TW202014375A - 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送 - Google Patents

用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送 Download PDF

Info

Publication number
TW202014375A
TW202014375A TW108144338A TW108144338A TW202014375A TW 202014375 A TW202014375 A TW 202014375A TW 108144338 A TW108144338 A TW 108144338A TW 108144338 A TW108144338 A TW 108144338A TW 202014375 A TW202014375 A TW 202014375A
Authority
TW
Taiwan
Prior art keywords
carbon
dopant
mixture
gas
ion source
Prior art date
Application number
TW108144338A
Other languages
English (en)
Inventor
夏威尼 辛哈
道格拉斯 海德曼
勞伊德 布朗
瑟吉 坎普
施貴騰
盧進龍
邱文斌
高建綱
Original Assignee
美商普雷瑟科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商普雷瑟科技股份有限公司 filed Critical 美商普雷瑟科技股份有限公司
Publication of TW202014375A publication Critical patent/TW202014375A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/005Storage of gas or gaseous mixture at high pressure and at high density condition, e.g. in the single state phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0114Shape cylindrical with interiorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/035Flow reducers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • F17C2205/0385Constructional details of valves, regulators in blocks or units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0391Arrangement of valves, regulators, filters inside the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/038Subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/044Avoiding pollution or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0745Gas bottles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1842Ambient condition change responsive
    • Y10T137/1939Atmospheric
    • Y10T137/2012Pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本發明提供一種用於含CO之摻雜物氣體組成物的輸送之供應源。該組成物係包括控制量之諸如氙及氫的稀釋劑氣體混合物,該等氣體各於控制體積比下提供,以確保最佳碳離子植入法性能。該組成物可包裝成由含CO之供應源及稀釋劑混合物供應源所組成的摻雜劑氣體套組。或該組成物可選擇的經預先混合且自單一來源導入,該單一來源可因應所達負壓條件啟動,使摻雜物混合物自該裝置內部體積沿排流通道流入該離子來源設備內。

