630 A TW 108121630A TW 202018132 A TW202018132 A TW 202018132A
Authority
TW
Taiwan
Prior art keywords
shoulder
crystal
crystal growth
value
diameter
Prior art date
Application number
TW108121630A
Other languages
Chinese (zh)
Inventor
鄧先亮
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Publication of TW202018132A publication Critical patent/TW202018132A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This invention provides shouldering process control method, device and system for growing crystal and computer storage medium. The method comprises: presetting the setting value of the crystal diameter variation value and the setting value of the crystal growth process parameter at different stages of the shoulder process; obtaining the crystal diameters at different stages of the shoulder process and calculating the variation value; comparing the variation value of the crystal diameter with the setting value to obtain the difference as the input variable of PID algorithm; calculating the adjustment value of crystal growth process parameters by PID algorithm as the output variable of PID algorithm; adding the adjustment value of the crystal growth process parameters and the setting value to obtain the process parameters of the actual crystal growth process. The control method, device and system for growing crystal and computer storage medium control the diameter variety during the shoulder process by PID algorithm to overcome the influence of small changes in the thermal field on the shoulder process, ensuring the same variety in crystal diameter, and improving the repeatability of the shoulder process and the stability of the process.

Description

一種晶體生長控制方法、裝置、系統及電腦儲存媒體Crystal growth control method, device, system and computer storage medium

本發明涉及晶體生長領域,具體而言涉及一種晶體生長控制方法、裝置、系統及電腦儲存媒體,尤其涉及一種用於放肩過程的晶體生長控制方法、裝置、系統及電腦儲存媒體。The invention relates to the field of crystal growth, in particular to a crystal growth control method, device, system and computer storage medium, and in particular to a crystal growth control method, device, system and computer storage medium for shoulder-shouldering process.

單晶矽作為一種半導體材料,一般用於製造積體電路和其他電子元件。在製備矽單晶過程中,主要是利用將直徑較小的籽晶浸入矽熔體中,利用引晶生長出一段直徑較細的細晶來排出位錯以達到生長零位元錯晶體的目的。之後會利用放肩過程,使得晶體由細晶長大到目標直徑,再利用等徑生長獲得所需要尺寸的晶體。As a semiconductor material, single crystal silicon is generally used to manufacture integrated circuits and other electronic components. In the process of preparing silicon single crystals, it is mainly to immerse the seed crystal with a smaller diameter into the silicon melt, and use seeding to grow a section of fine crystal with a smaller diameter to expel the dislocations to achieve the purpose of growing zero dislocation crystals . Later, the shoulder-shouldering process will be used to make the crystal grow from the fine crystal to the target diameter, and then use the equal diameter growth to obtain the crystal of the required size.

放肩過程是長晶過程中較為關鍵的製程過程,是獲得目標直徑晶體的基礎。目前,採用的主要方法是採用降拉晶速度與降溫度相結合的方法使晶體直徑不斷增大以達到目標直徑。在放肩過程中主要是利用放肩開始時間或者放肩長度來決定拉晶速度和溫度的變化,所以在放肩製程過程中需要匹配好不同階段的拉晶速度和溫度。但是在實際長晶過程中由於熱場使用時間、引晶溫度、加熱器壽命等在每次長晶的時候會存在一些差別,所以如果無法及時調整溫度和拉晶速度設定會導致放肩過程失去晶體結構。另外,不同長晶條件的變化也會導致放肩製程的不同,導致放肩成為長晶製程開發過程中最為困難的一部分,需要進行很多次的嘗試才能找到合適的溫度和拉晶速度設定。同時也是長晶過程最難控制的一部分,要使每次放肩都達到一致非常困難。The shoulder-shuffling process is a more critical process in the crystal growth process and is the basis for obtaining crystals of the target diameter. At present, the main method adopted is the method of combining the speed of pulling down the crystal and the temperature to make the crystal diameter continuously increase to reach the target diameter. In the shoulder-shouldering process, the start time of the shoulder-shouldering or the length of the shoulder-shouldering is mainly used to determine the change of the pulling speed and temperature. Therefore, the pulling speed and temperature of different stages need to be matched during the shoulder-shoulding process. However, in the actual crystal growth process, there are some differences in the thermal field use time, seeding temperature, heater life, etc. each time the crystal grows, so if the temperature and crystal pulling speed settings cannot be adjusted in time, the crystal will be lost during the shoulder-shoulder process structure. In addition, changes in different crystal growth conditions will also lead to different shoulder-shouldering processes, resulting in shoulder-shouldering becoming the most difficult part of the growth process of the crystal-growth process. It takes many attempts to find the appropriate temperature and crystal-pulling speed settings. At the same time, it is also the most difficult part of the crystal growth process. It is very difficult to achieve uniformity every time you put your shoulders down.

本發明提供一種用於放肩過程的晶體生長控制方法、裝置、系統及電腦儲存媒體,以解決上述技術問題。The invention provides a crystal growth control method, device, system and computer storage medium for shoulder-shouldering process to solve the above technical problems.

發明內容部分中引入了一系列簡化形式的概念,這將在具體實施方式部分中進一步詳細說明。本發明的發明內容部分並不意味著要試圖限定出所要求保護的技術方案的關鍵特徵和必要技術特徵,更不意味著試圖確定所要求保護的技術方案的保護範圍。The concept of the invention introduces a series of concepts in simplified form, which will be explained in further detail in the detailed description. The summary of the present invention does not mean trying to define the key features and necessary technical features of the claimed technical solution, nor does it mean trying to determine the protection scope of the claimed technical solution.

本發明提供一種用於放肩過程的晶體生長控制方法,所述方法包括:預先設置放肩過程不同階段的晶體直徑變化值的設定值、放肩長度變化值的設定值和所述放肩過程不同階段的晶體生長製程參數的設定值;獲得所述放肩過程不同階段的晶體直徑,並計算所述晶體直徑的變化值;獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值;將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑變化值的設定值和所述放肩長度的變化值的設定值的比值進行比較,得到差值,並將所述差值作為PID演算法的輸入變數;利用PID演算法計算晶體生長製程參數的調節值,作為PID演算法的輸出變數;將所述晶體生長製程參數的調節值和所述晶體生長製程參數的設定值相加,得到實際長晶過程的製程參數。The present invention provides a crystal growth control method for a shoulder-shouldering process. The method includes: presetting the setting value of the crystal diameter change value at different stages of the shoulder-shouldering process, the setting value of the shoulder-shoulder length change value, and the shoulder-shouldering process The setting values of the crystal growth process parameters at different stages; obtaining the crystal diameter at different stages of the shoulder-releasing process and calculating the change value of the crystal diameter; obtaining the shoulder-releasing length at different stages of the shoulder-releasing process and calculating the The change value of the shoulder length; the ratio of the change value of the crystal diameter and the change value of the shoulder length to the set value of the change value of the crystal diameter and the change value of the change value of the shoulder length Compare, get the difference, and use the difference as the input variable of the PID algorithm; use the PID algorithm to calculate the adjustment value of the crystal growth process parameter as the output variable of the PID algorithm; use the crystal growth process parameter The adjustment value is added to the set value of the crystal growth process parameter to obtain the process parameter of the actual crystal growth process.

進一步,所述放肩過程的晶體生長製程參數包括拉晶速度和/或溫度。Further, the crystal growth process parameters of the shoulder-releasing process include crystal pulling speed and/or temperature.

進一步,所述放肩過程不同階段包括不同放肩時間或不同晶體長度處。Further, the different stages of the shoulder laying process include different shoulder laying times or different crystal lengths.

進一步,所述放肩過程不同階段的晶體直徑利用直徑測量裝置獲得。Further, the crystal diameters at different stages of the shoulder-releasing process are obtained by using a diameter measuring device.

進一步,所述放肩過程不同階段的放肩長度利用放肩長度測量裝置獲得。Further, the length of the shoulder-shouldering at different stages of the shoulder-shouldering process is obtained using a shoulder-shoulder length measuring device.

