TW202016515A - Ambient light sensor - Google Patents

Ambient light sensor Download PDF

Info

Publication number
TW202016515A
TW202016515A TW107136536A TW107136536A TW202016515A TW 202016515 A TW202016515 A TW 202016515A TW 107136536 A TW107136536 A TW 107136536A TW 107136536 A TW107136536 A TW 107136536A TW 202016515 A TW202016515 A TW 202016515A
Authority
TW
Taiwan
Prior art keywords
circuit
ambient light
input terminal
voltage
light sensor
Prior art date
Application number
TW107136536A
Other languages
Chinese (zh)
Other versions
TWI664400B (en
Inventor
陳志寧
蘇持恒
Original Assignee
茂達電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂達電子股份有限公司 filed Critical 茂達電子股份有限公司
Priority to TW107136536A priority Critical patent/TWI664400B/en
Priority to CN201811272074.5A priority patent/CN111060200B/en
Priority to US16/273,708 priority patent/US10412813B1/en
Application granted granted Critical
Publication of TWI664400B publication Critical patent/TWI664400B/en
Publication of TW202016515A publication Critical patent/TW202016515A/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J1/46Electric circuits using a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

An ambient light sensor is provided, which includes a photoelectric element, an adjustable capacitor, an operational amplifier, a comparator, a pulse generator circuit and a accumulator circuit. The photoelectric element converts light energy into a photocurrent. The adjustable capacitor is connected between a first input terminal and an output terminal of the operational amplifier. A capacitance of the adjustable capacitor is adjusted according to the photocurrent value. The operational amplifier outputs an error amplification signal based on a voltage difference between an input voltage at its first input terminal and a reference voltage at its second input terminal. The comparator outputs a comparison signal when the input voltage is greater than the reference voltage. The pulse generator circuit outputs a pulse signal based on the comparison signal, the accumulator circuit accumulates the number of times that the input voltage is raised to a voltage greater than the reference voltage.

Description

環境光感測器 Ambient light sensor

本發明是有關於一種環境光感測器,且特別是有關於一種可在短時間內精確感測環境光強度的環境光感測器。 The invention relates to an ambient light sensor, and in particular to an ambient light sensor that can accurately sense the ambient light intensity in a short time.

消費性電子產品,例如手機,使用越來越多的感測器,以達到節省能源並且增進人機間的互動性。舉例來說,目前最新的手機使用到十種以上的感測器。因此工程師們積極尋求將感測器整合的方法,以期減少能源、空間與成本。 Consumer electronics products, such as mobile phones, use more and more sensors to save energy and improve the interaction between humans and machines. For example, more than ten sensors are used in the latest mobile phones. Therefore, engineers are actively seeking ways to integrate sensors in order to reduce energy, space and cost.

環境光感測器(ambient light sensor)是用來感測環境光源的變化,改變手機面板的使用亮度。當周遭亮度較暗時,面板亮度跟著變暗避免刺激眼睛,在戶外光源較強時,手機面板背光會跟著變亮增加可視度。環境光感測器根據環境光源改變面板使用亮度,也能達到節能效果,增加手機使用時間。近距感測器(proximity sensor)是一種非接觸的物體偵測感應器,在行動裝置方面的應用,例如手機的接聽防觸控功能,一旦使用者的頭部靠近聽筒,手機觸控功能會自動關閉,防止講電話時臉與面板接觸造成的功能誤觸。環境光感測器與近距感測器兩者因同樣都是感測光強度,進行作動的光學系統,因此被整合於一封裝結構,以共享空間、耗材並且合併電力供應的線路佈局。 The ambient light sensor (ambient light sensor) is used to sense changes in the ambient light source and change the brightness of the mobile phone panel. When the surrounding brightness is dark, the brightness of the panel is darkened to avoid eye irritation. When the outdoor light source is strong, the backlight of the mobile phone panel will be brightened to increase visibility. The ambient light sensor changes the brightness of the panel according to the ambient light source, and can also achieve energy saving effects and increase the use time of the mobile phone. Proximity sensor is a non-contact object detection sensor. It is used in mobile devices, such as the anti-touch function of the mobile phone. Once the user's head is close to the earpiece, the mobile phone's touch function will be Automatically shuts down to prevent accidental touch of functions caused by contact between face and panel when talking on the phone. Since both the ambient light sensor and the proximity sensor are also optical systems that sense light intensity and operate, they are integrated into a package structure to share space, consumables, and merge power supply circuit layouts.

為解決習知技術的缺失,本發明的目的在於提供一種環境光感測器,適用於電子裝置。電子裝置包含電容調控電路。環境光感測器包含第一光電元件、可變電容、運算放大器、比較器、脈波產生電路以及脈波累加器電路。第一光電元件具有第一正極端以及第一負極端。第一光電元件的第一正極端接地。第一光電元件配置以將照射通過第一光電元件的光能轉換為光電流。可變電容連接電容調控電路。電容調控電路配置以依據光電流值調整可變電容的電容值。可變電容接收光電流。運算放大器具有第一放大輸入端以及第二放大輸入端,分別連接第一光電元件的第一負極端以及參考電壓源。運算放大器的輸出端以及第一放大輸入端之間連接可變電容。運算放大器配置以基於第一放大輸入端的電壓與參考電壓源的電壓的差值以及運算放大器的增益值,以輸出誤差放大訊號。比較器具有第一比較輸入端以及第二比較輸入端,分別連接運算放大器的輸出端以及參考電壓源。比較器配置以比對誤差放大訊號與參考電壓源,以輸出比對訊號。脈波產生電路連接比較器的輸出端。脈波產生電路配置以依據比對訊號判斷比較器的第一比較輸入端的電壓大於參考電壓源的電壓時,輸出脈波訊號具有一波形的上升緣或下降緣對準第一比較輸入端的電壓波形的電壓從小於參考電壓源的電壓上升至等於參考電壓源的電壓的一瞬時點。脈波累加器電路連接脈波產生電路以及比較器的輸出端。脈波累加器電路基於比對訊號在第一比較輸入端的電壓從小於參考電壓源的電壓上升至大於參考電壓源的電壓時,實現計數。 In order to solve the lack of conventional technology, the object of the present invention is to provide an ambient light sensor suitable for electronic devices. The electronic device includes a capacitance control circuit. The ambient light sensor includes a first photoelectric element, a variable capacitor, an operational amplifier, a comparator, a pulse wave generating circuit, and a pulse wave accumulator circuit. The first photovoltaic element has a first positive terminal and a first negative terminal. The first positive terminal of the first photovoltaic element is grounded. The first photovoltaic element is configured to convert light energy irradiated through the first photovoltaic element into a photocurrent. The variable capacitor is connected to the capacitance control circuit. The capacitance control circuit is configured to adjust the capacitance value of the variable capacitor according to the photocurrent value. The variable capacitor receives photocurrent. The operational amplifier has a first amplification input terminal and a second amplification input terminal, which are respectively connected to the first negative terminal of the first photoelectric element and the reference voltage source. A variable capacitor is connected between the output terminal of the operational amplifier and the first amplification input terminal. The operational amplifier is configured to output an error amplification signal based on the difference between the voltage of the first amplification input terminal and the voltage of the reference voltage source and the gain value of the operational amplifier. The comparator has a first comparison input terminal and a second comparison input terminal, respectively connected to the output terminal of the operational amplifier and the reference voltage source. The comparator is configured to compare the error amplification signal and the reference voltage source to output the comparison signal. The pulse wave generating circuit is connected to the output of the comparator. The pulse wave generating circuit is configured to determine that the voltage of the first comparison input terminal of the comparator is greater than the voltage of the reference voltage source according to the comparison signal, and the output pulse signal has a rising or falling edge of the waveform aligned with the voltage waveform of the first comparison input terminal The voltage of rises from a voltage less than the reference voltage source to a momentary point equal to the voltage of the reference voltage source. The pulse wave accumulator circuit is connected to the pulse wave generating circuit and the output end of the comparator. The pulse wave accumulator circuit realizes counting when the voltage of the comparison signal at the first comparison input terminal rises from a voltage less than the reference voltage source to a voltage greater than the reference voltage source.

如上所述,相比於僅具少量光電元件的傳統環境光感測器在環境光源的光強度較小時需耗費相當長的感測時間,為了節省感測時間,進一步改良的傳統環境光感測器內需設置大量光電元件,這些大量光電元件佔用了電子裝置內的積體電路的容置空 間,使電子裝置的尺寸無法縮小。因此,本發明所提供環境光感測器,其透過增加可變電容以及脈波產生電路與其他電路元件的配置,可在僅設置少量(僅兩個)光電元件以節省電路元件配置成本和縮小佔用空間的條件下,在短時間內精準地感測環境光源的光強度,以供電子裝置可依據環境光感測器的感測結果,調整顯示螢幕至具有更符合期望的亮度。 As described above, compared to the conventional ambient light sensor with only a small number of photoelectric elements, it takes a relatively long sensing time when the light intensity of the ambient light source is small. In order to save the sensing time, the traditional ambient light sensor is further improved A large number of photoelectric elements are required in the detector, and these large amounts of photoelectric elements occupy the empty space of the integrated circuit in the electronic device Time, the size of the electronic device cannot be reduced. Therefore, the ambient light sensor provided by the present invention can increase the configuration of the variable capacitance and the pulse wave generating circuit and other circuit elements, so that only a small number (only two) of photoelectric elements can be provided to save the cost of circuit element arrangement and shrink Under the condition of occupying space, the light intensity of the ambient light source can be accurately sensed in a short time, so that the electronic device can adjust the display screen to have a brightness more in line with the desired result according to the sensing result of the ambient light sensor.