Description

用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送
本發明有關改良之以CO為底質之調合物及該以CO為底質之調合物的負壓輸送及儲存裝置,該調合物包括用於碳植入法摻雜物氣體組成物。
離子植入法為半導體/微電子製造中的重要製程。離子植入法係使用於積體電路製造,將受控量之摻雜物離子導入半導體晶圓內。離子來源是用以自摻雜物氣體生成各式各樣離子種類的具有明確界線之離子束。摻雜物氣體之離子化生成離子種類,可隨後植入特定工作件內。
碳已逐漸成為半導體工業中廣泛使用之摻雜物,用於各種材料修飾應用,諸如抑制共同-摻雜物之擴散或增進經摻雜區域之安定性。就此言之,二氧化碳(CO2)已漸漸成為碳離子植入法常見的摻雜物。然而,已觀察到CO2表現出氧化劑之行為,傾向將鎢離子艙組件氧化,沿著離子儀器之電極表面及離子艙組件形成各種 氧化鎢(WOx)沈積物。該等沈積物的出現之所以成為問題是因其破壞電性質,故需較高電壓方能保持穩定電漿。然而,較高電壓會導致電壓放電,造成電氣短路及瞬時之束流降。該束流降一般稱為“束流突波”。束流突波使離子來源性能降低之程度是達到無法在可接受效率下操作製程。該等情況下,使用者可能需要中斷植入操作且進行維修或置換該離子來源。該種停機時間造成離子植入系統之產能損失。因此,需長時間保持該離子來源之適當功能化,以執行高品質植入製程。
就與作為離子植入法摻雜物來源的CO2有關的非期望中的沈積物而言,一氧化碳(CO)已逐漸成為備擇摻雜物氣體來源,因為CO中氧含量較低。較低氧含量降低WOx形成量。然而,已觀察到CO在離子來源操作期間形成厚重的碳(C)及碳化鎢(WC)沈積物。C沈積物是CO電漿分解之結果,而WC沈積物則是CO及其電漿片段產物與以鎢為主之艙組件相互作用的結果。C/WC沈積會產生束流突波,因而產生離子來源壽命短的問題。
甚者,CO為毒性氣體,呈現明顯的安全性及環境挑戰。CO一般儲存於處於高壓下的圓筒中。無法接受將CO儲存於高壓下,因為可能發展出圓筒洩漏或災難性破裂。是故,CO用之標準高壓圓筒具有此等流體非意料內的自高壓圓筒釋出之風險。
當碳植入法採用以碳為底質之摻雜物氣體來 源時,以碳為底質之摻雜物氣體來源的安全儲存及輸送裝置之方法與系統伴隨著未能滿足的降低沈積物之需求。一般技術者可檢閱本發明說明書、所附圖式及申請專利範圍而明瞭本發明之其他態樣。
本發明有關可達成該等離子來源之改良使用壽命及性能的碳離子植入系統及方法。
本發明一部分是有關一種在負壓條件下輸送之以CO為底質之摻雜物氣體混合物的單一來源供應。
第一態樣中,提供一種用於摻雜物氣體混合物之單一來源供應,其包含:一或多種含碳之摻雜物的來源氣體,其與稀釋劑氣體混合物於預定濃度下預先混合,該一或多種含碳之來源至少包含CO,且該稀釋劑氣體混合物包含惰性氣體及含氫之氣體;並提供一種負壓輸送及儲存裝置,用以使位在該裝置內部空間的摻雜物氣體混合物保持於加壓狀態,該輸送裝置與排流通道流體連通,其中啟動該輸送裝置使得該摻雜物組成物因應所達成之負壓條件沿著排流通道自裝置內部空間受控的流動。
第二態樣中,提供一種用於輸送用於離子植入法之摻雜物氣體組成物的方法,其包含:提供一或多種含碳之摻雜物氣體;提供稀釋劑氣體組成物,其包含惰性氣體及含氫之氣體;因應預定之真空條件啟動一或多種含碳之摻雜物氣體的受控流動;因應預定之真空條件啟動稀 釋劑氣體組成物的受控流動;將一或多種含碳之摻雜物氣體導入離子來源艙;將稀釋劑氣體組成物導入離子來源艙;將該一或多種含碳之摻雜物氣體來源離子化以產生碳離子;將該碳離子植入基材內部;其中該一或多種含碳之摻雜物氣體來源與稀釋劑氣體組成物相互作用以減少沿著該碳離子來源的沈積,而不會產生與純CO比較之下的碳離子束流實質降低。
第三態樣中,提供一種氣體組成物,其包含:以碳為底質之材料,其包含一氧化碳;惰性稀釋劑氣體混合物,其包含氙(Xe)及氫,其中該Xe及氫之含量為有效量,該有效量係Xe:H2體積比約0.02至約0.20;且其中該(Xe+H2):CO之含量體積比係約0.10至約0.30。
100‧‧‧負壓儲存與輸送裝置
101‧‧‧儲存容器或圓筒
102‧‧‧真空啟動超壓止回閥元件
103‧‧‧波紋管
104‧‧‧端口主體
105‧‧‧可移動閥元件
106‧‧‧波紋管艙
107‧‧‧銷
108‧‧‧毛細管
109‧‧‧閥座或接觸板
110‧‧‧閥體
由以下與附圖相關之較佳具體實施例的詳細描述會更明確的瞭解本發明標的及優點,其中相同編號表示通篇相同特徵且其中:
圖1a顯示一種根據本發明原理分配含CO之摻雜物組成物的負壓輸送及儲存裝置;
圖1b顯示一種完全配置在圖1a之輸送及儲存裝置內的真空啟動止回閥。
圖2顯示一種在閥體上無釋壓裝置的鋁圓筒,其中該圓筒具有設計成使含CO之摻雜物氣體組成物 的內部儲存體積最大化的維度。
圖3顯示一種根據本發明原理使用之離子植入器。
圖4顯示在植入系統內的圖3之離子植入器;
圖5顯示用以不同組成之的CO+H2+Xe摻雜物氣體組成物的相對C+束流;
圖6顯示不同之摻雜物組成之CO+H2+Xe在三個不同弧電流水平下的相對C+束流水平;且
圖7a及7b個別展示在僅採用CO及使用本發明含CO之摻雜物組成物的碳植入法中的沈積形成。
經由以下詳述可更完全瞭解本發明各種要素之關係及功能。此詳述係著眼於在揭示範圍內之各種排列及組合的特色、態樣及具體實施例。該揭示內容因此明確的界定於包含此等明確特色、態樣及具體實施例或其中選出之一者或多者的任何組合及排列,或由其組成或基本上由其組成。
除非另有說明,否則本發明所使用之所有濃度皆表示成體積百分比(“vol%”)。
本發明可包括任何各種組合的以下具體實施例,亦可包括以下以文字或附圖描述的任何其他態樣。
如前文所提及,雖然純CO可生成相對高之 C+束流,因此,明顯較厚之碳(C)及碳化鎢(WC)沈積物會產生束流突波,縮短離子來源壽命。已知將氫(H2)添加至CO會減少沈積形成。當採用CO作為含碳來源材料時,H2及CO在離子艙中相互作用以,減少整體沈積物形成。然而,減少沈積形成的代價是降低C+束流。
本發明藉由添加特定體積比之Xe來改善CO-H2混合物,如下文所述般的,以改善C+束流。尤其,如實施例所示,C+離子之束流可增高至較使用由CO及H2組成之摻雜物氣體混合物所得C+束流高出20%。如此,與先前技術不同的,本發明可有能力達成較CO及H2長之離子來源使用壽命及增高之C+束流。
本發明之一具體實施例是有關一種含碳之摻雜物氣體組成物,其較佳係含有CO及稀釋劑混合物。CO可預先與包括惰性氣體及含氫之氣體之稀釋劑混合物混合。此處及整份說明書通篇所使用“摻雜物氣體組成物”一詞是用以表示在離子來源艙上游或內部形成之組成物。此處及整份說明書通篇所使用“摻雜物氣體組成物”一詞亦用以表示單一供應來源所含之混合物,將有更詳細之說明。
已發現將包含CO與包括所選擇之體積比的惰性氣體及含氫之氣體的稀釋劑氣體混合物的摻雜物氣體組成物導入離子來源艙可以達到離子來源壽命與離子來源性能之必要平衡。較佳具體實施例中,摻雜物氣體混合物包括與基本上由氙(Xe)及氫(H2)組成之惰性稀釋劑氣 體混合物組合的CO。CO、Xe及H2存在特定濃度範圍。含Xe及H2之CO有一特定範圍既可使離子來源壽命且亦可使離子來源性能較習用碳離子植入方法改良,該習用方法僅能犧牲減少沈積形成來達到增高C+束流的效果。
根據一具體實施例,摻雜物氣體組成物為CO、H2與Xe於特定體積比之混合物。Xe:H2之體積比範圍可為約0.02-0.20,且(Xe+H2):CO之體積比可為約0.10-0.30。在更佳具體實施例中,Xe:H2體積比之範圍約0.02-0.06,且(Xe+H2):CO體積比範圍約0.15-0.20。該種組成混合物在使碳離子(C+)束流於碳植入過程中保持可接受之水平的同時改善該來源壽命。換言之,已發現組成物對於減少離子儀器內部沈積物之累積的能力具有明顯影響,而不會使C+束流相較於單獨自CO產生的C+束流明顯降低。
Xe為惰性氣體,因其相對於其他摻雜物氣體相對較大原子尺寸的結果,相當容易離子化且具有大的離子化剖面。此處及整份說明書通篇所使用“離子化剖面”一詞是定義成當原子或分子與該離子來源纖絲射出之電子發生碰撞的時候會發生離子化的可能性。存在於氣體混合物中之Xe在一形成電漿時立即離子化,增強存在電漿相中之其他化學物種的離子化。當申請人在離子化期間將受控量之Xe添加至CO與H2之混合物中時,觀察到Xe之離子化效應。最後觀察到束流改善,如實施例所討論。
本發明係設計以使在碳離子植入法期間添加 至CO+H2混合物中之Xe量保持於特定組成範圍,以達到改良之性能。本發明認可C+束流對添加至CO與H2之Xe量具敏感性。如實施例中所示,申請人意料外的觀察到當氣體混合物中Xe比值增高至充分高於(Xe+H2):CO及Xe:H2之體積比時,C+束流不利的降低,儘管使進入離子來源艙之含碳淨氣流保持定值亦然。
