TWI512954B - Ambient light sensing with stacked photodiode - Google Patents

Ambient light sensing with stacked photodiode Download PDF

Info

Publication number
TWI512954B
TWI512954B TW102109461A TW102109461A TWI512954B TW I512954 B TWI512954 B TW I512954B TW 102109461 A TW102109461 A TW 102109461A TW 102109461 A TW102109461 A TW 102109461A TW I512954 B TWI512954 B TW I512954B
Authority
TW
Taiwan
Prior art keywords
voltage
conductivity type
digital converter
photocurrent
well region
Prior art date
Application number
TW102109461A
Other languages
Chinese (zh)
Other versions
TW201438203A (en
Inventor
Seng-Yee Chua
John Julius De Leon Asuncion
Original Assignee
Lite On Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Singapore Pte Ltd filed Critical Lite On Singapore Pte Ltd
Priority to TW102109461A priority Critical patent/TWI512954B/en
Publication of TW201438203A publication Critical patent/TW201438203A/en
Application granted granted Critical
Publication of TWI512954B publication Critical patent/TWI512954B/en

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Description

堆疊光二極體結構及其光感測器Stacked photodiode structure and photosensor

本發明有關於一種環境光感測器,且特別是一種堆疊光二極體結構及其光感測器。The invention relates to an ambient light sensor, and in particular to a stacked light diode structure and a light sensor thereof.

環境光感測器(Ambient Light Sensor,ALS)提供近似於人眼對光的反應的輸出。為了延長行動電池的供電時間,並提供在室內或戶外光的情況下的最佳的觀看經驗,環境光感測器對於在顯示器的亮度管理上是有幫助的。An Ambient Light Sensor (ALS) provides an output that approximates the response of the human eye to light. In order to extend the power supply time of the mobile battery and provide an optimal viewing experience in the case of indoor or outdoor light, ambient light sensors are useful for managing the brightness of the display.

現存的環境光感測器以下述方法實現。第一個方式是,單一個光二極體可以被鍍膜,以模仿人眼對光的反應。第二個方式是,為了模仿人眼對於光的反應,常使用兩個二極體,一個二極體是響應於可見光與紅外光的光譜,另一個二極體是主要響應於紅外光的光譜。前述的第一個方式會因為附加的鍍膜製程,而造成較高的製造成本,並且偵測次光照度(sub-lux)的光情況也是相當具挑戰性。前述的第二個方式需占用兩個矽晶面的面積(因使用兩個二極體),且每一個光感測器的元件與元件之間的差異是高度依賴於光感測器所使用的兩個二極體彼此匹配的良好程度。Existing ambient light sensors are implemented in the following manner. The first way is that a single photodiode can be coated to mimic the human eye's response to light. The second way is to use two diodes in order to mimic the response of the human eye to light. One diode is in response to the spectrum of visible light and infrared light, and the other diode is mainly in response to infrared light. . The first approach described above results in higher manufacturing costs due to the additional coating process and the detection of sub-lux light conditions is also quite challenging. The second method described above requires occupying the area of two twin planes (due to the use of two diodes), and the difference between components and components of each photosensor is highly dependent on the photosensor. The goodness of the two diodes matching each other.

本發明提供一種堆疊光二極體結構及其光感測器。The invention provides a stacked photodiode structure and a photosensor thereof.

本發明實施例提供一種堆疊光二極體結構,其包括第一導電類型基板、第二導電類型井區與第一導電類型井區。第一導電類型基板具有第一表面與接地端。第二導電類型井區形成於第一導電類型基板內且鄰近第一表面。第一導電類型井區形成於第二導電類型井區內且鄰近第一表面。介於第一導電類型井區與第二導電類型井區之間的第一PN接面產生第一光電流,第一光電流主要響應於入射堆疊光二極體結構的第一表面的可見光頻譜。介於第二導電類型井區與第一導電類型基板的第二PN接面產生第二光電流,第二光電流主要響應於入射堆疊光二極體結構的第一表面的紅外光頻譜。第一光電流由第一導電類型井區的端點收集得到,第二光電流由第二導電類型井區的端點收集得到。Embodiments of the present invention provide a stacked photodiode structure including a first conductivity type substrate, a second conductivity type well region, and a first conductivity type well region. The first conductive type substrate has a first surface and a ground. The second conductivity type well region is formed within the first conductivity type substrate and adjacent to the first surface. The first conductivity type well region is formed in the second conductivity type well region and adjacent to the first surface. A first photocurrent is generated between the first conductivity type well region and the second conductivity type well region, the first photocurrent being primarily responsive to a visible light spectrum of the first surface of the incident stacked photodiode structure. A second photocurrent is generated between the second conductivity type well region and the second PN junction of the first conductivity type substrate, and the second photo current is primarily responsive to the infrared light spectrum of the first surface of the incident stacked photodiode structure. The first photocurrent is collected by the endpoints of the first conductivity type well region and the second photocurrent is collected by the endpoints of the second conductivity type well region.

