TW202017881A - Composition for glass, and aluminosilicate glass and preparation method therefor and use thereof - Google Patents

Composition for glass, and aluminosilicate glass and preparation method therefor and use thereof Download PDF

Info

Publication number
TW202017881A
TW202017881A TW108137263A TW108137263A TW202017881A TW 202017881 A TW202017881 A TW 202017881A TW 108137263 A TW108137263 A TW 108137263A TW 108137263 A TW108137263 A TW 108137263A TW 202017881 A TW202017881 A TW 202017881A
Authority
TW
Taiwan
Prior art keywords
glass
composition
mol
mgo
sro
Prior art date
Application number
TW108137263A
Other languages
Chinese (zh)
Other versions
TWI738086B (en
Inventor
張廣濤
王俊峰
韓文梅
李剛
李志勇
閆冬成
王麗紅
Original Assignee
大陸商東旭科技集團有限公司
大陸商東旭集團有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商東旭科技集團有限公司, 大陸商東旭集團有限公司 filed Critical 大陸商東旭科技集團有限公司
Publication of TW202017881A publication Critical patent/TW202017881A/en
Application granted granted Critical
Publication of TWI738086B publication Critical patent/TWI738086B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A composition for glass, and an aluminosilicate glass and a preparation method therefor and use thereof. The composition for glass comprises, in terms of oxides, 62-69 mol% of SiO2, 11-15 mol% of Al2O3, 0-3 mol% of B2O3, 7-11 mol% of MgO, 2-8 mol% of CaO, 3-8 mol% of SrO, 0-2 mol% of BaO, 0.01-2 mol% of ZnO, 0.02-0.65 mol% of RE2O3, and less than 0.05 mol% of R2O; RE is a rare earth element, and R is an alkali metal. The aluminosilicate glass prepared with the preparation method has the advantages of high thermostability, high ultraviolet transmittance andhigh mechanical stability and is suitable for large industrial production.

Description

玻璃用組合物、鋁矽酸鹽玻璃及其製備方法和應用Composition for glass, aluminosilicate glass, and preparation method and application thereof

本發明是有關於一種玻璃製造領域,特別是指一種玻璃用組合物、鋁矽酸鹽玻璃及其製備方法和應用。The invention relates to the field of glass manufacturing, in particular to a glass composition, aluminosilicate glass, and preparation method and application thereof.

隨著光電行業的快速發展,對各種顯示器件的需求正在不斷增長,比如有源矩陣液晶顯示(AMLCD)、有機發光二極體(OLED)以及應用低溫多晶矽技術的有源矩陣液晶顯示(LTPS TFT-LCD)器件,這些顯示器件都基於使用薄膜半導體材料生產薄膜電晶體(TFT)技術。主流的矽基TFT可分為非晶矽(a-Si)TFT、多晶矽(p-Si)TFT和單晶矽(SCS)TFT,其中非晶矽(a-Si)TFT為現在主流TFT-LCD應用的技術,非晶矽(a-Si)TFT技術,在生產製程中的處理溫度可以在300-450℃溫度下完成。LTPS多晶矽(p-Si)TFT在製程過程中需要在較高溫度下多次處理,基板必須在多次高溫處理過程中不能發生變形,這就對基板玻璃性能提出更高的要求,優選的應變點高於650℃,更優選的是高於670℃、700℃、720℃,以使基板在面板製程中具有儘量小的熱收縮。同時玻璃基板的膨脹係數需要與矽的膨脹係數相近,盡可能減小應力和破壞,因此基板玻璃優選的線性熱膨脹係數在28-41×10-7 /℃之間。為了便於生產,作為顯示器基板用的玻璃應該具有較低的熔化溫度、高溫表面張力、高溫體積電阻率和液相線溫度。With the rapid development of the photoelectric industry, the demand for various display devices is growing, such as active matrix liquid crystal display (AMLCD), organic light emitting diode (OLED) and active matrix liquid crystal display (LTPS TFT) using low-temperature polysilicon technology -LCD) devices, these display devices are based on the use of thin-film semiconductor materials to produce thin-film transistor (TFT) technology. Mainstream silicon-based TFTs can be divided into amorphous silicon (a-Si) TFTs, polycrystalline silicon (p-Si) TFTs and single crystal silicon (SCS) TFTs, of which amorphous silicon (a-Si) TFTs are now mainstream TFT-LCDs The applied technology, amorphous silicon (a-Si) TFT technology, the processing temperature in the production process can be completed at a temperature of 300-450 ℃. LTPS poly-silicon (p-Si) TFTs need to be processed multiple times at higher temperatures during the manufacturing process. The substrate must not be deformed during multiple high-temperature processes, which puts higher requirements on the glass performance of the substrate, and the preferred strain The point is higher than 650°C, more preferably higher than 670°C, 700°C, and 720°C, so that the substrate has as little thermal shrinkage as possible in the panel manufacturing process. At the same time, the expansion coefficient of the glass substrate needs to be close to that of silicon to minimize stress and damage. Therefore, the preferred linear thermal expansion coefficient of the substrate glass is between 28-41×10 -7 /℃. In order to facilitate production, the glass used as the display substrate should have a low melting temperature, high temperature surface tension, high temperature volume resistivity, and liquidus temperature.

用於平面顯示的玻璃基板,需要通過濺射、化學氣相沉積(CVD)等技術在底層基板玻璃表面形成透明導電膜、絕緣膜、半導體(多晶矽、無定形矽等)膜及金屬膜,然後通過光蝕刻(Photo-etching)技術形成各種電路和圖形,如果玻璃含有鹼金屬氧化物(Na2 O,K2 O,Li2 O),在熱處理過程中鹼金屬離子擴散進入沉積半導體材料,損害半導體膜特性,因此,玻璃應不含鹼金屬氧化物,首選的是以SiO2 、Al2 O3 、B2 O3 、鹼土金屬氧化物RO(RO=Mg、Ca、Sr、BaO)等為主成分的鹼土鋁矽酸鹽玻璃。For the glass substrate used for flat display, it is necessary to form a transparent conductive film, an insulating film, a semiconductor (polycrystalline silicon, amorphous silicon, etc.) film and a metal film on the surface of the underlying substrate glass by sputtering, chemical vapor deposition (CVD), etc. Various circuits and patterns are formed by photo-etching technology. If the glass contains alkali metal oxides (Na 2 O, K 2 O, Li 2 O), alkali metal ions diffuse into the deposited semiconductor material during the heat treatment process and damage The characteristics of semiconductor films, therefore, the glass should be free of alkali metal oxides, the first choice is SiO 2 , Al 2 O 3 , B 2 O 3 , alkaline earth metal oxide RO (RO = Mg, Ca, Sr, BaO), etc. The main component is alkaline earth aluminosilicate glass.

大多數矽酸鹽玻璃的退火點、應變點隨著玻璃形成體含量的增加和改性劑含量的減少而增高。但同時會造成高溫熔化和澄清困難,造成耐火材料侵蝕加劇,增加能耗和生產成本。因此,通過組分改良,使得低溫黏度增大的同時還要保證高溫黏度不會出現大的提升,甚至降低才是提高熱穩定性的最佳突破口。The annealing point and strain point of most silicate glass increase as the content of glass former increases and the content of modifier decreases. But at the same time it will cause difficulties in high temperature melting and clarification, resulting in increased corrosion of refractory materials, increasing energy consumption and production costs. Therefore, through component improvement, the low-temperature viscosity is increased while ensuring that the high-temperature viscosity will not be greatly improved, and even reduced is the best breakthrough to improve thermal stability.

顯示用的無鹼玻璃因黏度大,在熔化時通常需要加熱到1600℃以上。常用的火焰熔制技術在無鹼玻璃品質及工藝控制方面已顯現不足,必須採取輔助電熔化或全電熔化技術才能實現玻璃的高效熔化。顯示用的無鹼玻璃在室溫下是電的絕緣體,電阻率為1019 -1022 Ω•cm,當顯示用的無鹼玻璃被加熱時其導電性能隨溫度升高而明顯增強,通常熔融狀態下顯示用的無鹼玻璃液電阻率為100-300Ω•cm,成為電的良導體,可用作焦耳效應發熱體。但是相對於高鹼金屬矽酸鹽玻璃在熔融狀態下通常小於10Ω•cm的電阻率來說,顯示用的無鹼玻璃仍然存在電阻率偏大從而不利於提高熱效率的問題。電助熔或全電熔技術利用高溫狀態下熔融玻璃液的自身導電發熱特性將電能轉化為熱能的形式,使玻璃從內部自身發熱來提高其內部的溫度,降低玻璃液上、下層溫差,提高澄清效果,其熱效率要比火焰輻射加熱吸收的熱量高得多,從而節省能量,大幅提高玻璃熔化率,改善玻璃液品質。高溫狀態下無鹼玻璃液的電阻率大小是影響玻璃焦耳熱效應的關鍵。高溫電阻率過小,可能會削弱焦耳熱效應,自身發熱量無法滿足熔化的需要,還會帶來高溫黏度性能的劣化;高溫電阻率過高,則會影響玻璃液的導電性,使通電加熱時的電流流向耐火材料而造成耐火材料的高溫侵蝕。因此,高溫下熔融玻璃液的電阻率必須控制在合理的範圍內才能達到提高熔化效率,改善玻璃液品質的目的。The alkali-free glass used for display has a high viscosity and usually needs to be heated to above 1600°C during melting. The commonly used flame melting technology has shown insufficient in terms of quality and process control of alkali-free glass. Auxiliary electric melting or all electric melting technology must be adopted to achieve efficient melting of glass. The alkali-free glass for display is an electrical insulator at room temperature, with a resistivity of 10 19 -10 22 Ω•cm. When the alkali-free glass for display is heated, its electrical conductivity increases significantly with increasing temperature, usually melting The non-alkali glass liquid used in the state shows a resistivity of 100-300Ω·cm, which is a good conductor of electricity and can be used as a Joule effect heating element. However, relative to the resistivity of high alkali metal silicate glass which is usually less than 10Ω·cm in the molten state, the alkali-free glass used for display still has the problem of high resistivity, which is not conducive to improving thermal efficiency. Electric fluxing or full electric melting technology uses the self-heating characteristics of molten glass liquid at high temperature to convert electrical energy into the form of heat energy, so that the glass heats itself from the inside to increase its internal temperature, reduce the temperature difference between the upper and lower layers of the glass liquid, and improve For the clarification effect, the thermal efficiency is much higher than the heat absorbed by the flame radiation heating, thereby saving energy, greatly increasing the glass melting rate, and improving the quality of the glass liquid. The resistivity of alkali-free glass liquid at high temperature is the key to affect the Joule heating effect of glass. If the high temperature resistivity is too small, it may weaken the Joule heating effect, and its own calorific value can not meet the needs of melting, and it will also cause the deterioration of the high temperature viscosity performance; too high high temperature resistivity will affect the conductivity of the glass liquid, which will cause The current flows to the refractory material and causes high temperature erosion of the refractory material. Therefore, the resistivity of molten glass liquid at high temperature must be controlled within a reasonable range to achieve the purpose of improving the melting efficiency and improving the quality of the glass liquid.

在玻璃基板的加工過程中,基板玻璃是水平放置的,玻璃在自重作用下,有一定程度的下垂,下垂的程度與玻璃的密度成正比、與玻璃的彈性模量成反比。隨著基板製造向著大尺寸、薄型化方向的發展,製造中玻璃板的下垂必須引起重視。因此應設計組成,使基板玻璃具有盡可能低的密度和盡可能高的彈性模量。During the processing of the glass substrate, the substrate glass is placed horizontally. Under the effect of its own weight, the glass sags to a certain extent. The degree of sag is proportional to the density of the glass and inversely proportional to the elastic modulus of the glass. With the development of substrate manufacturing in the direction of large size and thinning, the sag of the glass plate in manufacturing must be paid attention to. Therefore, the composition should be designed so that the substrate glass has the lowest possible density and the highest possible elastic modulus.