除在較高Xe水平下有較低C+束流之外,亦意料外的觀察到添加Xe具有較佳將多於碳之氧離子化的傾向。在較高Xe水平下,該等效應更明顯。詳言之,當摻雜物氣體組成物之Xe水平增至超過H2之上限時,O+對C+的比值亦會增加。O+對C+之比值的增加並非所期望狀態,因其造成自離子來源抽提出來的離子中C+相對比值之降低。額外之O+離子可在電弧艙中立即的與W組份反應,生成非期望之WOx沈積物。因此,本發明確認需控制摻雜物氣體組成物中Xe量,以避免C+束流之損失及/或形成過量WOx。
通常,在離子植入法期間,期望C+束流相對於正常操作值增加以符合製程需求及/或改善離子來源設備通量。增高之C+束流可藉由在較高弧電流操作離子來源,增加自該離子來源抽提出來之離子的量而達成。如實施例所闡釋,申請人發現增加弧電流水平並非始終造成C+束流的增加。而是摻雜物氣體組成物增加弧電流水平之響應,係與氣體組成物之CO、Xe及H2之相對量有關。本發明確認摻雜物氣體組成物對弧電流水平之回應在最後 調配最佳摻雜物氣體混合物組成物時扮演了重要的角色。本發明將CO、Xe及H之相對量的衝擊性列入考慮,以調配對增加弧電流水平具有利回應之摻雜物氣體組成物,因而使最終使用者以其離子來源工具達到高C+束流且符合需求。
如前文所提及,本發明採用(Xe+H2):CO在約.1至約.3範圍內之預定比值的CO-H2-Xe組成物。所選擇之(Xe+H2):CO視數項因素而定,包括執行離子植入法之方式。例如,某些碳離子植入法可容受較高量之沈積物,但需要較高之C+離子束流(即,束流之稀釋效應降低)。結果,將(Xe+H2):CO之比值選擇在預定比值範圍的低端。其他碳離子植入應用可能需要較少之沈積物,但可能要容受稍低之束流,藉以選擇在預定比值範圍的高端之組成物。
本發明特別有利於一種碳離子植入法,其中較佳摻雜物混合物為預先與由氙及氫組成之惰性稀釋劑混合物混合的CO。較佳具體實施例中,以混合物形式自單一供應來源輸送此種CO-H2-Xe組成物之能力可改善該離子植入法之效能。況且,單一來源供應確保以安全且一致之方式在預定濃度下輸送。
作為儲存於壓力下且自單一供應來源輸送之單一CO-H2-Xe混合物,本發明可在儲存期間及最終輸送至儀器或工具時保持正確摻合濃度。
較佳具體實施例中,該單一供應來源為用以 儲存及輸送含CO之摻雜物氣體混合物的負壓儲存與輸送裝置。該負壓儲存與輸送裝置係設計以使內部摻雜物混合物保持在加壓狀態,同時將一般高壓圓筒所併發之發展洩漏或災難性破裂的風險降至最低或完全消除。真空啟動該裝置,當排流通道沿線達到負壓條件時,使摻雜物混合物控制流動到下游製程。以CO為底質之混合物的排放僅發生在裝置外存有適當之排放條件的時候,藉以避免以CO為底質之毒性混合物自該儲存及輸送裝置非刻意的釋出。
圖1a及1b展示具有真空啟動超壓止回閥元件102的負壓儲存與輸送裝置100之實例。真空啟動止回閥元件102較佳係完全配置在儲存容器或圓筒101內部。該負壓儲存與輸送裝置100可為市售Uptime®輸送裝置,如Praxair®所售且如美國專利編號5,937,895;6,045,115;6,007,609;7,708,028;及7,905,247所揭示,所有專利皆以引用方式整體併入本文。裝置100以安全且受控方式將含CO之氣體混合物自圓筒101分配至該碳植入法所使用之離子儀器。
裝置100包含用以與加壓圓筒101之出口連通之端口主體104。設置如圖1b所示之可移動閥元件105(例如提升閥),以於密封位置與開啟位置之間移動。在密封位置時,閥元件105封阻來自圓筒101內部的CO-摻雜物氣體混合物加壓流。位於閥元件105下游之可膨脹之波紋管103與閥元件105操作性的連接以控制閥元件105之移動,使得閥元件105保持於密封位置,直至波紋管 103內外產生預定之壓力差。波紋管103在大氣壓或更大壓力下密封,與流體排放通道連通。是故,當波紋管103外之壓力條件達到負壓條件時,波紋管103內部波紋管艙106與外部之間達到一個壓力差,造成波紋管103膨脹。波紋管103膨脹造成銷107將閥元件105移至開啟配置,產生含CO之摻雜物混合物的流動通道,自圓筒101內部經由流體排放管線流入可進行碳植入法的離子儀器。可在真空啟動止回閥元件102任意附加限制流元件諸如毛細管108,以進一步控制並限制來自圓筒101的摻雜物氣體混合物流動。較有利的是不需要外部壓力調節器來將圓筒壓力降低至沿著流體排放管線所使用的質流控制器可接受之壓力。
再參照圖1b,閥元件102為真空啟動止回閥,其包含具有閥座或接觸板109之提升閥105,具有貫穿其中的銷107,與下游波紋管艙103連通。銷107與閥座109之間形成通道。銷107適於在封阻沿著通道之氣流的密封位置與容許沿著通道之流動的開啟位置之間往復的移動。波紋管艙106配置於閥座109及銷107之下游。波紋管艙106界定一個與銷107上游之壓力條件隔離之內部體積。波紋管艙106當與延伸進入離子艙內之排放通道連通時適當的膨脹,在波紋管103周圍產生真空狀況,強制銷107到達開啟位置,使氣體流動穿過閥座109中通道。
前述銷-提升閥及波紋管布置作為止回閥組合件102,可設定成在下游流動管線中達到所需真空水平時 可靠的啟動。依此方式,防止閥元件102在流體排放通道沿線的壓力降至真空條件之前開啟。因為一般終端使用者之離子儀器是在100托耳或更低之負壓下操作,故在例如500托耳或更低壓力下之真空下分配含CO之摻雜物氣體混合物時,確保任何洩漏皆僅漏入可被迅速偵測出來之離子儀器內。結果,採用負壓輸送裝置100輸送以CO為底質之摻雜物混合物的離子植入法不需要確認沒有洩漏。
此真空啟動輸送及儲存裝置100可在足以進行碳離子植入法的預先界定流率下輸送CO、氙及氫的預混供料。任何流率皆於料想範圍內,只要是Xe:H2及(Xe+H2)/CO體積比保持在本發明範圍內。在受控流率及濃度下同時輸送以CO為底質之摻雜物氣體與稀釋劑氣體混合物,在藉由存有稀釋劑氣體混合物大幅減少以碳為主之沈積物下確保在離子艙內產生適當之束流。依此方式,該單一供應來源確保最佳量之以CO為底質之摻雜物氣體與稀釋劑氣體混合物可於離子艙內彼此相互作用,以在保持必要之碳離子化之下減少以碳為主之沈積物。該單一供應來源可免除摻雜物氣體及稀釋劑氣體分別流入離子艙內時所涉及之製程挑戰。
本發明預期包括各種可用於達成摻雜物氣體混合物之負壓輸送的其他類型機械設計。例如,可使用一或多個閥元件及/或限制流元件來分配且控制摻雜物氣體之負壓輸送。該閥元件係配置成在圓筒之輸送孔施加負壓或真空條件時開啟且輸送摻雜物氣體。相對於自圓筒內部 至輸送口的氣體流動,該閥元件及/或限制流元件係位於圓筒閥座之上游。確實位置可位在端口主體內、頸腔內或圓筒內。或該閥裝置可定位成沿所有三個位置延伸。
閥元件及/或限制流元件之組合可包括各種布置下之壓力調節器、止回閥、限流閥、毛細管及限流孔。例如,可在圓筒內將兩個壓力調節器串聯配置,以將摻雜物氣體之圓筒壓力向下調至容裝於流體排放管線沿線之下游質流控制器可接受的預定壓力。適於該種壓力調節器佈置的設計包括購自ATMI,Inc.的VAC®負壓輸送裝置。
本發明儲存含CO之摻雜物氣體組成物之挑戰亦必須藉由圖1a及1b負壓裝置100的適當設計來承擔。本發明採用以CO為底質之摻雜物混合物的儲存方式,而不採用任何以碳為底質的吸附介質,以將混合物黏合於其上。含碳之吸附介質對CO具有親和力,且對氫有特定程度之親和力。其他吸附劑介質亦可對含CO之氣體具有親和力,或不然就對CO-摻雜物氣體混合物的儲存及輸送具有負面影響。是故,採用非吸附劑為主之儲存系統以保持含CO之摻雜物氣體混合物的化學完整性且確保含CO之氣體混合物的適當儲存及負壓輸送。
另外,在不存在任何會永久性存留在圓筒內部的離子性混合物下進行儲存,以於儲存期間與氣體離子性結合。本發明已確認半導體工業中離子性溶液將已認為離子植入法無法接受之水平的污染物導入含CO之摻雜物混合物中。
況且,本發明輸送及儲存裝置採用化學惰性表面,以避免摻雜物氣體與圓筒壁的任何反應。尤其,本發明所採用之圓筒在將摻雜物混合物填入圓筒之前先加以鈍化。較佳係該圓筒由以氟為底質之材料鈍化,產生化學惰性圓筒壁表面。鈍化消除了含氫稀釋劑氣體與圓筒壁表面上氧化物反應且形成會污染摻雜物混合物之水蒸氣的傾向。
本發明儲存含CO之摻雜物氣體組成物的能力進一步受到構成圓筒之材料的衝擊,至少一部分受到衝擊。就此言之,本發明確認碳鋼圓筒不適於本發明之含CO摻雜物組成物的儲存,因為碳鋼具有形成羰基鐵及其他微量羰基化合物的安全性問題,該等化合物為高毒性。
另一個安全性問題是有關碳鋼圓筒因為應力腐蝕裂開所致之損壞,此情況會因為CO、微量CO2與濕氣之間的化學反應而發生。因此,根據本發明原理,含CO之摻雜物組成物較佳不儲存於碳鋼圓筒中。於一具體實施例中,含有本發明以CO為底質之摻雜物混合物的圓筒選擇之材料係鋁。大體說來,鋁圓筒不會展現前述安全性風險。
較佳具體實施例中,藉由使圓筒尺寸保持在不包括頸部為12英吋或以下之高度及4.5英吋或以下之直徑,本發明圓筒可排除釋壓裝置(PRD)。圖2顯示一種鋁結構材料的圓筒200之實例,藉此使圓筒具有12英吋之高度及4.5英吋之直徑。該等尺寸低於美國運輸部圓 筒200閥體需要PRD的尺寸。本發明涵蓋落在需要PRD固定於圓筒200閥體以外的其他高度及尺寸。圖2表示設計成不需要PRD的圓筒最大體積。