本發明實施例提供一種光感測器,其包括堆疊光二極體結構、第一充電平衡類比/數位轉換器、第二充電平衡類比/數位轉換器與控制電路。堆疊光二極體結構包括第一導電類型基板、第二導電類型井區與第一導電類型井區。第一導電類型基板具有第一表面與接地端。第二導電類型井區形成於第一導電類型基板內且鄰近第一表面。第一導電類型井區形成於第二導電類型井區內且鄰近第一表面。介於第一導電類型井區與第二導電類型井區之間的第一PN接面產生第一光電流,第一光電流主要響應於入射堆疊光二極體結構的第一表面的可見光頻譜。介於第二導電類型井區與第一導電類型基板的第二PN接面產生第二光電流,第二光電流主要響應於入射堆疊光二極體結構的第一表面的紅外光頻譜。第一光電流由第一導電類型井區的端點提供,第二光電流由第二導電類型井區的端點產生。第一充電平衡類比/數位轉換器(ADC,analog-to-digital converter)具有第一電容,且耦接至第一導電類型井區之端點,接收第一光電流且轉換第一光電流為第一電壓。第一充電平衡類比/數位轉換器具有第一放電參考電流,且第一放電參考電流的電流方向與第一光電流的電流方向相反,以使第一電 容充電至原本預設的偏壓準位。第二充電平衡類比/數位轉換器(ADC)具有第二電容,且耦接至第二導電類型井區之端點。第二充電平衡類比/數位轉換器接收第一PN接面與第二PN接面的光電流的總和,且轉換光電流的總合為第二電壓。控制電路耦接該第一充電平衡類比/數位轉換器與第二充電平衡類比/數位轉換器。第二充電平衡類比/數位轉換器具有第二放電參考電流,且第二放電參考電流的電流方向與第二光電流的電流方向相反,以使第二電容放電至原本預設的偏壓準位。控制電路接收第一電壓以及第二電壓,並控制第一充電平衡類比/數位轉換器以響應於可見光頻譜的第一光電流來將第一電壓由所述偏壓去積分(de-integrate)至低於所述偏壓的第一臨界電壓,然後利用預設參考電流對第一電容充電直到第一電壓等於所述偏壓,且估計第一電容響應於第一光電流的充電時間。控制電路控制第二充電平衡類比/數位轉換器以第一PN接面與第二PN接面的光電流的總和來將第二電壓由所述偏壓積分(integrate)至高於所述偏壓的第二臨界電壓,然後利用預設參考電流對第二電容放電直到第二電壓等於所述偏壓,且估計第二電容響應於第二光電流的放電時間。Embodiments of the present invention provide a photo sensor including a stacked photodiode structure, a first charge balance analog/digital converter, a second charge balance analog/digital converter, and a control circuit. The stacked photodiode structure includes a first conductivity type substrate, a second conductivity type well region, and a first conductivity type well region. The first conductive type substrate has a first surface and a ground. The second conductivity type well region is formed within the first conductivity type substrate and adjacent to the first surface. The first conductivity type well region is formed in the second conductivity type well region and adjacent to the first surface. A first photocurrent is generated between the first conductivity type well region and the second conductivity type well region, the first photocurrent being primarily responsive to a visible light spectrum of the first surface of the incident stacked photodiode structure. A second photocurrent is generated between the second conductivity type well region and the second PN junction of the first conductivity type substrate, and the second photo current is primarily responsive to the infrared light spectrum of the first surface of the incident stacked photodiode structure. The first photocurrent is provided by the endpoint of the first conductivity type well region and the second photocurrent is generated by the endpoint of the second conductivity type well region. The first charge-to-digital converter (ADC) has a first capacitor and is coupled to an end of the first conductivity type well region, receives the first photocurrent, and converts the first photocurrent to The first voltage. The first charge balance analog/digital converter has a first discharge reference current, and the current direction of the first discharge reference current is opposite to the current direction of the first photo current to make the first electricity The capacity is charged to the originally preset bias level. The second charge balance analog/digital converter (ADC) has a second capacitance and is coupled to an end of the second conductivity type well region. The second charge balance analog/digital converter receives the sum of the photocurrents of the first PN junction and the second PN junction, and the sum of the converted photocurrents is the second voltage. The control circuit is coupled to the first charge balance analog/digital converter and the second charge balance analog/digital converter. The second charge balance analog/digital converter has a second discharge reference current, and the current direction of the second discharge reference current is opposite to the current direction of the second photo current to discharge the second capacitor to an originally preset bias level . The control circuit receives the first voltage and the second voltage and controls the first charge balance analog/digital converter to de-integrate the first voltage from the bias voltage in response to the first photocurrent of the visible light spectrum to Below the first threshold voltage of the bias voltage, the first capacitor is then charged with a preset reference current until the first voltage is equal to the bias voltage, and the first capacitor is estimated to be responsive to the charging time of the first photo current. a control circuit controlling the second charge balance analog/digital converter to integrate the second voltage from the bias voltage to be higher than the bias voltage by a sum of photocurrents of the first PN junction and the second PN junction The second threshold voltage is then discharged to the second capacitor using the preset reference current until the second voltage is equal to the bias voltage, and the second capacitor is estimated to be responsive to the discharge time of the second photo current.

綜上所述,本發明實施例所提供的堆疊光二極體結構及其光感測器可以實現環境光的偵測,而不須在光二極體表面使用鍍膜製程,可達到較少的成本與較好穩定度的效果。堆疊光二極體結構免除了鍍膜製程,且排除了傳統的光感測器所使用的兩個二極體之間元件與元件之間的差異(傳統的光感測器的兩個二極體彼此需要匹配)。堆疊光二極體結構在保持相同的表現效能的同時,可以減少光二極體的佔用面積。In summary, the stacked photodiode structure and the photosensor provided by the embodiments of the present invention can realize ambient light detection without using a coating process on the surface of the photodiode, which can achieve less cost and The effect of better stability. The stacked photodiode structure eliminates the coating process and eliminates the difference between components and components between the two diodes used in conventional photosensors (the two diodes of a conventional photosensor are mutually Need to match). The stacked photodiode structure can reduce the footprint of the photodiode while maintaining the same performance.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

1,21,31‧‧‧堆疊光二極體結構1,21,31‧‧‧Stacked photodiode structure

101‧‧‧第一導電類型基板101‧‧‧First Conductive Type Substrate

102‧‧‧第二導電類型井區102‧‧‧Second conductivity type well area

103‧‧‧第一導電類型井區103‧‧‧First Conductive Type Well Area

104‧‧‧第一表面104‧‧‧ first surface

101a,103a‧‧‧重摻雜第一導電類型區域101a, 103a‧‧‧ heavily doped first conductivity type region

102a‧‧‧重摻雜第二導電類型區域102a‧‧‧ heavily doped second conductivity type region

2,3‧‧‧光感測器2,3‧‧‧Light sensor

211,212,311,312,351,352‧‧‧光二極體211,212,311,312,351,352‧‧‧Light diode

I1‧‧‧第一光電流I1‧‧‧First photocurrent

I2‧‧‧第二光電流I2‧‧‧second photocurrent

Ig‧‧‧電流Ig‧‧‧current

22,32‧‧‧第一充電平衡類比/數位轉換器22,32‧‧‧First Charge Balance Analog/Digital Converter

23,33‧‧‧第二充電平衡類比/數位轉換器23,33‧‧‧Second charge balance analog/digital converter

245,345‧‧‧控制電路245,345‧‧‧Control circuit

221,321‧‧‧第一電容221,321‧‧‧first capacitor

231,331‧‧‧第二電容231,331‧‧‧second capacitor

222,232,322,332‧‧‧操作放大器222,232,322,332‧‧‧Operational amplifier

223,233,323,333‧‧‧電流源223,233,323,333‧‧‧current source

S1,S2‧‧‧開關S1, S2‧‧" switch

241,341‧‧‧第一多工器241,341‧‧‧First multiplexer

242,342‧‧‧第二多工器242,342‧‧‧Second multiplexer

243,343‧‧‧第一比較器243,343‧‧‧First comparator

244,344‧‧‧第二比較器244,344‧‧‧Second comparator

V1,V2,V3,V4‧‧‧電壓V1, V2, V3, V4‧‧‧ voltage

GND‧‧‧接地GND‧‧‧ Grounding

IC1,IC2‧‧‧電流IC1, IC2‧‧‧ current

35‧‧‧暗式堆疊光二極體結構35‧‧‧Dark stacked photodiode structure

X’‧‧‧暗式陽極端X’‧‧‧dark anode end

X‧‧‧陽極端X‧‧‧ anode end

Y’‧‧‧暗式陰極端Y’‧‧‧dark cathode end

Y‧‧‧陰極端Y‧‧‧ cathode end

圖1是本發明實施例提供的堆疊光二極體結構之剖面圖。1 is a cross-sectional view showing a stacked photodiode structure according to an embodiment of the present invention.

圖2是本發明實施例提供的堆疊光二極體結構的光響應度隨著光波長變化之曲線圖。2 is a graph showing changes in optical responsivity of a stacked photodiode structure as a function of wavelength of light according to an embodiment of the present invention.