本發明還提供一種用於放肩過程的晶體生長控制裝置,所述裝置包括:預先設置模組,用於預先設置放肩過程不同階段的晶體直徑變化值的設定值、放肩長度變化值的設定值和所述放肩過程不同階段的晶體生長製程參數的設定值;直徑測量裝置,用於獲得所述放肩過程不同階段的晶體直徑,並計算所述晶體直徑的變化值;放肩長度測量裝置,用於獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值;比較模組,用於將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑變化值的設定值和所述放肩長度的變化值的設定值的比值進行比較,得到差值;PID控制模組,用於將所述差值作為所述PID控制模組的輸入變數,並利用PID演算法計算晶體生長製程參數的調節值,作為所述PID控制模組的輸出變數;製程參數設置模組,將所述晶體生長製程參數的調節值和所述晶體生長製程參數的設定值相加,得到實際長晶過程的製程參數。The invention also provides a crystal growth control device for shoulder-shouldering process. The device includes: a preset module for presetting the setting value of the crystal diameter change value and the shoulder-shoulder length change value at different stages of the shoulder-shouldering process Setting values and setting values of crystal growth process parameters at different stages of the shoulder-releasing process; diameter measuring device for obtaining the crystal diameters of the different stages of the shoulder-releasing process and calculating the change value of the crystal diameter; shoulder-releasing length Measuring device, used to obtain the shoulder-shoulder length at different stages of the shoulder-shoulder process, and calculate the change value of the shoulder-shoulder length; a comparison module is used to compare the change value of the crystal diameter with the shoulder-shoulder length The ratio of the change value is compared with the ratio of the setting value of the change value of the crystal diameter and the setting value of the change value of the shoulder length to obtain a difference; a PID control module is used to use the difference as the The input variable of the PID control module, and the PID algorithm is used to calculate the adjustment value of the crystal growth process parameter as the output variable of the PID control module; the process parameter setting module, the adjustment value of the crystal growth process parameter and The setting values of the crystal growth process parameters are added to obtain the process parameters of the actual crystal growth process.

進一步,所述放肩過程的晶體生長製程參數包括拉晶速度和/或溫度。Further, the crystal growth process parameters of the shoulder-releasing process include crystal pulling speed and/or temperature.

進一步,所述放肩過程不同階段包括不同放肩時間或不同晶體長度處。Further, the different stages of the shoulder laying process include different shoulder laying times or different crystal lengths.

本發明還提供一種用於放肩過程的晶體生長控制系統,包括記憶體、處理器及儲存在所述記憶體上且在所述處理器上運行的電腦程式,所述處理器執行所述電腦程式時實現上述方法的步驟。The invention also provides a crystal growth control system for shoulder-shouldering process, including a memory, a processor, and a computer program stored on the memory and running on the processor, the processor executing the computer The steps of the above method are implemented in the program.

本發明還提供一種電腦儲存媒體,其上儲存有電腦程式,其特徵在於,所述電腦程式被電腦執行時實現上述方法的步驟。The invention also provides a computer storage medium on which a computer program is stored, characterized in that the computer program is executed by a computer to implement the steps of the above method.

綜上所述,根據本發明的用於放肩過程的晶體生長控制方法、裝置、系統及電腦儲存媒體,採用PID演算法對放肩過程的直徑變化進行控制調節,利用微調晶體生長製程參數控制放肩過程的晶體直徑變化,克服熱場微小變化對放肩過程的影響,使得每次生長出的晶體形狀和晶肩形狀的重複性高,保證放肩過程晶體直徑的變化值一致,提高放肩製程的可重複性和製程的穩定性,為整個長晶製程的穩定性和重複性建立基礎,使每次生長出的晶體品質保持一致,從而保證每次放肩直徑與放肩長度變化的一致性,進而保證不同批次晶體生長品質的穩定。In summary, according to the crystal growth control method, device, system and computer storage medium for shoulder-shouldering process of the present invention, the PID algorithm is used to control and adjust the diameter change of the shoulder-shoulder process, and fine-tuning the crystal growth process parameter control The diameter change of the crystal in the shoulder-shouldering process overcomes the influence of the slight changes in the thermal field on the shoulder-shouldering process, making the shape of the crystal grown each time and the shape of the shoulder-shoulder highly repeatable. The repeatability of the shoulder process and the stability of the process establish the foundation for the stability and repeatability of the entire crystal growth process, so that the quality of the crystals grown each time is consistent, so as to ensure that the diameter and length of the shoulder are changed every time. Consistency, thereby ensuring the stability of the crystal growth quality of different batches.

具體實施方式detailed description

在下文的描述中,給出了大量具體的細節以便提供對本發明更為徹底的理解。然而,對於本領域技術人員而言顯而易見的是,本發明可以無需一個或多個這些細節而得以實施。在其他的例子中,為了避免與本發明發生混淆,對於本領域公知的一些技術特徵未進行描述。In the following description, a large number of specific details are given in order to provide a more thorough understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be implemented without one or more of these details. In other examples, in order to avoid confusion with the present invention, some technical features known in the art are not described.

為了徹底理解本發明,將在下列的描述中提出詳細的步驟,以便闡釋本發明提出的用於放肩過程的晶體生長控制方法。顯然,本發明的施行並不限定於半導體領域的技術人員所熟習的特殊細節。本發明的較佳實施例詳細描述如下,然而除了這些詳細描述外,本發明還可以具有其他實施方式。In order to thoroughly understand the present invention, detailed steps will be proposed in the following description, in order to explain the crystal growth control method for shoulder-shouldering process proposed by the present invention. Obviously, the implementation of the present invention is not limited to the specific details familiar to those skilled in the semiconductor field. The preferred embodiments of the present invention are described in detail below. However, in addition to these detailed descriptions, the present invention may have other embodiments.

應當理解的是,當在本說明書中使用術語“包含”和/或“包括”時,其指明存在所述特徵、整體、步驟、操作、元件和/或元件,但不排除存在或附加一個或多個其他特徵、整體、步驟、操作、元件、元件和/或它們的組合。It should be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates the presence of the described features, wholes, steps, operations, elements, and/or elements, but does not exclude the presence or addition of one or Multiple other features, wholes, steps, operations, elements, elements, and/or combinations thereof.

第1圖示出了本發明實施例所提供的晶體生長控制方法所使用的長晶爐的示意圖,如圖1所示,所述長晶爐用於採用直拉法生長矽單晶,包括爐體101,爐體101中設有加熱裝置和提拉裝置。加熱裝置包括石英坩堝102、石墨坩堝103、加熱器104。其中,石英坩堝102用於盛放矽料,例如多晶矽。矽料在其中被加熱為矽熔體105。石墨坩堝103包裹在石英坩堝102的外側,用於在加熱過程中對石英坩堝102提供支撐,加熱器104設置在石墨坩堝103的外側。石英坩堝102上方設置有熱屏106,所述熱屏106具有下伸的環繞矽單晶107生長區域的倒錐形屏狀物,可阻斷加熱器104和高溫矽熔體105對生長的單晶矽晶棒107的直接熱輻射,降低單晶矽晶棒107的溫度。同時,熱屏還能夠使下吹的保護氣集中直接噴到生長介面附近,進一步增強單晶矽晶棒107的散熱。爐體101側壁上還設有保溫材料,例如碳氈。FIG. 1 shows a schematic diagram of a crystal growth furnace used in the crystal growth control method provided by an embodiment of the present invention. As shown in FIG. 1, the crystal growth furnace is used to grow a silicon single crystal by the Czochralski method, including the furnace The body 101 and the furnace body 101 are provided with a heating device and a lifting device. The heating device includes a quartz crucible 102, a graphite crucible 103, and a heater 104. Among them, the quartz crucible 102 is used to contain silicon material, such as polycrystalline silicon. The silicon material is heated into silicon melt 105 therein. The graphite crucible 103 is wrapped on the outside of the quartz crucible 102 for supporting the quartz crucible 102 during the heating process, and the heater 104 is disposed on the outside of the graphite crucible 103. A heat shield 106 is provided above the quartz crucible 102. The heat shield 106 has an inverted conical screen surrounding the growth area of the silicon single crystal 107, which can block the growth of the heater 104 and the high temperature silicon melt 105. The direct thermal radiation of the crystalline silicon ingot 107 reduces the temperature of the single-crystalline silicon ingot 107. At the same time, the heat shield can also make the downward blowing protective gas be sprayed directly near the growth interface, further enhancing the heat dissipation of the single crystal silicon rod 107. The side wall of the furnace body 101 is also provided with thermal insulation material, such as carbon felt.