因為本發明CO-摻雜物組成物有毒,故圓筒閥體通常需要具有釋壓裝置(PRD)。PRD係設計成當著火或超壓時排放摻雜物氣體含CO產物。然而,本發明藉由圖1b之真空啟動止回閥組合件102及圓筒尺寸而納有充分之內建式安全性特徵,以保持無PRD的情況下之安全性操作及使用。消除閥體110上之PRD移除毒性CO的潛在洩漏通道,藉以進一步增進本發明輸送裝置的安全性及結構完整性。使用其他習用儲存裝置先前不可能有該可信度。是故,負壓輸送包諸如圖1a及1b所示,進一步的其中圓筒係由鋁形成且不包括PRD,諸如圖2所示,較有利於本發明以CO為底質之摻雜物氣體組成物的安全且改良輸送。
將含CO之摻雜物混合物充填於儲存圓筒內,使得化學物種可均勻的混合。摻雜物混合物之各個化學物種可依任一順序連續充填。或每一種化學物種各可在圓筒上游預先混合,隨之以單一混合物形式導入內部。
當CO-摻雜物氣體混合物是由可冷凝化學物種組成時,充填較佳係進行使得各化學物種的分壓不超過其飽和蒸氣壓。圓筒之最大充填壓力亦應不造成化學物種之間得相互作用。例如,當摻雜物混合物包括CO、氙及氫時,充填壓力不可超過預定臨界值,在該臨界值可能發 生氙與氫之二聚化,形成化學化合物。在導入下游離子艙之前形成氙-氫化合物會對機制產生負面影響,如此,稀釋劑氣體混合物傾向減少離子艙內以碳為主及以鎢為主之沈積物,同時降低C+束流。是故,本發明在加工條件下保持CO-摻雜物混合物之化學物種的儲存及負壓輸送,不會造成圓筒中化學物種的相互作用。
參照圖3及4,出示依循本發明原理之離子植入法儀器300的實例。詳言之,在一實例中,圖3之離子來源儀器300可用於產生用以植入C+離子的電子束。經由延伸貫穿弧艙壁311之氣體進料管313將包含CO、Xe及H2之摻雜物氣體混合物302導入離子來源艙312。於一具體實施例中,(Xe+H2):CO體積比的範圍約.1至約.3且Xe:H2體積比範圍約.02-.20。摻雜物氣體混合物302之供應較佳係藉氣體箱401內容裝之單一供應來源402(圖4)提供。供應來源402較佳為圖1a及1b所示單一負壓輸送及儲存裝置,其使位在其內部空間內的CO+Xe+H2處於加壓狀態。圖4顯示該輸送及儲存裝置402與延伸進入離子來源儀器300內的排流通道流體連通。將負壓輸送及儲存裝置402啟動使摻雜物氣體混合物302因應排流通道沿線所達到之負壓條件受控的自裝置402內部空間流動。
參照圖3,艙312內之摻雜物氣體混合物303藉由電源(未示)施加預定電壓而施以離子化,以電阻性的加熱緊鄰於經間接加熱之陰極(IHC)315的纖絲314。 纖絲314可相對於IHC 315負偏壓。絕緣體318將IHC 315與電弧艙壁311電及熱絕緣。由纖絲314所發射之電子向著IHC 315加速,將IHC 315加熱至其自身之熱離子發射溫度。由IHC 315所發射之電子向著艙312加速行進且進入艙內,將位於艙內之摻雜物氣體混合物303離子化。該摻雜物氣體混合物303經離子化之氣體分子產生電漿環境。排斥電極316可安置於與IHC 315平面相對處,以侷限該電漿環境,且持續並控制該艙312內摻雜物氣體混合物303之離子化。排斥電極316建立負電荷,將電子排斥回向該摻雜物氣體混合物303以與其碰撞,使該摻雜物氣體混合物303持續離子化。
摻雜物氣體混合物303之離子化造成碳以離子、自由基或其組合物的形式釋出。本發明藉由控制Xe對H2之比值及控制Xe+H2對CO之比值,使C+束流保持充分,且諸如以C為底質及以氧化物為底質之沈積物的沈積物減少至可持續操作離子來源300。該C+束流持續長達整個離子植入過程。
以具有所需能量之碳離子束的形式自離子來源艙312抽提出碳離子。用於適當之抽提的技術可藉由在抽提電極兩端施加高電壓來進行,該電極係由抑制電極319及接地電極320構成。如圖3所示,此等抑制及接地電極319及320個別具有與抽提開口317對準之開口,以確保自電弧艙312抽提出來之碳離子束321界限分明。
圖4顯示圖3之離子來源儀器300納入碳束 線離子植入系統400。摻雜物氣體混合物302係自氣箱401導入。將摻雜物氣體混合物302導入離子來源艙300,在此處將能量導入艙內,以將CO離子化,如已參照圖3所描述。
在所需電流下生成所需碳離子束時,使用離子束抽提系統401以自離子來源艙413抽提具所需能量之離子束421形式的離子及自由基。抽提可藉由在抽提電極兩端施加高電壓而進行。所抽提之離子束421經質量分析器/濾器405輸送,以選擇待植入之碳離子。經過濾之離子束407隨後可加速/減速406,輸送至位在終站410用以將碳離子(即,C+)植入目標工件409內的目標工件409之表面。該離子束之碳離子與工件409表面碰撞並穿透工件409表面至特定深度,形成具有所需電性質及物理性質的經摻雜區。本發明因來源壽命延長且有充分之C+束流,而容許保持或增加產能。
應瞭解除圖3之離子來源300外,亦可使用其他適當之類型的離子來源,包括例如Freeman來源、Bernas來源及RF電漿來源。
雖然各個氣體化學物種之輸送可來自單一來源供應(例如負壓輸送裝置),但應瞭解CO、Xe及H2化學物種中之一或多種可依其在該離子來源艙上游或在該艙內結合之方式自專屬供應來源導入,以形成本發明體積比的摻雜物組成物。於一實施例中,第一供應容器係包含CO且第二供應容器係包含Xe及H2。該第一及第二供應 容器係提供為氣體套組之一部分。依此方式,CO、Xe及H2可共流(即,該等氣體進入艙內的流動可實質同時的發生)或依任一順序依序流入該離子來源艙。舉例來說,CO可自單一負壓輸送裝置輸送,且H2及Xe可自另一負壓輸送裝置輸送。該等輸送裝置可設置於圖4所示之氣體箱401內。CO、Xe及H2在離子來源艙300上游或在離子來源艙300內形成所形成之組成混合物。
另一實例中,CO、Xe及H2氣體混合物中每一者各由個別圓筒供應,較佳為負壓輸送及儲存裝置,諸如圖1a者。在操作時,CO、Xe及H2會在特定流率下共流或依序流入該離子來源艙300中,在整個碳植入過程中於離子來源艙300上游或於離子來源艙300內部確保產生本發明(Xe+H2):CO及Xe:H2最佳體積比。
CO可與一種以上的含碳氣體(carbon-based containing gas)混合以達到所需摻雜物氣體混合物。於一具體實施例中,CO可與通式CxFy之含氟氣體混合。含氟氣體可選自但不限於CF4、C2F6、C2F4、C2F2、C3F8及C4F8與其任一混合物。
CO與含氟氣體於特定濃度範圍內之組合的負壓輸送,產生改良之摻雜物氣體混合物,可使艙表面上各式各樣有問題之沈積物減至最少,而不犧牲CO及含氟氣體個別提供碳離子而產生具有充分束流之碳離子束的能力。例如,5體積%CF4及CO之混合物可造成離子來源艙內的以碳化物為底質的沈積物大幅減少。將氙及氫添加 至氣體組成物大幅降低艙壁上鎢蝕刻的程度。較佳係混合物儲存於單一來源,諸如負壓輸送裝置,並自該單一來源輸送。然而,可使用兩個或更多個裝置來輸送至離子來源艙。本發明提供安全地儲存且負壓地輸送該等化學物種的能力,使得該離子來源在碳植入法期間之性能有所改善。
此外,就稀釋劑氣體組成物而言,本發明除H2以外,亦考慮各種含氫之氣體。舉例來說,含氫之氣體可含有CH4、C2H2、C2H4、C2H6與其任一混合物。可採用除氙以外的其他惰性氣體諸如例如氬、氖或氪。本發明設想氬、氖、氪及氙的任一組合物。本發明所揭示備擇含碳、含氫且惰性之氣體可以在CO、Xe及H2所採用之體積比下預混或獨立流動(例如共流或依序流動)。
以下實施例出示將表1所列之不同的以CO為底質之摻雜物氣體組成物導入離子來源艙並加以評估。將每一個混合物離子化以產生對應之C+束,隨之進行抽提。所有組成物分流中,CO流皆保持固定,以確定將相同量之含碳氣體導入離子來源內。不同組成物之[Xe+H2]:CO比值亦維持在0.20以使非含碳氣體之稀釋程度保持定值。該比值亦確定所有試驗運轉的關鍵製程條件諸如總流率及電弧艙內壓力皆相同,使得添加於稀釋氣體之Xe與CO之變動比例的影響得以適當的比較及評估。如進一步描述,圖5中之結果相對於CO+H2標準化,以評估將Xe添加至CO及H2的影響。此外,圖6結果僅於310mA弧電流相對於CO(氣體混合物#1)標準化,以評 估在採用特別之CO+Xe+H摻雜物組成物時的束流降。
對照例1(僅有CO)
在使用僅有CO的摻雜物氣體組成物(表1中列為氣體混合物1)的情況下進行實驗以評估離子來源的性能,尤其是評估自CO離子化所得的C+束流。所採用之離子來源為熱陰極型設計,其係由螺旋纖絲及與安置成與該纖絲的軸垂直的陽極所組成。
將CO導入離子來源艙。使用Praxair,Inc.所售單一負壓輸送UpTime®裝置提供CO。
於纖絲上施加電能以產生電子。該纖絲亦作為陰極,因此於陽極及纖絲之間產生電位差,生成將存在於離子來源艙中之CO氣體離子化的電漿。改變施加於纖絲之電能以得到不同之弧電流。詳言之,於三個不同弧電流設定即275mA、310mA及340mA下進行實驗。在三個不同弧電流下測量個別的C+束流。此外,亦進行長時間之離子化,以評估在CO離子化過程中所形成之沈積物的量及特性。