圖3是本發明實施例提供的具有堆疊光二極體結構的光感測器之電路方塊圖。FIG. 3 is a circuit block diagram of a photosensor having a stacked photodiode structure according to an embodiment of the present invention.

圖4是本發明實施例提供的光感測器之時序圖。4 is a timing diagram of a photosensor provided by an embodiment of the present invention.

圖5是本發明另一實施例提供的具有堆疊光二極體結構的光感測器之電路方塊圖。FIG. 5 is a circuit block diagram of a photosensor having a stacked photodiode structure according to another embodiment of the present invention.

〔堆疊光二極體結構及其光感測器之實施例〕[Example of stacked photodiode structure and photosensor thereof]

圖1是本發明實施例提供的堆疊光二極體結構之剖面圖。堆疊光二極體結構1包括第一導電類型基板101、第二導電類型井區102與第一導電類型井區103。所述第一導電類型可以是P型(p-type)或N型(n-type),在此同時第二導電類型是N型或P型。例如:當第一導電類型是P型且第二導電類型是N型時,第一導電類型基板101是P型基板,第二導電類型井區102是N型井區(NWell),且第一導電類型井區103是P型井區(PWell)。同理,當第一導電類型是N型且第二導電類型是P型時,第一導電類型基板101是N型基板,第二導電類型井區102是P型井區,且第一導電類型井區103是N型井區。1 is a cross-sectional view showing a stacked photodiode structure according to an embodiment of the present invention. The stacked photodiode structure 1 includes a first conductive type substrate 101, a second conductive type well region 102, and a first conductive type well region 103. The first conductivity type may be a p-type or an n-type, while the second conductivity type is an N-type or a P-type. For example, when the first conductivity type is P-type and the second conductivity type is N-type, the first conductivity type substrate 101 is a P-type substrate, and the second conductivity type well region 102 is an N-type well region (NWell), and the first The conductivity type well region 103 is a P-type well region (PWell). Similarly, when the first conductivity type is N-type and the second conductivity type is P-type, the first conductivity type substrate 101 is an N-type substrate, the second conductivity type well region 102 is a P-type well region, and the first conductivity type Well area 103 is an N-type well area.

第一導電類型基板101具有第一表面104與接地端101a(圖1中繪示兩個接地端101a)。第二導電類型井區102形成於第一導電類型基板101內且鄰近第一表面104。第一PN接面J1介於第一導電類型井區103與第二導電類型井區102之間,且產生響應於入射堆疊光二極體結構1的第一表面104的可見光的自由電子。第一導電類型井區103形成於第二導電類型井區102內且鄰近第 一表面104。第二PN接面J2介於第二導電類型井區102和第一導電類型基板101之間,且產生響應於入射堆疊光二極體結構1的第一表面104的紅外光的自由電子。由第一PN接面J1產生的自由電洞可以在第一導電類型井區103的端點103a被收集(圖1中繪示兩個端點103a),藉此產生主要響應於可見光頻譜的第一光電流。依據光電效應而由第一PN接面J1與第二PN接面J2產生的自由電子可以在第二導電類型井區102的端點102a被收集,藉此產生響應於可見光頻譜與紅外光頻譜的第二光電流。The first conductive type substrate 101 has a first surface 104 and a ground end 101a (two ground ends 101a are illustrated in FIG. 1). The second conductivity type well region 102 is formed within the first conductivity type substrate 101 and adjacent to the first surface 104. The first PN junction J1 is interposed between the first conductivity type well region 103 and the second conductivity type well region 102 and generates free electrons in response to visible light incident on the first surface 104 of the stacked photodiode structure 1. The first conductivity type well region 103 is formed in the second conductivity type well region 102 and adjacent to the first A surface 104. The second PN junction J2 is interposed between the second conductivity type well region 102 and the first conductivity type substrate 101, and generates free electrons in response to infrared light incident on the first surface 104 of the stacked photodiode structure 1. The free holes generated by the first PN junction J1 may be collected at the end point 103a of the first conductivity type well region 103 (two endpoints 103a are depicted in FIG. 1), thereby generating a primary response to the visible spectrum. A photocurrent. Free electrons generated by the first PN junction J1 and the second PN junction J2 according to the photoelectric effect may be collected at the end point 102a of the second conductivity type well region 102, thereby generating a response to the visible spectrum and the infrared spectrum. Second photocurrent.

以第一導電類型是P型,第二導電類型是N型做為例子來說明。接地端101a可以包括至少一個形成在P型基板101的重摻雜P型區域,且所述重摻雜P型區域鄰近P型基板101的第一表面104。此時,N型井區102的端點102a是陰極端,其可以包括至少一個形成在N型井區102的重摻雜N型區域,且所述重摻雜N型區域鄰近P型基板101的第一表面104。P型井區103的端點103a是陽極端,其可以包括至少一個形成在P型井區103的重摻雜P型區域,且所述重摻雜P型區域鄰近P型基板101的第一表面104。然而,本發明並不因此限定,接地端101a、端點102a(陰極端)與端點103a(陽極端)可以是任何歐姆接觸端點(ohmic contact terminal),例如金屬端點。本領域具有通常知識者可以知道實現上述端點的方式,不再贅述。The first conductivity type is a P type, and the second conductivity type is an N type as an example. The ground terminal 101a may include at least one heavily doped P-type region formed on the P-type substrate 101, and the heavily doped P-type region is adjacent to the first surface 104 of the P-type substrate 101. At this time, the end point 102a of the N-type well region 102 is a cathode end, which may include at least one heavily doped N-type region formed in the N-type well region 102, and the heavily doped N-type region is adjacent to the P-type substrate 101. The first surface 104. The end point 103a of the P-type well region 103 is an anode end, which may include at least one heavily doped P-type region formed in the P-type well region 103, and the heavily doped P-type region is adjacent to the first of the P-type substrate 101 Surface 104. However, the invention is not so limited, the ground terminal 101a, the terminal end 102a (cathode end) and the end point 103a (anode end) may be any ohmic contact terminal, such as a metal end point. Those skilled in the art will be aware of the manner in which the above endpoints are implemented and will not be described again.

請參照圖2,圖2是本發明實施例提供的堆疊光二極體結構的光響應度隨著光波長變化之曲線圖。依據上述的堆疊光二極體結構,兩個二極體是垂直的堆疊以產生兩個光電流,其中一個光電流主要響應於可見光,另一個光電流響應於可見光與紅外光(尤其主要是紅外光),如圖2所示。圖2所示的負的光響應度是代表產生的光電流的極性方向相反(即電流方向相反)。Please refer to FIG. 2. FIG. 2 is a graph showing the optical responsivity of the stacked photodiode structure according to the wavelength of the light according to an embodiment of the present invention. According to the stacked photodiode structure described above, the two diodes are vertically stacked to generate two photocurrents, one photocurrent mainly responding to visible light and the other photocurrent being responsive to visible light and infrared light (especially mainly infrared light) ),as shown in picture 2. The negative optical responsivity shown in Figure 2 is representative of the opposite polarity of the generated photocurrent (i.e., the current direction is opposite).