提拉裝置包括豎直設置的籽晶軸108和坩堝軸109,籽晶軸108設置在石英坩堝102的上方,坩堝軸109設置在石墨坩堝103的底部,籽晶軸108的底部利用夾具安裝有籽晶,其頂部連接籽晶軸驅動裝置,使其能夠一邊旋轉一邊向上緩慢提拉。坩堝軸109的底部設有坩堝軸驅動裝置,使坩堝軸109能夠帶動坩堝進行旋轉。The lifting device includes a vertically arranged seed crystal axis 108 and a crucible axis 109. The seed crystal axis 108 is set above the quartz crucible 102, the crucible axis 109 is set at the bottom of the graphite crucible 103, and the bottom of the seed crystal axis 108 is mounted with a clamp The top of the seed crystal is connected to the seed crystal shaft driving device, so that it can slowly pull upward while rotating. A crucible shaft driving device is provided at the bottom of the crucible shaft 109, so that the crucible shaft 109 can drive the crucible to rotate.

在進行單晶生長時,首先在石英坩堝102中投放矽料,接著關閉長晶爐並抽真空,在長晶爐中充入保護氣體。示例性地,所述保護氣體為氮氣,其純度為97%以上,壓力為0.05Mpa,流量為70L/min。然後,打開加熱器104,加熱至熔化溫度1420℃以上,使矽料在20min內全部熔化為矽熔體105。When growing a single crystal, first put silicon material in the quartz crucible 102, then close the crystal growth furnace and evacuate, fill the crystal growth furnace with protective gas. Exemplarily, the protective gas is nitrogen, the purity is more than 97%, the pressure is 0.05 Mpa, and the flow rate is 70 L/min. Then, the heater 104 is turned on and heated to a melting temperature above 1420°C, so that the silicon material is completely melted into silicon melt 105 within 20 minutes.

接著,將籽晶浸入矽熔體105中,利用籽晶軸108帶動籽晶旋轉並緩慢提拉,以使矽原子沿籽晶生長為單晶矽晶棒107。所述籽晶是由一定晶向的矽單晶切割或鑽取而成,常用的晶向為<100>、<111>、<110>、<511>等,所述籽晶一般為圓柱體或長方體。單晶矽晶棒107的長晶過程依次包括引晶、放肩、轉肩、等徑及收尾幾個階段。Next, the seed crystal is immersed in the silicon melt 105, and the seed crystal shaft 108 is used to drive the seed crystal to rotate and slowly pull, so that silicon atoms grow into a single crystal silicon rod 107 along the seed crystal. The seed crystal is cut or drilled from a single crystal of silicon with a certain crystal orientation. Commonly used crystal orientations are <100>, <111>, <110>, <511>, etc. The seed crystal is generally a cylinder Or cuboid. The growth process of the single-crystal silicon ingot 107 includes the stages of seeding, shoulder laying, shoulder turning, equal diameter and finishing.

具體地,首先進行引晶階段。即當矽熔體105穩定到一定溫度後,將籽晶浸入矽熔體中,將籽晶以一定的拉速進行提升,使矽原子沿籽晶生長為一定直徑的細頸,直至細頸達到預定長度。所述引晶過程的主要作用是為了消除因熱衝擊而導致單晶矽形成的位錯缺陷,利用結晶前沿的過冷度驅動矽原子按順序排列在固液介面的矽固體上,形成單晶矽。示例性地,所述拉速為1.5mm/min-2.5mm/min,細頸長度為晶棒直徑的1.2-1.4倍,細頸直徑為5-7mm。Specifically, the seeding stage is performed first. That is, when the silicon melt 105 stabilizes to a certain temperature, the seed crystal is immersed in the silicon melt, and the seed crystal is raised at a certain pulling speed, so that the silicon atoms grow along the seed crystal into a thin neck of a certain diameter until the thin neck reaches Scheduled length. The main function of the seeding process is to eliminate the dislocation defects caused by thermal shock caused by the formation of single crystal silicon. The supercooling degree of the crystallization front is used to drive the silicon atoms to be arranged in order on the silicon solid at the solid-liquid interface to form a single crystal. Silicon. Exemplarily, the pulling speed is 1.5 mm/min-2.5 mm/min, the length of the narrow neck is 1.2-1.4 times the diameter of the ingot, and the diameter of the narrow neck is 5-7 mm.

然後,進入放肩階段,當細頸達到預定長度之後,減慢所述籽晶向上提拉的速度,同時略降低矽熔體的溫度,進行降溫是為了促進所述單晶矽的橫向生長,即使所述單晶矽的直徑加大,該過程稱為放肩階段,如圖2所示,該階段所形成的錐形晶棒為晶棒的放肩段。Then, enter the shoulder-releasing stage, when the neck reaches a predetermined length, slow down the speed of pulling up the seed crystal, and at the same time slightly lower the temperature of the silicon melt, the temperature reduction is to promote the lateral growth of the single crystal silicon, Even if the diameter of the single crystal silicon is increased, this process is called the shoulder-releasing stage. As shown in FIG. 2, the tapered ingot formed at this stage is the shoulder-releasing segment of the ingot.

接著,進入轉肩階段。當單晶矽的直徑增大至目標直徑時,利用提高加熱器104的加熱功率,增加矽熔體的溫度,同時調整所述籽晶向上提拉的速度、旋轉的速度以及石英坩堝的旋轉速度等,抑制所述單晶矽的橫向生長,促進其縱向生長,使所述單晶矽近乎等直徑生長。Then, enter the shoulder turning stage. When the diameter of the single crystal silicon is increased to the target diameter, the heating power of the heater 104 is increased to increase the temperature of the silicon melt, and at the same time, the speed of the seed crystal pulling up, the speed of rotation and the speed of rotation of the quartz crucible are adjusted In this way, the lateral growth of the single crystal silicon is suppressed, and the vertical growth thereof is promoted, so that the single crystal silicon grows to have almost equal diameter.

然後,進入等徑階段。當單晶矽晶棒直徑達到預定值以後,進入等徑階段,如第2圖所示,該階段所形成的圓柱形晶棒為晶棒的等徑段。具體地,調整坩堝溫度、拉晶速度、坩堝轉速和晶體轉速,穩定生長速率,使晶體直徑保持不變,一直到拉晶完畢。等徑過程是單晶矽生長的主要階段,長達數幾十小時甚至一百多小時的生長。Then, enter the equal diameter stage. When the diameter of the single crystal silicon ingot reaches a predetermined value, it enters the equal diameter stage. As shown in Figure 2, the cylindrical ingot formed at this stage is the equal diameter segment of the ingot. Specifically, the temperature of the crucible, the pulling speed of the crystal, the rotating speed of the crucible and the rotating speed of the crystal are adjusted to stabilize the growth rate and keep the diameter of the crystal unchanged until the pulling of the crystal is completed. The process of equal diameter is the main stage of the growth of single crystal silicon, with the growth of tens of hours or even more than 100 hours.

最後,進入收尾階段。收尾時,加快提升速率,同時升高矽熔體105的溫度,使晶棒直徑逐漸變小,形成一個圓錐形,當錐尖足夠小時,它最終會離開液面。將完成收尾的晶棒升至上爐室冷卻一段時間後取出,即完成一次生長週期。Finally, enter the closing stage. When finishing, speed up the lifting rate, and at the same time increase the temperature of the silicon melt 105, so that the diameter of the ingot gradually becomes smaller, forming a conical shape, when the cone tip is small enough, it will eventually leave the liquid surface. The finished crystal rod is lifted to the upper furnace chamber to cool down for a period of time and taken out, that is, a growth cycle is completed.