在一些平面顯示製造過程中,需要使用紫外線作為能量將顯示單元與其接觸的襯底玻璃進行分離。為了降低分離的成本、提高成功機率,需要玻璃基板在紫外區有較高且穩定的穿透率,例如,對於厚度為0.5mm的玻璃基板,要求在波長為308nm下的穿透率高於50%,且批次內不同玻璃基板之間穿透率極差在1%之內。但是由於不可避免的因素,玻璃基板製造過程中總是會過多過少的引入SO3 、Fe3 O4 等在紫外區有較強吸收的組分,因此在玻璃基板製造過程中嚴格控制各類雜質組分的含量,有利於製造308nm高穿透率的玻璃基板。In some flat display manufacturing processes, it is necessary to use ultraviolet light as energy to separate the display unit from the substrate glass in contact with it. In order to reduce the cost of separation and increase the probability of success, it is necessary for the glass substrate to have a high and stable transmittance in the ultraviolet region. For example, for a glass substrate with a thickness of 0.5 mm, the transmittance at a wavelength of 308 nm is required to be higher than 50 %, and the transmission rate between different glass substrates in the batch is extremely poor within 1%. However, due to unavoidable factors, SO 3 , Fe 3 O 4 and other components that have strong absorption in the ultraviolet region are always introduced too much and too little in the manufacturing process of glass substrates, so various impurities are strictly controlled in the manufacturing process of glass substrates The content of the components is beneficial to the manufacture of 308nm high-transmittance glass substrates.

因此,本發明的目的是為了克服現有的鋁矽酸鹽玻璃存在顯示基板玻璃熔融難度大及在308nm處穿透率偏低的問題,提供一種玻璃用組合物、鋁矽酸鹽玻璃及其製備方法和應用,該鋁矽酸鹽玻璃的熱穩定性高、紫外透過率高和機械穩定性高。Therefore, the purpose of the present invention is to overcome the problems of the existing aluminosilicate glass that the display substrate glass is difficult to melt and the transmittance at 308 nm is low, to provide a glass composition, aluminosilicate glass and preparation thereof Method and application, the aluminosilicate glass has high thermal stability, high ultraviolet transmittance and high mechanical stability.

為了實現上述目的,本發明第一方面提供了一種玻璃用組合物,以該玻璃用組合物的總莫耳數為基準,以氧化物計,該玻璃用組合物含有62-69mol%的SiO2 、11-15mol%的Al2 O3 、0-3mol%的B2 O3 、7-11mol%的MgO、2-8mol%的CaO、3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE2 O3 和小於0.05mol%的R2 O,其中,RE為稀土元素,R為鹼金屬。In order to achieve the above object, the first aspect of the present invention provides a glass composition, based on the total moles of the glass composition, based on the oxide, the glass composition contains 62-69mol% SiO 2 , 11-15mol% Al 2 O 3 , 0-3mol% B 2 O 3 , 7-11mol% MgO, 2-8mol% CaO, 3-8mol% SrO, 0-2mol% BaO, 0.01 -2mol% ZnO, 0.02-0.65mol% RE 2 O 3 and less than 0.05mol% R 2 O, where RE is a rare earth element and R is an alkali metal.

優選地,以該玻璃用組合物的總莫耳數為基準,以氧化物計,該玻璃用組合物含有65-68mol%的SiO2 、11.5-14.5mol%的Al2 O3 、0-1.5mol%的B2 O3 、7.5-9mol%的MgO、3-6mol%的CaO、4.5-6mol%的SrO、0.1-0.9mol%的BaO、0.05-1.9mol%的ZnO、0.1-0.46mol%的RE2 O3 和小於0.05mol%的R2 O。Preferably, based on the total moles of the glass composition, the glass composition contains 65-68 mol% SiO 2 , 11.5-14.5 mol% Al 2 O 3 , 0-1.5 in terms of oxides mol% B 2 O 3 , 7.5-9mol% MgO, 3-6mol% CaO, 4.5-6mol% SrO, 0.1-0.9mol% BaO, 0.05-1.9mol% ZnO, 0.1-0.46mol% RE 2 O 3 and less than 0.05mol% R 2 O.

優選地,以該玻璃用組合物的總莫耳數為基準,以Fe2 O3 形式表徵,該玻璃用組合物含有小於等於150ppm的Fe2 O3Preferably, it is characterized in the form of Fe 2 O 3 based on the total moles of the glass composition, and the glass composition contains Fe 2 O 3 of 150 ppm or less.

優選地,以該玻璃用組合物的總莫耳數為基準,以單質鹵素形式表徵,該玻璃用組合物含有0.01-0.6mol%的鹵素;其中,所述鹵素為F和Cl。Preferably, based on the total moles of the glass composition as a basis, it is characterized in the form of elemental halogen, and the glass composition contains 0.01-0.6 mol% of halogen; wherein, the halogen is F and Cl.

優選地,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足0<Z≤1,其中,Z由下式計算得出:Z=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO);其中,SiO2 、Al2 O3 、MgO、CaO、SrO、BaO、ZnO各自代表該組分占所述玻璃用組合物中的莫耳百分比。Preferably, the content of each component in the composition for glass satisfies 0<Z≦1 in terms of mole percent, where Z is calculated by the following formula: Z=-10.31+(16.04×SiO 2 +6 ×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO); Among them, SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO and ZnO each represent the mole percentage of the component in the glass composition.

優選地,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足0.1<Y≤0.67,其中,Y值由下式計算得出:Y=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE2 O3 );其中,SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO、BaO、ZnO、RE2 O3 各自代表該組分占所述玻璃用組合物中的莫耳百分比。Preferably, the content of each component in the glass composition satisfies 0.1<Y≤0.67 in terms of mole percent, wherein the Y value is calculated by the following formula: Y=-10.31+(16.04×SiO 2 + 6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2 O 3 ); Among them, SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 each represent the mole percentage of the component in the glass composition.

優選地,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足R=0.05-0.48,其中,R值由下式計算得出:R=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE2 O3 -39.6×(F+Cl));其中,SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO、BaO、ZnO、RE2 O3 、F、Cl各自代表該組分占所述玻璃用組合物中的莫耳百分比。Preferably, the content of each component in the glass composition satisfies R=0.05-0.48 in terms of mole percent, where the R value is calculated by the following formula: R=-10.31+(16.04×SiO 2 + 6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2 O 3 -39.6×(F+Cl)); Among them, SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 , F, Cl each represent the mole percentage of the component in the glass composition .

優選地,以莫耳百分比計,(MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5。Preferably, in terms of mole percent, (MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5.

優選地,(MgO+SrO)/(1-MO)≥0.6,其中,以該玻璃用組合物的總莫耳數為基準,MO代表玻璃用組合物中除了SiO2 、Al2 O3 、B2 O3 之外所有組分莫耳百分比的總和。Preferably, (MgO+SrO)/(1-MO)≥0.6, wherein, based on the total moles of the glass composition, MO stands for SiO 2 , Al 2 O 3 , B in the glass composition The sum of the molar percentages of all components except 2 O 3 .

優選地,所述RE為釔和鑭系元素,所述R為Li、Na和K。Preferably, the RE is yttrium and lanthanide, and the R is Li, Na and K.

優選地,所述RE為Y、La、Nd和Lu中的一種或多種。Preferably, the RE is one or more of Y, La, Nd and Lu.

優選地,所述玻璃用組合物還含有澄清劑,以各組分的總莫耳數為基準,所述澄清劑的含量≤0.5mol%。Preferably, the glass composition further contains a clarifying agent, and the content of the clarifying agent is less than or equal to 0.5 mol% based on the total moles of each component.

第二方面,本發明提供了一種製備鋁矽酸鹽玻璃的方法,包括將本發明所述的玻璃用組合物依次進行熔融處理、成型處理、退火處理和機械加工處理。In a second aspect, the present invention provides a method for preparing an aluminosilicate glass, which includes sequentially performing melting treatment, molding treatment, annealing treatment, and mechanical processing treatment on the glass composition of the present invention.

優選地,所述方法還包括在所述玻璃用組合物中添加氟化物和/或氯化物。Preferably, the method further includes adding fluoride and/or chloride to the glass composition.

優選地,以所述混合料的總重為基準,所述氟化物的添加量為0.02-0.7wt%。Preferably, based on the total weight of the mixture, the amount of the fluoride added is 0.02-0.7wt%.

優選地,以所述混合料的總重為基準,所述氯化物的添加量為0.02-0.7wt%。Preferably, based on the total weight of the mixture, the added amount of the chloride is 0.02-0.7wt%.

第三方面,本發明提供了上述方法製備得到的鋁矽酸鹽玻璃。In a third aspect, the present invention provides aluminosilicate glass prepared by the above method.

優選地,所述鋁矽酸鹽玻璃在1600℃時玻璃熔體的電阻率≤100Ω•cm。Preferably, the resistivity of the glass melt at 1600°C of the aluminosilicate glass is ≤100Ω•cm.

優選地,1600℃時玻璃熔體的黏度≤300泊。Preferably, the viscosity of the glass melt is ≤300 poise at 1600°C.

優選地,玻璃熔體的液相線黏度ηL ≥20000泊。Preferably, the liquidus viscosity of the glass melt η L ≥ 20000 poise.

優選地,玻璃熔體的黏度為200泊時對應的溫度T200 ≤1630℃。Preferably, the viscosity of the glass melt is the corresponding temperature T 200 ≤1630°C at 200 poises.

優選地,黏度為35000泊時對應的溫度T35000 ≤1240℃。Preferably, the viscosity at 35000 poises corresponds to a temperature T 35000 ≤ 1240°C.

優選地,黏度為1013 泊時對應的退火點≥770℃。Preferably, the corresponding annealing point at a viscosity of 10 13 poise is ≥770°C.

優選地,黏度104.5 泊時對應的溫度≤1250℃;液相線溫度TL ≤1250℃;黏度104.5 泊時對應的溫度與液相線溫度TL 的差值≥-20℃。Preferably, the temperature corresponding to a viscosity of 10 4.5 poise is ≤1250°C; the liquidus temperature T L ≤1250°C; the difference between the temperature corresponding to a viscosity of 10 4.5 poise and the liquidus temperature T L is ≥-20°C.

優選地,所述鋁矽酸鹽玻璃中以單質硫S形式表徵的硫元素含量≤500ppm。Preferably, the elemental sulfur content in the form of elemental sulfur S in the aluminosilicate glass is ≤500 ppm.

優選地,所述鋁矽酸鹽玻璃中羥基含量≤0.3/mm。Preferably, the hydroxyl content in the aluminosilicate glass is ≤0.3/mm.

優選地,所述鋁矽酸鹽玻璃的密度<2.7g/cm3 ;50-350℃範圍內的熱膨脹係數<40×10-7 /℃;楊氏模量≥83GPa;比模數≥32GPa/(g×cm-3 )。Preferably, the density of the aluminosilicate glass is less than 2.7g/cm 3 ; the coefficient of thermal expansion in the range of 50-350°C is less than 40×10 -7 /°C; Young's modulus ≥83GPa; specific modulus ≥32GPa/ (g×cm -3 ).

優選地,波長為308nm處的透過率≥73%;波長為550nm處的透過率≥92%。Preferably, the transmittance at a wavelength of 308 nm is ≥73%; the transmittance at a wavelength of 550 nm is ≥92%.

優選地,在600℃/30min條件下的熱收縮<20ppm。Preferably, the heat shrinkage at 600°C/30min is <20ppm.