請參照圖3,圖3是本發明實施例提供的具有堆疊光二極體結構的光感測器之電路方塊圖。所述電路整合於堆疊光二極體結 構,以將光電流轉換為電壓位準,然後轉換至數位編碼(digital code)。光感測器2包括堆疊光二極體結構21、第一充電平衡類比/數位轉換器(analog-to-digital converter,ADC)22、第二充電平衡類比/數位轉換器23與控制電路245。堆疊光二極體結構21可以是圖1的堆疊光二極體結構1,其中光二極體211代表第一導電類型基板101、第二PN接面J2與第二導電類型井區102的組合,光二極體212代表第二導電類型井區102、第一PN接面J1與第一導電類型井區103的組合。第一導電類型基板101的接地端101a是連接到接地GND。Please refer to FIG. 3. FIG. 3 is a circuit block diagram of a photosensor having a stacked photodiode structure according to an embodiment of the present invention. The circuit is integrated in a stacked photodiode junction To convert the photocurrent to a voltage level and then to a digital code. The photo sensor 2 includes a stacked photodiode structure 21, a first charge balance analog-to-digital converter (ADC) 22, a second charge balance analog/digital converter 23, and a control circuit 245. The stacked photodiode structure 21 may be the stacked photodiode structure 1 of FIG. 1 , wherein the photodiode 211 represents a combination of the first conductive type substrate 101, the second PN junction J2 and the second conductive type well region 102, and the photodiode Body 212 represents a combination of second conductivity type well region 102, first PN junction surface J1 and first conductivity type well region 103. The ground terminal 101a of the first conductive type substrate 101 is connected to the ground GND.

第一充電平衡類比/數位轉換器22具有第一電容221,且耦接第一導電類型井區103的陽極端103a(即光二極體212的陽極)。第二充電平衡類比/數位轉換器23具有第二電容231,且耦接第二導電類型井區102的陰極端102a(即光二極體211的陰極)。控制電路245耦接第一充電平衡類比/數位轉換器22與第二充電平衡類比/數位轉換器23。The first charge balance analog/digital converter 22 has a first capacitor 221 and is coupled to the anode terminal 103a of the first conductivity type well region 103 (ie, the anode of the photodiode 212). The second charge balance analog/digital converter 23 has a second capacitor 231 coupled to the cathode end 102a of the second conductivity type well region 102 (ie, the cathode of the photodiode 211). The control circuit 245 is coupled to the first charge balance analog/digital converter 22 and the second charge balance analog/digital converter 23.

第一充電平衡類比/數位轉換器22接收第一光電流I1,且轉換第一光電流I1為第一電壓V1。更詳細地說,第一光電流I1將第一電容221放電至第一電壓V1。第二充電平衡類比/數位轉換器23接收第二光電流I2,且轉換第二光電流23為第二電壓V2。更詳細地說,第二光電流I2將第二電容231充電至第二電壓。控制電路245接收第三電壓(第一比較信號)V3與第四電壓(第二比較信號)V4,且控制第一充電平衡類比/數位轉換器22來將第一電壓V1由偏壓VBIAS去積分(de-integrate)至低於所述偏壓VBIAS的第一臨界電壓(VBIAS-VTH),VTH是預設臨界電壓。然後,控制電路245利用電流源223將第一電容221積分(充電)直到第一電壓V1等於偏壓VBIAS,且估計第一電容221響應於第一光電流I1的充電時間T1。控制電路245且控制第二充電平衡類比/數位轉換器23來將第二電壓V2由偏壓VBIAS積分(integrate)至大於所述偏壓 VBIAS的第二臨界電壓(VBIAS+VTH),VTH是預設臨界電壓。然後,控制電路245利用電流源233將第二電容231放電直到第二電壓V2等於偏壓VBIAS,且估計第二電容231響應於第二光電流I2的充電時間T2。The first charge balance analog/digital converter 22 receives the first photo current I1 and converts the first photo current I1 to a first voltage V1. In more detail, the first photocurrent I1 discharges the first capacitor 221 to the first voltage V1. The second charge balance analog/digital converter 23 receives the second photo current I2 and converts the second photo current 23 to the second voltage V2. In more detail, the second photocurrent I2 charges the second capacitor 231 to the second voltage. The control circuit 245 receives the third voltage (first comparison signal) V3 and the fourth voltage (second comparison signal) V4, and controls the first charge balance analog/digital converter 22 to decouple the first voltage V1 from the bias voltage VBIAS. De-integrate to a first threshold voltage (VBIAS-VTH) below the bias voltage VBIAS, which is a predetermined threshold voltage. Then, the control circuit 245 integrates (charges) the first capacitor 221 with the current source 223 until the first voltage V1 is equal to the bias voltage VBIAS, and estimates that the first capacitor 221 is responsive to the charging time T1 of the first photo current I1. Control circuit 245 and controlling second charge balance analog/digital converter 23 to integrate second voltage V2 from bias voltage VBIAS to greater than said bias voltage The second threshold voltage of VBIAS (VBIAS+VTH), VTH is the preset threshold voltage. Then, the control circuit 245 discharges the second capacitor 231 with the current source 233 until the second voltage V2 is equal to the bias voltage VBIAS, and estimates that the second capacitor 231 is responsive to the charging time T2 of the second photo current I2.

第二光電流I2流入光二極體211和光二極體212,代表第二光電流I2響應於可見光和紅外光。第一光電流I1由光二極體212流出,代表第一光電流I1主要響應於可見光。第一光電流I1是第二光電流I2的一部分,第二光電流I2減去流入光二極體211的接地電流Ig之後可以得到第一光電流I1。The second photocurrent I2 flows into the photodiode 211 and the photodiode 212, representing that the second photocurrent I2 is responsive to visible light and infrared light. The first photocurrent I1 flows out of the photodiode 212, and represents that the first photocurrent I1 is mainly responsive to visible light. The first photocurrent I1 is a part of the second photocurrent I2, and the second photocurrent I2 is subtracted from the ground current Ig flowing into the photodiode 211 to obtain the first photocurrent I1.

具體地,第一充電平衡類比/數位轉換器22更包括操作放大器222、電流源223、第一多工器241與第一比較器243。操作放大器222具有反向輸入端、非反向輸入端與輸出端。非反向輸入端接收偏壓VBIAS。電流源223耦接操作放大器222的反向輸入端,且受控於控制電路245以提供參考電流IREF來對第一電容221充電。第一電容221耦接於操作放大器222的反向輸入端與輸出端之間,以建立回授路徑。第一多工器241選擇性地提供偏壓VBIAS或第一臨界電壓VBIAS-VTH以作為第一參考信號。第一比較器243比較第一電壓V1與第一參考信號並輸出第一比較信號V3。Specifically, the first charge balance analog/digital converter 22 further includes an operation amplifier 222, a current source 223, a first multiplexer 241, and a first comparator 243. The operational amplifier 222 has an inverting input, a non-inverting input, and an output. The non-inverting input receives the bias voltage VBIAS. The current source 223 is coupled to the inverting input of the operational amplifier 222 and is controlled by the control circuit 245 to provide a reference current IREF to charge the first capacitor 221. The first capacitor 221 is coupled between the inverting input terminal and the output terminal of the operational amplifier 222 to establish a feedback path. The first multiplexer 241 selectively provides a bias voltage VBIAS or a first threshold voltage VBIAS-VTH as a first reference signal. The first comparator 243 compares the first voltage V1 with the first reference signal and outputs the first comparison signal V3.