在單晶矽長晶過程的幾個階段中,放肩階段是長晶過程中較為關鍵的製程過程,是獲得目標直徑晶體的基礎。目前,採用的主要方法是採用降拉晶速度與降溫度相結合的方法使晶體直徑不斷增大以達到目標直徑。在放肩過程中主要是利用放肩開始時間或者放肩長度來決定拉晶速度和溫度的變化,所以在放肩製程過程中需要匹配好不同階段的拉晶速度和溫度。但是在實際長晶過程中由於熱場使用時間、引晶溫度、加熱器壽命等在每次長晶的時候會存在一些差別,所以如果無法及時調整溫度和拉晶速度設定會導致放肩過程失去晶體結構。另外,不同長晶條件的變化也會導致放肩製程的不同,導致放肩成為長晶製程開發過程中最為困難的一部分,需要進行很多次的嘗試才能找到合適的溫度和拉晶速度設定。同時也是長晶過程最難控制的一部分,要使每次放肩都達到一致非常困難。Among the several stages of the single crystal silicon growth process, the shoulder-releasing stage is the more critical process in the growth process and the basis for obtaining crystals of the target diameter. At present, the main method adopted is the method of combining the speed of pulling down the crystal and the temperature to make the crystal diameter continuously increase to reach the target diameter. In the shoulder-shouldering process, the start time of the shoulder-shouldering or the length of the shoulder-shouldering is mainly used to determine the change of the pulling speed and temperature. Therefore, the pulling speed and temperature of different stages need to be matched during the shoulder-shoulding process. However, in the actual crystal growth process, there are some differences in the thermal field use time, seeding temperature, heater life, etc. each time the crystal grows, so if the temperature and crystal pulling speed settings cannot be adjusted in time, the crystal will be lost during the shoulder-shoulder process structure. In addition, changes in different crystal growth conditions will also lead to different shoulder-shouldering processes, resulting in shoulder-shouldering becoming the most difficult part of the growth process of the crystal-growth process. It takes many attempts to find the appropriate temperature and crystal-pulling speed settings. At the same time, it is also the most difficult part of the crystal growth process. It is very difficult to achieve uniformity every time you put your shoulders down.

鑒於上述問題的存在,本發明提出了一種用於放肩過程的晶體生長控制方法,如第3圖所示,其包括以下主要步驟:In view of the above problems, the present invention proposes a crystal growth control method for shoulder-shouldering process, as shown in Figure 3, which includes the following main steps:

在步驟S301中,預先設置放肩過程不同階段的晶體直徑變化值的設定值、放肩長度變化值的設定值和所述放肩過程不同階段的晶體生長製程參數的設定值;In step S301, the setting value of the change value of the crystal diameter at different stages of the shoulder-releasing process, the setting value of the change value of the length of the shoulder-releasing process, and the setting value of the crystal growth process parameters at different stages of the shoulder-releasing process are preset;

在步驟S302中,獲得所述放肩過程不同階段的晶體直徑,並計算所述晶體直徑的變化值;In step S302, the crystal diameters at different stages of the shoulder laying process are obtained, and the change value of the crystal diameters is calculated;

在步驟S303中,獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值;In step S303, the length of the shoulder-shouldering at different stages of the shoulder-shouldering process is obtained, and the change value of the length of the shoulder-shouldering is calculated;

在步驟S304中,將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑變化值的設定值和所述放肩長度變化值的設定值的比值進行比較,得到差值,並將所述差值作為PID(Proportional Integrative Derivative;比例微積分)演算法的輸入變數;In step S304, the ratio of the change value of the crystal diameter and the change value of the shoulder-shoulder length is compared with the ratio of the setting value of the change value of the crystal diameter and the set value of the shoulder-shoulder length change, Get the difference, and use the difference as the input variable of PID (Proportional Integrative Derivative; proportional calculus) algorithm;

在步驟S305中,利用PID演算法計算晶體生長製程參數的調節值,作為PID演算法的輸出變數;In step S305, the PID algorithm is used to calculate the adjustment value of the crystal growth process parameters as the output variable of the PID algorithm;

在步驟S306中,將所述晶體生長製程參數的調節值和所述晶體生長製程參數的設定值相加,得到實際長晶過程的製程參數,從而保證每次放肩直徑與放肩長度變化的一致性,進而保證不同批次晶體生長品質的穩定。In step S306, the adjustment value of the crystal growth process parameter and the set value of the crystal growth process parameter are added to obtain the process parameter of the actual crystal growth process, so as to ensure that each time the diameter of the shoulder-shoulder and the length of the shoulder-shoulder change Consistency, thereby ensuring the stability of the crystal growth quality of different batches.

示例性地,根據本發明實施例的晶體生長控制方法可以在具有記憶體和處理器的設備、裝置或者系統中實現。Exemplarily, the crystal growth control method according to an embodiment of the present invention may be implemented in a device, device, or system having a memory and a processor.

其中,所述放肩過程的晶體生長製程參數包括拉晶速度和/或溫度。Wherein, the crystal growth process parameters of the shoulder laying process include crystal pulling speed and/or temperature.

進一步地,所述放肩過程不同階段包括不同放肩時間或不同晶體長度處。Further, different stages of the shoulder-releasing process include different shoulder-relaxing times or different crystal lengths.

具體地,在步驟S301中,預先設置放肩過程的不同放肩時間或不同晶體長度處的晶體直徑變化值的設定值、放肩長度變化值的設定值、拉晶速度的設定值和/或溫度的設定值。Specifically, in step S301, the setting value of the change value of the crystal diameter at different shoulder-releasing times or different crystal lengths, the setting value of the change value of the shoulder-releasing length, the setting value of the pulling speed and/or The set value of temperature.

在步驟S302中,獲得所述放肩過程的不同放肩時間或不同晶體長度處的晶體直徑,並計算所述晶體直徑的變化值。In step S302, the crystal diameter at different shoulder-releasing times or different crystal lengths in the shoulder-relaxing process is obtained, and the change value of the crystal diameter is calculated.

在本發明中,利用直徑測量裝置獲得所述放肩過程的不同放肩時間或不同晶體長度處的晶體直徑。可利用CCD(Charge coupled Device,電荷耦合元件)相機採集長晶爐內單晶矽晶棒107與矽熔體105的三相交界處的圖像,然後利用電腦對圖像進行處理,得出單晶矽晶棒107的直徑並回饋回控制系統對長晶進行控制。具體地,晶體生長的過程中,在單晶矽晶棒107與矽熔體105的固液介面處由於潛熱的釋放而產生亮環。CCD相機獲取所述亮環的圖像信號,並將信號經過模數轉換後傳送至電腦系統,由電腦系統中的影像處理程式對單晶生長圖像進行處理,以獲取單晶矽晶棒107的測量直徑。作為示例,根據CCD相機獲取的圖像信號獲取單晶矽晶棒107的測量直徑的方法包括:影像處理程式提取固液介面處的亮環以獲取晶體輪廓;將晶體輪廓進行擬合,獲得橢圓邊界;將橢圓邊界校正成圓形邊界;在圓形邊界上任取三個圖元點,分別將其座標值代入圓座標公式中、組成方程式並求解,即可計算得出圓心座標和晶體的直徑大小。In the present invention, a diameter measuring device is used to obtain the crystal diameter at different shoulder-releasing times or different crystal lengths in the shoulder-relaxing process. A CCD (Charge coupled Device) camera can be used to collect the image of the three-phase junction between the single crystal silicon rod 107 and the silicon melt 105 in the crystal growth furnace, and then use the computer to process the image to obtain a single The diameter of the crystal silicon rod 107 is fed back to the control system to control the crystal growth. Specifically, during the crystal growth process, a bright ring is generated at the solid-liquid interface between the single crystal silicon ingot 107 and the silicon melt 105 due to the release of latent heat. The CCD camera acquires the image signal of the bright ring, and transmits the signal to the computer system after analog-to-digital conversion. The image processing program in the computer system processes the single crystal growth image to obtain the single crystal silicon rod 107 Measured diameter. As an example, the method for obtaining the measured diameter of the single crystal silicon ingot 107 according to the image signal obtained by the CCD camera includes: an image processing program to extract the bright ring at the solid-liquid interface to obtain the crystal outline; fitting the crystal outline to obtain an ellipse Boundary; correct the elliptical boundary to a circular boundary; take any three primitive points on the circular boundary, and substitute their coordinate values into the circular coordinate formula, compose the equation and solve it, you can calculate the circle center coordinate and the diameter of the crystal size.

在步驟S303中,獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值。In step S303, the shoulder-relaxing lengths at different stages of the shoulder-relaxing process are obtained, and the change value of the shoulder-releasing length is calculated.

在本發明中,利用放肩長度測量裝置獲得所述放肩過程不同階段的放肩長度。In the present invention, a shoulder-releasing length measuring device is used to obtain shoulder-releasing lengths at different stages of the shoulder-releasing process.