束流結果出示於圖6。圖6顯示在所有弧電流水平下,僅採用CO生成最高束流。然而,觀察到沈積物的累積最高(圖7a)。圖7a顯示在陽極區中觀察到含C及碳化鎢(WC)的沈積物。此外,圖7a顯示在離子來源弧艙壁上亦觀察到含碳鬚晶及一些WOx沈積物。
對照例2(CO+H2)
在使用CO+H2的摻雜物氣體組成物(表1中列為氣體混合物4)的情況下進行實驗以評估離子來源的性能,尤其是評估自CO+H2混合物離子化所得的C+束流。離子來源為熱陰極型,其係由螺旋纖絲及與安置成與該纖絲的軸垂直的陽極所組成。於纖絲上施加電能以產生電子。該纖絲亦作為陰極,使得於陽極及纖絲之間產生電位差,生成將存在於離子來源艙中之氣體離子化的電漿。
CO及H2係使用負壓輸送UpTime®裝置提供,該裝置含有表1所示體積比1.0:0.20的CO及H2。CO流率保持等於對照例1中CO流率,以確保在離子來源內導入等量含碳氣體。
改變施加於纖絲之電能,以得到不同設計值275mA、310mA及340mA。隨著弧電流改變,產生不同C+束流。如圖6所示般的在不同弧電流下測量個別的C+束流。詳言之,於三個不同弧電流設定275mA、310mA及340mA下進行實驗進行實驗。在C+束流隨著弧電流增加而增加之處觀察到所期望之對於漸增的弧電流之回應。然而,在所有弧電流水平下,以CO+H2混合物得到之C+束流平均較僅使用CO所得束流(圖6)低25%。因為束流較僅有CO時明顯降低,故認為用以評估沈積物特性之長時間操作試驗無效。
對照例3(CO+Xe+H2)
在使用CO+Xe+H2的摻雜物氣體組成物(表1中列為氣體混合物5)的情況下進行實驗以評估離子來源的性能,尤其是評估自組成物離子化所得的C+束流。離子來源為熱陰極型,其係由螺旋纖絲及與安置成與該纖絲的軸垂直的陽極所組成。於纖絲上施加電能以產生電子。該纖絲亦作為陰極,使得於陽極及纖絲之間產生電位差,生成將存在於離子來源艙中之氣體離子化的電漿。
CO及預先混合之Xe+H2混合物(50vol% Xe,其餘H2)分別使用個別之負壓輸送UpTime®裝置供應。CO及Xe+H2於流動管線中混合,之後導入離子來源中。控制CO及Xe+H2混合物之流率,以達到CO:(Xe+H2)為1.0:0.2所需體積比,如下表1所示。CO流保持等於對照例1中CO流,以確保在離子來源內導入等量含碳氣體。
改變施加於纖絲之電能以得到不同之弧電流。隨著弧電流改變,產生不同C+束流。如圖6所示般的在不同弧電流下測量個別的C+束流。詳言之,於三個不同弧電流設定275mA、310mA及340mA下進行實驗進行實驗。與Gax Mix#2不同的,CO+H2+Xe氣體組成物展現與弧電流負相關(圖6),其中弧電流之增加產生C+束流之降低。平均說來,圖6顯示氣體混合物展現較僅有CO時低35%之束流。此外,圖5顯示一種較CO+H2氣體混合物(對照例2)低10%以上之束流,藉以證實添加Xe實際降低C+束流。因為束流明顯降低,故認為 用以評估沈積物特性之長時間操作試驗無效。
對照例4(CO+Xe)
在使用CO+Xe的摻雜物氣體組成物(表1中列為氣體混合物6)的情況下進行實驗以評估離子來源的性能,尤其是評估自組成物離子化所得的C+束流。離子來源為熱陰極型,其係由螺旋纖絲及與安置成與該纖絲的軸垂直的陽極所組成。於纖絲上施加電能以產生電子。該纖絲亦作為陰極,使得於陽極及纖絲之間產生電位差,生成將存在於離子來源艙中之氣體離子化的電漿。CO及Xe係使用負壓輸送UpTime®裝置提供,該裝置含有表1所示體積比1.0:0.05的CO及Xe。CO流率保持等於對照例1中CO流率,以確保在離子來源內導入等量含碳氣體。
改變施加於纖絲之電能以得到不同之弧電流。隨著弧電流改變,產生不同C+束流。如圖6所示般的在不同弧電流下測量個別的C+束流。詳言之,於三個不同弧電流設定275mA、310mA及340mA下進行實驗進行實驗。此CO+Xe氣體組成物展現與弧電流之負相關。平均說來,圖6顯示氣體混合物展現較僅有CO時(對照例1)低35%之C+束流。以此CO+Xe混合物所得的C+束流平均較僅使用CO所得之束流低20%-40%。
此外,進行長時間之離子化,以評估在CO+Xe混合物之此特定氣體組成物於離子化過程中所形成之沈積物的量及特性。觀察到陽極區中及弧艙壁上有大 量WOx及以C為底質之沈積物。
實施例1(CO+Xe+H2)
在使用CO+Xe+H2的摻雜物氣體組成物(表1中列為氣體混合物2)的情況下進行實驗以評估離子來源的性能,尤其是評估自組成物離子化所得的C+束流。離子來源為熱陰極型,其係由螺旋纖絲及與安置成與該纖絲的軸垂直的陽極所組成。於纖絲上施加電能以產生電子。該纖絲亦作為陰極,使得於陽極及纖絲之間產生電位差,生成將存在於離子來源艙中之氣體離子化的電漿。
CO及預先混合之稀釋劑Xe+H2混合物(4vol% Xe,其餘H2)分別使用個別之CO用及稀釋劑Xe+H2混合物用之負壓輸送UpTime®裝置供應。CO及稀釋劑混合物於流動管線中混合,之後導入離子來源中。控制CO及Xe+H2混合物之流率,以達到CO:(Xe+H2)為1.0:0.2所需體積比,如下表1所示。CO流動保持等於對照例1中CO流動,以確保在離子來源內導入等量含碳氣體。
改變施加於纖絲之電能以得到不同之弧電流。隨著弧電流改變,產生不同C+束流。如圖6所示般的在不同弧電流下測量個別的C+束流。詳言之,於三個不同弧電流設定275mA、310mA及340mA下進行實驗進行實驗。在C+束流隨著弧電流增加而增加之處觀察到所期望之對於漸增的弧電流之回應。平均說來,此 CO+H2+Xe氣體混合物僅展現較僅有CO之氣體混合物低10%之束流(圖6),但束流較CO+H2氣體混合物高約20%(圖5)。
此外,亦進行長時間之離子化,以評估在CO+Xe+H2離子化過程中所形成之沈積物的量及特性。數據呈現於圖7b。圖7b顯示觀察到氣體混合物較圖7a所示之僅有CO情況大幅減少含C、WC及WOx沈積物。
實施例2(CO+Xe+H2)
在使用CO+Xe+H2的摻雜物氣體組成物(表1中列為氣體混合物3)的情況下進行實驗以評估離子來源的性能,尤其是評估自組成物離子化所得的C+束流。離子來源為熱陰極型,其係由螺旋纖絲及與安置成與該纖絲的軸垂直的陽極所組成。於纖絲上施加電能以產生電子。該纖絲亦作為陰極,使得於陽極及纖絲之間產生電位差,生成將存在於離子來源艙中之氣體離子化的電漿。
CO及預先混合之稀釋劑Xe+H2混合物(15vol% Xe,其餘H2)分別使用個別之CO用及稀釋劑Xe+H2混合物用之負壓輸送UpTime®裝置供應。CO及稀釋劑混合物於流動管線中混合,之後導入離子來源中。控制CO及Xe+H2混合物之流率,以達到CO:Xe+H2為1.0:0.2所需體積比。CO流保持等於對照例1中CO流,以確保在離子來源內導入等量含碳氣體。
改變施加於纖絲之電能以得到不同之弧電 流。隨著弧電流改變,產生不同C+束流。如圖6所示般的在不同弧電流下測量個別的C+束流。詳言之,於三個不同弧電流設定275mA、310mA及340mA下進行實驗進行實驗。當弧電流自275mA增至310mA時,C+束流增加。當弧電流增至310mA時,束流稍微降低。平均說來,氣體混合物展現較僅有CO時低約20%之束流。
實施例證實在離子艙內導入包含控制量之CO、Xe及H2之摻雜物組成物的優點。實施例進一步證實相對C+束流有Xe敏感,且Xe/H比值應維持在控制範圍內。添加Xe可使C+束流較CO+H2增加約20%(如圖5所示)以防止C+束流較僅有CO(對照例1及圖6)時實質降低。然而,添加過量Xe可使C+束流較CO+H2降低(如圖5所示)且因而導致C+束流較僅有CO(對照例1及圖6)時明顯降低。甚者,過量Xe會非受期望的產生與漸增之弧電流的負關聯。更甚者,過量Xe會造成非受期望之沈積物形成,會縮短離子來源使用壽命。是故,本發明確認在CO及H2中添加控制量之X可產生可接受之C+束流且減少沈積物形成。本發明提供具有先前認為相互矛盾之性能特徵組合的CO-摻雜物組成物。
Figure 108144338-A0101-12-0028-1
因此,當碳植入法採用以CO為底質之摻雜物氣體來源時,觀察到本發明摻雜物氣體混合物減少離子艙中之沈積物,同時仍產生充分C+束流水平。
應瞭解本發明氣體組成物具有其他應用。例如,該氣體組成物可用於化學氣相沈積或原子層沈積方法,在適當之加工條件下改變氣體混合物化學,而造成薄膜碳層之沈積。或該氣體組成物亦可用於將金屬氧化物層還原成金屬層.舉例來說,氧化鎢可在CO及/或CF4環境下退火,將氧化鎢還原成金屬鎢層。CO作為還原氣體,自氧化鎢層抽提出氧,藉以將氧化鎢還原成元素鎢。此外,CF4之存在可藉由潛在的將氧化鎢層氟化而加速氧化還原成元素鎢,因而增進其移除速率。淨結果是氧化鎢更快的回復純鎢層的能力。
雖然已顯示並描述視為本發明特定具體實施 例者,但當然應瞭解可在不偏離本發明精神及範圍下對形式或細節作出各種修飾及改變。因此,本發明不要受限於抽提形式及其中所示之細節,亦不受限於任何小於本發明及以下申請專利範圍整體者。
100‧‧‧負壓儲存與輸送裝置
101‧‧‧儲存容器或圓筒
102‧‧‧真空啟動超壓止回閥元件
104‧‧‧端口主體
108‧‧‧毛細管
110‧‧‧閥體