1‧‧‧電子裝置 1‧‧‧Electronic device

10‧‧‧環境光感測器 10‧‧‧Ambient light sensor

20‧‧‧電容調控電路 20‧‧‧Capacitance control circuit

30‧‧‧控制電路 30‧‧‧Control circuit

100‧‧‧運算放大器 100‧‧‧Operational amplifier

EAO1、EAO11、EAO2、EAO3‧‧‧誤差放大訊號 EAO1, EAO11, EAO2, EAO3 ‧‧‧ error amplification signal

200‧‧‧比較器 200‧‧‧Comparator

CMP1、CMP2、CMP3‧‧‧比對訊號 CMP1, CMP2, CMP3 ‧‧‧ comparison signal

300‧‧‧邏輯電路 300‧‧‧Logic circuit

SET‧‧‧設置端 SET‧‧‧Setting

RESET‧‧‧重置端 RESET‧‧‧Reset

Q、

Figure 107136536-A0101-12-0016-9
‧‧‧輸出端 Q,
Figure 107136536-A0101-12-0016-9
‧‧‧Output

LOG1、LOG2、LOG3‧‧‧邏輯訊號 LOG1, LOG2, LOG3 ‧‧‧ logic signals

400‧‧‧計數電路 400‧‧‧Counting circuit

410‧‧‧脈波累加器電路 410‧‧‧Pulse Accumulator Circuit

D‧‧‧輸入端 D‧‧‧Input

CK‧‧‧時脈端 CK‧‧‧Clock end

CON1、CON2、CON3‧‧‧次數 CON1, CON2, CON3‧‧‧ times

500‧‧‧脈波產生電路 500‧‧‧Pulse wave generating circuit

PG2、PG3‧‧‧脈波訊號 PG2, PG3 ‧‧‧ Pulse signal

600‧‧‧儲存電路 600‧‧‧storage circuit

610‧‧‧脈波儲存電路 610‧‧‧pulse wave storage circuit

REG1、REG2、REG3‧‧‧儲存訊號 REG1, REG2, REG3 ‧‧‧ store signal

CLKL1、CLKR1‧‧‧時脈訊號 CLKL1, CLKR1 ‧‧‧ clock signal

IT_EN‧‧‧致能訊號 IT_EN‧‧‧Enable signal

C1‧‧‧可變電容 C1‧‧‧Variable capacitance

S1、S2‧‧‧開關元件 S1, S2‧‧‧Switch element

M1‧‧‧電流鏡電路 M1‧‧‧ Current mirror circuit

T1、T2‧‧‧電晶體 T1, T2‧‧‧transistor

C2‧‧‧固定電容 C2‧‧‧Fixed capacitor

PD1、PD2‧‧‧光電元件 PD1, PD2

Iph‧‧‧光電流 Iph‧‧‧Photocurrent

Idark‧‧‧暗電流 Idark‧‧‧Dark current

SH‧‧‧遮光元件 SH‧‧‧Shading element

VREF‧‧‧參考電壓源 VREF‧‧‧Reference voltage source

IREF‧‧‧可變電流源 IREF‧‧‧Variable current source

IREF2‧‧‧定電流源 IREF2‧‧‧constant current source

Gain‧‧‧增益 Gain‧‧‧Gain

圖1是本發明第一實施例的應用環境光感測器的電子裝置的內部元件的方塊圖。 FIG. 1 is a block diagram of internal components of an electronic device using an ambient light sensor according to a first embodiment of the invention.

圖2是本發明第一實施例的環境光感測器應用於電子裝置的電路佈局圖。 FIG. 2 is a circuit layout diagram of an ambient light sensor applied to an electronic device according to a first embodiment of the invention.

圖3是本發明第一實施例的環境光感測器的運算放大器輸出的誤差放大訊號與接收的參考電壓訊號的波形圖。 3 is a waveform diagram of the error amplification signal output by the operational amplifier of the ambient light sensor and the received reference voltage signal according to the first embodiment of the present invention.

圖4是本發明第二實施例的環境光感測器應用於電子裝置的電路佈局圖。 4 is a circuit layout diagram of an ambient light sensor applied to an electronic device according to a second embodiment of the invention.

圖5是本發明第三實施例的環境光感測器應用於電子裝置的電路佈局圖。 FIG. 5 is a circuit layout diagram of an ambient light sensor applied to an electronic device according to a third embodiment of the invention.

圖6是本發明第三實施例的環境光感測器的運算放大器輸出的誤差放大訊號、比較器輸出的比對訊號、邏輯電路輸出的邏輯訊號、脈波累加器電路計數的次數以及輸入至脈波儲存電路的致能訊號的波形圖。 6 is an error amplification signal output by an operational amplifier of an ambient light sensor according to a third embodiment of the present invention, a comparison signal output by a comparator, a logic signal output by a logic circuit, the number of times the pulse accumulator circuit counts, and input to The waveform diagram of the enable signal of the pulse wave storage circuit.

圖7是本發明第三實施例的環境光感測器的光電元件的光電流對脈波累加器電路的計數次數的曲線圖。 7 is a graph of the photocurrent of the photoelectric element of the ambient light sensor of the third embodiment of the present invention versus the number of counts of the pulse wave accumulator circuit.

圖8是傳統環境光感測器的光電元件的光電流對計數電路的計數次數的曲線圖。 FIG. 8 is a graph of the photocurrent of the photoelectric element of the conventional ambient light sensor versus the count times of the counting circuit.

以下是通過特定的具體實施例來說明本發明所揭露有關本發明的實施方式,本領域技術人員可由本說明書所揭露的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所揭露的內容並非用以限制本發明的保護範圍。 The following are specific specific examples to illustrate the embodiments of the present invention disclosed by the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments. Various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to actual sizes, and are declared in advance. The following embodiments will further describe the related technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention.

應理解,雖然本文中可能使用術語第一、第二、第三等來描述各種元件或者訊號,但這些元件或者訊號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一訊號與另一訊號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 It should be understood that although the terms first, second, third, etc. may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are mainly used to distinguish one component from another component, or one signal from another signal. In addition, the term "or" as used herein may include any combination of any one or more of the associated listed items, depending on the actual situation.

為了解釋清楚,在一些情況下,本技術可被呈現為包括包含功能塊的獨立功能塊,其包含裝置、裝置元件、軟體中實施的方法中的步驟或路由,或硬體及軟體的組合。 For clarity of explanation, in some cases, the present technology may be presented as an independent functional block including functional blocks, which include devices, device elements, steps or routes in methods implemented in software, or a combination of hardware and software.

實施根據這些揭露方法的裝置可以包括硬體、韌體及/或軟體,且可以採取任何各種形體。這種形體的典型例子包括筆記型電腦、智慧型電話、小型個人電腦、個人數位助理等等。本文描述之功能也可以實施於週邊設備或內置卡。透過進一步舉例,這種功能也可以實施在不同晶片或在單個裝置上執行的不同程序的電路板。 The device implementing the methods according to these disclosures may include hardware, firmware, and/or software, and may take any of various shapes. Typical examples of this form include notebook computers, smart phones, small personal computers, personal digital assistants, and so on. The functions described in this article can also be implemented in peripheral devices or built-in cards. By way of further example, this function can also be implemented on different chips or on different circuit boards executed on a single device.

該指令、用於傳送這樣的指令的介質、用於執行其的計算資源或用於支持這樣的計算資源的其他結構,係為用於提供在這些揭露中所述的功能的手段。 The instructions, the medium for transmitting such instructions, the computing resources for executing them, or other structures for supporting such computing resources are means for providing the functions described in these disclosures.

[第一實施例] [First embodiment]

請參閱圖1,其是本發明第一實施例的應用環境光感測器的電 子裝置的內部元件的方塊圖。如圖1所示,本發明實施例的環境光感測器10可應用於電子裝置1例如行動裝置。環境光感測器10可對應電子裝置1的顯示螢幕的位置配置,以感測照射電子裝置1的顯示螢幕的環境光源的光強度,如室內和室外環境光源強度。值得注意的是,電子裝置1可透過控制電路30指示電容調控電路20調整環境光感測器10感測的時間和精確度。電子裝置1的控制電路30可依據環境光感測器10的感測結果,調整電子裝置1的顯示螢幕的亮度。 Please refer to FIG. 1, which is the electrical diagram of the ambient light sensor according to the first embodiment of the present invention. Block diagram of the internal components of the child device. As shown in FIG. 1, the ambient light sensor 10 of the embodiment of the present invention can be applied to an electronic device 1 such as a mobile device. The ambient light sensor 10 can be arranged corresponding to the position of the display screen of the electronic device 1 to sense the light intensity of the ambient light source illuminating the display screen of the electronic device 1, such as the intensity of indoor and outdoor ambient light sources. It is worth noting that the electronic device 1 can instruct the capacitance control circuit 20 through the control circuit 30 to adjust the time and accuracy of the ambient light sensor 10 sensing. The control circuit 30 of the electronic device 1 can adjust the brightness of the display screen of the electronic device 1 according to the sensing result of the ambient light sensor 10.

請一併參閱圖2,其是本發明第一實施例的環境光感測器應用於電子裝置的電路佈局圖。如圖2所示,本發明實施例的環境光感測器10應用於電子裝置1的電容調控電路20和控制電路30。環境光感測器10包含運算放大器100、比較器200、邏輯電路300、計數電路400、儲存電路600、光電元件PD1、PD2、可變電容C1、電流鏡電路M1以及開關元件S1、S2。 Please also refer to FIG. 2, which is a circuit layout diagram of an ambient light sensor applied to an electronic device according to a first embodiment of the present invention. As shown in FIG. 2, the ambient light sensor 10 of the embodiment of the present invention is applied to the capacitance control circuit 20 and the control circuit 30 of the electronic device 1. The ambient light sensor 10 includes an operational amplifier 100, a comparator 200, a logic circuit 300, a counting circuit 400, a storage circuit 600, photoelectric elements PD1, PD2, a variable capacitor C1, a current mirror circuit M1, and switching elements S1, S2.

光電元件PD1與光電元件PD2相互並聯。運算放大器100的反相輸入端連接光電元件PD1、PD2的負極端。光電元件PD1、PD2的正極端接地。運算放大器100的非反相輸入端連接參考電壓源VREF。開關元件S2與可變電容C1並聯。可變電容C1以及開關元件S2皆連接在運算放大器100的輸出端和反相輸入端之間。開關元件S1的第一端連接可變電流源IREF,其提供的電流為可變值,但本發明不以此為限,實施上亦可如圖4所示替換為定電流源IREF2;而開關元件S1的第二端連接開關元件S2,開關元件S1的控制端連接邏輯電路300的輸出端

Figure 107136536-A0101-12-0005-10
。 The photovoltaic element PD1 and the photovoltaic element PD2 are connected in parallel to each other. The inverting input terminal of the operational amplifier 100 is connected to the negative terminals of the photoelectric elements PD1 and PD2. The positive terminals of the photoelectric elements PD1 and PD2 are grounded. The non-inverting input terminal of the operational amplifier 100 is connected to the reference voltage source VREF. The switching element S2 is connected in parallel with the variable capacitor C1. The variable capacitor C1 and the switching element S2 are connected between the output terminal and the inverting input terminal of the operational amplifier 100. The first end of the switching element S1 is connected to a variable current source IREF, which provides a variable current, but the present invention is not limited to this, in practice, it can also be replaced by a constant current source IREF2 as shown in FIG. 4; The second end of the element S1 is connected to the switching element S2, and the control end of the switching element S1 is connected to the output end of the logic circuit 300
Figure 107136536-A0101-12-0005-10
.