在步驟S304中,將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑的變化值的設定值和所述放肩長度的變化值的設定值的比值進行比較,得到差值,並將所述差值作為PID演算法的輸入變數。In step S304, the ratio of the change value of the crystal diameter and the change value of the shoulder-shoulder length to the set value of the change value of the crystal diameter and the change value of the shoulder-shoulder length is performed Compare, get the difference, and use the difference as the input variable of the PID algorithm.

需要說明的是,所述晶體直徑的變化值及其設定值(所述晶體直徑變化值的設定值)及放肩長度的變化值及其設定值是在放肩過程的相同階段的值,即在相同的放肩時間的值,或者是在相同晶體長度處的值。It should be noted that the change value of the crystal diameter and its setting value (the setting value of the change value of the crystal diameter) and the change value of the shoulder-releasing length and the setting value are the values at the same stage of the shoulder-releasing process, namely The value at the same shoulder-lay time, or the value at the same crystal length.

在步驟S305中,利用PID演算法計算拉晶速度的調節值和/或溫度的調節值,作為PID演算法的輸出變數。In step S305, the PID algorithm is used to calculate the adjustment value of the pulling speed and/or the adjustment value of temperature as the output variable of the PID algorithm.

其中,所述PID演算法根據偏差的比例(P)、積分(I)、微分(D)進行控制。比例控制能迅速反映誤差,從而減小誤差,但比例控制不能消除穩態誤差,比例增益的加大會引起系統的不穩定;積分控制的作用是,只要系統存在誤差,積分控制作用就不斷地積累,輸出控制量以消除誤差,因此只要有足夠的時間,積分控制將能完全消除誤差,但是積分作用太強會使系統超調加大,甚至使系統出現振盪;微分控制可以減小超調量,克服振盪,使系統的穩定性提高,同時加快系統的動態回應速度,減小調整時間,從而改善系統的動態性能。Among them, the PID algorithm is controlled according to the deviation ratio (P), integral (I), and derivative (D). Proportional control can quickly reflect the error, thereby reducing the error, but proportional control cannot eliminate the steady-state error. The increase of the proportional gain causes the system to become unstable; the role of integral control is that as long as there is an error in the system, the integral control function will continue to accumulate , Output control quantity to eliminate the error, so as long as there is enough time, the integral control will be able to completely eliminate the error, but the integral effect is too strong will increase the system overshoot, or even make the system oscillate; differential control can reduce the overshoot , Overcoming oscillations, improving the stability of the system, at the same time speeding up the dynamic response speed of the system, reducing the adjustment time, thereby improving the dynamic performance of the system.

最後,在步驟S306中,將拉晶速度的調節值和拉晶速度的設定值相加,得到實際長晶過程的拉晶速度;將溫度的調節值和溫度的設定值相加,得到實際長晶過程的溫度。Finally, in step S306, the adjustment value of the pulling speed and the setting value of the pulling speed are added to obtain the pulling speed of the actual crystal growth process; the adjusting value of the temperature and the setting value of the temperature are added to obtain the actual length The temperature of the crystallization process.

第4圖顯示出了本發明的用於放肩過程的晶體生長控制方法的示意圖,如第4圖所示,PID演算法的輸入為晶體直徑的變化值和放肩長度的變化值的比值與晶體直徑變化的設定值和放肩長度變化值的設定值的比值的差值;PID演算法的輸出為拉晶速度的調節值和溫度的調節值,將拉晶速度的調節值與拉晶速度的設定值相加,得到實際拉晶速度,將溫度的調節值與溫度的設定值相加,得到實際溫度。Figure 4 shows a schematic diagram of the crystal growth control method for shoulder-shouldering process of the present invention. As shown in Figure 4, the input of the PID algorithm is the ratio of the change value of the crystal diameter to the change value of the shoulder-shoulder length. The difference between the setting value of the change in crystal diameter and the setting value of the change in shoulder length; the output of the PID algorithm is the adjustment value of the pulling speed and the adjustment value of the temperature. The set value of is added to obtain the actual crystal pulling speed, and the adjusted value of temperature is added to the set value of temperature to obtain the actual temperature.

根據本發明的用於放肩過程的晶體生長控制方法,將晶體直徑的變化值和放肩長度的變化值的比值與晶體直徑變化值的設定值和放肩長度變化值的設定值的比值進行比較得到的差值作為PID演算法的輸入變數,利用PID演算法計算晶體生長製程參數的調節值,作為PID演算法的輸出變數,採用PID演算法對放肩過程的直徑變化進行控制調節,利用微調晶體生長製程參數控制放肩過程的晶體直徑變化,克服熱場微小變化對放肩過程的影響,使得每次生長出的晶體形狀和晶肩形狀的重複性高,保證放肩過程晶體直徑的變化值一致,提高放肩製程的可重複性和製程的穩定性,為整個長晶製程的穩定性和重複性建立基礎,使每次生長出的晶體品質保持一致。According to the crystal growth control method for shoulder-shouldering process of the present invention, the ratio of the change value of the crystal diameter to the change value of the shoulder-shoulder length to the setting value of the change value of the crystal diameter and the setting value of the shoulder-shoulder length change is performed The difference is used as the input variable of the PID algorithm. The PID algorithm is used to calculate the adjustment value of the crystal growth process parameters. As the output variable of the PID algorithm, the PID algorithm is used to control and adjust the diameter change of the shoulder-shoulder process. Fine-tuning the crystal growth process parameters to control the crystal diameter change in the shoulder-shouldering process, overcoming the influence of the small changes in the thermal field on the shoulder-shouldering process, resulting in high repeatability of the crystal shape and shoulder-shoulder shape each time, ensuring the crystal diameter of the shoulder-shouldering process The change values are consistent, which improves the repeatability and stability of the shoulder-shoulding process, establishes the foundation for the stability and repeatability of the entire crystal growth process, and keeps the quality of the crystals grown every time consistent.

如第5圖所示,根據本發明實施例的用於放肩過程的晶體生長控制裝置500包括預先設置模組501、直徑測量裝置502、放肩長度測量裝置503、比較模組504、PID控制模組505和製程參數設置模組506。As shown in FIG. 5, the crystal growth control device 500 for shoulder-shouldering process according to an embodiment of the present invention includes a preset module 501, a diameter measuring device 502, a shoulder-shoulder length measuring device 503, a comparison module 504, and PID control Module 505 and process parameter setting module 506.

預先設置模組501,用於預先設置放肩過程不同階段的晶體直徑變化值的設定值、放肩長度變化值的設定值和所述放肩過程不同階段的晶體生長製程參數的設定值;The preset module 501 is used to preset the setting value of the change value of the crystal diameter at different stages of the shoulder-releasing process, the setting value of the change value of the length of the shoulder-releasing process, and the setting value of the crystal growth process parameter at different stages of the shoulder-releasing process;

直徑測量裝置502,用於獲得所述放肩過程不同階段的晶體直徑,並計算所述晶體直徑的變化值;The diameter measuring device 502 is used to obtain the crystal diameter at different stages of the shoulder laying process and calculate the change value of the crystal diameter;

放肩長度測量裝置503,用於獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值;Shoulder-shoulder length measuring device 503, which is used to obtain shoulder-shoulder lengths in different stages of the shoulder-shoulder process, and calculate the change value of the shoulder-shoulder length;

比較模組504,用於將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑變化值的設定值和所述放肩長度的變化值的設定值的比值進行比較,得到差值;The comparison module 504 is used to compare the ratio of the change value of the crystal diameter and the change value of the shoulder-shoulder length to the set value of the change value of the crystal diameter and the change value of the shoulder-shoulder length Compare and get the difference;

PID控制模組505,用於將所述差值作為所述PID控制模組的輸入變數,並利用PID演算法計算晶體生長製程參數的調節值,作為所述PID控制模組的輸出變數;The PID control module 505 is used to use the difference as the input variable of the PID control module, and use the PID algorithm to calculate the adjustment value of the crystal growth process parameters as the output variable of the PID control module;

製程參數設置模組506,將所述晶體生長製程參數的調節值和所述晶體生長製程參數的設定值相加,得到實際長晶過程的製程參數。The process parameter setting module 506 adds the adjustment value of the crystal growth process parameter and the set value of the crystal growth process parameter to obtain the process parameter of the actual crystal growth process.