Claims (4)

  1. 一種用於離子植入法之摻雜物氣體組成物,其包含:
    惰性稀釋劑氣體混合物,其包含氙(Xe)及氫(H2),其中,Xe及H2之含量為有效量,該有效量係Xe:H2的體積比為約0.02至約0.20;以及
    以碳為底質之材料,含量為(Xe+H2):(以碳為底質之材料)之體積比在約0.10至約0.30的範圍;
    其中,該摻雜物氣體組成物之特徵為實質上不存在CO2。
  2. 如申請專利範圍第1項之摻雜物氣體組成物,其中,該摻雜物氣體組成物係位於離子來源艙上游。
  3. 如申請專利範圍第1項之摻雜物氣體組成物,其中,該摻雜物氣體組成物係位於離子來源艙內。
  4. 一種分散摻雜物氣體組成物以用於離子植入的方法,其包含:
    將一或多種含碳之摻雜物氣體導入離子來源艙內;
    將稀釋劑氣體組成物導入離子來源艙內,Xe:H2的體積比係約0.02至約0.20;
    將一或多種含碳之摻雜物氣體來源離子化以產生碳離子,其中,該一或多種含碳之摻雜物氣體來源之特徵為實質上不存在CO2;以及
    將碳離子植入基材內。
TW108144338A 2012-12-21 2013-12-23 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送 TW202014375A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261745124P 2012-12-21 2012-12-21
US61/745,124 2012-12-21
US201361820873P 2013-05-08 2013-05-08
US61/820,873 2013-05-08