可變電容C1可無線連接或有線連接電子裝置1的電容調控電路20,以透過電子裝置1的電容調控電路20調整可變電容C1的電容值。例如,在本實施例中,可變電容C1串聯電容調控電路20。實務上,亦可由人手直接接觸可變電容C1,以取代電容調控電路20調整可變電容C1的電容值。 The variable capacitor C1 can be wirelessly or wiredly connected to the capacitance control circuit 20 of the electronic device 1 to adjust the capacitance value of the variable capacitor C1 through the capacitance control circuit 20 of the electronic device 1. For example, in this embodiment, the variable capacitor C1 is connected in series with the capacitance control circuit 20. In practice, the variable capacitor C1 can also be directly touched by a human hand, instead of the capacitance control circuit 20 to adjust the capacitance value of the variable capacitor C1.

電流鏡電路M1可選擇性地被設置。電流鏡電路M1的輸入端可連接電壓源或電流源。電流鏡電路M1的兩輸出端分別連接光電元件PD1的負極端以及光電元件PD2的負極端。舉例來說,電流鏡電路M1包含PMOS電晶體T1以及PMOS電晶體T2。電晶體T1以及電晶體T2的源極端連接電流源或電壓源。電晶體T1的閘極端連接電晶體T2的閘極端以及電晶體T1的汲極端。電晶體T1的汲極端連接光電元件PD2的負極端,而電晶體T2的汲極端連接光電元件PD1的負極端。 The current mirror circuit M1 can be selectively provided. The input terminal of the current mirror circuit M1 can be connected to a voltage source or a current source. The two output terminals of the current mirror circuit M1 are respectively connected to the negative terminal of the photoelectric element PD1 and the negative terminal of the photoelectric element PD2. For example, the current mirror circuit M1 includes a PMOS transistor T1 and a PMOS transistor T2. The source terminals of the transistor T1 and the transistor T2 are connected to a current source or a voltage source. The gate terminal of the transistor T1 is connected to the gate terminal of the transistor T2 and the drain terminal of the transistor T1. The drain terminal of the transistor T1 is connected to the negative terminal of the photovoltaic element PD2, and the drain terminal of the transistor T2 is connected to the negative terminal of the photovoltaic element PD1.

比較器200的非反相輸入端連接運算放大器100的輸出端,而比較器200的反相輸入端連接參考電壓源VREF。比較器200的輸出端連接邏輯電路300的設置端SET。邏輯電路300的重置端RESET可連接額外的時脈電路以取得時脈訊號CLKL1。在本實施例中,邏輯電路300以及計數電路400分別為S-R與D型正反器,實務上亦可依需求替換其他邏輯電路元件,本發明不以此為限。 The non-inverting input terminal of the comparator 200 is connected to the output terminal of the operational amplifier 100, and the inverting input terminal of the comparator 200 is connected to the reference voltage source VREF. The output terminal of the comparator 200 is connected to the setting terminal SET of the logic circuit 300. The reset terminal RESET of the logic circuit 300 can be connected to an additional clock circuit to obtain the clock signal CLKL1. In this embodiment, the logic circuit 300 and the counting circuit 400 are S-R and D-type flip-flops, respectively. In practice, other logic circuit components can be replaced as required, and the invention is not limited to this.

邏輯電路300的輸出端Q連接計數電路400的輸入端D。計數電路400的時脈端CK可連接額外的時脈電路以取得時脈訊號CLKL1。計數電路400的輸出端連接儲存電路600。例如,儲存電路600可為暫存器或其他具有儲存功能的電路元件。儲存電路600的輸出端可連接電子裝置1的串列介面例如I2C介面,並透過此串列介面連接控制電路30。 The output terminal Q of the logic circuit 300 is connected to the input terminal D of the counting circuit 400. The clock terminal CK of the counting circuit 400 can be connected to an additional clock circuit to obtain the clock signal CLKL1. The output terminal of the counting circuit 400 is connected to the storage circuit 600. For example, the storage circuit 600 may be a register or other circuit element with a storage function. The output end of the storage circuit 600 can be connected to a serial interface of the electronic device 1, such as an I2C interface, and is connected to the control circuit 30 through the serial interface.

另外,控制電路30可接觸光電元件PD1、PD2的負極端或與光電元件PD1、PD2的負極端連皆的線路,以偵測取得光電元件PD1產生的光電流Iph以及光電元件PD2產生的暗電流Idark。替換地,由電容調控電路20偵測取得光電元件PD1產生的光電流Iph以及光電元件PD2產生的暗電流Idark。 In addition, the control circuit 30 can contact the negative ends of the photoelectric elements PD1 and PD2 or the lines connected to the negative ends of the photoelectric elements PD1 and PD2 to detect and obtain the photocurrent Iph generated by the photoelectric element PD1 and the dark current generated by the photoelectric element PD2 Idark. Alternatively, the photoelectric current Iph generated by the photoelectric element PD1 and the dark current Idark generated by the photoelectric element PD2 are detected and obtained by the capacitance control circuit 20.

值得注意的是,傳統環境光感測器為了在短時間內感測到周圍環境的較小光強度的光源,內部需設置一組大量例如64個光電 感測器。另外,由於光電感測器在沒有被環境光源照射的情況下會產生暗電流(又稱為漏電流),故傳統電子裝置內需另設置與用以感測環境光源的光電感測器相同數量的另一組例如64個光電感測器。因此,為了感測出正確的光強度,傳統電子裝置內共需設置非常大量例如共128個光電感測器,以透過其中一組光電感測器在被環境光源照射下產生光電流,以及透過另一組光電感測器在未被環境光源照射下產生暗電流,並計算光電流與暗電流的相減值,以取得對應環境光強度的實際電流值。因此,若傳統電子裝置需依據實際電流值精確地調整顯示螢幕的亮度,則需設置大量的光電感測器,占用電子裝置內的積體電路空間,導致電子裝置的尺寸無法縮小。 It is worth noting that, in order to sense the light source with a small light intensity of the surrounding environment in a short time, the traditional ambient light sensor needs to set a large number of internal, such as 64 photoelectric Sensor. In addition, since the photoelectric sensor will generate dark current (also called leakage current) without being irradiated by the ambient light source, the traditional electronic device needs to be provided with the same number of photoelectric sensors as the ambient light source. Another group is for example 64 photoelectric sensors. Therefore, in order to sense the correct light intensity, a large number of photoelectric sensors, such as a total of 128 photoelectric sensors, need to be provided in the traditional electronic device to generate a photocurrent through one set of photoelectric sensors when illuminated by the ambient light source Another set of photoelectric sensors produces dark current without being irradiated by the ambient light source, and calculates the subtraction value of the photocurrent and the dark current to obtain the actual current value corresponding to the ambient light intensity. Therefore, if the conventional electronic device needs to accurately adjust the brightness of the display screen according to the actual current value, a large number of photoelectric sensors need to be installed, occupying the integrated circuit space in the electronic device, resulting in the size of the electronic device being unable to be reduced.

相比之下,本發明實施例僅採用單一個光電元件PD1用以在環境光源照射通過光電元件PD1產生光電流Iph,以及對應設置單一個光電感測器PD2產生暗電流。如圖2所示,當環境光源例如太陽光或燈光照射光線通過光電元件PD1時,光電元件PD1將環境光源供應的光能轉換為光電流Iph。光電流Iph值與光強度成正比。光電流Iph接著流至可變電容C1,以對可變電容C1進行充電。 In contrast, in the embodiment of the present invention, only a single photoelectric element PD1 is used to generate a photocurrent Iph through the photoelectric element PD1 when the ambient light source is irradiated, and a single photoelectric sensor PD2 is correspondingly provided to generate a dark current. As shown in FIG. 2, when an ambient light source, such as sunlight or light, passes through the photoelectric element PD1, the photoelectric element PD1 converts the light energy supplied by the ambient light source into a photocurrent Iph. The photocurrent Iph value is proportional to the light intensity. The photocurrent Iph then flows to the variable capacitor C1 to charge the variable capacitor C1.

應理解,在可變電容C1的電容值固定的情況下,環境光源的光強度越小導致每次產生越小的光電流Iph時,運算放大器對可變電容C1的充電時間將越長,亦即使比較器的非反相輸入端的電壓上升至大於比較器的反相輸入端接收的參考電壓源VREF的電壓所需耗費的時間越長。相反地,環境光源的光強度越大,則可變電容C1的充電時間將越短。 It should be understood that when the capacitance value of the variable capacitor C1 is fixed, the smaller the light intensity of the ambient light source results in a smaller photocurrent Iph each time, the longer the operation amplifier will charge the variable capacitor C1, and Even if the voltage at the non-inverting input of the comparator rises above the voltage of the reference voltage source VREF received by the inverting input of the comparator, the longer it takes. Conversely, the greater the light intensity of the ambient light source, the shorter the charging time of the variable capacitor C1.

為使環境光感測器10在環境光源的光強度較小時仍具有良好的感測效率,甚至使在產生不同大小的光電流Iph值時具有相同的感測時間,電子裝置1可調整環境光感測器10的可變電容C1的電容值。具體地,電子裝置1可透過與可變電容C1串聯的電 容調控電路20內的電流偵測器,或實務上透過控制電路30內的電流偵測器或其他額外配置的電流偵測器,以偵測待通過可變電容C1的光電流Iph值。 In order to make the ambient light sensor 10 have good sensing efficiency when the light intensity of the ambient light source is small, and even to have the same sensing time when generating different magnitudes of photocurrent Iph, the electronic device 1 can adjust the environment The capacitance value of the variable capacitance C1 of the photo sensor 10. Specifically, the electronic device 1 can pass electricity connected in series with the variable capacitor C1 The current detector in the capacity control circuit 20, or in practice, the current detector in the control circuit 30 or other additional current detectors, to detect the photocurrent Iph to be passed through the variable capacitor C1.