其中,所述放肩過程的晶體生長製程參數包括拉晶速度和/或溫度。預先設置模組501預先設置放肩過程的不同放肩時間或不同晶體長度處的晶體直徑變化值的設定值、放肩長度變化值的設定值、拉晶速度的設定值和/或溫度的設定值;PID控制模組505將所述比較模組504經過比較得到的所述差值作為所述PID控制模組的輸入變數,並利用PID演算法計算拉晶速度的調節值和/或溫度的調節值,作為所述PID控制模組的輸出變數;製程參數設置模組506將所述拉晶速度的調節值和所述拉晶速度的設定值相加,得到實際長晶過程的拉晶速度,將所述溫度的調節值和所述溫度的設定值相加,得到實際長晶過程的溫度。Wherein, the crystal growth process parameters of the shoulder laying process include crystal pulling speed and/or temperature. The pre-setting module 501 pre-sets the setting value of the crystal diameter change value, the setting value of the change value of the shoulder length change, the setting value of the crystal pulling speed and/or the temperature setting at different shoulder placing times or different crystal lengths in the shoulder placing process PID control module 505 uses the difference obtained by the comparison module 504 as the input variable of the PID control module, and uses the PID algorithm to calculate the adjustment value of the pulling speed and/or the temperature The adjusted value is used as the output variable of the PID control module; the process parameter setting module 506 adds the adjusted value of the pulling speed and the set value of the pulling speed to obtain the pulling speed of the actual crystal growth process , The adjusted value of the temperature and the set value of the temperature are added to obtain the actual temperature of the crystal growth process.

進一步地,所述放肩過程不同階段包括不同放肩時間或不同晶體長度處。所述晶體直徑的變化值及其設定值(所述晶體直徑變化值的設定值)以及放肩長度的變化值及其設定值是在放肩過程的相同階段的值,即在相同的放肩時間的值,或者是在相同晶體長度處的值。Further, different stages of the shoulder-releasing process include different shoulder-relaxing times or different crystal lengths. The change value of the crystal diameter and its set value (the set value of the change value of the crystal diameter) and the change value of the length of the shoulder rest and the setting value are the values at the same stage of the shoulder rest process, that is, at the same shoulder rest The value of time, or the value at the same crystal length.

示例性地,所述直徑測量裝置502為CCD相機。利用CCD相機採集長晶爐內單晶矽晶棒107與矽熔體105的三相交界處的圖像,然後利用電腦對圖像進行處理,得出單晶矽晶棒107的直徑並回饋回控制系統對長晶進行控制。具體地,晶體生長的過程中,在單晶矽晶棒107與矽熔體105的固液介面處由於潛熱的釋放而產生亮環。CCD相機獲取所述亮環的圖像信號,並將信號經過模數轉換後傳送至電腦系統,由電腦系統中的影像處理程式對單晶生長圖像進行處理,以獲取單晶矽晶棒107的測量直徑。作為示例,根據CCD相機獲取的圖像信號獲取單晶矽晶棒107的測量直徑的方法包括:影像處理程式提取固液介面處的亮環以獲取晶體輪廓;將晶體輪廓進行擬合,獲得橢圓邊界;將橢圓邊界校正成圓形邊界;在圓形邊界上任取三個圖元點,分別將其座標值代入圓座標公式中、組成方程式並求解,即可計算得出圓心座標和晶體的直徑大小Exemplarily, the diameter measuring device 502 is a CCD camera. Use the CCD camera to collect the image of the three-phase junction between the single crystal silicon rod 107 and the silicon melt 105 in the crystal growth furnace, and then use the computer to process the image to obtain the diameter of the single crystal silicon rod 107 and feed back The control system controls the crystal growth. Specifically, during the crystal growth process, a bright ring is generated at the solid-liquid interface between the single crystal silicon ingot 107 and the silicon melt 105 due to the release of latent heat. The CCD camera acquires the image signal of the bright ring, and transmits the signal to the computer system after analog-to-digital conversion. The image processing program in the computer system processes the single crystal growth image to obtain the single crystal silicon rod 107 Measured diameter. As an example, the method for obtaining the measured diameter of the single crystal silicon ingot 107 according to the image signal obtained by the CCD camera includes: an image processing program to extract the bright ring at the solid-liquid interface to obtain the crystal outline; fitting the crystal outline to obtain an ellipse Boundary; correct the elliptical boundary to a circular boundary; take any three primitive points on the circular boundary, and substitute their coordinate values into the circular coordinate formula, compose the equation and solve it, you can calculate the circle center coordinate and the diameter of the crystal size

第6圖顯示出了根據本發明實施例的用於放肩過程的晶體生長控制系統600的示意性框圖。晶體生長控制系統600包括記憶體610以及處理器620。FIG. 6 shows a schematic block diagram of a crystal growth control system 600 for shoulder-shouldering process according to an embodiment of the present invention. The crystal growth control system 600 includes a memory 610 and a processor 620.

所述記憶體610儲存用於實現根據本發明實施例的用於放肩過程的晶體生長控制方法中的相應步驟的程式碼。The memory 610 stores code for implementing the corresponding steps in the crystal growth control method for the shoulder-releasing process according to an embodiment of the present invention.

所述處理器620用於運行所述記憶體610中儲存的程式碼,以執行根據本發明實施例的用於放肩過程的晶體生長控制方法的相應步驟,並且用於實現根據本發明實施例的用於放肩過程的晶體生長控制裝置中的預先設置模組501、直徑測量裝置502、放肩長度測量裝置503、比較模組504、PID控制模組505和製程參數設置模組506。The processor 620 is used to run the program code stored in the memory 610 to execute the corresponding steps of the crystal growth control method for the shoulder-shouldering process according to the embodiment of the present invention, and to implement the embodiment according to the present invention The preset module 501, the diameter measuring device 502, the shoulder length measuring device 503, the comparison module 504, the PID control module 505, and the process parameter setting module 506 in the crystal growth control device for the shoulder laying process.

在一個實施例中,在所述程式碼被所述處理器620運行時執行上述的用於放肩過程的晶體生長控制方法。In one embodiment, when the program code is executed by the processor 620, the above-mentioned crystal growth control method for the shoulder-releasing process is executed.

此外,根據本發明實施例,還提供了一種儲存媒體,在所述儲存媒體上儲存了程式指令,在所述程式指令被電腦或處理器運行時用於執行本發明實施例的用於放肩過程的晶體生長控制方法的相應步驟,並且用於實現根據本發明實施例的用於放肩過程的晶體生長控制裝置中的相應模組。所述儲存媒體例如可以包括平板電腦的儲存部件、個人電腦的硬碟、唯讀記憶體(ROM)、可擦除可程式設計唯讀記憶體(EPROM)、可擕式緊致盤唯讀記憶體(CD-ROM))、USB記憶體、或者上述儲存媒體的任意組合。所述電腦可讀儲存媒體可以是一個或多個電腦可讀儲存媒體的任意組合,例如一個電腦可讀儲存媒體包含用於隨機地生成動作指令序列的電腦可讀的程式碼,另一個電腦可讀儲存媒體包含用於進行用於放肩過程的晶體生長控制的電腦可讀的程式碼。In addition, according to an embodiment of the present invention, there is also provided a storage medium on which program instructions are stored. When the program instructions are executed by a computer or a processor, it is used to carry out the embodiment of the present invention. The corresponding steps of the crystal growth control method of the process, and are used to implement the corresponding modules in the crystal growth control device for the shoulder-shoulder process according to an embodiment of the present invention. The storage medium may include, for example, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable and programmable read-only memory (EPROM), a portable compact disk read-only memory (CD-ROM), USB memory, or any combination of the above storage media. The computer-readable storage medium may be any combination of one or more computer-readable storage media. For example, one computer-readable storage medium contains computer-readable program code for randomly generating a sequence of action commands. Another computer may The readable storage medium contains computer readable program code for crystal growth control for shoulder-shouldering process.