第二充電平衡類比/數位轉換器23更包括操作放大器232、電流源233、第二多工器242與第二比較器244。操作放大器232具有反向輸入端、非反向輸入端與輸出端。非反向輸入端接收偏壓VBIAS。電流源233耦接操作放大器232的反向輸入端,且受控於控制電路245以提供參考電流IREF來對第二電容231放電。第二電容231耦接於操作放大器232的反向輸入端與輸出端之間,以建立回授路徑。第二多工器242選擇性地提供偏壓VBIAS或第二臨界電壓VBIAS+VTH以作為第二參考信號。第二比較器244比較第二電壓V2與第二參考信號並輸出第二比較信號V4。The second charge balance analog/digital converter 23 further includes an operational amplifier 232, a current source 233, a second multiplexer 242, and a second comparator 244. The operational amplifier 232 has an inverting input, a non-inverting input, and an output. The non-inverting input receives the bias voltage VBIAS. The current source 233 is coupled to the inverting input of the operational amplifier 232 and is controlled by the control circuit 245 to provide a reference current IREF to discharge the second capacitor 231. The second capacitor 231 is coupled between the inverting input terminal and the output terminal of the operational amplifier 232 to establish a feedback path. The second multiplexer 242 selectively provides a bias voltage VBIAS or a second threshold voltage VBIAS+VTH as a second reference signal. The second comparator 244 compares the second voltage V2 with the second reference signal and outputs a second comparison signal V4.

控制電路245可以是數位控制單元。控制電路245接收第一 比較信號V3與第二比較信號V4,且控制第一多工器241與第二多工器242,且控制第一充電平衡類比/數位轉換器22與第二充電平衡類比/數位轉換器23的積分/去積分時間。Control circuit 245 can be a digital control unit. Control circuit 245 receives the first Comparing the signal V3 with the second comparison signal V4, and controlling the first multiplexer 241 and the second multiplexer 242, and controlling the first charge balance analog/digital converter 22 and the second charge balance analog/digital converter 23 Points/de-integration time.

電流源223的參考電流IREF代表最大的可測得的第二電流I2,電流源223的參考電流IREF的極性方向與(在操作放大器222的反向輸入端的)第一光電流I1相反。參考電流IREF可以是多種電流位準,且可以被使用者程式化,藉此為調整光感測器的靈敏度準位的一部分。電流源233的參考電流IREF代表最大可能的第二光電流I2,電流源233的參考電流IREF的極性方向與(在操作放大器232的反向輸入端的)第一光電流I2相反。第二電容231可以被第二光電流I2充電,且被電流源233(具有參考電流IREF)放電,以操作為充電平衡類比/數位轉換器。同樣地,第一電容221可以被第一光電流I1放電,且被電流源223(具有參考電流IREF)充電,以操作為充電平衡類比/數位轉換器。The reference current IREF of the current source 223 represents the largest measurable second current I2, and the polarity of the reference current IREF of the current source 223 is opposite to the first photo current I1 (at the inverting input of the operational amplifier 222). The reference current IREF can be a variety of current levels and can be programmed by the user, thereby adjusting a portion of the sensitivity level of the photosensor. The reference current IREF of the current source 233 represents the maximum possible second photocurrent I2, and the polarity of the reference current IREF of the current source 233 is opposite to the first photocurrent I2 (at the inverting input of the operational amplifier 232). The second capacitor 231 can be charged by the second photocurrent I2 and discharged by the current source 233 (having a reference current IREF) to operate as a charge balance analog/digital converter. Likewise, the first capacitor 221 can be discharged by the first photocurrent I1 and charged by the current source 223 (with the reference current IREF) to operate as a charge balance analog/digital converter.

圖4揭示積分輸出的波形,包括第一電壓V1與第二電壓V2的波形。圖4也揭示比較器所輸出的波型,包括第一比較信號V3與第二比較信號V4。所使用到的積分器代表操作放大器222(或232)所連接的第一電容221(或第二電容231)所構成的回授路徑。Figure 4 illustrates the waveform of the integrated output, including the waveforms of the first voltage V1 and the second voltage V2. FIG. 4 also discloses the waveform output by the comparator, including the first comparison signal V3 and the second comparison signal V4. The integrator used represents a feedback path formed by the first capacitor 221 (or the second capacitor 231) to which the operational amplifier 222 (or 232) is connected.

第二電容231被第二光電流I2充電,且由偏壓VBIAS上升至第二臨界電壓VBIAS+VTH,此時比較器的輸出(比較信號V4)成為邏輯H(High)。數位的控制電路245偵測此邏輯H,且透過多工器242將參考電壓(即參考信號)由VBIAS+VTH切換為VBIAS。此動作是確保第二比較器244輸出的第二比較信號V4在整個放電週期中可以維持在邏輯H。此時,電流源233可以被打開(ON)(透過開關S2),且當第二電容231以電流I2-IREF放電時(參考圖4的放電時間T2),數位控制電路245的計數器(圖4未繪示)開始計數,直到第二電壓V2回到VBIAS。當第二電壓V2回到偏壓VBIAS時,第二比較器244輸出的第二比較信號V4回到邏輯L(Low), 參考電壓切回至VBIAS+VTH,電流源233被關閉(透過開關S2),且計數器停止計數。下一次的充電與放電的週期可以再次重複,直到設定的積分時間為止,其中計數器的計數值正比於第二光電流I2。第二比較信號V4的邏輯H與邏輯L(High或Low)可以互換,或者改為僅在積分與去積分的過渡階段(transition phase)時產生脈衝,只要在參考電流源233導通(ON)時,控制電路245的計數器持續計數即可。The second capacitor 231 is charged by the second photocurrent I2 and is boosted by the bias voltage VBIAS to the second threshold voltage VBIAS+VTH, at which time the output of the comparator (comparison signal V4) becomes a logic H (High). The digital control circuit 245 detects this logic H and switches the reference voltage (ie, the reference signal) from VBIAS+VTH to VBIAS through the multiplexer 242. This action is to ensure that the second comparison signal V4 output by the second comparator 244 can be maintained at a logic H throughout the discharge period. At this time, the current source 233 can be turned ON (transmitted through the switch S2), and when the second capacitor 231 is discharged by the current I2-IREF (refer to the discharge time T2 of FIG. 4), the counter of the digital control circuit 245 (FIG. 4) Not counting) starts counting until the second voltage V2 returns to VBIAS. When the second voltage V2 returns to the bias voltage VBIAS, the second comparison signal V4 output by the second comparator 244 returns to the logic L (Low), The reference voltage is switched back to VBIAS+VTH, current source 233 is turned off (via switch S2), and the counter stops counting. The cycle of the next charge and discharge can be repeated again until the set integration time, where the count value of the counter is proportional to the second photocurrent I2. The logic H of the second comparison signal V4 may be interchanged with the logic L (High or Low), or may instead be pulsed only during the transition phase of integration and de-integration, as long as the reference current source 233 is turned "ON" The counter of the control circuit 245 continues to count.