電子裝置1的電容調控電路20可依據感測到的光電流Iph值,決定可變電容C1的電容值的調整幅度。當光電流Iph值小於電容調控電路20預先儲存的光電流預設值時,電容調控電路20可調低可變電容C1的電容值,以及電容調控電路20或其他控制電路元件可調低可變電流源IREF提供的電流值,以縮短透過此較小光電流Iph將可變電容C1的電壓從零值充電至目標電壓值的時間。 The capacitance control circuit 20 of the electronic device 1 can determine the adjustment range of the capacitance value of the variable capacitor C1 according to the sensed photocurrent Iph value. When the photocurrent Iph value is less than the preset photocurrent value pre-stored by the capacitance control circuit 20, the capacitance control circuit 20 can adjust the capacitance value of the variable capacitor C1 and the capacitance control circuit 20 or other control circuit elements can be adjusted The current value provided by the current source IREF reduces the time for charging the voltage of the variable capacitor C1 from the zero value to the target voltage value through the smaller photocurrent Iph.

相反地,當光電流Iph值大於電容調控電路20預先儲存的光電流預設值時,電容調控電路20可不調整或調高可變電容C1的電容值以及可變電流源IREF的電流,使透過此較大光電流Iph將可變電容C1的電壓從零值充電至目標電壓值的時間與上述透過與較小光電流Iph的充電時間基本上相同且此時間小於時間門檻值。 Conversely, when the photocurrent Iph value is greater than the photocurrent preset value pre-stored by the capacitance control circuit 20, the capacitance control circuit 20 may not adjust or increase the capacitance value of the variable capacitor C1 and the current of the variable current source IREF to pass through The time for the larger photocurrent Iph to charge the voltage of the variable capacitor C1 from the zero value to the target voltage value is substantially the same as the charging time for the above-mentioned transmission and the smaller photocurrent Iph and this time is less than the time threshold.

運算放大器100計算運算放大器100的反相輸入端的輸入電壓與運算放大器100的非反相輸入端接收的參考電壓源VREF的電壓的差值。運算放大器100將此差值與運算放大器100的增益值相乘,並依據此乘積值輸出對應的誤差放大訊號EAO1。 The operational amplifier 100 calculates the difference between the input voltage of the inverting input terminal of the operational amplifier 100 and the voltage of the reference voltage source VREF received by the non-inverting input terminal of the operational amplifier 100. The operational amplifier 100 multiplies this difference by the gain value of the operational amplifier 100, and outputs the corresponding error amplification signal EAO1 according to this product value.

比較器200的非反相輸入端接收到誤差放大訊號EAO1時,比較器200比對誤差放大訊號EAO1波形的電壓與比較器200的反相輸入端接收的參考電壓源VREF的電壓的差值,以輸出比對訊號CMP1。例如,當誤差放大訊號EAO1波形的電壓值大於參考電壓源VREF的電壓值時,比較器200輸出代表高位準邏輯1的比對訊號CMP1。相反地,當誤差放大訊號EAO1波形的電壓值小於參考電壓源VREF的電壓值時,比較器200輸出代表低位準邏輯0的比對訊號CMP1。 When the non-inverting input terminal of the comparator 200 receives the error amplification signal EAO1, the comparator 200 compares the difference between the voltage of the waveform of the error amplification signal EAO1 and the voltage of the reference voltage source VREF received by the inverting input terminal of the comparator 200, To output the comparison signal CMP1. For example, when the voltage value of the waveform of the error amplification signal EAO1 is greater than the voltage value of the reference voltage source VREF, the comparator 200 outputs the comparison signal CMP1 representing the high logic level 1. Conversely, when the voltage value of the waveform of the error amplification signal EAO1 is less than the voltage value of the reference voltage source VREF, the comparator 200 outputs the comparison signal CMP1 representing a low level logic zero.

當邏輯電路300的設置端SET接收到比對訊號CMP1具有達到參考準位例如邏輯準位為1的波形,以及邏輯電路300從比較器200接收到代表高位準邏輯1的比對訊號CMP1時,輸出高位準的邏輯訊號LOG1至計數電路400。 When the setting terminal SET of the logic circuit 300 receives the comparison signal CMP1 having a waveform that reaches the reference level, for example, the logic level is 1, and the logic circuit 300 receives the comparison signal CMP1 representing the high level logic 1 from the comparator 200, The high-level logic signal LOG1 is output to the counting circuit 400.

計數電路400接收到高位準的邏輯訊號LOG1時,計數電路400基於比對訊號CMP1計數比較器200的非反相輸入端的電壓從小於參考電壓源VREF的電壓上升至大於參考電壓源VREF的電壓的次數CON1。計數電路400計數時間長度取決於觸發計數電路400的時脈訊號CLKL1波形的週期的時間長度。計數電路400可輸出計數次數CON1至儲存電路600儲存。在計數完成後,可透過高位準的脈波訊號CLK1正緣觸發邏輯電路300進行重置。 When the counting circuit 400 receives the high-level logic signal LOG1, the counting circuit 400 counts the voltage of the non-inverting input terminal of the comparator 200 from the voltage less than the reference voltage source VREF to the voltage greater than the reference voltage source VREF based on the comparison signal CMP1 CON1. The counting time length of the counting circuit 400 depends on the time length of the cycle of the clock signal CLKL1 waveform that triggers the counting circuit 400. The counting circuit 400 may output the counting times CON1 to the storage circuit 600 for storage. After the counting is completed, the logic circuit 300 can be triggered to reset by the positive edge of the pulse signal CLK1.

儲存電路600可依據計數次數CON1,輸出對應的儲存訊號REG1至電子裝置1的控制電路30。電子裝置1的控制電路30可依據來自儲存電路600的儲存訊號REG1以及電容調控電路20調整可變電容C1的幅度,以判斷目前環境光源的光強度,並據以調整電子裝置1的顯示螢幕的亮度。 The storage circuit 600 can output the corresponding storage signal REG1 to the control circuit 30 of the electronic device 1 according to the count number CON1. The control circuit 30 of the electronic device 1 can adjust the amplitude of the variable capacitor C1 according to the storage signal REG1 from the storage circuit 600 and the capacitance control circuit 20 to determine the light intensity of the current ambient light source, and adjust the display screen of the electronic device 1 accordingly brightness.

為使電子裝置1更精確地調整顯示螢幕的螢幕亮度。環境光感測器10內另設置光電元件PD2,與光電元件PD1並聯連接。光電元件PD1、PD2的負極端連接運算放大器100的反相輸入端,而光電元件PD1、PD2的正極端接地。遮光元件SH可配置以遮蔽光電元件PD2以阻止環境光源照射通過光電元件PD2。 In order for the electronic device 1 to adjust the screen brightness of the display screen more accurately. The ambient light sensor 10 is additionally provided with a photoelectric element PD2, which is connected in parallel with the photoelectric element PD1. The negative terminals of the photoelectric elements PD1 and PD2 are connected to the inverting input terminal of the operational amplifier 100, and the positive terminals of the photoelectric elements PD1 and PD2 are grounded. The light-shielding element SH may be configured to shield the photovoltaic element PD2 to prevent the ambient light source from illuminating through the photovoltaic element PD2.

電子裝置1的控制電路30內的偵測元件可偵測環境光感測器10的光電元件PD1被環境光源照射而產生的光電流Iph,以及光電元件PD2沒有被任何光源照射下產生的暗電流Idark。在本實施例中,光電元件PD1與光電元件PD2具有相同的特性。光電元件PD1產生的光電流Iph為暗電流Idark與環境光能轉換的實際電流的總和。因此,電子裝置1的控制電路30將光電流Iph與暗電流Idark相減以取得實際電流,如此可依據對應環境光源轉換的實際 電流,更精確地調整電子裝置1的螢幕亮度。 The detection element in the control circuit 30 of the electronic device 1 can detect the photocurrent Iph generated by the photoelectric element PD1 of the ambient light sensor 10 being irradiated by the ambient light source, and the dark current generated by the photoelectric element PD2 without being illuminated by any light source Idark. In this embodiment, the photovoltaic element PD1 and the photovoltaic element PD2 have the same characteristics. The photocurrent Iph generated by the photoelectric element PD1 is the sum of the dark current Idark and the actual current converted by ambient light energy. Therefore, the control circuit 30 of the electronic device 1 subtracts the photocurrent Iph and the dark current Idark to obtain the actual current, which can be based on the actual conversion of the corresponding ambient light source Current to adjust the screen brightness of the electronic device 1 more accurately.

補充地說,當邏輯電路300的輸出端Q產生邏輯1代表正在進行計數作業時,邏輯電路300的輸出端

Figure 107136536-A0101-12-0010-12
則輸出邏輯0至開關元件S1,此時開關元件S1為導通狀態。相反地,當邏輯電路300的輸出端Q產生邏輯0而邏輯電路300的輸出端
Figure 107136536-A0101-12-0010-11
輸出邏輯1時,此時開關元件S1為截止狀態,計數電路400不進行計數作業,而是透過光電元件PD1產生的光電流Iph放電可變電容C1之前的初始調整值,或是說運算放大器對可變電容C1進行充電作業。邏輯電路300的輸出端
Figure 107136536-A0101-12-0010-13
輸出邏輯0至開關元件S1可控制開關元件S1運作,可變電流源IREF可供應電流導通開關元件S1、S2,使光電元件PD1產生的光電流Iph或其他電流皆不流過可變電容C1而是通過開關元件S2。 In addition, when the output terminal Q of the logic circuit 300 generates a logic 1 to indicate that a counting operation is in progress, the output terminal of the logic circuit 300
Figure 107136536-A0101-12-0010-12
Then, a logic 0 is output to the switching element S1, and the switching element S1 is in an on state at this time. Conversely, when the output Q of the logic circuit 300 produces a logic 0 and the output of the logic circuit 300
Figure 107136536-A0101-12-0010-11
When logic 1 is output, the switching element S1 is turned off, and the counting circuit 400 does not perform the counting operation, but discharges the initial adjustment value before the variable capacitor C1 through the photocurrent Iph generated by the photoelectric element PD1, or the operational amplifier pair The variable capacitor C1 performs charging operation. The output of the logic circuit 300
Figure 107136536-A0101-12-0010-13
Output logic 0 to the switching element S1 can control the operation of the switching element S1. The variable current source IREF can supply current to turn on the switching elements S1 and S2, so that the photocurrent Iph or other currents generated by the photoelectric element PD1 do not flow through the variable capacitor C1. It is through the switching element S2.