在一個實施例中,所述電腦程式指令在被電腦運行時可以實現根據本發明實施例的用於放肩過程的晶體生長控制裝置的各個功能模組,並且/或者可以執行根據本發明實施例的用於放肩過程的晶體生長控制方法。In one embodiment, when the computer program instructions are executed by a computer, each functional module of the crystal growth control device for the shoulder-shouldering process according to the embodiment of the present invention may be implemented, and/or the embodiment of the present invention may be executed. Of crystal growth control method for shoulder-shouldering process.

在一個實施例中,所述電腦程式指令在被電腦運行時執行以上用於放肩過程的晶體生長控制方法。In one embodiment, the computer program instructions execute the above crystal growth control method for the shoulder-shoulder process when being run by the computer.

綜上所述,根據本發明的用於放肩過程的晶體生長控制方法、裝置、系統及電腦儲存媒體,採用PID演算法對放肩過程的直徑變化進行控制調節,利用微調晶體生長製程參數控制放肩過程的晶體直徑變化,克服熱場微小變化對放肩過程的影響,使得每次生長出的晶體形狀和晶肩形狀的重複性高,保證放肩過程晶體直徑的變化值一致,提高放肩製程的可重複性和製程的穩定性,為整個長晶製程的穩定性和重複性建立基礎,使每次生長出的晶體品質保持一致。In summary, according to the crystal growth control method, device, system and computer storage medium for shoulder-shouldering process of the present invention, the PID algorithm is used to control and adjust the diameter change of the shoulder-shoulder process, and fine-tuning the crystal growth process parameter control The diameter change of the crystal in the shoulder-shouldering process overcomes the influence of the slight changes in the thermal field on the shoulder-shouldering process, making the shape of the crystal grown each time and the shape of the shoulder-shoulder highly repeatable. The repeatability of the shoulder process and the stability of the process establish the foundation for the stability and repeatability of the entire long crystal process, so that the quality of the crystals grown each time remains consistent.

本發明已經利用上述實施例進行了說明,但應當理解的是,上述實施例只是用於舉例和說明的目的,而非意在將本發明限制於所描述的實施例範圍內。此外本領域技術人員可以理解的是,本發明並不局限於上述實施例,根據本發明的教導還可以做出更多種的變型和修改,這些變型和修改均落在本發明所要求保護的範圍以內。本發明的保護範圍由附屬的請求項書及其等效範圍所界定。The present invention has been described using the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are for illustrative and illustrative purposes only, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can be made according to the teachings of the present invention, and these variations and modifications fall within the scope of protection claimed by the present invention. Within range. The protection scope of the present invention is defined by the appended claims and their equivalent scope.

101:爐體 102:石英坩堝 103:石墨坩堝 104:加熱器 105:矽熔體 106:熱屏 107:單晶矽晶棒 108:籽晶軸 109:坩堝軸 S301~S306:用於放肩過程的晶體生長控制方法的主要製程流程步驟 500:晶體生長控制裝置 501:預先設置模組 502:直徑測量裝置 503:放肩長度測量裝置 504:比較模組 505:PID控制模組 506:製程參數設置模組 600:晶體生長控制系統 610:記憶體 620:處理器 101: furnace body 102: Quartz crucible 103: graphite crucible 104: heater 105: Silicon melt 106: Hot screen 107: single crystal silicon ingot 108: Seed axis 109: Crucible shaft S301~S306: The main process flow steps of the crystal growth control method for the shoulder-shoulder process 500: crystal growth control device 501: preset module 502: Diameter measuring device 503: Shoulder length measuring device 504: Compare modules 505: PID control module 506: Process parameter setting module 600: crystal growth control system 610: Memory 620: processor

本發明的下列附圖在此作為本發明的一部分用於理解本發明。附圖中示出了本發明的實施例及其描述,用來解釋本發明的原理。 附圖中:The following drawings of the present invention are used as a part of the present invention to understand the present invention. The drawings show embodiments of the present invention and their descriptions to explain the principles of the present invention. In the drawings:

第1圖顯示出了本發明實施例所提供的晶體生長控制方法所使用的長晶爐的示意圖;Figure 1 shows a schematic diagram of a crystal growth furnace used in the crystal growth control method provided by an embodiment of the present invention;

第2圖顯示出了本發明實施例所提供的晶體生長控制方法所獲得的單晶矽晶棒的示意圖;Figure 2 shows a schematic diagram of a single crystal silicon ingot obtained by the crystal growth control method provided by the embodiment of the present invention;

第3圖顯示出了根據本發明實施例的用於放肩過程的晶體生長控制方法的主要製程流程示意圖;FIG. 3 shows a main process flow diagram of a crystal growth control method for a shoulder-shuffling process according to an embodiment of the present invention;

第4圖顯示出了根據本發明實施例的用於放肩過程的晶體生長控制方法的示意圖;FIG. 4 shows a schematic diagram of a crystal growth control method for a shoulder-releasing process according to an embodiment of the present invention;

第5圖顯示出了本發明實施例的用於放肩過程的晶體生長控制裝置的示意性框圖;FIG. 5 shows a schematic block diagram of a crystal growth control device for a shoulder-releasing process according to an embodiment of the present invention;

第6圖顯示出了本發明實施例的用於放肩過程的晶體生長控制系統的示意性框圖。FIG. 6 shows a schematic block diagram of a crystal growth control system used in a shoulder-releasing process according to an embodiment of the present invention.

無。no.

S301、S302、S303、S304、S305、S306:步驟 S301, S302, S303, S304, S305, S306: steps

Claims (10)