第四方面,本發明提供了本發明所述的玻璃用組合物或鋁矽酸鹽玻璃在製備顯示器件和/或太陽能電池中的應用。In a fourth aspect, the present invention provides the use of the glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and/or solar cells.

本發明的鋁矽酸鹽玻璃,熱穩定性高、紫外透過率高和機械穩定性優異,可用於製備顯示器件和/或太陽能電池,尤其適用於製備平板顯示產品的襯底玻璃基板材料和/或螢幕表面保護用玻璃膜層材料、柔性顯示產品的載板玻璃材料和/或表面封裝玻璃材料和/或螢幕表面保護用玻璃膜層材料、柔性太陽能電池的襯底玻璃基板材料、安全玻璃、防彈玻璃、智慧汽車玻璃、智慧交通顯示幕、智慧櫥窗和智慧卡票以及用於其他需要高熱穩定性、高紫外透過率和機械穩定性玻璃材料的應用領域。The aluminosilicate glass of the present invention has high thermal stability, high ultraviolet transmittance and excellent mechanical stability, and can be used for preparing display devices and/or solar cells, especially suitable for preparing substrate glass substrate materials for flat panel display products and/or Or glass film material for screen surface protection, carrier glass material for flexible display products and/or surface encapsulation glass material and/or glass film material for screen surface protection, base glass substrate material for flexible solar cells, safety glass, Bulletproof glass, smart car glass, smart traffic display screens, smart shop windows and smart card tickets, and other applications that require high thermal stability, high UV transmittance and mechanical stability glass materials.

以下對本發明的具體實施方式進行詳細說明。應當理解的是,此處所描述的具體實施方式僅用於說明和解釋本發明,並不用於限制本發明。The specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, and are not intended to limit the present invention.

第一方面,本發明提供了一種玻璃用組合物,以該玻璃用組合物的總莫耳數為基準,以氧化物計,該玻璃用組合物含有62-69mol%的SiO2 、11-15mol%的Al2 O3 、0-3mol%的B2 O3 、7-11mol%的MgO、2-8mol%的CaO、3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE2 O3 和小於0.05mol%的R2 O,其中RE為稀土元素,R為鹼金屬。In the first aspect, the present invention provides a composition for glass, based on the total moles of the composition for glass, based on oxide, the composition for glass contains 62-69 mol% of SiO 2 and 11-15 mol % Al 2 O 3 , 0-3mol% B 2 O 3 , 7-11mol% MgO, 2-8mol% CaO, 3-8mol% SrO, 0-2mol% BaO, 0.01-2mol% ZnO, 0.02-0.65 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.

在本發明的優選實施方式中,以該玻璃用組合物的總莫耳數為基準,以氧化物計,該玻璃用組合物含有65-68mol%的SiO2 、11.5-14.5mol%的Al2 O3 、0-1.5mol%的B2 O3 、7.5-9mol%的MgO、3-6mol%的CaO、4.5-6mol%的SrO、0.1-0.9mol%的BaO、0.05-1.9mol%的ZnO、0.1-0.46mol%的RE2 O3 和小於0.05mol%的R2 O。In a preferred embodiment of the present invention, based on the total moles of the glass composition, the glass composition contains 65-68 mol% of SiO 2 and 11.5-14.5 mol% of Al 2 in terms of oxides. O 3 , 0-1.5mol% B 2 O 3 , 7.5-9mol% MgO, 3-6mol% CaO, 4.5-6mol% SrO, 0.1-0.9mol% BaO, 0.05-1.9mol% ZnO , 0.1-0.46mol% RE 2 O 3 and less than 0.05mol% R 2 O.

在本發明的玻璃用組合物中,SiO2 是玻璃形成體,若含量過低,不利於熱穩定性的增強,會使膨脹係數過高,玻璃容易失透;提高SiO2 含量有助於玻璃輕量化,熱膨脹係數減小,應變點增高,耐化學性增高,但高溫黏度升高,這樣又不利於熔解,一般的窯爐難以滿足其熔解需求。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述SiO2 的含量為62-69mol%,優選為65-68mol%,具體地,例如可以為62mol%、62.2mol%、62.95mol%、63.8mol%、64.6mol%、64.9mol%、65mol%、65.4mol%、65.7mol%、66mol%、66.8mol%、66.9mol%、67.08mol%、67.9mol%、67.95mol%、68mol%、68.5mol%、68.9mol%、69mol%以及這些數值中的任意兩個數值所構成的範圍中的任意數值。In the glass composition of the present invention, SiO 2 is a glass-forming body, if the content is too low, it is not conducive to the enhancement of thermal stability, the expansion coefficient is too high, and the glass is easily devitrified; increasing the SiO 2 content helps the glass Lightweight, the coefficient of thermal expansion is reduced, the strain point is increased, and the chemical resistance is increased, but the high temperature viscosity is increased, which is not conducive to melting, and it is difficult for ordinary kilns to meet their melting needs. Therefore, considering the total number of moles of the glass composition as a basis, the content of the SiO 2 is 62-69 mol%, preferably 65-68 mol%, specifically, for example, 62 mol, based on the oxide %, 62.2mol%, 62.95mol%, 63.8mol%, 64.6mol%, 64.9mol%, 65mol%, 65.4mol%, 65.7mol%, 66mol%, 66.8mol%, 66.9mol%, 67.08mol%, 67.9mol %, 67.95 mol%, 68 mol%, 68.5 mol%, 68.9 mol%, 69 mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,Al2 O3 用於提高玻璃結構的強度,若含量低於11mol%,玻璃容易失透,也容易受到外界水氣及化學試劑的侵蝕。高含量的A12 O3 有助於玻璃應變點、抗彎強度的增高,但過高玻璃容易出現析晶現象。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述Al2 O3 的含量為11-15mol%,優選為11.5-14.5mol%,具體地,例如可以為11mol%、11.5mol%、11.6mol%、11.9mol%、12mol%、12.2mol%、12.6mol%、12.69mol%、13.1mol%、13.2mol%、13.4mol%、13.5mol%、13.8mol%、14.4mol%、14.5mol%、14.7mol%、14.9mol%、15mol%以及這些數值中的任意兩個所構成的範圍中的任意數值。In the glass composition of the present invention, Al 2 O 3 is used to increase the strength of the glass structure. If the content is less than 11 mol%, the glass is easy to devitrify and is easily eroded by external moisture and chemical reagents. A high content of A1 2 O 3 contributes to the increase of glass strain point and flexural strength, but excessively high glass is prone to devitrification. Therefore, considering the total number of moles of the glass composition as a basis, the content of the Al 2 O 3 is 11-15 mol%, preferably 11.5-14.5 mol%, specifically, for example, Can be 11mol%, 11.5mol%, 11.6mol%, 11.9mol%, 12mol%, 12.2mol%, 12.6mol%, 12.69mol%, 13.1mol%, 13.2mol%, 13.4mol%, 13.5mol%, 13.8mol %, 14.4 mol%, 14.5 mol%, 14.7 mol%, 14.9 mol%, 15 mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,B2 O3 能單獨生成玻璃,是一種很好的助熔劑,高溫熔化條件下B2 O3 難於形成[BO4 ],可降低高溫黏度,低溫時B有奪取游離氧形成[BO4 ]的趨勢,使結構趨於緊密,提高玻璃的低溫黏度,防止析晶現象的發生。但是過多的B2 O3 會使玻璃應變點大幅降低。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述B2 O3 的含量為0-3mol%,優選為0-1.5mol%,更優選為0,具體地,例如可以為0、0.1mol%、0.36mol%、0.71mol%、0.9mol%、1.3mol%、1.5mol%、1.7mol%、1.8mol%、2mol%、2.1mol%、2.37mol%、2.8mol%、3mol%以及任意兩個相鄰質量百分含量之間的任意質量百分含量。In the glass composition of the present invention, B 2 O 3 can form glass alone and is a very good flux. It is difficult to form B 2 O 3 under high-temperature melting conditions [BO 4 ], which can reduce the viscosity at high temperature and B at low temperature. There is a tendency to capture free oxygen to form [BO 4 ], which makes the structure tend to be tight, improve the low-temperature viscosity of the glass, and prevent the occurrence of crystallization. However, too much B 2 O 3 will greatly reduce the strain point of the glass. Therefore, considering the total moles of the glass composition as a basis, the content of the B 2 O 3 is 0-3 mol%, preferably 0-1.5 mol%, more preferably 0, based on the oxide , Specifically, for example, it can be 0, 0.1mol%, 0.36mol%, 0.71mol%, 0.9mol%, 1.3mol%, 1.5mol%, 1.7mol%, 1.8mol%, 2mol%, 2.1mol%, 2.37mol %, 2.8mol%, 3mol% and any mass percentage between any two adjacent mass percentages.

在本發明的玻璃用組合物中,MgO具有大幅提升玻璃楊氏模量和比模數,降低高溫黏度,使玻璃易於熔化的特點。當玻璃中鹼土金屬含量較少時,引入電場強度較大的網路外離子Mg2+ ,容易在結構中產生局部積聚作用,使短程有序範圍增加。在這種情況下引入較多的中間體氧化物Al2 O3 ,以[AlO4 ]狀態存在時,由於這些多面體帶有負電,吸引了部分網路外陽離子,使玻璃的積聚程度、析晶能力下降;當鹼土金屬含量較多、網路斷裂比較嚴重的情況下,引入MgO,可使斷裂的矽氧四面體重新連接而使玻璃析晶能力下降。因此在添加MgO時要注意與其他組分的配合比例。相對於其他鹼土金屬氧化物,MgO的存在會帶來較低的膨脹係數和密度,較高的耐化學性能、應變點和彈性模量。如果MgO大於11mol%,玻璃耐化性會變差,同時玻璃容易失透。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述MgO的含量為7-11mol%,優選為7.5-9mol%,具體地,例如可以為7mol%、7.1mol%、7.5mol%、7.6mol%、7.8mol%、7.9mol%、8mol%、8.1mol%、8.2mol%、8.5mol%、8.9mol%、9mol%、9.1mol%、9.8mol%、10.2mol%、10.4mol%、11mol%以及這些數值中的任意兩個數值所構成的範圍中的任意數值。In the glass composition of the present invention, MgO has the characteristics of greatly increasing the Young's modulus and specific modulus of the glass, lowering the high-temperature viscosity, and making the glass easy to melt. When the content of alkaline earth metal in the glass is small, the introduction of the ion Mg 2+ outside the network with a large electric field strength is likely to cause local accumulation in the structure, which increases the short-range order range. In this case, the introduction of more intermediate oxide Al 2 O 3 in the state of [AlO 4 ], because these polyhedrons are negatively charged, attract some cations outside the network, so that the degree of glass accumulation and crystallization The ability is reduced; when the content of alkaline earth metal is large and the network fracture is serious, the introduction of MgO can make the broken silicon tetrahedron reconnect and reduce the crystallization ability of the glass. Therefore, when adding MgO, pay attention to the mixing ratio with other components. Compared with other alkaline earth metal oxides, the presence of MgO will bring lower expansion coefficient and density, higher chemical resistance, strain point and elastic modulus. If MgO is greater than 11 mol%, the glass resistance will deteriorate, and at the same time, the glass will be easily devitrified. Therefore, considering the total moles of the glass composition as a reference, the content of the MgO is 7-11 mol%, preferably 7.5-9 mol%, specifically, for example, 7 mol%, based on the oxide , 7.1mol%, 7.5mol%, 7.6mol%, 7.8mol%, 7.9mol%, 8mol%, 8.1mol%, 8.2mol%, 8.5mol%, 8.9mol%, 9mol%, 9.1mol%, 9.8mol% , 10.2 mol%, 10.4 mol%, 11 mol%, and any two of these values constitute any value in the range.