請一併參閱圖3,其是本發明第一實施例的環境光感測器的運算放大器輸出的誤差放大訊號與接收的參考電壓訊號的波形圖。 Please refer to FIG. 3 together, which is a waveform diagram of the error amplification signal output by the operational amplifier of the ambient light sensor according to the first embodiment of the present invention and the received reference voltage signal.

如圖3所示的上方波形代表增益Gain為1倍時,運算放大器100輸出的誤差放大訊號EAO1。而如圖3所示的下方波形則代表增益Gain為2倍時,運算放大器100輸出的誤差放大訊號EAO11。如圖3所示,誤差放大訊號EAO11為誤差放大訊號EAO1的兩倍,意指在相同的計數時間長度內,誤差放大訊號EAO11的波形數量,即計數次數(對應電容C1的充放電速度)為誤差放大訊號EAO1的兩倍。換言之,增益Gain大小取決於調整後的電容C1值,以及可變電流源IREF提供的經調整後的電流值。 The upper waveform shown in FIG. 3 represents the error amplification signal EAO1 output by the operational amplifier 100 when the gain Gain is doubled. The lower waveform shown in FIG. 3 represents the error amplification signal EAO11 output by the operational amplifier 100 when the gain Gain is doubled. As shown in FIG. 3, the error amplification signal EAO11 is twice that of the error amplification signal EAO1, which means that the number of waveforms of the error amplification signal EAO11 within the same counting time length, that is, the number of counts (corresponding to the charge and discharge speed of the capacitor C1) is The error amplified signal EAO1 is twice. In other words, the gain Gain depends on the adjusted value of the capacitor C1 and the adjusted current value provided by the variable current source IREF.

由於可變電容C1的電容值依據光電流Iph值調整,運算放大器100輸出的每一個誤差放大訊號EAO1、EAO11所具有的多個波形,除了初始調整的第一個波形外,其他多個波形基本上具有相同的振幅和週期,且每一波形的週期小於時間門檻值。 Since the capacitance value of the variable capacitor C1 is adjusted according to the photocurrent Iph value, each of the error amplification signals EAO1 and EAO11 output by the operational amplifier 100 has multiple waveforms except for the first waveform that is initially adjusted. It has the same amplitude and period, and the period of each waveform is less than the time threshold.

[第二實施例] [Second Embodiment]

請參閱圖4,其是本發明第二實施例的環境光感測器應用於電子裝置的電路佈局圖。如圖4所示,本發明實施例的環境光感測器10包含運算放大器100、比較器200、邏輯電路300、脈波累加器電路410、脈波產生電路500、脈波儲存電路610、光電元件PD1、PD2、固定電容C2、電流鏡電路M1以及開關元件S1、S2。 Please refer to FIG. 4, which is a circuit layout diagram of an ambient light sensor applied to an electronic device according to a second embodiment of the present invention. As shown in FIG. 4, the ambient light sensor 10 according to an embodiment of the present invention includes an operational amplifier 100, a comparator 200, a logic circuit 300, a pulse wave accumulator circuit 410, a pulse wave generation circuit 500, a pulse wave storage circuit 610, and a photoelectric Elements PD1, PD2, fixed capacitor C2, current mirror circuit M1, and switching elements S1, S2.

第二實施例與第一實施例差異在於,第一實施例的電容C1為可變電容;而第二實施例的電容C2為固定電容即不可變電容(實施上亦可替換為可變電容),並且環境光感測器10內另設有脈波產生電路500。脈波產生電路500連接開關元件S1的控制端、邏輯電路300的輸出端、脈波累加器電路410的輸入端。另外,第一實施例的邏輯電路300連接額外的時脈產生電路,以透過時脈訊號CLKL1正緣觸發邏輯電路300,而第二實施例的邏輯電路300的設置端SET連接比較器200的輸出端外,重置端RESET透過反或閘連接比較器200的輸出端。 The difference between the second embodiment and the first embodiment is that the capacitor C1 of the first embodiment is a variable capacitor; and the capacitor C2 of the second embodiment is a fixed capacitor or an invariable capacitor (which can also be replaced by a variable capacitor in implementation) And, the ambient light sensor 10 is additionally provided with a pulse wave generating circuit 500. The pulse wave generating circuit 500 is connected to the control terminal of the switching element S1, the output terminal of the logic circuit 300, and the input terminal of the pulse wave accumulator circuit 410. In addition, the logic circuit 300 of the first embodiment is connected to an additional clock generation circuit to trigger the logic circuit 300 through the positive edge of the clock signal CLKL1, and the setting terminal SET of the logic circuit 300 of the second embodiment is connected to the output of the comparator 200 Outside the terminal, the reset terminal RESET is connected to the output terminal of the comparator 200 through an inverse OR gate.

實施上,光電元件PD1產生的光電流Iph持續對固定電容C2放電。放電時間與環境光源的光強度成反比。運算放大器100將運算放大器100的反相輸入端的輸入電壓與參考電壓源VREF的電壓的差值與增益相乘後,輸出對應的誤差放大訊號EAO2。 In practice, the photocurrent Iph generated by the photoelectric element PD1 continues to discharge the fixed capacitor C2. The discharge time is inversely proportional to the light intensity of the ambient light source. The operational amplifier 100 multiplies the difference between the input voltage of the inverting input terminal of the operational amplifier 100 and the voltage of the reference voltage source VREF and the gain, and outputs the corresponding error amplification signal EAO2.

比較器200比對誤差放大訊號EAO2波形的電壓值大於參考電壓源VREF的電壓值時,比較器200輸出代表邏輯1的比對訊號CMP2至邏輯電路300的設置端SET以及反或閘的一輸入端。當邏輯電路300的設置端SET接收到代表邏輯1的比對訊號CMP2時,邏輯電路300透過輸出端Q輸出代表邏輯1的邏輯訊號LOG2至脈波累加器電路410的輸入端,脈波累加器電路410進行計數,以產生次數CON2儲存在脈波儲存電路610中,或更新脈波儲存電路610儲存的原次數CON2。 When the voltage value of the waveform of the EAO2 comparison error amplification signal of the comparator 200 is greater than the voltage value of the reference voltage source VREF, the comparator 200 outputs the comparison signal CMP2 representing logic 1 to the setting terminal SET of the logic circuit 300 and an input of an OR gate end. When the setting terminal SET of the logic circuit 300 receives the comparison signal CMP2 representing logic 1, the logic circuit 300 outputs the logic signal LOG2 representing logic 1 through the output terminal Q to the input terminal of the pulse wave accumulator circuit 410, the pulse wave accumulator The circuit 410 counts to generate the number of times CON2 to be stored in the pulse wave storage circuit 610, or to update the original number of times CON2 stored by the pulse wave storage circuit 610.

值得注意的是,邏輯電路300輸出邏輯訊號LOG2至脈波累加器電路410時,可輸出邏輯訊號LOG2至脈波產生電路500,以 在脈波累加器電路410完成計數之後,重置邏輯電路300。更具體地,當反或閘的一輸入端從比較器200接收到的比對訊號CMP2以及反或閘的另一輸入端從脈波產生電路500接收到的脈波訊號PG2的位準皆為邏輯0時,反或閘產生代表邏輯1的訊號至邏輯電路300的重置端RESET,以重置邏輯電路300。 It is worth noting that when the logic circuit 300 outputs the logic signal LOG2 to the pulse wave accumulator circuit 410, it can output the logic signal LOG2 to the pulse wave generation circuit 500 to After the pulse wave accumulator circuit 410 finishes counting, the logic circuit 300 is reset. More specifically, when the comparison signal CMP2 received from the comparator 200 at one input terminal of the NOR gate and the pulse signal PG2 received from the pulse wave generation circuit 500 at the other input terminal of the NOR gate are both When logic 0, the OR gate generates a signal representing logic 1 to the reset terminal RESET of the logic circuit 300 to reset the logic circuit 300.

上述比對訊號CMP2具有一波形的上升緣或下降緣對準誤差放大訊號EAO2波形的電壓從小於參考電壓源VREF的電壓上升至不小於參考電壓源VREF的電壓的瞬時點。在誤差放大訊號EAO2波形的瞬時點,脈波累加器電路410基於比對訊號CMP2,以計數比較器200的非反相輸入端的輸入電壓從小於參考電壓源VREF的電壓上升至大於參考電壓源VREF的電壓的次數CON2。 The comparison signal CMP2 has a rising or falling edge alignment error amplification signal EAO2 waveform whose voltage rises from a voltage less than the reference voltage source VREF to an instant that is not less than the voltage of the reference voltage source VREF. At the instant of the waveform of the error amplification signal EAO2, the pulse accumulator circuit 410 counts the input voltage of the non-inverting input terminal of the comparator 200 from a voltage less than the reference voltage source VREF to a voltage greater than the reference voltage source VREF based on the comparison signal CMP2 The number of voltages CON2.

也就是說,當誤差放大訊號EAO2波形的電壓從小於參考電壓源VREF的電壓上升至大於參考電壓源VREF的電壓時,脈波累加器電路410進行計數作業,如此可使脈波累加器電路410計數的次數CON2正確而沒有遺漏。據此,電子裝置的控制電路30可依據脈波累加器電路410計數的正確次數CON2,精確地調整電子裝置的螢幕亮度。 In other words, when the voltage of the waveform of the error amplification signal EAO2 rises from a voltage less than the reference voltage source VREF to a voltage greater than the reference voltage source VREF, the pulse wave accumulator circuit 410 performs a counting operation, so that the pulse wave accumulator circuit 410 The count count CON2 is correct without omission. Accordingly, the control circuit 30 of the electronic device can accurately adjust the screen brightness of the electronic device according to the correct number of counts CON2 counted by the pulse wave accumulator circuit 410.