一種用於放肩過程的晶體生長控制方法,包括以下步驟: 預先設置放肩過程不同階段的晶體直徑變化值的設定值、放肩長度變化值的設定值和所述放肩過程不同階段的晶體生長製程參數的設定值; 獲得所述放肩過程不同階段的晶體直徑,並計算所述晶體直徑的變化值; 獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值; 將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑變化值的設定值和所述放肩長度變化值的設定值的比值進行比較,得到差值,並將所述差值作為PID演算法的輸入變數; 利用PID演算法計算晶體生長製程參數的調節值,作為PID演算法的輸出變數; 將所述晶體生長製程參數的調節值和所述晶體生長製程參數的設定值相加,得到實際長晶過程的製程參數。A crystal growth control method for shoulder-shouldering process includes the following steps: Pre-set the setting value of the change value of the crystal diameter in different stages of the shoulder-releasing process, the setting value of the change value of the length of the shoulder-releasing process, and the setting value of the crystal growth process parameters in the different stages of the shoulder-releasing process; Obtain the crystal diameter at different stages of the shoulder laying process, and calculate the change value of the crystal diameter; Obtain the shoulder length at different stages of the shoulder rest process, and calculate the change in the shoulder length Comparing the ratio of the change value of the crystal diameter and the change value of the shoulder-shoulder length to the ratio of the setting value of the crystal diameter change value and the shoulder-shoulder length change value to obtain a difference, and Use the difference as an input variable of the PID algorithm; Use PID algorithm to calculate the adjustment value of crystal growth process parameters as the output variable of PID algorithm; The adjustment value of the crystal growth process parameter and the set value of the crystal growth process parameter are added to obtain the process parameter of the actual crystal growth process. 根據請求項1所述的方法,其中所述放肩過程的晶體生長製程參數包括拉晶速度和/或溫度。The method according to claim 1, wherein the crystal growth process parameters of the shoulder-releasing process include crystal pulling speed and/or temperature. 據請求項1所述的方法,其中所述放肩過程不同階段包括不同放肩時間或不同晶體長度處。The method according to claim 1, wherein different stages of the shoulder-releasing process include different shoulder-releasing time or different crystal lengths. 根據請求項1所述的方法,其中所述放肩過程不同階段的晶體直徑利用直徑測量裝置獲得。The method according to claim 1, wherein the crystal diameters at different stages of the shoulder-releasing process are obtained using a diameter measuring device. 根據請求項1所述的方法,其中所述放肩過程不同階段的放肩長度利用放肩長度測量裝置獲得。The method according to claim 1, wherein the shoulder-releasing lengths at different stages of the shoulder-relaxing process are obtained using a shoulder-releasing length measuring device. 一種用於放肩過程的晶體生長控制裝置,包括: 預先設置模組,用於預先設置放肩過程不同階段的晶體直徑變化值的設定值、放肩長度變化值的設定值和所述放肩過程不同階段的晶體生長製程參數的設定值; 直徑測量裝置,用於獲得所述放肩過程不同階段的晶體直徑,並計算所述晶體直徑的變化值; 放肩長度測量裝置,用於獲得所述放肩過程不同階段的放肩長度,並計算所述放肩長度的變化值; 比較模組,用於將所述晶體直徑的變化值和所述放肩長度的變化值的比值與所述晶體直徑變化值的設定值和所述放肩長度的變化值的設定值的比值進行比較,得到差值; PID控制模組,用於將所述差值作為所述PID控制模組的輸入變數,並利用PID演算法計算晶體生長製程參數的調節值,作為所述PID控制模組的輸出變數; 製程參數設置模組,將所述晶體生長製程參數的調節值和所述晶體生長製程參數的設定值相加,得到實際長晶過程的製程參數。A crystal growth control device for shoulder-shouldering process, including: A preset module, which is used to preset the setting value of the change value of the crystal diameter at different stages of the shoulder-releasing process, the setting value of the change value of the length of the shoulder-releasing process, and the setting value of the crystal growth process parameter at different stages of the shoulder-releasing process; A diameter measuring device, used to obtain the crystal diameter at different stages of the shoulder laying process and calculate the change value of the crystal diameter; A shoulder-shoulder length measuring device, which is used to obtain shoulder-shoulder lengths in different stages of the shoulder-shoulder process, and calculate the change value of the shoulder-shoulder length; A comparison module for comparing the ratio of the change value of the crystal diameter and the change value of the shoulder-shoulder length to the setting value of the change value of the crystal diameter and the change value of the shoulder-shoulder length Compare to get the difference; The PID control module is used to use the difference as the input variable of the PID control module, and use the PID algorithm to calculate the adjustment value of the crystal growth process parameters as the output variable of the PID control module; The process parameter setting module adds the adjustment value of the crystal growth process parameter and the set value of the crystal growth process parameter to obtain the process parameter of the actual crystal growth process. 根據請求項6所述的晶體生長控制裝置,其中所述放肩過程的晶體生長製程參數包括拉晶速度和/或溫度。The crystal growth control device according to claim 6, wherein the crystal growth process parameters of the shoulder-releasing process include a crystal pulling speed and/or temperature. 根據請求項6所述的晶體生長控制裝置,其中所述放肩過程不同階段包括不同放肩時間或不同晶體長度處。The crystal growth control device according to claim 6, wherein different stages of the shoulder-releasing process include different shoulder-releasing time or different crystal lengths. 一種用於放肩過程的晶體生長控制系統,包括記憶體、處理器及儲存在所述記憶體上且在所述處理器上運行的電腦程式,其中所述處理器執行所述電腦程式時實現請求項1至5中任一項所述方法的步驟。A crystal growth control system for shoulder-shouldering process, including a memory, a processor, and a computer program stored on the memory and running on the processor, wherein the processor is implemented when the computer program is executed The method steps of any one of claims 1 to 5. 一種電腦儲存媒體,其上儲存有電腦程式,其中所述電腦程式被電腦執行時實現請求項1至5中任一項所述方法的步驟。A computer storage medium on which a computer program is stored, wherein when the computer program is executed by a computer, the steps of the method described in any one of request items 1 to 5 are realized.
TW108121630A 2018-10-29 2019-06-21 Control method, device and system for growing crystal and computer storage medium TW202018132A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811272388 2018-10-29
CN201811330586.2A CN109234795A (en) 2018-10-29 2018-11-08 A kind of crystal growth control method, device, system and computer storage medium
CN201811330586.2 2018-11-08

Publications (1)

Publication Number Publication Date
TW202018132A true TW202018132A (en) 2020-05-16

Family

ID=65077689

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121630A TW202018132A (en) 2018-10-29 2019-06-21 Control method, device and system for growing crystal and computer storage medium

Country Status (2)

Country Link
CN (1) CN109234795A (en)
TW (1) TW202018132A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690980A (en) * 2019-03-11 2020-09-22 上海新昇半导体科技有限公司 Crystal growth control method, device and system for shouldering process and computer storage medium
CN113308730A (en) * 2020-02-26 2021-08-27 隆基绿能科技股份有限公司 Feeding control method and system for continuous crystal growth
CN112064109A (en) * 2020-07-23 2020-12-11 南京晶能半导体科技有限公司 Control method for crystal growth shouldering shape of semiconductor silicon material crystal
CN112048761B (en) * 2020-08-24 2022-02-15 有研半导体硅材料股份公司 Large-diameter monocrystalline silicon shouldering growth process
CN112789371A (en) * 2021-01-11 2021-05-11 眉山博雅新材料有限公司 Crystal growth control method and system
CN114959882B (en) * 2021-02-26 2023-07-21 晶科能源股份有限公司 Method for producing monocrystalline silicon, electronic device, and storage medium
CN113122912A (en) * 2021-04-25 2021-07-16 弘元新材料(包头)有限公司 Large-size silicon single crystal furnace pressure-changing and shoulder-setting survival rate improving device
CN113265702A (en) * 2021-05-20 2021-08-17 宁夏富乐德石英材料有限公司 Shoulder-placing method with controllable liquid gap distance
CN113445120A (en) * 2021-06-28 2021-09-28 无锡松瓷机电有限公司 Monocrystalline silicon growth control method, device, equipment and computer storage medium
CN113684533A (en) * 2021-08-18 2021-11-23 包头美科硅能源有限公司 Large-size single crystal shouldering method capable of preventing edge breakage
CN114318512B (en) * 2021-12-28 2023-11-24 山东有研半导体材料有限公司 Method for automatically adjusting pulling speed by monitoring diameter of straight pulling monocrystalline silicon shoulder
CN114752996B (en) * 2022-03-22 2024-05-31 无锡海纳智能科技有限公司 Intelligent adjustment method for shoulder-stage splitting of monocrystalline silicon and storage medium
CN115477304B (en) * 2022-09-27 2023-08-22 新特能源股份有限公司 Reducing furnace regulation and control method and device and related equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033299A (en) * 1983-07-29 1985-02-20 Toshiba Corp Apparatus for preparing single crystal
US6241818B1 (en) * 1999-04-07 2001-06-05 Memc Electronic Materials, Inc. Method and system of controlling taper growth in a semiconductor crystal growth process
US8012255B2 (en) * 2008-07-31 2011-09-06 Sumco Phoenix Corporation Method and apparatus for controlling diameter of a silicon crystal ingot in a growth process
CN104988577A (en) * 2015-07-14 2015-10-21 福建汇晶光电科技有限公司 Sapphire automatic control system and control method

Also Published As

Publication number Publication date
CN109234795A (en) 2019-01-18

Similar Documents

Publication Publication Date Title
TW202016366A (en) Control method, device and system for growing crystal and computer storage medium
TW202018132A (en) Control method, device and system for growing crystal and computer storage medium
TW202033846A (en) Control method, device and system for shouldering process of growing crystal and computer storage medium
KR101997565B1 (en) Method for producing monocrystalline silicon
TWI774174B (en) Seeding method for crystal growth
TW202113168A (en) Process for growing silicon single crystal
CN103060901A (en) Preparation process for growing plurality of crystals through edge-defined film-fed crystal growth method
CN104726930A (en) Czochralski single silicon crystal growth device provided with stirring ring in melt area
TWI740669B (en) Control method and control system for growing ingot
CN110528068B (en) Seeding method of Czochralski silicon single crystal and manufacturing method thereof
JP2008508187A (en) Method for growing a single crystal from a melt
TW202016365A (en) A crystal growth method of single crystalline silicon ingot (1)
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
US20200149186A1 (en) Method, device, system, and computer storage medium for crystal growing control
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
JP2005015314A (en) Method for manufacturing single crystal, and single crystal
JP2019094251A (en) Method for manufacturing single crystal
KR101540235B1 (en) Apparutus and Method for Manufacturing Single Crystal Ingot
TWI736169B (en) Process and device for growing a semiconductor crystal
KR20160023301A (en) Apparatus of growth of silicon single crystal ingot
JP6217514B2 (en) Method for producing sapphire single crystal
JP5182234B2 (en) Method for producing silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method
JP6759147B2 (en) Method for manufacturing silicon single crystal
JP6488975B2 (en) Pulling method of silicon single crystal