由操作放大器222與第一電容221所構成的積分器以及第二比較器243以類似的程序運作。因為第一光電流I1與第二光電流I2的極性相反,第一電容221(的電壓V1)可以開始利用第一光電流I1放電,由參考電壓VBIAS放電至電壓VBIAS-VTH,此時第一比較器243輸出的第一比較信號V3為邏輯H。數位控制電路245感測此邏輯H,且透過第一多工器241將參考電壓(即參考信號)由VBIAS-VTH切換至VBIAS。此動作是確保第一比較器243輸出的第一比較信號V3在整個放電週期中可以維持在邏輯H。此時,電流源223可以被打開(ON)(透過開關S1),且當第一電容221以電流-I1+IREF放電時,數位控制電路245的計數器(圖4未繪示)開始計數,直到第一電壓V1回到VBIAS。當第一電壓V1回到偏壓VBIAS時,第一比較器243輸出的第一比較信號V3回到邏輯L(Low),參考電壓切回至VBIAS-VTH,電流源233被關閉(OFF)(透過開關S1),且計數器停止計數。充電與放電的週期可以再次重複,直到設定的積分時間為止,其中計數器的計數值正比於第一光電流I1。第一比較信號V3的邏輯H與邏輯L(High或Low)可以互換,或者改為僅在積分與去積分的過渡階段(transition phase)時產生脈衝,只要在參考電流源223導通(ON)時,控制電路245的計數器持續計數即可。The integrator composed of the operational amplifier 222 and the first capacitor 221 and the second comparator 243 operate in a similar procedure. Because the polarity of the first photocurrent I1 and the second photocurrent I2 are opposite, the voltage (1) of the first capacitor 221 can start to be discharged by the first photocurrent I1, and discharged by the reference voltage VBIAS to the voltage VBIAS-VTH, at this time, The first comparison signal V3 output by the comparator 243 is a logic H. The digital control circuit 245 senses this logic H and switches the reference voltage (ie, the reference signal) from VBIAS-VTH to VBIAS through the first multiplexer 241. This action is to ensure that the first comparison signal V3 output by the first comparator 243 can be maintained at logic H throughout the discharge period. At this time, the current source 223 can be turned ON (transmitted through the switch S1), and when the first capacitor 221 is discharged with the current -I1+IREF, the counter of the digital control circuit 245 (not shown in FIG. 4) starts counting until The first voltage V1 returns to VBIAS. When the first voltage V1 returns to the bias voltage VBIAS, the first comparison signal V3 output by the first comparator 243 returns to logic L (Low), the reference voltage is switched back to VBIAS-VTH, and the current source 233 is turned off (OFF) ( Pass switch S1) and the counter stops counting. The period of charging and discharging can be repeated again until the set integration time, wherein the counter value is proportional to the first photo current I1. The logic H of the first comparison signal V3 may be interchanged with the logic L (High or Low), or may be generated only during the transition phase of integration and de-integration, as long as the reference current source 223 is turned "ON" The counter of the control circuit 245 continues to count.

〔堆疊光二極體結構及其光感測器之另一實施例〕[Another embodiment of a stacked photodiode structure and its photo sensor]

如圖5所示,圖5是本發明另一實施例提供的具有堆疊光二 極體結構的光感測器之電路方塊圖。暗式堆疊光二極體結構35被加入於圖5中的電路中。光感測器3包括堆疊光二極體結構31、暗式堆疊光二極體結構35、第一充電平衡類比/數位轉換器32、第二充電平衡類比/數位轉換器33與控制電路345。堆疊光二極體結構31可以與圖1所示的堆疊光二極體結構1相同,此時光二極體311代表第一導電類型基板101、第二PN接面J2與第二導電類型井區102的組合,光二極體312代表第二導電類型井區102、第一PN接面J1與第一導電類型井區103的組合。As shown in FIG. 5, FIG. 5 is a stack light 2 according to another embodiment of the present invention. A circuit block diagram of a photosensor of a polar body structure. A dark stacked photodiode structure 35 is incorporated in the circuit of FIG. The photo sensor 3 includes a stacked photodiode structure 31, a dark stacked photodiode structure 35, a first charge balance analog/digital converter 32, a second charge balance analog/digital converter 33, and a control circuit 345. The stacked photodiode structure 31 can be the same as the stacked photodiode structure 1 shown in FIG. 1. At this time, the photodiode 311 represents the first conductive type substrate 101, the second PN junction J2, and the second conductive type well region 102. In combination, photodiode 312 represents a combination of second conductivity type well region 102, first PN junction J1 and first conductivity type well region 103.

第一充電平衡類比/數位轉換器32具有第一電容321,且耦接第一導電類型井區103的陽極端點103a(即光二極體312的陽極)。第二充電平衡類比/數位轉換器33具有第二電容331,且耦接第二導電類型井區102的陰極端點102a(即光二極體311的陰極)。控制電路345耦接第一充電平衡類比/數位轉換器32與第二充電平衡類比/數位轉換器33。第一充電平衡類比/數位轉換器32、第二充電平衡類比/數位轉換器33與控制電路345可以分別第一充電平衡類比/數位轉換器22、第二充電平衡類比/數位轉換器23與控制電路245相同,不再贅述。The first charge balance analog/digital converter 32 has a first capacitor 321 and is coupled to the anode terminal end 103a of the first conductivity type well region 103 (ie, the anode of the photodiode 312). The second charge balance analog/digital converter 33 has a second capacitor 331 and is coupled to the cathode end point 102a of the second conductivity type well region 102 (ie, the cathode of the photodiode 311). The control circuit 345 is coupled to the first charge balance analog/digital converter 32 and the second charge balance analog/digital converter 33. The first charge balance analog/digital converter 32, the second charge balance analog/digital converter 33 and the control circuit 345 can respectively be the first charge balance analog/digital converter 22, the second charge balance analog/digital converter 23 and the control Circuit 245 is the same and will not be described again.

暗式堆疊光二極體結構35可以被金屬蓋完全覆蓋,以防止所有的光線(包括可見光與紅外光)入射,以便產生與堆疊光二極體結構31相同的暗電流(dark current),藉此在不論是高環境溫度或低環境溫度的情況下皆可達到較好的感測精準度。暗式堆疊光二極體結構35的暗式陽極端X’耦接於堆疊光二極體結構31的陽極端X,暗式堆疊光二極體結構35的暗式陰極端Y’耦接於堆疊光二極體結構31的陰極端Y。The dark stacked photodiode structure 35 can be completely covered by the metal cover to prevent all light (including visible light and infrared light) from being incident to produce the same dark current as the stacked photodiode structure 31, thereby Good sensing accuracy is achieved with high ambient temperature or low ambient temperature. The dark anode end X' of the dark stacked photodiode structure 35 is coupled to the anode end X of the stacked photodiode structure 31, and the dark cathode end Y' of the dark stacked photodiode structure 35 is coupled to the stacked photodiode The cathode end Y of the bulk structure 31.