Publications (1)

Publication Number Publication Date
TW202014375A true TW202014375A (zh) 2020-04-16

Family

ID=49956452

Family Applications (3)

Application Number Title Priority Date Filing Date
TW102147760A TWI632109B (zh) 2012-12-21 2013-12-23 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送
TW106137804A TWI680098B (zh) 2012-12-21 2013-12-23 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送
TW108144338A TW202014375A (zh) 2012-12-21 2013-12-23 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW102147760A TWI632109B (zh) 2012-12-21 2013-12-23 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送
TW106137804A TWI680098B (zh) 2012-12-21 2013-12-23 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送

Country Status (8)

Country Link
US (2) US9552990B2 (zh)
EP (1) EP2936540B1 (zh)
JP (1) JP2016511504A (zh)
KR (2) KR102400427B1 (zh)
CN (2) CN108675273A (zh)
SG (1) SG11201504167RA (zh)
TW (3) TWI632109B (zh)
WO (1) WO2014100621A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100621A1 (en) * 2012-12-21 2014-06-26 Praxair Technology, Inc. Storage and sub-atmospheric delivery of dopant compositions for carbon ion implantation
US9922800B2 (en) * 2014-01-17 2018-03-20 Taiwan Semiconductor Manufacturing Co., Ltd System and method for generating ions in an ion source
CN104377122A (zh) * 2014-11-17 2015-02-25 上海华力微电子有限公司 一种碳离子注入方法
US9909670B2 (en) * 2015-03-04 2018-03-06 Praxair Technology, Inc. Modified vacuum actuated valve assembly and sealing mechanism for improved flow stability for fluids sub-atmospherically dispensed from storage and delivery systems
WO2016183221A1 (en) * 2015-05-12 2016-11-17 Entegris, Inc. Valve assemblies and fluid storage and dispensing packages comprising same
KR20170004381A (ko) 2015-07-02 2017-01-11 삼성전자주식회사 불순물 영역을 포함하는 반도체 장치의 제조 방법
JP2021524648A (ja) 2018-05-17 2021-09-13 インテグリス・インコーポレーテッド イオン注入システムのための四フッ化ゲルマニウムと水素の混合物
US11143329B2 (en) * 2018-09-13 2021-10-12 Entegris, Inc. Valve system with position indicator
US20200203127A1 (en) * 2018-12-20 2020-06-25 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Systems and methods for storage and supply of f3no-free fno gases and f3no-free fno gas mixtures for semiconductor processes
US10923306B2 (en) * 2019-03-13 2021-02-16 Applied Materials, Inc. Ion source with biased extraction plate
US11600473B2 (en) 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
TW202113267A (zh) * 2019-09-05 2021-04-01 美商紐麥特科技公司 用於自儲存容器分配氣體之方法及設備
IL297179A (en) * 2020-05-11 2022-12-01 Praxair Technology Inc Storage and delivery of materials containing antimony to ion attractors
CN118382774A (zh) * 2021-12-01 2024-07-23 恩特格里斯公司 压力感测一体式装置
KR20240110871A (ko) * 2021-12-01 2024-07-16 엔테그리스, 아이엔씨. 압력 감지 통합 디바이스
CN117945368A (zh) * 2024-03-18 2024-04-30 北京石油化工工程有限公司 一种液化天然气闪蒸气无氧脱氢的氦气回收方法与系统