在本發明的玻璃用組合物中,CaO用以促進玻璃的熔解和調整玻璃成型性。如果氧化鈣含量少於2mol%,不易降低玻璃的黏度,含量過多,玻璃則會容易出現析晶,熱膨脹係數也會大幅變大,脆性增大,對後續製程不利。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述CaO的含量為2-8mol%,優選為3-6mol%,具體地,例如可以為2mol%、2.7mol%、3mol%、3.3mol%、3.9mol%、4mol%、4.1mol%、4.4mol%、4.65mol%、4.9mol%、5mol%、5.7mol%、6mol%、6.6mol%、7mol%、7.4mol%、7.95mol%、8mol%以及這些數值中的任意兩個數值所構成的範圍中的任意數值。In the composition for glass of the present invention, CaO is used to promote melting of glass and adjust glass formability. If the content of calcium oxide is less than 2 mol%, it is not easy to reduce the viscosity of the glass. If the content is too large, the glass will be prone to devitrification, the coefficient of thermal expansion will also be greatly increased, and the brittleness will increase, which is detrimental to the subsequent process. Therefore, considering the total number of moles of the glass composition as a basis, the content of the CaO is 2-8 mol%, preferably 3-6 mol%, specifically, for example, 2 mol% , 2.7mol%, 3mol%, 3.3mol%, 3.9mol%, 4mol%, 4.1mol%, 4.4mol%, 4.65mol%, 4.9mol%, 5mol%, 5.7mol%, 6mol%, 6.6mol%, 7mol %, 7.4mol%, 7.95mol%, 8mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,SrO可作為助熔劑和防止玻璃出現析晶的成分,如果含量過多,玻璃密度會太高,導致產品的比模量下降。Sr2+ 為離子半徑較大的二價金屬離子,有較高的配位數,在無鹼玻璃中往往填充於四面體網路骨架的間隙中,具有提高化學穩定性和機械穩定性的特點,但是其含量過多會使密度增加,裂紋、失透、分相的發生率提高。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述SrO的含量為3-8mol%,優選為4.5-6mol%,具體地,例如可以為3mol%、3.6mol%、4.04mol%、4.2mol%、4.5mol%、4.6mol%、4.7mol%、4.85mol%、4.9mol%、5mol%、5.2mol%、5.3mol%、5.6mol%、5.85mol%、6mol%、6.1mol%、6.9mol%、7.63mol%、8mol%以及這些數值中的任意兩個數值所構成的範圍中的任意數值。In the glass composition of the present invention, SrO can be used as a flux and a component to prevent the glass from devitrification. If the content is too much, the glass density will be too high, resulting in a decrease in the specific modulus of the product. Sr 2+ is a divalent metal ion with a large ionic radius and has a high coordination number. It is often filled in the gap of the tetrahedral network skeleton in alkali-free glass, which has the characteristics of improving chemical stability and mechanical stability. However, too much content will increase the density and increase the incidence of cracks, devitrification and phase separation. Therefore, considering the total number of moles of the glass composition as a reference, the content of the SrO is 3-8 mol%, preferably 4.5-6 mol%, specifically, for example, 3 mol%, based on the oxide , 3.6mol%, 4.04mol%, 4.2mol%, 4.5mol%, 4.6mol%, 4.7mol%, 4.85mol%, 4.9mol%, 5mol%, 5.2mol%, 5.3mol%, 5.6mol%, 5.85mol %, 6 mol%, 6.1 mol%, 6.9 mol%, 7.63 mol%, 8 mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,BaO作為助熔劑和防止玻璃出現析晶的成分,如果含量過多,玻璃高溫體積電阻率會升高,密度過高,產品的比模量下降。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述BaO的含量為0-2mol%,優選為0.1-0.9mol%,具體地,例如可以為0、0.08mol%、0.1mol%、0.11mol%、0.2mol%、0.27mol%、0.36mol%、0.4mol%、0.5mol%、0.85mol%、0.9mol%、1.02mol%、1.33mol%、1.7mol%、2mol%以及這些數值中的任意兩個數值所構成的範圍中的任意數值。In the composition for glass of the present invention, BaO serves as a flux and a component for preventing crystallization of glass. If the content is too large, the high-temperature volume resistivity of the glass will increase, the density will be too high, and the specific modulus of the product will decrease. Therefore, considering the total number of moles of the glass composition as a basis, the content of the BaO is 0-2 mol%, preferably 0.1-0.9 mol%, specifically, for example, 0 , 0.08mol%, 0.1mol%, 0.11mol%, 0.2mol%, 0.27mol%, 0.36mol%, 0.4mol%, 0.5mol%, 0.85mol%, 0.9mol%, 1.02mol%, 1.33mol%, 1.7 mol%, 2mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,二價金屬氧化物根據它在元素週期表中地位與對性質影響不同,可以分為兩類:一類是位於主族的鹼土金屬氧化物,其離子R2+ 具有8個外電子結構;第二類位於週期表副族(如ZnO、CdO等),其離子R2+ 具有18個外層電子結構,在玻璃中兩者的結構狀態與對玻璃性質影響是不同的。ZnO可以降低玻璃高溫黏度(如1500℃),有利於消除氣泡;同時在軟化點以下有提升強度、硬度、增加玻璃的耐化學性,降低玻璃熱膨脹係數的作用。在無鹼玻璃或低鹼玻璃體系中,添加適量ZnO有助於抑制析晶,可以降低析晶溫度。在理論上,ZnO在無鹼玻璃或低鹼玻璃中,作為網路外體引入玻璃後,高溫下一般以[ZnO4 ]的形式存在,較[ZnO6 ]玻璃結構更加疏鬆,與不含ZnO的玻璃處於相同的高溫狀態下比較,含ZnO的玻璃黏度更小,原子運動速度更大,無法形成晶核,需要進一步降低溫度,才有利於晶核的形成,因而,降低了玻璃的析晶上限溫度。ZnO含量過多則會使玻璃的應變點大幅度降低。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述ZnO的含量為0.01-2mol%,優選為0.05-1.9mol%,具體地,例如可以為0.01mol%、0.02mol%、0.05mol%、0.1mol%、0.13mol%、0.4mol%、0.5mol%、0.79mol%、0.9mol%、0.99mol%、1mol%、1.43mol%、1.49mol%、1.2mol%、1.27mol%、1.43mol%、1.48mol%、1.5mol%、1.6mol%、1.9mol%、2mol%以及這些數值中的任意兩個所構成的範圍中的任意數值。In the glass composition of the present invention, the divalent metal oxide can be divided into two categories according to its position in the periodic table of the elements and its effect on properties: one is an alkaline earth metal oxide located in the main group, and its ion R 2 + Has 8 external electronic structures; the second type is located in the subgroup of the periodic table (such as ZnO, CdO, etc.), and its ion R 2+ has 18 external electronic structures. The structural state of both in glass and the effect on glass properties are different. ZnO can reduce the high-temperature viscosity of the glass (such as 1500 ℃), which is conducive to eliminating bubbles; at the same time, it can improve the strength and hardness, increase the chemical resistance of the glass below the softening point, and reduce the coefficient of thermal expansion of the glass. In non-alkali glass or low-alkali glass systems, adding an appropriate amount of ZnO helps to suppress crystallization and can reduce the crystallization temperature. In theory, ZnO in alkali-free glass or low-alkali glass is introduced into the glass as the outer body of the network, and generally exists in the form of [ZnO 4 ] at high temperature, which is more loose than the glass structure of [ZnO 6 ], and does not contain ZnO Compared with the glass at the same high temperature, the glass containing ZnO has a lower viscosity and a faster atomic movement speed, and cannot form crystal nuclei. It is necessary to further reduce the temperature to facilitate the formation of crystal nuclei, thus reducing the crystallization of the glass Upper limit temperature. Too much ZnO content will greatly reduce the strain point of the glass. Therefore, considering the total number of moles of the glass composition as a basis, the content of the ZnO is 0.01-2 mol%, preferably 0.05-1.9 mol%, specifically, for example, 0.01 mol%, 0.02mol%, 0.05mol%, 0.1mol%, 0.13mol%, 0.4mol%, 0.5mol%, 0.79mol%, 0.9mol%, 0.99mol%, 1mol%, 1.43mol%, 1.49mol%, 1.2 mol%, 1.27 mol%, 1.43 mol%, 1.48 mol%, 1.5 mol%, 1.6 mol%, 1.9 mol%, 2 mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,稀土氧化物RE2 O3 在提高玻璃的某些性能方面具有獨特的能力,例如玻璃的抗彎強度、彈性模量、應變點等性能隨稀土氧化物的加入而大幅上升,促使玻璃脆性降低,斷裂韌性大幅增加,並且能夠降低玻璃的高溫黏度和高溫體積電阻率,為玻璃大型工業製造,特別是電熔和/或電助熔方式熔融玻璃帶來巨大便利。鹼土金屬、ZnO等網路外體引入玻璃組成後,過剩的氧原子使得玻璃結構中的橋氧鍵斷裂生成非橋氧,這些非橋氧的存在顯著降低了玻璃的抗彎強度。RE2 O3 的加入促使玻璃的內部結構發生變化,所生成的Si-O-RE化學鍵將玻璃中孤立島狀網路單元重新連接,可以改善玻璃的網路結構,從而可以大幅提高玻璃的抗彎強度、彈性模量、應變點、化學穩定性以及降低高溫體積電阻率等性能。但是進一步增加RE2 O3 時,由於可供調整的非橋氧數量減少,過量的RE2 O3 對玻璃的上述性能影響不大。因此,從吸收光譜等其他性能綜合考慮,以該玻璃用組合物的總莫耳數為基準,以氧化物計,所述RE2 O3 的含量為0.02-0.65mol%,優選為0.1-0.46mol%,所述RE為釔和鑭系元素。在本發明的具體實施方式中,優選地,所述RE為Lu或Lu與Y、La和Nd中的至少一種,且Lu的含量≥0.05mol%。具體地,RE2 O3 例如可以為0.02mol%、0.05mol%、0.1mol%、0.12mol%、0.19mol%、0.20mol%、0.23mol%、0.24mol%、0.3mol%、0.39mol%、0.4mol%、0.46mol%、0.59mol%、0.65mol%以及這些數值中的任意兩個所構成的範圍中的任意數值。In the glass composition of the present invention, the rare earth oxide RE 2 O 3 has a unique ability to improve certain properties of the glass, such as the flexural strength, elastic modulus, strain point and other properties of the glass. After being added, it will increase sharply, which will reduce the brittleness of the glass, increase the fracture toughness greatly, and reduce the high-temperature viscosity and high-temperature volume resistivity of the glass. convenient. After the network outer body such as alkaline earth metal and ZnO is introduced into the glass composition, the excess oxygen atoms break the bridge oxygen bonds in the glass structure to generate non-bridge oxygen. The presence of these non-bridge oxygen significantly reduces the bending strength of the glass. The addition of RE 2 O 3 causes the internal structure of the glass to change. The generated Si-O-RE chemical bond reconnects the island-like network elements in the glass, which can improve the network structure of the glass, which can greatly improve the glass's resistance. Bending strength, elastic modulus, strain point, chemical stability, and low temperature volume resistivity. However, when RE 2 O 3 is further increased, due to the decrease in the amount of unbridged oxygen available for adjustment, excessive RE 2 O 3 has little effect on the above properties of the glass. Therefore, from the comprehensive consideration of other properties such as absorption spectrum, the content of the RE 2 O 3 is 0.02-0.65 mol% based on the total moles of the glass composition as an oxide, preferably 0.1-0.46 mol%, the RE is yttrium and lanthanide. In a specific embodiment of the present invention, preferably, the RE is Lu or Lu and at least one of Y, La, and Nd, and the content of Lu is ≥0.05 mol%. Specifically, RE 2 O 3 may be, for example, 0.02mol%, 0.05mol%, 0.1mol%, 0.12mol%, 0.19mol%, 0.20mol%, 0.23mol%, 0.24mol%, 0.3mol%, 0.39mol%, Any value within the range of 0.4 mol%, 0.46 mol%, 0.59 mol%, 0.65 mol%, and any two of these values.