〔實施例的可能功效〕[Possible effects of the examples]

根據本發明實施例,上述的堆疊光二極體結構及其光感測器省略了使用多個平行排列的光二極體,藉此模擬人眼對於光的反應。如此,可減少光二極體的用面積的一半,且免除了傳統的光 感測器的二極體之間彼此需要匹配的關鍵需要。According to an embodiment of the present invention, the above-described stacked photodiode structure and its photosensor omits the use of a plurality of parallel arranged photodiodes, thereby simulating the human eye's response to light. In this way, half of the area of the photodiode can be reduced, and the conventional light is eliminated. The critical needs of the sensors' diodes need to match each other.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

2‧‧‧光感測器2‧‧‧Light sensor

211,212‧‧‧光二極體211,212‧‧‧Light diode

I1‧‧‧第一光電流I1‧‧‧First photocurrent

I2‧‧‧第二光電流I2‧‧‧second photocurrent

Ig‧‧‧電流Ig‧‧‧current

22‧‧‧第一充電平衡類比/數位轉換器22‧‧‧First Charge Balance Analog/Digital Converter

23‧‧‧第二充電平衡類比/數位轉換器23‧‧‧Second charge balance analog/digital converter

245‧‧‧控制電路245‧‧‧Control circuit

221‧‧‧第一電容221‧‧‧first capacitor

231‧‧‧第二電容231‧‧‧second capacitor

222,232‧‧‧操作放大器222,232‧‧‧Operational Amplifier

223,233‧‧‧電流源223, 233‧‧‧ Current source

S1,S2‧‧‧開關S1, S2‧‧" switch

241‧‧‧第一多工器241‧‧‧First multiplexer

242‧‧‧第二多工器242‧‧‧Second multiplexer

243‧‧‧第一比較器243‧‧‧First comparator

244‧‧‧第二比較器244‧‧‧Second comparator

V1,V2,V3,V4‧‧‧電壓V1, V2, V3, V4‧‧‧ voltage

GND‧‧‧接地GND‧‧‧ Grounding

IC1,IC2‧‧‧電流IC1, IC2‧‧‧ current

Claims (6)

一種光感測器,包括:一堆疊光二極體結構,包括:一第一導電類型基板,具有一第一表面以及一接地端;一第二導電類型井區,形成於該第一導電類型基板內且鄰近該第一表面;以及一第一導電類型井區,形成於該第二導電類型井區內且鄰近該第一表面;其中,介於該第一導電類型井區與該第二導電類型井區之間的一第一PN接面依據對應於入射該第一表面的可見光頻譜而產生自由電子;其中,介於該第二導電類型井區與該第一導電類型基板的一第二PN接面主要依據對應於入射該第一表面的紅外光頻譜而產生自由電洞和自由電子;其中,一第一光電流由該第一導電類型井區之一陽極端收集得到,該第一光電流是響應於可見光頻譜,一第二光電流由該第二導電類型井區之一陰極端收集得到,該第二光電流是響應於可見光頻譜與紅外光頻譜一第一充電平衡類比/數位轉換器(ADC,analog-to-digital converter),具有一第一電容,耦接至該第一導電類型井區之陽極/陰極,接收該第一光電流且轉換該第一光電流為一第一電壓;一第二充電平衡類比/數位轉換器(ADC,analog-to-digital converter),具有一第二電容,耦接至該第二導電類型井區之陽極/陰極,接收該第二光電流且轉換該第二光電流為一第二電壓;以及一控制電路,耦接該第一充電平衡類比/數位轉換器以及該第二充電平衡類比/數位轉換器,接收該第一電壓以及該第二電壓,控制該第一充電平衡類比/數位轉換器來積分該第一電壓且由一偏 壓積分至一第一臨界電壓,該第一臨界電壓低於該偏壓一預設電壓,然後對該第一電容充電直到該第一電壓等於該偏壓,且估計該第一電容響應於該第一光電流的充電時間,該控制電路控制該第二充電平衡類比/數位轉換器來積分該第二電壓且由該偏壓積分至一第二臨界電壓,該第二臨界電壓高於該偏壓該預設電壓,然後對該第二電容放電直到該第二電壓等於該偏壓,且估計該第二電容響應於該第二光電流的放電時間。 A light sensor comprising: a stacked photodiode structure comprising: a first conductivity type substrate having a first surface and a ground; a second conductivity type well region formed on the first conductivity type substrate And adjacent to the first surface; and a first conductivity type well region formed in the second conductivity type well region adjacent to the first surface; wherein the first conductivity type well region and the second conductive region a first PN junction between the type well regions generates free electrons according to a spectrum of visible light corresponding to the incident first surface; wherein a second portion of the second conductivity type well region and the first conductivity type substrate The PN junction generates free holes and free electrons mainly according to a spectrum of infrared light corresponding to the first surface; wherein a first photocurrent is collected by an anode end of the first conductivity type well region, the first light The current is in response to the visible light spectrum, and a second photocurrent is collected by the cathode end of the second conductivity type well region, the second photocurrent is in response to the visible light spectrum and the infrared light spectrum, a first charging level An analog-to-digital converter (ADC) having a first capacitor coupled to the anode/cathode of the first conductivity type well region, receiving the first photocurrent and converting the first light The current is a first voltage; a second charge-to-digital converter (ADC) has a second capacitor coupled to the anode/cathode of the second conductivity type well region, and receives The second photocurrent and converting the second photocurrent to a second voltage; and a control circuit coupled to the first charge balance analog/digital converter and the second charge balance analog/digital converter to receive the second photocurrent a voltage and the second voltage, controlling the first charge balance analog/digital converter to integrate the first voltage and by a bias The voltage is integrated to a first threshold voltage, the first threshold voltage is lower than the bias voltage by a predetermined voltage, and then the first capacitor is charged until the first voltage is equal to the bias voltage, and the first capacitor is estimated to be responsive to the a charging time of the first photocurrent, the control circuit controls the second charge balance analog/digital converter to integrate the second voltage and integrate the bias voltage to a second threshold voltage, the second threshold voltage being higher than the bias voltage The preset voltage is pressed, and then the second capacitor is discharged until the second voltage is equal to the bias voltage, and the second capacitor is estimated to be responsive to the discharge time of the second photo current. 根據申請專利範圍第1項之光感測器,其中該第一充電平衡類比/數位轉換器更包括:一放大器,具有一反向輸入端,一非反向輸入端以及一輸出端,該非反向輸入端接收該偏壓;一電流源,耦接該放大器之該反向輸入端,受控於該控制電路以提供一參考電流來對該第一電容放電,其中該參考電流是大於該第二光電流;一第一多工器,選擇性地提供該偏壓或該第一臨界電壓作為一第一參考信號;一第一比較器,比較該第一電壓以及該第一參考信號,且輸出一第一比較信號;其中,該第一電容是耦接於該放大器之該反向輸入端與該輸出端之間;其中,該控制電路接收該第一比較信號且控制該第一充電平衡類比/數位轉換器與該第二充電平衡類比/數位轉換器的積分/去積分時間。 The optical sensor of claim 1, wherein the first charge balance analog/digital converter further comprises: an amplifier having an inverting input, a non-inverting input, and an output, the non-reverse Receiving the bias voltage to the input terminal; a current source coupled to the inverting input terminal of the amplifier, controlled by the control circuit to provide a reference current to discharge the first capacitor, wherein the reference current is greater than the first a second photocurrent; a first multiplexer selectively providing the bias voltage or the first threshold voltage as a first reference signal; a first comparator comparing the first voltage and the first reference signal, and Outputting a first comparison signal; wherein the first capacitor is coupled between the inverting input terminal of the amplifier and the output terminal; wherein the control circuit receives the first comparison signal and controls the first charging balance The integration/de-integration time of the analog/digital converter and the second charge balance analog/digital converter. 根據申請專利範圍第1項之光感測器,其中該第二充電平衡類比/數位轉換器更包括:一放大器,具有一反向輸入端,一非反向輸入端以及一輸出端,該非反向輸入端接收該偏壓; 一電流源,耦接該放大器之該反向輸入端,受控於該控制電路以提供一參考電流來對該第二電容充電,其中該參考電流是大於該第二光電流;一第二多工器,選擇性地提供該偏壓或該第二臨界電壓作為一第二參考信號;一第二比較器,比較該第二電壓以及該第二參考信號,且輸出一第二比較信號;其中,該第二電容是耦接於該放大器之該反向輸入端與該輸出端之間;其中,該控制電路接收該第二比較信號且控制該第一充電平衡類比/數位轉換器與該第二充電平衡類比/數位轉換器的積分/去積分時間。 The optical sensor of claim 1, wherein the second charge balance analog/digital converter further comprises: an amplifier having an inverting input, a non-inverting input, and an output, the non-reverse Receiving the bias voltage to the input terminal; a current source coupled to the inverting input of the amplifier, controlled by the control circuit to provide a reference current to charge the second capacitor, wherein the reference current is greater than the second photocurrent; The device selectively provides the bias voltage or the second threshold voltage as a second reference signal; a second comparator compares the second voltage and the second reference signal and outputs a second comparison signal; The second capacitor is coupled between the inverting input terminal of the amplifier and the output terminal; wherein the control circuit receives the second comparison signal and controls the first charge balance analog/digital converter and the first The integration/de-integration time of the second charge balance analog/digital converter. 根據申請專利範圍第1項之光感測器,更包括:一暗式堆疊光二極體結構,具有與該堆疊光二極體結構相同的結構,且更包括:一金屬蓋,覆蓋該暗式堆疊光二極體結構,以防止可見光與紅外光入射該暗式堆疊光二極體結構;其中,該暗式堆疊光二極體結構之一暗式陽極端耦接該堆疊光二極體結構之該陽極端,該暗式堆疊光二極體結構之一暗式陰極端耦接該堆疊光二極體結構之該陰極端。 The optical sensor of claim 1, further comprising: a dark stacked photodiode structure having the same structure as the stacked photodiode structure, and further comprising: a metal cover covering the dark stack a photodiode structure for preventing visible light and infrared light from entering the dark stacked photodiode structure; wherein a dark anode end of the dark stacked photodiode structure is coupled to the anode end of the stacked photodiode structure, One dark cathode end of the dark stacked photodiode structure is coupled to the cathode end of the stacked photodiode structure. 根據申請專利範圍第1項之光感測器,其中該第一導電類型是P型,該第二導電類型是N型。 The photosensor of claim 1, wherein the first conductivity type is a P type and the second conductivity type is an N type. 根據申請專利範圍第1項之光感測器,其中該第一導電類型是N型,該第二導電類型是P型。 The photosensor of claim 1, wherein the first conductivity type is an N type and the second conductivity type is a P type.
TW102109461A 2013-03-18 2013-03-18 Ambient light sensing with stacked photodiode TWI512954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102109461A TWI512954B (en) 2013-03-18 2013-03-18 Ambient light sensing with stacked photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102109461A TWI512954B (en) 2013-03-18 2013-03-18 Ambient light sensing with stacked photodiode