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488112B1 (en) * 1990-11-30 1994-08-03 Central Glass Company, Limited Method of forming thin film of amorphous silicon by plasma CVD
US6132492A (en) 1994-10-13 2000-10-17 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same
US6511760B1 (en) 1998-02-27 2003-01-28 Restek Corporation Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating
US6101816A (en) 1998-04-28 2000-08-15 Advanced Technology Materials, Inc. Fluid storage and dispensing system
US6215125B1 (en) * 1998-09-16 2001-04-10 International Business Machines Corporation Method to operate GEF4 gas in hot cathode discharge ion sources
US6464891B1 (en) * 1999-03-17 2002-10-15 Veeco Instruments, Inc. Method for repetitive ion beam processing with a carbon containing ion beam
US6797189B2 (en) * 1999-03-25 2004-09-28 Hoiman (Raymond) Hung Enhancement of silicon oxide etch rate and nitride selectivity using hexafluorobutadiene or other heavy perfluorocarbon
US20070042580A1 (en) * 2000-08-10 2007-02-22 Amir Al-Bayati Ion implanted insulator material with reduced dielectric constant
US20040000339A1 (en) * 2002-07-01 2004-01-01 Heiderman Douglas Charles Multiple dispensing check valve delivery system
US7494530B2 (en) 2002-12-10 2009-02-24 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US7063097B2 (en) * 2003-03-28 2006-06-20 Advanced Technology Materials, Inc. In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration
JP2004356179A (ja) * 2003-05-27 2004-12-16 Sony Corp ドライエッチング方法及びその装置
GB2412488B (en) 2004-03-26 2007-03-28 Applied Materials Inc Ion sources
US7312162B2 (en) * 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7586109B2 (en) 2007-01-25 2009-09-08 Varian Semiconductor Equipment Associates, Inc. Technique for improving the performance and extending the lifetime of an ion source with gas dilution
US7655931B2 (en) 2007-03-29 2010-02-02 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source with gas mixing
JP2011512015A (ja) * 2008-02-11 2011-04-14 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 半導体処理システムにおけるイオン源の洗浄
US9174847B2 (en) * 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US7905247B2 (en) * 2008-06-20 2011-03-15 Praxair Technology, Inc. Vacuum actuated valve for high capacity storage and delivery systems
US20100032639A1 (en) 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US7973293B2 (en) * 2009-01-09 2011-07-05 Taiwan Semiconductor Manufacturing Co., Ltd. Implantation quality improvement by xenon/hydrogen dilution gas
US20110021011A1 (en) * 2009-07-23 2011-01-27 Advanced Technology Materials, Inc. Carbon materials for carbon implantation
SG10201406528PA (en) * 2009-10-27 2014-12-30 Advanced Tech Materials Ion implantation system and method
US8350236B2 (en) * 2010-01-12 2013-01-08 Axcelis Technologies, Inc. Aromatic molecular carbon implantation processes
TWI585042B (zh) * 2010-02-26 2017-06-01 恩特葛瑞斯股份有限公司 用以增進離子植入系統中之離子源的壽命及性能之方法與設備
US8779383B2 (en) * 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US8598020B2 (en) * 2010-06-25 2013-12-03 Applied Materials, Inc. Plasma-enhanced chemical vapor deposition of crystalline germanium
US9984855B2 (en) 2010-11-17 2018-05-29 Axcelis Technologies, Inc. Implementation of co-gases for germanium and boron ion implants
US9805912B2 (en) 2010-11-17 2017-10-31 Axcelis Technologies, Inc. Hydrogen COGas for carbon implant
US8431453B2 (en) * 2011-03-31 2013-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma doping to reduce dielectric loss during removal of dummy layers in a gate structure
US8779395B2 (en) 2011-12-01 2014-07-15 Axcelis Technologies, Inc. Automatic control system for selection and optimization of co-gas flow levels
US9147550B2 (en) * 2012-12-03 2015-09-29 Advanced Ion Beam Technology, Inc. Gas mixture method and apparatus for generating ion beam
WO2014100621A1 (en) * 2012-12-21 2014-06-26 Praxair Technology, Inc. Storage and sub-atmospheric delivery of dopant compositions for carbon ion implantation

Also Published As

Publication number Publication date
SG11201504167RA (en) 2015-07-30
TW201808789A (zh) 2018-03-16
KR20190031594A (ko) 2019-03-26
US20140179090A1 (en) 2014-06-26
EP2936540B1 (en) 2019-02-13
TW201442948A (zh) 2014-11-16
WO2014100621A1 (en) 2014-06-26
KR102400427B1 (ko) 2022-05-19
EP2936540A1 (en) 2015-10-28
JP2016511504A (ja) 2016-04-14
US9552990B2 (en) 2017-01-24
CN104871286B (zh) 2018-06-26
US20170032967A1 (en) 2017-02-02
TWI632109B (zh) 2018-08-11
KR102208866B1 (ko) 2021-01-28
TWI680098B (zh) 2019-12-21
CN104871286A (zh) 2015-08-26
KR20150096767A (ko) 2015-08-25
CN108675273A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
TWI632109B (zh) 用於碳離子植入法中之摻雜物組成物之儲存及負壓輸送
TWI748939B (zh) 用以改善硼離子植入期間之離子束電流及性能的含硼摻雜組成物、系統、及其使用方法
CN108796446B (zh) 用于富硒离子注入的供应源和方法
US9165773B2 (en) Aluminum dopant compositions, delivery package and method of use
EP3267470A2 (en) Carbon dopant gas and co-flow for implant beam and source life performance improvement
KR20230163581A (ko) 이온 주입 시스템용 사플루오르화게르마늄과 수소 혼합물
EP2677057A1 (en) Methods for extending ion source life and improving ion source performance during carbon implantation
US8603363B1 (en) Compositions for extending ion source life and improving ion source performance during carbon implantation
EP3188214A1 (en) Boron-containing dopant compositions, systems and methods of use thereof for improving ion beam current and performance during boron ion implantation