在本發明的玻璃用組合物中,不可避免的通過原材料固有雜質、生產過程接觸等途徑引入的少量鐵氧化物會導致玻璃在紫外光譜區(例如,308nm波長處)的透過率下降,從而對柔性OLED面板製程中的雷射剝離技術(LLO)產生不良影響,因此,降低各類原材料中鐵氧化物的引入有利於提高紫外透過率,但過分降低又會導致原材料成本大幅上升,而當在玻璃製造過程中引入一定量的氟化物(例如氟化鈣)後,其作為高溫助熔劑,能夠有效降低玻璃熔體黏度、高溫表面張力和高溫體積電阻率,與硫酸鹽組合使用具有一定的澄清效果;另一方面,氟的加入可以在不刻意降低鐵氧化物含量的條件下提高玻璃在308nm處的透過率改善含鐵玻璃在紫外區308nm處的透過率,但含量過多容易導致玻璃分相或析出,造成乳濁或析晶。因此,綜合考慮,以該玻璃用組合物的總莫耳數為基準,以Fe2 O3 形式表徵,所述Fe2 O3 的含量≤150ppm,優選為≤100ppm,進一步優選為≤80ppm,更優選為≤50ppm。以該玻璃用組合物的總莫耳數為基準,以單質鹵素形式表徵,所述鹵素的含量為0.01-0.6mol%,其中,所述鹵素為F和Cl,優選為0.1-0.55mol%。具體地,例如可以為0.01mol%、0.02mol%、0.06mol%、0.09mol%、0.1mol%、0.15mol%、0.21mol%、0.3mol%、0.36mol%、0.44mol%、0.42mol%、0.48mol%、0.52mol%、0.55mol%、0.6mol%以及這些數值中的任意兩個所構成的範圍中的任意數值。In the glass composition of the present invention, a small amount of iron oxide inevitably introduced through the inherent impurities of raw materials, production process contact, etc. will lead to a decrease in the transmittance of the glass in the ultraviolet spectral region (for example, at a wavelength of 308 nm). The laser lift-off technology (LLO) in the manufacturing process of flexible OLED panels has an adverse effect. Therefore, reducing the introduction of iron oxides in various raw materials is conducive to improving the UV transmittance, but excessive reduction will lead to a substantial increase in the cost of raw materials. After introducing a certain amount of fluoride (such as calcium fluoride) in the glass manufacturing process, it can be used as a high-temperature flux to effectively reduce the viscosity of the glass melt, high-temperature surface tension and high-temperature volume resistivity. It has a certain clarification when used in combination with sulfate Effect; on the other hand, the addition of fluorine can increase the transmittance of the glass at 308nm without deliberately reducing the content of iron oxides, and improve the transmittance of the ferrous glass at 308nm in the ultraviolet region, but too much content can easily lead to glass phase separation Or precipitation, causing opacification or crystallization. Therefore, considering, to the total number of moles of the glass composition as a reference, characterized in a Fe 2 O 3 form, the content of the 2 O 3 Fe ≤150ppm, preferably ≤100ppm, more preferably 80 ppm, more It is preferably ≤50 ppm. Based on the total moles of the glass composition as a basis, it is characterized in the form of elemental halogen, and the content of the halogen is 0.01-0.6 mol%, wherein the halogen is F and Cl, preferably 0.1-0.55 mol%. Specifically, for example, it may be 0.01 mol%, 0.02 mol%, 0.06 mol%, 0.09 mol%, 0.1 mol%, 0.15 mol%, 0.21 mol%, 0.3 mol%, 0.36 mol%, 0.44 mol%, 0.42 mol%, 0.48 mol%, 0.52 mol%, 0.55 mol%, 0.6 mol%, and any value in the range formed by any two of these values.

在本發明的玻璃用組合物中,不可避免的通過原材料固有雜質等途徑會引入少量的鹼金屬氧化物,這對高溫面板製程有不良影響,故應嚴格控制含鹼量。以該玻璃用組合物的總莫耳數為基準,以氧化物計,鹼金屬氧化物R2 O>0.05mol%,其中,R2 O為Li2 O、Na2 O、K2 O含量的總和。In the glass composition of the present invention, it is inevitable that a small amount of alkali metal oxide will be introduced through the inherent impurities of the raw materials, which has an adverse effect on the high-temperature panel process, so the alkali content should be strictly controlled. Based on the total moles of the composition for glass, based on the oxide, the alkali metal oxide R 2 O>0.05mol%, where R 2 O is the content of Li 2 O, Na 2 O, K 2 O sum.

在本發明的具體實施方式中,可以添加一定量的硫酸鹽,例如硫酸鈣、硫酸鍶等無機硫酸鹽作為消除氣態夾雜物的組分。但從紫外區光譜吸收等角度綜合考慮,為了得到紫外區高透過率,優選玻璃中以單質硫S形式表徵的殘留硫元素含量≤500ppm,進一步優選≤100ppm。In a specific embodiment of the present invention, a certain amount of sulfates, such as inorganic sulfates such as calcium sulfate and strontium sulfate, may be added as components for eliminating gaseous inclusions. However, from the perspective of spectral absorption in the ultraviolet region, in order to obtain high transmittance in the ultraviolet region, it is preferred that the residual sulfur element content in the form of elemental sulfur S in the glass be ≤500 ppm, and further preferably ≤100 ppm.

優選情況下,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足0<Z≤1,優選為0.5-0.9,進一步優選為0.55-0.85,更優選為0.6-0.8,其中,Z由下式計算得出:Z=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+ 3.77×SrO+26.65×BaO-7.82×ZnO);其中,SiO2 、Al2 O3 、MgO、CaO、SrO、BaO、ZnO各自代表該組分占所述玻璃用組合物中的莫耳百分比。Preferably, the content of each component in the glass composition satisfies 0<Z≤1 in terms of mole percent, preferably 0.5-0.9, further preferably 0.55-0.85, and more preferably 0.6-0.8, wherein , Z is calculated by the following formula: Z=-10.31+(16.04×SiO 2 +6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+ 3.77×SrO+26.65×BaO-7.82 ×ZnO); wherein, SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, ZnO each represent the mole percentage of the component in the glass composition.

優選情況下,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足0.1<Y≤0.67,優選為0.33-0.37,其中,Y值由下式計算得出:Y=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE2 O3 );其中,SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO、BaO、ZnO、RE2 O3 各自代表該組分占所述玻璃用組合物中的莫耳百分比。Preferably, in terms of mole percent, the content of each component in the glass composition satisfies 0.1<Y≤0.67, preferably 0.33-0.37, where the Y value is calculated by the following formula: Y=-10.31 +(16.04×SiO 2 +6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2 O 3 ); where , SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 each represent the mole percentage of the component in the glass composition.

優選情況下,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足R=0.05-0.48,優選為0.23-0.48,其中,R值由下式計算得出:R=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE2 O3 -39.6×(F+Cl));其中,SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO、BaO、ZnO、RE2 O3 、F、Cl各自代表該組分占所述玻璃用組合物中的莫耳百分比。Preferably, the content of each component in the glass composition satisfies R=0.05-0.48, preferably 0.23-0.48 in terms of mole percent, where R value is calculated by the following formula: R=-10.31 +(16.04×SiO 2 +6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2 O 3 -39.6× (F+Cl)); wherein, SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 , F, Cl each represent the component accounted for the glass Molar percentage in the composition.

優選情況下,以莫耳百分比計,(MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO +ZnO)≥0.5。Preferably, in terms of mole percent, (MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5.

優選情況下,以莫耳百分比計,(MgO+SrO)/(1-MO)≥0.6,其中,以該玻璃用組合物的總莫耳數為基準,MO代表玻璃用組合物中除了SiO2 、Al2 O3 、B2 O3 之外所有組分莫耳百分比的總和。Preferably, in terms of percent moles, (MgO+SrO)/(1-MO) ≥ 0.6, where, based on the total moles of the glass composition, MO stands for SiO 2 in the glass composition. , Al 2 O 3 , B 2 O 3 excluding the total molar percentage of all components.

在本發明的玻璃用組合物中,所述玻璃用組合物還含有澄清劑,以各組分的總莫耳數為基準,所述澄清劑的含量≤0.5mol%,所述化學澄清劑優選為硫酸鍶、硫酸鈣、硝酸鍶、氧化亞錫中的至少一種。In the composition for glass of the present invention, the composition for glass further contains a clarifying agent, the content of the clarifying agent is ≤0.5 mol% based on the total moles of each component, and the chemical clarifying agent is preferably It is at least one of strontium sulfate, calcium sulfate, strontium nitrate, and stannous oxide.

第二方面,本發明提供了一種製備鋁矽酸鹽玻璃的方法,包括將本發明所述的玻璃用組合物依次進行熔融處理、成型處理、退火處理和機械加工處理。In a second aspect, the present invention provides a method for preparing an aluminosilicate glass, which includes sequentially performing melting treatment, molding treatment, annealing treatment, and mechanical processing treatment on the glass composition of the present invention.

本發明的方法中,優選情況下,所述方法還包括在所述玻璃用組合物中添加氟化物和/或氯化物;進一步優選地,以所述混合料的總重為基準,所述氟化物的添加量為0.02-0.7wt%;更進一步優選地,以所述混合料的總重為基準,所述氯化物的添加量為0.02-0.7wt%。在本發明的具體實施方式中選用氟化鈣和氯化鍶的混合物,以所述混合料的總重為基準,所述氟化鈣和氯化鍶的混合物的含量為0.05-1wt%,其中氟化鈣和氯化鍶的重量比為1:1-5。其中氟化物例如氟化鈣為高溫助熔劑,有降低玻璃熔體黏度、高溫表面張力和高溫體積電阻率的作用,與硫酸鹽組合使用具有一定的澄清效果;另一方面,氟可以改善含鐵玻璃的透過率;氯化物,例如氯化鍶為高溫助熔劑,有降低玻璃熔體高溫表面張力和高溫體積電阻率的作用,與硫酸鹽組合使用具有一定的澄清效果;另一方面,氯化物可以和玻璃中的羥基OH基團發生反應,降低玻璃羥基含量,增強玻璃網路結構,從而達到提升玻璃熱穩定性的效果。然而,過多含量的氟化物和/或氯化物容易在玻璃中分相或析出,造成乳濁或析晶。In the method of the present invention, preferably, the method further includes adding fluoride and/or chloride to the glass composition; further preferably, based on the total weight of the mixture, the fluorine The added amount of the compound is 0.02-0.7wt%; more preferably, based on the total weight of the mixture, the added amount of the chloride is 0.02-0.7wt%. In the specific embodiment of the present invention, a mixture of calcium fluoride and strontium chloride is selected, and the content of the mixture of calcium fluoride and strontium chloride is 0.05-1 wt% based on the total weight of the mixture. The weight ratio of calcium fluoride and strontium chloride is 1:1-5. Among them, fluoride such as calcium fluoride is a high-temperature flux, which has the effect of reducing the viscosity of the glass melt, high-temperature surface tension and high-temperature volume resistivity. It has a certain clarifying effect when used in combination with sulfate; on the other hand, fluorine can improve the iron content The transmittance of glass; chloride, such as strontium chloride as a high-temperature flux, has the effect of reducing the high-temperature surface tension and high-temperature volume resistivity of the glass melt, and it has a certain clarifying effect when used in combination with sulfate; on the other hand, chloride It can react with the hydroxyl OH groups in the glass, reduce the hydroxyl content of the glass, and strengthen the glass network structure, so as to achieve the effect of improving the thermal stability of the glass. However, excessive amounts of fluoride and/or chloride are likely to separate or precipitate in the glass, causing opacification or crystallization.