Publications (2)

Publication Number Publication Date
TW201438203A TW201438203A (en) 2014-10-01
TWI512954B true TWI512954B (en) 2015-12-11

Family

ID=52113465

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102109461A TWI512954B (en) 2013-03-18 2013-03-18 Ambient light sensing with stacked photodiode

Country Status (1)

Country Link
TW (1) TWI512954B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735399B (en) * 2020-12-24 2021-08-01 神煜電子股份有限公司 Photosensor device with dark current cancellation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112097902B (en) 2019-12-03 2023-08-11 义明科技股份有限公司 Optical sensor and sensing method thereof
TWI746067B (en) * 2019-12-03 2021-11-11 義明科技股份有限公司 Light sensor and sensing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200717785A (en) * 2005-08-23 2007-05-01 Noble Device Technologies Corp Low-noise semiconductor photodetectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200717785A (en) * 2005-08-23 2007-05-01 Noble Device Technologies Corp Low-noise semiconductor photodetectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735399B (en) * 2020-12-24 2021-08-01 神煜電子股份有限公司 Photosensor device with dark current cancellation

Also Published As

Publication number Publication date
TW201438203A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
US9190433B2 (en) Ambient light sensing with stacked photodiode structure with dual PN junction
US8513892B2 (en) Illuminance sensor, and electronic equipment and semiconductor device using the same
CN101471352B (en) Photodetection semiconductor device, photodetector, and image display device
US20130050068A1 (en) Sensor circuit and electronic apparatus
JP5270641B2 (en) Illuminance sensor and display device including the illuminance sensor
TW201037287A (en) Light sensing circuit and method thereof
TW201627791A (en) System and method for controlling excess bias of single photon avalanche photo diode
CN108288622B (en) Zero power sensor
CN102299704A (en) Non-contact sensor using photosensor
TW200701445A (en) Image pixel of cmos image sensor
US20150263211A1 (en) Optical sensor, and electronic apparatus
US11994424B2 (en) Method for measuring ambient light and corresponding integrated device
TWI512954B (en) Ambient light sensing with stacked photodiode
JP2010271194A (en) Photodetector
US8723097B2 (en) Illuminance sensor having light-level-independent consumption current
WO2016112204A1 (en) Circuits for self-powered image sensors
US11538847B2 (en) Imaging sensor and pixel structure for simultaneous imaging and energy harvesting
TWI516032B (en) A photoelectric conversion device capable of eliminated dark current
TW201702819A (en) Electric device
CN102889927B (en) Optical detection device
CN104062005A (en) Light receiving circuit
US10418393B2 (en) Photodetector
EP3227921A1 (en) Pixel structure for energy harvesting and image sensing
US20210123803A1 (en) Optical sensor
CN104062643A (en) Light receiving circuit