另一方面,脈波產生電路500可依據邏輯電路300輸出的邏輯訊號LOG2的數值、計數次數和時間控制開關元件S1的操作。當脈波產生電路500輸出低位準的脈波訊號導通開關元件S1時,定電流源IREF2提供的電流通過開關元件S1流至如圖4所示的其他電路元件例如電容C2。 On the other hand, the pulse wave generating circuit 500 can control the operation of the switching element S1 according to the value of the logic signal LOG2 output by the logic circuit 300, the count times and the time. When the pulse wave generating circuit 500 outputs a low-level pulse signal to turn on the switching element S1, the current provided by the constant current source IREF2 flows through the switching element S1 to other circuit elements such as the capacitor C2 shown in FIG.

[第三實施例] [Third Embodiment]

請參閱圖5,其是本發明第三實施例的環境光感測器應用於電子裝置的電路佈局圖。如圖5所示,本發明實施例的環境光感測器10包含運算放大器100、比較器200、邏輯電路300、脈波累加器電路410、脈波產生電路500、脈波儲存電路610、光電元件PD1、 PD2、可變電容C1、電流鏡電路M1以及開關元件S1、S2。本實施例是將第二實施例的固定電容C2取代為可變電容C1。或者替換地,又另一實施例,將第一實施例的電路增設脈波產生電路500,配置方式參照第二實施例。因此,本實施例和又另一實施例可透過增加可變電容C1以及脈波產生電路500的配置,使得電子裝置1可隨著環境光源強度的變化,即時調整顯示螢幕至具有更符合期望的亮度。 Please refer to FIG. 5, which is a circuit layout diagram of an ambient light sensor applied to an electronic device according to a third embodiment of the present invention. As shown in FIG. 5, the ambient light sensor 10 according to an embodiment of the present invention includes an operational amplifier 100, a comparator 200, a logic circuit 300, a pulse wave accumulator circuit 410, a pulse wave generation circuit 500, a pulse wave storage circuit 610, and a photoelectric Components PD1 PD2, variable capacitor C1, current mirror circuit M1, and switching elements S1, S2. In this embodiment, the fixed capacitor C2 of the second embodiment is replaced with a variable capacitor C1. Or alternatively, in yet another embodiment, a pulse wave generating circuit 500 is added to the circuit of the first embodiment, and the configuration method refers to the second embodiment. Therefore, this embodiment and still another embodiment can increase the configuration of the variable capacitor C1 and the pulse wave generating circuit 500 so that the electronic device 1 can adjust the display screen in real time to have a more satisfactory brightness.

請一併參閱圖6,其是本發明第三實施例的環境光感測器的運算放大器輸出的誤差放大訊號、比較器輸出的比對訊號、邏輯電路輸出的邏輯訊號、脈波累加器電路計數的次數以及輸入至脈波儲存電路的致能訊號的波形圖。如圖6所示,由上至下依序為輸入至運算放大器100以及比較器200的參考電壓源VREF、運算放大器100輸出的誤差放大訊號EAO3、比較器200輸出的比對訊號CMP3、邏輯電路300輸出的邏輯訊號LOG3、脈波累加器電路410輸出的次數CON3、輸入至脈波儲存電路610的致能訊號IT_EN的波形。 Please refer to FIG. 6 together, which is the error amplification signal output by the operational amplifier of the ambient light sensor of the third embodiment of the present invention, the comparison signal output by the comparator, the logic signal output by the logic circuit, and the pulse accumulator circuit The number of counts and the waveform diagram of the enable signal input to the pulse wave storage circuit. As shown in FIG. 6, the reference voltage source VREF input to the operational amplifier 100 and the comparator 200, the error amplification signal EAO3 output from the operational amplifier 100, the comparison signal CMP3 output from the comparator 200, and the logic circuit are in order from top to bottom. The logic signal LOG3 output by 300, the number of times CON3 output by the pulse wave accumulator circuit 410, and the waveform of the enable signal IT_EN input to the pulse wave storage circuit 610.

當誤差放大訊號EAO3的電壓值上升至超過參考電壓源VREF的電壓值時,比較器200輸出高位準的比對訊號CMP3至邏輯電路300的設置端SET。如圖6所示,誤差放大訊號EAO3的每一個波形的電壓值從小於參考電壓源VREF的電壓上升至等於參考電壓源VREF的瞬時點,對準比對訊號CMP3波形從低邏輯準位0轉為高邏輯準位1之間的上升緣。 When the voltage value of the error amplification signal EAO3 rises to exceed the voltage value of the reference voltage source VREF, the comparator 200 outputs the high-level comparison signal CMP3 to the setting terminal SET of the logic circuit 300. As shown in FIG. 6, the voltage value of each waveform of the error amplification signal EAO3 rises from a voltage less than the reference voltage source VREF to an instantaneous point equal to the reference voltage source VREF, and the alignment signal CMP3 waveform transitions from the low logic level 0 It is the rising edge between high logic level 1.

當邏輯電路300的設置端SET接收到高位準的比對訊號CMP3時,邏輯電路300輸出高位準的邏輯訊號LOG3至脈波累加器電路410,觸發脈波累加器電路410計數比較器200的非反相輸入端的電壓從小於參考電壓源VREF的電壓上升至大於參考電壓源VREF的電壓的次數CON3,即計數比對訊號CMP3波形的數量。 When the setting terminal SET of the logic circuit 300 receives the high-level comparison signal CMP3, the logic circuit 300 outputs the high-level logic signal LOG3 to the pulse wave accumulator circuit 410, triggering the pulse wave accumulator circuit 410 to count the non-comparison of the comparator 200 The number of times the voltage at the inverting input terminal rises from a voltage less than the reference voltage source VREF to a voltage greater than the reference voltage source VREF, CON3, that is, the number of waveforms of the count comparison signal CMP3.

也就是說,誤差放大訊號EAO3的波形的上升緣隨著光電流Iph對電容C1放電而逐漸上升,直到電容C1的電壓上升至大於參考電壓源的電壓時,誤差放大訊號EAO3的波形的下降緣隨著可變電流源IREF提供的電流對電容C1的充電作業而逐漸下降,邏輯訊號LOG3隨著每次的充放電作業產生一個脈波,脈波累加器電路410計數在一段時間內的脈波的數量,即電容C1進行充放電作業的次數。 That is to say, the rising edge of the waveform of the error amplification signal EAO3 gradually rises as the photocurrent Iph discharges the capacitor C1 until the voltage of the capacitor C1 rises above the voltage of the reference voltage source, the falling edge of the waveform of the error amplification signal EAO3 As the current provided by the variable current source IREF gradually decreases the charging operation of the capacitor C1, the logic signal LOG3 generates a pulse wave with each charge and discharge operation, and the pulse wave accumulator circuit 410 counts the pulse wave over a period of time The number, that is, the number of times the capacitor C1 performs charge and discharge operations.

由於環境光感測器的電路元件可極快地傳輸訊號,使誤差放大訊號EAO3的每一個波形的電壓值從小於參考電壓源VREF的電壓上升至等於參考電壓源VREF時,脈波累加器電路410基本上進行計數作業。 Because the circuit elements of the ambient light sensor can transmit signals very quickly, the voltage value of each waveform of the error amplification signal EAO3 rises from a voltage less than the reference voltage source VREF to equal to the reference voltage source VREF, the pulse wave accumulator circuit 410 basically performs counting operations.

另外,邏輯電路300可輸出高位準的邏輯訊號LOG3至脈波產生電路500。脈波產生電路500接著輸出對應邏輯訊號LOG3的脈波訊號PG3至邏輯電路300的重置端RESET連接的反或閘,例如脈波訊號PG3具有與如圖6所示的邏輯訊號LOG3相同的脈波寬度,使誤差放大訊號EAO3的波形在此脈波寬度的時間內對電容C1進行放電。直到此脈波寬度的時間結束後,脈波產生電路500從高位準轉為輸出低位準的脈波訊號PG3至反或閘,同時如圖6所示的比對訊號CMP3亦為低位準時,觸發邏輯電路300進行重置作業。在重置後,邏輯電路300轉為輸出低位準的邏輯訊號LOG3。 In addition, the logic circuit 300 can output a high-level logic signal LOG3 to the pulse wave generating circuit 500. The pulse wave generating circuit 500 then outputs the pulse signal PG3 corresponding to the logic signal LOG3 to the NOR gate of the reset terminal RESET connection of the logic circuit 300, for example, the pulse signal PG3 has the same pulse as the logic signal LOG3 shown in FIG. 6 The wave width makes the waveform of the error amplification signal EAO3 discharge the capacitor C1 within the time of this pulse width. After the time of the pulse width ends, the pulse wave generating circuit 500 switches from the high level to output the low level pulse signal PG3 to the NOR gate, and the comparison signal CMP3 as shown in FIG. 6 is also at the low level, triggering The logic circuit 300 performs a reset operation. After the reset, the logic circuit 300 turns to output the low-level logic signal LOG3.

如上所述,誤差放大訊號EAO3已在脈波寬度時間內對C1放電到低位準。而當流出電容C1的光電流Iph逐漸增加,使電容C1的電壓再次往上爬升,如圖6所示的誤差放大訊號EAO3的下一個波形的電壓上升到超過VREF時,再次重覆上述的操作。 As mentioned above, the error amplification signal EAO3 has discharged C1 to a low level within the pulse width time. When the photocurrent Iph flowing out of the capacitor C1 gradually increases, the voltage of the capacitor C1 climbs upward again. When the voltage of the next waveform of the error amplification signal EAO3 shown in FIG. 6 rises above VREF, the above operation is repeated again. .

請一併參閱圖7和圖8,圖7是本發明第三實施例的環境光感測器的光電元件產生的光電流對脈波累加器電路的計數次數的曲線圖,圖8是傳統環境光感測器的光電元件的光電流對計數電路 的計數次數的曲線圖。如圖7和圖8所示,橫軸為光電流的電流值,縱軸為計數電路與脈波累加器電路計數的次數。 Please refer to FIG. 7 and FIG. 8 together. FIG. 7 is a graph of the photocurrent generated by the photoelectric element of the ambient light sensor according to the third embodiment of the present invention versus the number of counts of the pulse accumulator circuit. FIG. 8 is a conventional environment Photocurrent pair counting circuit of photoelectric element of photo sensor The graph of the number of counts. As shown in FIGS. 7 and 8, the horizontal axis is the current value of the photocurrent, and the vertical axis is the number of counts by the counting circuit and the pulse wave accumulator circuit.