本發明的方法中,優選情況下,所述混合料通過連續熔融池窯進行高溫熔解;進一步優選地,使用電加熱和/或燃氣加熱方式對混合料進行高溫熔解;更進一步優選地,電加熱提供能量比例占熔融玻璃全部能量比例的60%以上;所述電加熱是指通過多組成對的電極直接向混合料和玻璃液加熱,促使完成矽酸鹽反應、玻璃形成、澄清均化等過程,所述電極可以為氧化錫電極、氧化鉬電極和/或鉑金電極等。In the method of the present invention, preferably, the mixture is melted at a high temperature through a continuous melting pool kiln; further preferably, the mixture is melted at a high temperature using electric heating and/or gas heating; further preferably, the Heating provides more than 60% of the total energy of the molten glass; the electric heating refers to heating the mixture and the glass liquid directly through multiple pairs of electrodes to promote the completion of silicate reaction, glass formation, clarification and homogenization, etc. In the process, the electrode may be a tin oxide electrode, a molybdenum oxide electrode, and/or a platinum electrode.

本發明的方法中,對於玻璃用組合物的具體限定請參見前述相應內容描述,在此不再贅述。In the method of the present invention, for the specific limitation of the composition for glass, please refer to the corresponding description in the foregoing, which will not be repeated here.

本發明的方法中,優選情況下,熔融處理的條件包括:溫度低於1700℃,時間大於1h。本領域技術人員可以根據實際情況確定具體的熔融溫度和熔融時間,此為本領域技術人員所熟知,在此不再贅述。In the method of the present invention, preferably, the conditions of the melt treatment include: the temperature is lower than 1700°C and the time is longer than 1h. Those skilled in the art can determine the specific melting temperature and melting time according to the actual situation, which is well known to those skilled in the art and will not be repeated here.

本發明的方法中,優選情況下,退火處理的條件包括:溫度高於780℃,時間大於0.1h。本領域技術人員可以根據實際情況確定具體的退火溫度和退火時間,此為本領域技術人員所熟知,在此不再贅述。In the method of the present invention, preferably, the conditions of the annealing treatment include: the temperature is higher than 780°C and the time is longer than 0.1h. Those skilled in the art can determine the specific annealing temperature and annealing time according to the actual situation, which is well known to those skilled in the art and will not be repeated here.

本發明的方法中,對於機械加工處理沒有特別的限定,可以為本領域常見的各種機械加工方式,例如可以為將退火處理得到的產物進行切割、研磨、拋光等。In the method of the present invention, the machining process is not particularly limited, and may be various machining processes common in the art. For example, the product obtained by the annealing process may be cut, polished, and polished.

優選地,該方法還包括:對機械加工處理得到的產物進行二次熔融拉薄處理。Preferably, the method further includes: performing a secondary melting and thinning treatment on the product obtained by the mechanical processing treatment.

優選地,控制所述機械加工處理或者二次熔融拉薄處理的條件以製備厚度小於0.1mm的玻璃。Preferably, the conditions of the mechanical processing process or the secondary melt thinning process are controlled to prepare glass with a thickness of less than 0.1 mm.

第三方面,本發明提供了上述方法製備得到的鋁矽酸鹽玻璃。In a third aspect, the present invention provides aluminosilicate glass prepared by the above method.

本發明的鋁矽酸鹽玻璃,1600℃時玻璃熔體的電阻率≤100Ω•cm,優選為≤90Ω•cm,進一步優選為≤80Ω•cm。In the aluminosilicate glass of the present invention, the resistivity of the glass melt at 1600°C is ≤100 Ω·cm, preferably ≤90 Ω·cm, and more preferably ≤80 Ω·cm.

本發明的鋁矽酸鹽玻璃,1600℃時玻璃熔體的黏度≤300泊,優選≤250泊,進一步優選≤230泊。In the aluminosilicate glass of the present invention, the viscosity of the glass melt at 1600°C is ≤300 poise, preferably ≤250 poise, and more preferably ≤230 poise.

本發明的鋁矽酸鹽玻璃,玻璃熔體的液相線黏度ηL ≥20000泊,優選ηL ≥60000泊。Aluminosilicate glass according to the present invention, the liquidus viscosity of the glass melt η L ≥20000 poise, preferably η L ≥60000 poise.

本發明的鋁矽酸鹽玻璃,黏度為200泊時對應的溫度T200 ≤1630℃,優選T200 ≤1620℃。The aluminosilicate glass of the present invention has a viscosity T 200 ≤1630°C at a viscosity of 200 poises, preferably T 200 ≤1620°C.

本發明的鋁矽酸鹽玻璃,黏度為35000泊時對應的溫度T35000 ≤1240℃,優選≤1230℃。The aluminosilicate glass of the present invention has a temperature T 35000 ≤1240°C, preferably ≤1230°C at a viscosity of 35000 poises.

本發明的鋁矽酸鹽玻璃,黏度為1013 泊時對應的退火點≥770℃,優選≥780℃,進一步優選≥790℃。The aluminosilicate glass of the present invention has an annealing point ≥770°C, preferably ≥780°C, and more preferably ≥790°C at a viscosity of 10 13 poises.

本發明的鋁矽酸鹽玻璃,黏度104.5 泊時對應的溫度≤1250℃,優選≤1240℃,進一步優選≤1230℃;液相線溫度TL ≤1250℃,優選TL ≤1240℃,進一步優選TL ≤1200℃;黏度104.5 泊時對應的溫度與液相線溫度TL 的差值≥-20℃,優選差值≥0℃。The aluminosilicate glass of the present invention has a viscosity corresponding to a temperature of 10 4.5 Poise ≤ 1250 ℃, preferably ≤ 1240 ℃, further preferably ≤ 1230 ℃; liquidus temperature T L 1250 ℃, preferably T L ≤ 1240 ℃, further Preferably T L ≤1200°C; the difference between the temperature corresponding to the viscosity of 10 4.5 poise and the liquidus temperature T L is ≥-20°C, preferably the difference is ≥0°C.

在本發明的具體實施方式中可以添加一定量的硫酸鹽,例如硫酸鈣、硫酸鍶等無機硫酸鹽作為消除氣態夾雜物的組分。但從紫外區光譜吸收等角度綜合考慮,為了得到紫外區高透過率,優選玻璃中以單質硫S形式表徵的殘留硫元素含量≤500ppm,優選≤100ppm。In a specific embodiment of the present invention, a certain amount of sulfates, such as inorganic sulfates such as calcium sulfate and strontium sulfate, can be added as components for eliminating gaseous inclusions. However, from the perspective of spectral absorption in the ultraviolet region, in order to obtain high transmittance in the ultraviolet region, it is preferred that the residual sulfur element content in the form of elemental sulfur S in the glass be ≤500 ppm, preferably ≤100 ppm.

本發明的鋁矽酸鹽玻璃中羥基含量≤0.3/mm,優選≤0.26/mm。The content of hydroxyl groups in the aluminosilicate glass of the present invention is ≤0.3/mm, preferably ≤0.26/mm.

優選情況下,本發明的鋁矽酸鹽玻璃的密度<2.7g/cm3 ,優選<2.65g/cm3 ;50-350℃範圍內的熱膨脹係數<40×10-7 /℃,優選<39×10-7 /℃;楊氏模量≥83GPa,優選≥83.5GPa;比模數≥32GPa/(g×cm-3 ),優選≥33GPa/(g×cm-3 )。Preferably, the density of the aluminosilicate glass of the present invention is <2.7 g/cm 3 , preferably <2.65 g/cm 3 ; the coefficient of thermal expansion in the range of 50-350°C is <40×10 -7 /°C, preferably <39 ×10 -7 /°C; Young's modulus ≥83 GPa, preferably ≥83.5 GPa; specific modulus ≥32 GPa/(g×cm -3 ), preferably ≥33 GPa/(g×cm -3 ).

本發明的鋁矽酸鹽玻璃,在波長為308nm處的透過率≥73%,優選≥74%;在波長為550nm處的透過率優選≥92%。The aluminosilicate glass of the present invention has a transmittance ≥73% at a wavelength of 308 nm, preferably ≥74%; and a transmittance at a wavelength of 550 nm preferably ≥92%.

本發明的鋁矽酸鹽玻璃,在600℃/30min條件下的熱收縮<20ppm,優選<16ppm。The aluminosilicate glass of the present invention has a thermal shrinkage under the condition of 600°C/30min<20ppm, preferably<16ppm.

第四方面,提供了本發明所述的玻璃用組合物或鋁矽酸鹽玻璃在製備顯示器件和/或太陽能電池中的應用。In a fourth aspect, the application of the glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and/or solar cells is provided.

本發明的鋁矽酸鹽玻璃,具有熱穩定性高、紫外透過率高和機械穩定性高等優點。可用於製備顯示器件和/或太陽能電池,尤其適用於製備平板顯示產品的襯底玻璃基板材料和/或螢幕表面保護用玻璃膜層材料、柔性顯示產品的載板玻璃材料和/或表面封裝玻璃材料和/或螢幕表面保護用玻璃膜層材料、柔性太陽能電池的襯底玻璃基板材料、安全玻璃、防彈玻璃、智慧汽車玻璃、智慧交通顯示幕、智慧櫥窗和智慧卡票以及用於其他需要高熱穩定性、高紫外透過率和機械穩定性玻璃材料的應用領域。The aluminosilicate glass of the invention has the advantages of high thermal stability, high ultraviolet transmittance and high mechanical stability. It can be used to prepare display devices and/or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and/or glass film materials for screen surface protection, carrier glass materials for flexible display products and/or surface encapsulation glass Materials and/or glass film materials for screen surface protection, glass substrate materials for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic display screens, smart windows and smart card tickets, and other applications requiring high heat Application fields of glass materials with stability, high UV transmittance and mechanical stability.

實施例Examples

以下將通過實施例對本發明進行詳細描述。以下實施例中,如無特別說明,所用的各材料均可通過商購獲得,如無特別說明,所用的方法為本領域的常規方法。The present invention will be described in detail below through examples. In the following embodiments, unless otherwise specified, the materials used can be obtained commercially. Unless otherwise specified, the methods used are conventional methods in the art.

參照ASTM C-693測定玻璃密度,單位為g/cm3The glass density was measured with reference to ASTM C-693 in g/cm 3 .

參照ASTM E-228使用臥式膨脹儀測定50-350℃範圍內的玻璃熱膨脹係數,單位為10-7 /℃。Refer to ASTM E-228 and use a horizontal dilatometer to measure the thermal expansion coefficient of glass in the range of 50-350°C, in units of 10 -7 /°C.

參照ASTM C-623測定玻璃楊氏模量,單位為GPa。The Young's modulus of glass is measured with reference to ASTM C-623 in GPa.

參照ASTM C-965使用旋轉高溫黏度計測定玻璃高溫粘溫曲線,其中,1600℃對應的黏度即為η1600 ,單位為P;黏度為X泊對應的溫度TX ,單位為℃。Refer to ASTM C-965 to measure the high-temperature viscosity-temperature curve of glass using a rotating high-temperature viscometer. Among them, the viscosity corresponding to 1600℃ is η 1600 in units of P; the viscosity is X corresponding to the temperature T X in ℃.

參照ASTM C-829使用梯溫爐法測定玻璃液相線溫度TL ,單位為℃。According to ASTM C-829, the temperature of the liquidus of the glass, T L , is measured using a ladder furnace method in °C.