顯然,如圖8所示的傳統環境光感測器的曲線則呈不規則。這意味著傳統環境光感測器的時脈產生電路產生固定的時脈訊號的波形,導致誤差放大訊號的輸出端每一個波形的電壓值從小於參考電壓源的電壓上升至等於參考電壓源的瞬時點,可能未如圖6所示的誤差放大訊號EAO3對準脈波訊號的上升緣,因而未觸發計數電路進行計數,使得計數電路計數的次數有缺漏,進而導致電子裝置的顯示螢幕的亮度調整不精準與非線性。 Obviously, the curve of the conventional ambient light sensor shown in FIG. 8 is irregular. This means that the clock generation circuit of the conventional ambient light sensor generates a fixed clock signal waveform, resulting in the voltage value of each waveform at the output of the error amplification signal rising from less than the reference voltage source to equal to the reference voltage source. At the instant, the error amplification signal EAO3 as shown in FIG. 6 may not be aligned with the rising edge of the pulse signal, so the counting circuit is not triggered to count, so that the number of counts by the counting circuit is missing, which may cause the brightness of the display screen of the electronic device Inaccurate and non-linear adjustment.

相比之下,如圖7所示的本發明實施例的環境光感測器的曲線呈線性,意味著可在比較器200的非反相輸入端的電壓從小於參考電壓源的電壓上升至大於參考電壓源VFEF的瞬時點,脈波產生電路500產生對應的脈波訊號PG3,觸發脈波累加器電路410計數比較器200的非反相輸入端的電壓從小於參考電壓源VREF的電壓上升至大於參考電壓源VREF的電壓的次數CON3。因此,本發明實施例可有效提升電子裝置的顯示螢幕的螢幕亮度調整的精確度。 In contrast, the curve of the ambient light sensor in the embodiment of the present invention shown in FIG. 7 is linear, which means that the voltage at the non-inverting input of the comparator 200 can rise from less than the reference voltage source to greater than At the instant of the reference voltage source VFEF, the pulse wave generating circuit 500 generates the corresponding pulse signal PG3, triggering the pulse wave accumulator circuit 410 to count the voltage of the non-inverting input terminal of the comparator 200 to rise from less than the voltage of the reference voltage source VREF to greater than The number CON3 of the voltage of the reference voltage source VREF. Therefore, the embodiments of the present invention can effectively improve the accuracy of adjusting the screen brightness of the display screen of the electronic device.

[實施例的有益效果] [Beneficial effect of embodiment]

本發明的有益效果在於,本發明所提供環境光感測器,其透過增加可變電容以及脈波產生電路與其他電路元件的配置,可在僅設置少量(僅兩個)光電元件以節省電路元件配置成本和縮小佔用空間的條件下,在短時間內精準地感測環境光源的光強度,以供電子裝置可依據環境光感測器的感測結果,調整顯示螢幕至具有更符合期望的亮度。 The beneficial effect of the present invention is that the ambient light sensor provided by the present invention can increase the configuration of the variable capacitance and the pulse wave generating circuit and other circuit elements, so that only a small number (only two) of photoelectric elements can be provided to save the circuit Under the conditions of component configuration cost and reduced space occupation, the light intensity of the ambient light source can be accurately sensed in a short time, so that the electronic device can adjust the display screen to have a more desirable result according to the sensing result of the ambient light sensor brightness.

最後須說明地是,於前述說明中,儘管已將本發明技術的概念以多個示例性實施例具體地示出與闡述,然而在此項技術的領域中具有通常知識者將理解,在不背離由以下申請專利範圍所界 定的本發明技術的概念之範圍的條件下,可對其作出形式及細節上的各種變化。 Finally, it should be noted that, in the foregoing description, although the technical concept of the present invention has been specifically illustrated and described in a number of exemplary embodiments, those with ordinary knowledge in the field of this technology will understand that Deviation is bounded by the scope of the following patent applications Given the scope of the technical concept of the present invention, various changes in form and details can be made.

10‧‧‧環境光感測器 10‧‧‧Ambient light sensor

100‧‧‧運算放大器 100‧‧‧Operational amplifier

EAO3‧‧‧誤差放大訊號 EAO3‧‧‧Error amplification signal

200‧‧‧比較器 200‧‧‧Comparator

CMP3‧‧‧比對訊號 CMP3‧‧‧comparison signal

300‧‧‧邏輯電路 300‧‧‧Logic circuit

SET‧‧‧設置端 SET‧‧‧Setting

RESET‧‧‧重置端 RESET‧‧‧Reset

Q、

Figure 107136536-A0101-11-0003-15
‧‧‧輸出端 Q,
Figure 107136536-A0101-11-0003-15
‧‧‧Output

LOG3‧‧‧邏輯訊號 LOG3‧‧‧Logic signal

410‧‧‧脈波累加器電路 410‧‧‧Pulse Accumulator Circuit

CON3‧‧‧次數 CON3‧‧‧ times

610‧‧‧脈波儲存電路 610‧‧‧pulse wave storage circuit

REG3‧‧‧儲存訊號 REG3‧‧‧save signal

500‧‧‧脈波產生電路 500‧‧‧Pulse wave generating circuit

PG3‧‧‧脈波訊號 PG3‧‧‧Pulse signal

PD1、PD2‧‧‧光電元件 PD1, PD2

Iph‧‧‧光電流 Iph‧‧‧Photocurrent

Idark‧‧‧暗電流 Idark‧‧‧Dark current

C1‧‧‧可變電容 C1‧‧‧Variable capacitance

M1‧‧‧電流鏡電路 M1‧‧‧ Current mirror circuit

T1、T2‧‧‧電晶體 T1, T2‧‧‧transistor

S1、S2‧‧‧開關元件 S1, S2‧‧‧Switch element

SH‧‧‧遮光元件 SH‧‧‧Shading element

VREF‧‧‧參考電壓源 VREF‧‧‧Reference voltage source

IREF‧‧‧可變電流源 IREF‧‧‧Variable current source

20‧‧‧電容調控電路 20‧‧‧Capacitance control circuit

30‧‧‧控制電路 30‧‧‧Control circuit

IT_EN‧‧‧致能訊號 IT_EN‧‧‧Enable signal

Claims (10)