參照ASTM C-336使用退火點應變點測試儀測定玻璃退火點Ta 和應變點Tst ,單位為℃。Referring to ASTM C-336 T a measuring glass annealing point and the strain point T st annealing point using strain point tester, in units of deg.] C.

使用島津UV-2600型紫外可見分光光度計紫外-可見分光光度計測定玻璃透過率,玻璃樣品厚度為0.5mm,分別取308nm、550nm處透過率,單位為%。Shimadzu UV-2600 ultraviolet-visible spectrophotometer UV-visible spectrophotometer was used to determine the glass transmittance. The thickness of the glass sample was 0.5mm, and the transmittance at 308nm and 550nm was taken as the unit.

使用熱電iCAP 6300MFC型電感耦合等離子體發射光譜儀(ICP)測試玻璃中的鐵含量(以Fe2 O3 形式表徵)和氟、氯含量,單位為mol%或ppm;使用CS-9900型紅外碳硫分析儀測試玻璃中的硫含量,以S形式表徵,單位為ppm;參照專利申請CN201710796764.X中公開的玻璃熔體高溫電阻率的測試方法測定玻璃1600℃時熔體的電阻率,單位為Ω•cm;採用如下熱處理的方法(差值計算法)測定經過熱處理後的熱收縮率:將玻璃從25℃(測定初始長度,標記為L0 )以5℃/min的升溫速率升溫至600℃並在600℃保溫30min,然後以5℃/min的降溫速率降溫至25℃,玻璃長度發生一定量的收縮,再次測量其長度,標記為Lt ,則熱收縮率Yt 表示為:

Figure 02_image001
。Use the thermoelectric iCAP 6300MFC type inductively coupled plasma emission spectrometer (ICP) to test the iron content (characterized in the form of Fe 2 O 3 ) and the fluorine and chlorine content in the glass in mol% or ppm; use the CS-9900 infrared carbon and sulfur The analyzer measures the sulfur content in the glass, which is characterized by the form of S, and the unit is ppm; refer to the test method for the high temperature resistivity of the glass melt disclosed in the patent application CN201710796764.X to determine the resistivity of the melt at 1600 ℃, the unit is Ω • cm; use the following heat treatment method (difference calculation method) to determine the heat shrinkage rate after heat treatment: the glass is heated from 25°C (measured the initial length, marked as L 0 ) to 600°C at a heating rate of 5°C/min Incubate at 600°C for 30 minutes, and then reduce the temperature to 25°C at a cooling rate of 5°C/min. The glass length shrinks by a certain amount. Measure the length again and mark it as L t , then the thermal shrinkage rate Y t is expressed as:
Figure 02_image001
.

採用如下方法測定玻璃中羥基OH含量:使用PE公司SPECTRUM TWO型傅立葉紅外光譜儀測試波數範圍400-4000cm-1 區間的透過率,採用下式計算得到玻璃羥基含量β-OH,單位為/mm:β-OH=(1/D)*log10 (T1 /T2 ),其中,D:玻璃厚度(mm);T1 :在參照波長3846 cm-1 (2600nm)的透過率(%);T2 :在羥基吸收波長3600 cm-1 (2800nm)附近的最小透過率(%)。The following method was used to determine the content of hydroxyl OH in glass: the SPECTRUM TWO Fourier infrared spectrometer of PE company was used to test the transmittance in the range of wave number 400-4000cm -1 , and the content of β-OH in glass was calculated by the following formula, the unit is /mm: β-OH=(1/D)*log 10 (T 1 /T 2 ), where D: glass thickness (mm); T 1 : transmittance (%) at the reference wavelength of 3846 cm -1 (2600nm); T 2 : minimum transmittance (%) in the vicinity of the hydroxyl absorption wavelength of 3600 cm -1 (2800 nm).

實施例1-8Examples 1-8

按照表1所示稱量各組分,混勻,將混合料倒入高鋯磚坩堝(ZrO2 >85wt%)中,然後在1630℃電阻爐中加熱24小時,並使用鉑銠合金(80wt%Pt+20wt%Rh)攪拌器勻速緩慢攪拌。將熔製好的玻璃液澆注入不銹鋼模具內,成形為規定的塊狀玻璃製品,然後將玻璃製品在退火爐中退火2小時,關閉電源隨爐冷卻到25℃。將玻璃製品進行切割、研磨、拋光,然後用去離子水清洗乾淨並烘乾,製得厚度為0.5mm的玻璃成品。分別對各玻璃成品的各種性能進行測定,結果見表1。Weigh each component as shown in Table 1, mix well, pour the mixture into a high-zirconium brick crucible (ZrO 2 >85wt%), then heat in a resistance furnace at 1630℃ for 24 hours, and use platinum-rhodium alloy (80wt %Pt+20wt%Rh) Stirrer stir slowly at a uniform speed. The molten glass is poured into a stainless steel mold to form a specified block glass product, and then the glass product is annealed in an annealing furnace for 2 hours, and the power is turned off to cool to 25°C with the furnace. The glass products are cut, ground and polished, and then cleaned with deionized water and dried to obtain a glass product with a thickness of 0.5mm. The performance of each glass product was measured separately, and the results are shown in Table 1.

實施例9-15Examples 9-15

按照實施例1的方法,不同的是,混合料成分(對應玻璃組成)和得到的產品的性能測定結果見表2。According to the method of Example 1, the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 2.

對比例1-11Comparative Example 1-11

按照實施例1的方法,不同的是,混合料成分(對應玻璃組成)和得到的產品的性能測定結果見表3-4。According to the method of Example 1, the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 3-4.

將表1-2中的實施例與表3-4中的對比例數據比較可知,本發明方法對於獲得高紫外透過率、高應變點(高耐熱性)、高溫體積電阻率較低的問題有明顯效果,通過本發明提供的組成、限定配比、限定的Z/Y/R數值範圍及製造方法得到的鋁矽酸鹽玻璃具有較高的耐熱穩定性、具有較低的高溫體積電阻率、具有較高的紫外可見光譜透過率、具有較高的楊氏模量、具有較低的熔化溫度和液相線溫度,具有較低的表面張力,適合大型工業化製造,適合以部分或全部能量來源為電加熱的方式制得熔融玻璃液,適合在製備顯示器件和/或太陽能電池中的應用。尤其適用於製備平板顯示產品的襯底玻璃基板材料和/或螢幕表面保護用玻璃膜層材料、柔性顯示產品的載板玻璃材料和/或表面封裝玻璃材料和/或螢幕表面保護用玻璃膜層材料、柔性太陽能電池的襯底玻璃基板材料、安全玻璃、防彈玻璃、智慧汽車玻璃、智慧交通顯示幕、智慧櫥窗和智慧卡票以及用於其他需要高熱穩定性、高紫外透過率和機械穩定性玻璃材料的應用領域。Comparing the examples in Table 1-2 with the comparative data in Table 3-4, it can be seen that the method of the present invention has the problems of obtaining high ultraviolet transmittance, high strain point (high heat resistance), and low temperature resistivity at high temperature Obvious effect, the aluminosilicate glass obtained by the composition, limited ratio, limited Z/Y/R numerical range and manufacturing method provided by the present invention has higher heat resistance stability, lower high temperature volume resistivity, High UV-Vis spectral transmittance, high Young's modulus, low melting temperature and liquidus temperature, low surface tension, suitable for large-scale industrial manufacturing, suitable for some or all energy sources The molten glass liquid prepared by electric heating is suitable for the application in the preparation of display devices and/or solar cells. Particularly suitable for preparing substrate glass substrate materials for flat panel display products and/or glass film materials for screen surface protection, carrier glass materials for flexible display products and/or surface encapsulating glass materials and/or glass film layers for screen surface protection Materials, substrate materials for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic display screens, smart windows and smart card tickets, and other applications that require high thermal stability, high UV transmittance and mechanical stability Application areas of glass materials.

表1

Figure 108137263-A0304-0001
Table 1
Figure 108137263-A0304-0001

表2

Figure 108137263-A0304-0002
Table 2
Figure 108137263-A0304-0002

表3

Figure 108137263-A0304-0003
table 3
Figure 108137263-A0304-0003

表4

Figure 108137263-A0304-0004
Table 4
Figure 108137263-A0304-0004

以上詳細描述了本發明的優選實施方式,但是,本發明並不限於此。在本發明的技術構思範圍內,可以對本發明的技術方案進行多種簡單變型,包括各個技術特徵以任何其它的合適方式進行組合,這些簡單變型和組合同樣應當視為本發明所公開的內容,均屬於本發明的保護範圍。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited thereto. Within the scope of the technical idea of the present invention, a variety of simple modifications can be made to the technical solution of the present invention, including the combination of various technical features in any other suitable manner. These simple modifications and combinations should also be regarded as the contents disclosed in the present invention. It belongs to the protection scope of the present invention.

無。no.

Claims (15)