一種環境光感測器,適用於一電子裝置,該電子裝置包含一電容調控電路,該環境光感測器包含:一第一光電元件,具有一第一正極端以及一第一負極端,該第一光電元件的該第一正極端接地,該第一光電元件配置以將照射通過該第一光電元件的光能轉換為一光電流;一可變電容,連接該電容調控電路,該電容調控電路配置以依據該光電流值調整該可變電容的一電容值,該可變電容接收該光電流;一運算放大器,具有一第一放大輸入端以及一第二放大輸入端,分別連接該第一光電元件的該第一負極端以及一參考電壓源,該運算放大器的輸出端以及該第一放大輸入端之間連接該可變電容,該運算放大器配置以基於該第一放大輸入端的電壓與該參考電壓源的電壓的差值以及該運算放大器的增益值,以輸出一誤差放大訊號;一比較器,具有一第一比較輸入端以及一第二比較輸入端,分別連接該運算放大器的輸出端以及該參考電壓源,該比較器配置以比對該誤差放大訊號與該參考電壓源,以輸出一比對訊號;一脈波產生電路,連接該比較器的輸出端,配置以依據該比對訊號判斷該比較器的該第一比較輸入端的電壓大於該參考電壓源的電壓時,輸出一脈波訊號具有一波形的上升緣或下降緣對準該第一比較輸入端的電壓波形的電壓從小於該參考電壓源的電壓上升至不小於該參考電壓源的電壓的一瞬時點;以及一脈波累加器電路,連接該脈波產生電路以及該比較器的輸出端,該脈波累加器電路配置以基於該比對訊號在該第一比較輸入端的電壓從小於該參考電壓源的電壓上升至大於該參 考電壓源的電壓時,實現計數。 An ambient light sensor is suitable for an electronic device. The electronic device includes a capacitance control circuit. The ambient light sensor includes: a first photoelectric element having a first positive terminal and a first negative terminal. The first positive terminal of the first photoelectric element is grounded, the first photoelectric element is configured to convert the light energy irradiated through the first photoelectric element into a photocurrent; a variable capacitor is connected to the capacitance control circuit, and the capacitance control The circuit is configured to adjust a capacitance value of the variable capacitor according to the photocurrent value, the variable capacitor receives the photocurrent; an operational amplifier has a first amplification input terminal and a second amplification input terminal, respectively connected to the first The first negative terminal and a reference voltage source of a photoelectric element, the variable capacitor is connected between the output terminal of the operational amplifier and the first amplification input terminal, and the operational amplifier is configured to be based on the voltage of the first amplification input terminal and The voltage difference of the reference voltage source and the gain value of the operational amplifier output an error amplification signal; a comparator has a first comparison input terminal and a second comparison input terminal, respectively connected to the output of the operational amplifier Terminal and the reference voltage source, the comparator is configured to compare the error amplification signal with the reference voltage source to output a comparison signal; a pulse wave generating circuit is connected to the output terminal of the comparator, and is configured according to the ratio When it is judged that the voltage of the first comparison input terminal of the comparator is greater than the voltage of the reference voltage source, a pulse signal with a rising or falling edge of the waveform aligned with the voltage waveform of the first comparison input terminal is output When the voltage of the reference voltage source rises to an instant no less than the voltage of the reference voltage source; and a pulse wave accumulator circuit connected to the pulse wave generating circuit and the output terminal of the comparator, the pulse wave accumulator circuit is configured Based on the comparison signal, the voltage at the first comparison input terminal rises from less than the voltage of the reference voltage source to greater than the parameter When the voltage of the voltage source is tested, the counting is realized. 如請求項1所述的環境光感測器,更包含一第二光電元件以及一遮光元件,該遮光元件配置以遮蔽該第二光電元件以阻止光照射通過該第二光電元件,該第二光電元件並聯連接該第一光電元件,該第二光電元件具有一第二正極端以及一第二負極端,分別接地以及連接該運算放大器的該第一放大輸入端,該第二光電元件輸出一暗電流。 The ambient light sensor according to claim 1, further comprising a second photoelectric element and a light blocking element, the light blocking element is configured to shield the second photoelectric element to prevent light from passing through the second photoelectric element, the second The photoelectric element is connected in parallel to the first photoelectric element, the second photoelectric element has a second positive terminal and a second negative terminal, respectively grounded and connected to the first amplification input terminal of the operational amplifier, and the second photoelectric element outputs a Dark current. 如請求項2所述的環境光感測器,其中該電子裝置更包含一控制電路,配置以取得該第一光電元件的該光電流值以及該第二光電元件的該暗電流值,並將該光電流值與該暗電流值相減以取得一環境光電流值,並依據該環境光電流值判斷光強度。 The ambient light sensor according to claim 2, wherein the electronic device further includes a control circuit configured to obtain the photocurrent value of the first optoelectronic element and the dark current value of the second optoelectronic element, and The photocurrent value is subtracted from the dark current value to obtain an ambient photocurrent value, and the light intensity is determined according to the ambient photocurrent value. 如請求項2所述的環境光感測器,更包含一電流鏡電路,該電流鏡電路的輸入端連接電壓源或電流源,該電流鏡電路的兩輸出端分別連接該第一光電元件的該第一負極端以及該第二光電元件的該第二負極端。 The ambient light sensor according to claim 2 further includes a current mirror circuit, an input terminal of the current mirror circuit is connected to a voltage source or a current source, and two output terminals of the current mirror circuit are respectively connected to the first photoelectric element The first negative terminal and the second negative terminal of the second photovoltaic element. 如請求項1所述的環境光感測器,更包含一邏輯電路,連接在該比較器以及該脈波累加器電路之間,該邏輯電路配置以接收該比較器輸出的該比對訊號,並將該比對訊號轉換為一邏輯訊號輸出至該脈波累加器電路。 The ambient light sensor according to claim 1, further comprising a logic circuit connected between the comparator and the pulse wave accumulator circuit, the logic circuit is configured to receive the comparison signal output by the comparator, And convert the comparison signal into a logic signal and output it to the pulse wave accumulator circuit. 如請求項5所述的環境光感測器,其中該邏輯電路為S-R型正反器。 The ambient light sensor according to claim 5, wherein the logic circuit is an S-R type flip-flop. 如請求項1所述的環境光感測器,更包含一脈波儲存電路,連接該脈波累加器電路,配置以儲存該脈波累加器電路計數該比較器的該第一比較輸入端的電壓波形的電壓從小於該參考電壓源的電壓上升至不小於該參考電壓源的電壓的次數。 The ambient light sensor according to claim 1, further comprising a pulse wave storage circuit connected to the pulse wave accumulator circuit, configured to store the pulse wave accumulator circuit to count the voltage of the first comparison input terminal of the comparator The number of times the voltage of the waveform rises from a voltage less than the reference voltage source to no less than the voltage of the reference voltage source. 如請求項1所述的環境光感測器,更包含一電流源,該電流源連接至與該運算放大器的該第一放大輸入端連接的該可變電容的一端,該電流源提供電流流過該可變電容,該電流源包含 一可變電流源、一定電流源或其組合,該電容調控電路配置以依據該光電流值調整該可變電流源的電流值。 The ambient light sensor according to claim 1, further comprising a current source connected to one end of the variable capacitor connected to the first amplification input end of the operational amplifier, the current source providing current flow Through the variable capacitance, the current source contains A variable current source, a certain current source, or a combination thereof, the capacitance control circuit is configured to adjust the current value of the variable current source according to the photocurrent value. 如請求項8所述的環境光感測器,更包含一第一開關元件,該第一開關元件的一第一端、一第二端和一控制端分別連接該電流源、該運算放大器的該第一放大輸入端以及該脈波產生電路。 The ambient light sensor according to claim 8, further comprising a first switching element, a first end, a second end and a control end of the first switching element are respectively connected to the current source and the operational amplifier The first amplifying input terminal and the pulse wave generating circuit. 如請求項1所述的環境光感測器,更包含一第二開關元件,該第二開關元件連接在該運算放大器的輸出端以及該運算放大器的該第一放大輸入端之間,該第二開關元件與該可變電容並聯。 The ambient light sensor according to claim 1, further comprising a second switching element connected between the output terminal of the operational amplifier and the first amplification input terminal of the operational amplifier, the first Two switching elements are connected in parallel with the variable capacitor.
TW107136536A 2018-10-17 2018-10-17 Ambient light sensor TWI664400B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107136536A TWI664400B (en) 2018-10-17 2018-10-17 Ambient light sensor
CN201811272074.5A CN111060200B (en) 2018-10-17 2018-10-29 Ambient light sensor
US16/273,708 US10412813B1 (en) 2018-10-17 2019-02-12 Ambient light sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136536A TWI664400B (en) 2018-10-17 2018-10-17 Ambient light sensor

Publications (2)

Publication Number Publication Date
TWI664400B TWI664400B (en) 2019-07-01
TW202016515A true TW202016515A (en) 2020-05-01

Family

ID=67845253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136536A TWI664400B (en) 2018-10-17 2018-10-17 Ambient light sensor

Country Status (3)

Country Link
US (1) US10412813B1 (en)
CN (1) CN111060200B (en)
TW (1) TWI664400B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557767B1 (en) * 2018-04-19 2023-01-11 ams AG Light-to-digital converter arrangement and method for light-to-digital conversion
US10984732B2 (en) 2019-09-24 2021-04-20 Apple Inc. Electronic devices having ambient light sensors with hold function
TWI687048B (en) * 2019-11-04 2020-03-01 茂達電子股份有限公司 Light sensor with high linearity
TWI699973B (en) * 2019-12-31 2020-07-21 茂達電子股份有限公司 Dynamically time gain controlling light sensing device
TWI740346B (en) * 2020-01-10 2021-09-21 茂達電子股份有限公司 System and method of detecting foreign object
DE102021102543A1 (en) * 2020-02-07 2021-08-12 Analog Devices International Unlimited Company Transconductance circuits and methods
US11272598B2 (en) * 2020-02-07 2022-03-08 Analog Devices International Unlimited Company Transconductance circuits and methods
TWI756823B (en) * 2020-09-14 2022-03-01 茂達電子股份有限公司 Light sensing device
TWI756830B (en) * 2020-09-18 2022-03-01 茂達電子股份有限公司 Dual-slope optical sensor
CN112558749A (en) * 2020-12-04 2021-03-26 惠州Tcl移动通信有限公司 Power supply control method and device, storage medium and mobile terminal
CN112799433B (en) * 2021-01-20 2022-08-12 深圳市达特文化科技股份有限公司 Character display system based on point light source
CN116224346A (en) * 2022-04-06 2023-06-06 义明科技股份有限公司 Proximity sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660755B2 (en) * 2007-11-02 2015-01-28 株式会社ジャパンディスプレイ Display device, display control method, and electronic device
CN101911315B (en) * 2007-12-25 2012-06-06 精工电子有限公司 Optical detection device, and image display device
CN101738544B (en) * 2008-11-17 2012-08-22 瑞鼎科技股份有限公司 Capacitance measurement circuit and capacitance measurement method
TWI473980B (en) * 2010-05-26 2015-02-21 Sitronix Technology Corp Light sensor module
TWI516032B (en) * 2012-06-14 2016-01-01 A photoelectric conversion device capable of eliminated dark current
EP2851661B1 (en) * 2013-09-24 2021-12-15 ams AG Optical sensor arrangement and method for light sensing
EP2863192B1 (en) * 2013-10-15 2018-12-05 ams AG Optical sensor arrangement and method for light sensing
CN104539857B (en) * 2014-12-26 2018-02-27 电子科技大学 Photoelectric current reading circuit and adaptive light intensity imaging array circuit and its control method
CN104568146B (en) * 2015-01-09 2017-05-31 杭州士兰微电子股份有限公司 Light intensity detection circuit and detection method
CN204346585U (en) * 2015-01-09 2015-05-20 杭州士兰微电子股份有限公司 Light intensity detection circuit
TWI544303B (en) * 2015-01-30 2016-08-01 財團法人工業技術研究院 System and method for controlling excess bias of single photon avalanche photo diode
US10062358B2 (en) * 2015-09-21 2018-08-28 Apple Inc. Electronic device with ambient light sensor analog-to-digital converter
US10368407B2 (en) * 2017-05-04 2019-07-30 Osram Gmbh Electronic converter and related lighting system

Also Published As

Publication number Publication date
US10412813B1 (en) 2019-09-10
CN111060200B (en) 2022-04-12
CN111060200A (en) 2020-04-24
TWI664400B (en) 2019-07-01

Similar Documents

Publication Publication Date Title
TWI664400B (en) Ambient light sensor
CN100587418C (en) Illuminance sensor and light control apparatus
TWI692112B (en) Light sensor having adaptively controlled gain
JP5323903B2 (en) Sensor circuit and electronic equipment
US8928629B2 (en) Self-adjusting photosensitive touch circuit and display device thereof
US20200355549A1 (en) Optical sensor arrangement and method for optical sensing
KR20150028143A (en) Ambient light sensor and electronic system having the same
US9310937B2 (en) Touch driving circuit, optical in cell touch panel and display device
CN113125004B (en) Optical sensing device capable of dynamically controlling time gain
JP2009175125A (en) Conversion of properties of light to frequency counting
KR101928581B1 (en) Photo-detection device
US11910100B2 (en) Detection circuit, device and method for detecting light source flicker, and photoelectric detection device
TWI512954B (en) Ambient light sensing with stacked photodiode
CN104062005A (en) Light receiving circuit
KR20180058162A (en) Event-based sensor, user device including the same, and operation method of the smae
JP2005241306A (en) Brightness sensor
CN220731150U (en) Sunlight backflow prevention circuit, head-up display assembly and vehicle
TWI687048B (en) Light sensor with high linearity
TW201434018A (en) Optical sensing device
TWI771929B (en) Counter having charge distribution circuit
US5883379A (en) Device and method capable of converting a position signal into a frequency signal using a photoelectric position sensitive detector
US9787116B2 (en) Charging circuit, control chip and control method thereof
CN204154388U (en) Novel illuminance sensor
WO2022174881A1 (en) Event sensor illuminance variation compensation
CN113140172A (en) Charge detection circuit, detection method thereof and display panel