一種玻璃用組合物,包含: 以該玻璃用組合物的總莫耳數為基準,以氧化物計,該玻璃用組合物含有62-69mol%的SiO2 、11-15mol%的Al2 O3 、0-3mol%的B2 O3 、7-11mol%的MgO、2-8mol%的CaO、3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE2 O3 和小於0.05mol%的R2 O,其中,RE為稀土元素,R為鹼金屬。A composition for glass, comprising: based on the total moles of the composition for glass, based on oxides, the composition for glass contains 62-69 mol% SiO 2 and 11-15 mol% Al 2 O 3 , 0-3mol% B 2 O 3 , 7-11mol% MgO, 2-8mol% CaO, 3-8mol% SrO, 0-2mol% BaO, 0.01-2mol% ZnO, 0.02-0.65mol % RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal. 如請求項1所述的玻璃用組合物,其中,以該玻璃用組合物的總莫耳數為基準,以氧化物計,該玻璃用組合物含有65-68mol%的SiO2 、11.5-14.5mol%的Al2 O3 、0-1.5mol%的B2 O3 、7.5-9mol%的MgO、3-6mol%的CaO、4.5-6mol%的SrO、0.1-0.9mol%的BaO、0.05-1.9mol%的ZnO、0.1-0.46mol%的RE2 O3 和小於0.05mol%的R2 O。The composition for glass according to claim 1, wherein the glass composition contains 65-68 mol% of SiO 2 and 11.5-14.5, based on the total moles of the glass composition, based on oxides mol% Al 2 O 3 , 0-1.5mol% B 2 O 3 , 7.5-9mol% MgO, 3-6mol% CaO, 4.5-6mol% SrO, 0.1-0.9mol% BaO, 0.05- 1.9mol% ZnO, 0.1-0.46mol% RE 2 O 3 and less than 0.05mol% R 2 O. 如請求項1或2所述的玻璃用組合物,其中,以該玻璃用組合物的總莫耳數為基準,以Fe2 O3 形式表徵,該玻璃用組合物含有小於等於150ppm的Fe2 O3The composition for glass according to claim 1 or 2, wherein the composition for glass contains Fe 2 O 3 or less based on the total moles of the glass composition, and the composition for glass contains 150 ppm or less of Fe 2 O 3 . 如請求項1-3中任意一項所述的玻璃用組合物,其中,以該玻璃用組合物的總莫耳數為基準,以單質鹵素形式表徵,該玻璃用組合物含有0.01-0.6mol%的鹵素; 其中,所述鹵素為F和Cl。The composition for glass according to any one of claims 1 to 3, wherein the composition for glass contains 0.01 to 0.6 mol based on the total moles of the composition for glass and is characterized in the form of elemental halogen. % Halogen; Wherein, the halogen is F and Cl. 如請求項1-4中任意一項所述的玻璃用組合物,其中,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足0<Z≤1,其中,Z由下式計算得出: Z=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO);其中,SiO2 、Al2 O3 、MgO、CaO、SrO、BaO、ZnO各自代表該組分占所述玻璃用組合物中的莫耳百分比。The composition for glass according to any one of claims 1 to 4, wherein the content of each component in the composition for glass satisfies 0<Z≦1 in terms of mole percent, where Z is determined by the following The formula calculates: Z=-10.31+(16.04×SiO 2 +6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO) ; Among them, SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, ZnO each represents the mole percentage of the component in the glass composition. 如請求項1-4中任意一項所述的玻璃用組合物,其中,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足0.1<Y≤0.67,其中,Y值由下式計算得出: Y=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE2 O3 );其中,SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO、BaO、ZnO、RE2 O3 各自代表該組分占所述玻璃用組合物中的莫耳百分比。The composition for glass according to any one of claims 1 to 4, wherein the content of each component in the glass composition satisfies 0.1<Y≤0.67 in terms of mole percent, wherein the Y value is The following formula is calculated: Y=-10.31+(16.04×SiO 2 +6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO -102.7×RE 2 O 3 ); wherein, SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 each represent the composition of the glass composition Molar percentage in 如請求項1-4中任意一項所述的玻璃用組合物,其中,以莫耳百分比計,所述玻璃用組合物中各組分的含量滿足R=0.05-0.48,且R值由下式計算得出: R=-10.31+(16.04×SiO2 +6×Al2 O3 +3.29×B2 O3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE2 O3 -39.6×(F+Cl));其中,SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO、BaO、ZnO、RE2 O3 、F、Cl各自代表該組分占所述玻璃用組合物中的莫耳百分比。The composition for glass according to any one of claims 1 to 4, wherein the content of each component in the glass composition satisfies R=0.05-0.48 in terms of mole percent, and the R value is determined by The formula calculates: R=-10.31+(16.04×SiO 2 +6×Al 2 O 3 +3.29×B 2 O 3 -5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO- 102.7×RE 2 O 3 -39.6×(F+Cl)); SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 , F, Cl Represents the mole percentage of this component in the glass composition. 如請求項1-4中任意一項所述的玻璃用組合物,其中,以莫耳百分比計,(MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5; 優選地,(MgO+SrO)/(1-MO)≥0.6;其中,以該玻璃用組合物的總莫耳數為基準,MO代表玻璃用組合物中除了SiO2 、Al2 O3 、B2 O3 之外所有組分莫耳百分比的總和。The composition for glass according to any one of claims 1-4, wherein (MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5 in terms of mole percent; preferably , (MgO+SrO)/(1-MO)≥0.6; where, based on the total moles of the glass composition, MO stands for SiO 2 , Al 2 O 3 and B 2 O in the glass composition The sum of the mole percentages of all components except 3 . 如請求項1-8中任意一項所述的玻璃用組合物,其中,所述RE為釔和鑭系元素,所述R為Li、Na和K; 所述RE為Y、La、Nd和Lu中的一種或多種。The composition for glass according to any one of claims 1 to 8, wherein the RE is yttrium and lanthanide, and the R is Li, Na and K; The RE is one or more of Y, La, Nd, and Lu. 一種製備鋁矽酸鹽玻璃的方法,包括:將請求項1-9中任意一項所述的玻璃用組合物依次進行熔融處理、成型處理、退火處理和機械加工處理。A method for preparing aluminosilicate glass, comprising: sequentially performing the melting treatment, the forming treatment, the annealing treatment and the mechanical processing treatment on the glass composition according to any one of claims 1-9. 如請求項10所述的製備鋁矽酸鹽玻璃的方法,還包括在所述玻璃用組合物中添加氟化物和/或氯化物; 優選地,以所述混合料的總重為基準,所述氟化物的添加量為0.02-0.7wt%; 優選地,以所述混合料的總重為基準,所述氯化物的添加量為0.02-0.7wt%。The method for preparing aluminosilicate glass according to claim 10, further comprising adding fluoride and/or chloride to the glass composition; Preferably, based on the total weight of the mixture, the amount of the fluoride added is 0.02-0.7wt%; Preferably, based on the total weight of the mixture, the added amount of the chloride is 0.02-0.7wt%. 一種鋁矽酸鹽玻璃,是由如請求項10或11所述的製備鋁矽酸鹽玻璃的方法製備得到的。An aluminosilicate glass is prepared by the method for preparing aluminosilicate glass according to claim 10 or 11. 如請求項12所述的鋁矽酸鹽玻璃,其中,所述鋁矽酸鹽玻璃在1600℃時玻璃熔體的電阻率≤100Ω•cm; 優選地,1600℃時玻璃熔體的黏度≤300泊; 優選地,玻璃熔體的液相線黏度ηL ≥20000泊; 優選地,玻璃熔體的黏度為200泊時對應的溫度T200 ≤1630℃; 優選地,黏度為35000泊時對應的溫度T35000 ≤1240℃; 優選地,黏度為1013 泊時對應的退火點≥770℃; 優選地,黏度104.5 泊時對應的溫度≤1250℃;液相線溫度TL ≤1250℃;黏度104.5 泊時對應的溫度與液相線溫度TL 的差值≥-20℃; 優選地,所述鋁矽酸鹽玻璃中以單質硫S形式表徵的硫元素含量≤500ppm; 優選地,所述鋁矽酸鹽玻璃中羥基含量≤0.3/mm。The aluminosilicate glass according to claim 12, wherein the resistivity of the glass melt at 1600°C is ≤100Ω•cm; preferably, the viscosity of the glass melt at 1600°C is ≤300 Poise; Preferably, the liquidus viscosity of the glass melt η L ≥20000 poise; Preferably, the viscosity of the glass melt is 200 Poise corresponding temperature T 200 ≤1630 ℃; Preferably, the viscosity is 35000 Poise corresponding Temperature T 35000 ≤1240℃; Preferably, the corresponding annealing point ≥770℃ when the viscosity is 10 13 poises; Preferably, the corresponding temperature ≤1250℃ when the viscosity is 10 4.5 poises; Liquidus temperature T L ≤1250℃; Viscosity 10 The difference between the corresponding temperature at 4.5 poise and the liquidus temperature T L is ≥-20°C; preferably, the elemental sulfur content in the form of elemental sulfur S in the aluminosilicate glass is ≤500ppm; preferably, the The hydroxyl content in the aluminosilicate glass is ≤0.3/mm. 如請求項12或13所述的鋁矽酸鹽玻璃,其中,所述鋁矽酸鹽玻璃的密度<2.7g/cm3 ;50-350℃範圍內的熱膨脹係數<40×10-7 /℃;楊氏模量≥83GPa;比模數≥32GPa/(g×cm-3 ); 優選地,波長為308nm處的透過率≥73%;波長為550nm處的透過率≥92%; 優選地,在600℃/30min條件下的熱收縮<20ppm。The aluminosilicate glass according to claim 12 or 13, wherein the density of the aluminosilicate glass is <2.7 g/cm 3 ; the coefficient of thermal expansion in the range of 50-350°C is less than 40×10 -7 /°C ; Young's modulus ≥83GPa; specific modulus ≥32GPa/(g×cm -3 ); preferably, the transmittance at wavelength 308nm ≥73%; the transmittance at wavelength 550nm ≥92%; preferably, Thermal shrinkage under 600℃/30min<20ppm. 一種如請求項1-9中任意一項所述的玻璃用組合物或如請求項12-14中任意一項所述的鋁矽酸鹽玻璃在製備顯示器件和/或太陽能電池中的應用。An application of the glass composition according to any one of claims 1-9 or the aluminosilicate glass according to any one of claims 12-14 in the preparation of display devices and/or solar cells.
TW108137263A 2018-10-16 2019-10-16 Glass composition, aluminosilicate glass and preparation method and application thereof TWI738086B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811203506.7 2018-10-16
CN201811203506.7A CN109320070A (en) 2018-10-16 2018-10-16 Glass composition, alumina silicate glass and its preparation method and application

Publications (2)

Publication Number Publication Date
TW202017881A true TW202017881A (en) 2020-05-16
TWI738086B TWI738086B (en) 2021-09-01

Family

ID=65262230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137263A TWI738086B (en) 2018-10-16 2019-10-16 Glass composition, aluminosilicate glass and preparation method and application thereof

Country Status (3)

Country Link
CN (1) CN109320070A (en)
TW (1) TWI738086B (en)
WO (1) WO2020078375A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320070A (en) * 2018-10-16 2019-02-12 东旭科技集团有限公司 Glass composition, alumina silicate glass and its preparation method and application
CN113582539B (en) * 2021-08-30 2023-06-16 郑州大学 Aluminosilicate glass and application
CN114772928A (en) * 2022-04-13 2022-07-22 青岛融合装备科技有限公司 Alkali-free aluminosilicate substrate glass and preparation method and application thereof
US11773006B1 (en) 2022-11-10 2023-10-03 Corning Incorporated Glasses for high performance displays

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489411B2 (en) * 2014-03-19 2019-03-27 日本電気硝子株式会社 UV transmitting glass
JP2016074551A (en) * 2014-10-03 2016-05-12 旭硝子株式会社 Method for producing non-alkali glass
JP6955321B2 (en) * 2014-12-16 2021-10-27 日本電気硝子株式会社 Method for producing silicate glass, silicate glass and silica raw material for silicate glass
JP6315011B2 (en) * 2016-03-15 2018-04-25 旭硝子株式会社 Alkali-free glass substrate and method for producing alkali-free glass substrate
CN105859128B (en) * 2016-04-06 2018-11-27 芜湖东旭光电装备技术有限公司 A kind of glass composition, low surface tension alkali-free glass and its preparation method and application
JP7110981B2 (en) * 2016-08-05 2022-08-02 Agc株式会社 Glass substrates, semiconductor devices and display devices
WO2018084100A1 (en) * 2016-11-02 2018-05-11 旭硝子株式会社 Non-alkaline glass and method for producing same
CN107129142B (en) * 2017-04-18 2021-02-09 东旭光电科技股份有限公司 Alkali-free glass substrate and preparation method thereof
CN109320070A (en) * 2018-10-16 2019-02-12 东旭科技集团有限公司 Glass composition, alumina silicate glass and its preparation method and application

Also Published As

Publication number Publication date
TWI738086B (en) 2021-09-01
WO2020078375A1 (en) 2020-04-23
CN109320070A (en) 2019-02-12

Similar Documents

Publication Publication Date Title
TWI738086B (en) Glass composition, aluminosilicate glass and preparation method and application thereof
TWI712572B (en) Aluminosilicate glass composition, aluminosilicate glass and preparation method and application thereof
KR102282396B1 (en) Composition for glass, alkaline earth aluminum silicate glass, manufacturing method and application thereof
TWI712570B (en) E-alkali aluminosilicate glass and its preparation method and application
CN107382052B (en) Alkali-free silicate glass and preparation method and application thereof
CN111018345A (en) Composition for aluminosilicate glass for OLED panel, aluminosilicate glass and preparation method thereof
CN104326662A (en) Boron-free alkali-free aluminosilicate glass
JPWO2019177070A1 (en) Glass
CN109020195B (en) Aluminosilicate glass and preparation method and application thereof
CN110330226B (en) Alkali-free aluminoborosilicate glass and preparation method and application thereof
CN114772928A (en) Alkali-free aluminosilicate substrate glass and preparation method and application thereof
WO2014208523A1 (en) Alkali-free glass
CN117550799A (en) Composition for glass, alkali-free aluminosilicate glass, and preparation method and application thereof
CN117326800A (en) Composition for glass, alkali-free glass, and preparation method and application of alkali-free glass
CN117923790A (en) Boron-free low-thermal-shrinkage substrate glass