TW202013782A - Micro led device for enhancing production yield of mass transfer - Google Patents

Micro led device for enhancing production yield of mass transfer Download PDF

Info

Publication number
TW202013782A
TW202013782A TW107134344A TW107134344A TW202013782A TW 202013782 A TW202013782 A TW 202013782A TW 107134344 A TW107134344 A TW 107134344A TW 107134344 A TW107134344 A TW 107134344A TW 202013782 A TW202013782 A TW 202013782A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor material
protective layer
material layer
opening
Prior art date
Application number
TW107134344A
Other languages
Chinese (zh)
Other versions
TWI680602B (en
Inventor
丁肇誠
郭浩中
Original Assignee
丁肇誠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丁肇誠 filed Critical 丁肇誠
Priority to TW107134344A priority Critical patent/TWI680602B/en
Application granted granted Critical
Publication of TWI680602B publication Critical patent/TWI680602B/en
Publication of TW202013782A publication Critical patent/TW202013782A/en

Links

Images

Abstract

The present invention provides a micro LED device sequentially coated with a first protection layer and a second protection layer thereon, so as to enhance production yield of mass transfer of an amount of the micro LED devices. Particularly, the first protection layer and the second protection layer make the micro LED device possesses excellent stress withstanding capability. Therefore, as a substrate transfer process is applied to single one micro LED device or a mass transfer process is applied to many micro LED devices, the micro LED device(s) is not leaded to surface distortion or die crack by the stress induced during the transfer process because of the protection of the two protection layers. On the other hand, in order to guarantee that the micro LED device make light emission normally, the present invention particularly lets the refractive index of the second protection layer be less than that of the first protection layer, and also lets the refractive index of the first protection layer be less than that of the second semiconductor material layer.

Description

可提升巨量轉移良率的微發光二極體Microluminescent diode capable of increasing mass transfer yield

本發明係關於發光二極體(Light-emitting diode, LED)的技術領域,尤指一種可提升巨量轉移良率的微發光二極體。The present invention relates to the technical field of light-emitting diodes (LEDs), and particularly refers to a micro-light-emitting diode that can increase the yield of a large amount of transfer.

發光二極體(Light-Emitting Diode, LED)為目前廣泛應用之發光元件,由於其具有體積小、使用壽命長等優點,因而被廣泛地應用於人類的日常生活之中。一般發光二極體的晶粒的對角線長度係介於200微米至300微米之間。另一方面,晶粒的對角線長度介於50微米至60微米之間的發光二極體被稱為次毫米發光二極體(Mini LED),而晶粒的對角線長度小於50微米的發光二極體則被稱作微發光二極體(Micro LED, μLED)。Light-Emitting Diode (LED) is currently widely used as a light-emitting element. Because of its small size and long service life, it is widely used in human daily life. Generally, the diagonal length of the crystal grains of the light-emitting diode is between 200 microns and 300 microns. On the other hand, the light-emitting diode with a diagonal length between 50 microns and 60 microns is called a sub-millimeter light-emitting diode (Mini LED), and the diagonal length of the die is less than 50 microns The light-emitting diode is called Micro LED (μLED).

圖1係顯示現有的微發光二極體顯示面板。目前的技術已經可以將微發光二極體應用於顯示面板(或模組)之中,用以作為一個子畫素(Sub-pixel)。例如,於圖1之中,一個紅光微發光二極體RLED’、一個綠光微發光二極體GLED’與一個藍光微發光二極體BLED’可構成微發光二極體顯示面板1’的一個畫素(pixel)。該微發光二極體顯示面板1’更包括一基板10’,且該基板10’的表面形成有複數個電性連接墊101’,用以電性連接該複數個紅光微發光二極體RLED’、 該複數個綠光微發光二極體GLED’與該複數個藍光微發光二極體BLED’。一般而言,基板10’更包括驅動電路,用以控制每個子畫素或者每個畫素的顯示。值得注意的是,解析度為4K2K的顯示面板1’具有4096×2160個畫素;也就是說,解析度為4K2K的顯示面板1’會至少包含2,488萬顆微發光二極體。由此可知,如何將大量的微發光二極體排列至該基板10’之上,成為微發光二極體顯示面板1’最主要的製造方面的問題。FIG. 1 shows a conventional micro-luminous diode display panel. The current technology can already use micro-luminescent diodes in display panels (or modules) as a sub-pixel. For example, in FIG. 1, a red light-emitting diode RLED', a green light-emitting diode GLED' and a blue light-emitting diode BLED' can constitute a micro-light emitting diode display panel 1' One pixel (pixel). The micro-luminescence diode display panel 1'further includes a substrate 10', and a plurality of electrical connection pads 101' are formed on the surface of the substrate 10' for electrically connecting the plurality of red-light micro-luminescence diodes RLED', the plurality of green light-emitting diodes GLED' and the plurality of blue light-emitting diodes BLED'. Generally speaking, the substrate 10' further includes a driving circuit for controlling the display of each sub-pixel or each pixel. It is worth noting that the display panel 1'with a resolution of 4K2K has 4096 × 2160 pixels; that is, the display panel 1'with a resolution of 4K2K will contain at least 24.88 million micro-emitting diodes. From this, it can be seen that how to arrange a large number of microluminescent diodes on the substrate 10' becomes a major manufacturing problem of the microluminescent diode display panel 1'.

透過高準度的設備將巨量的微米等級的LED晶粒佈置在一基板或者一電路板之上,此一程序被稱為巨量轉移(Mass transfer)。美國專利公開號2018/0053742A1即揭示一種巨量轉移電子元件之方法。對應地,圖2A、圖2B與圖2C係顯示美國專利公開號2018/0053742A1所揭示的巨量轉移電子元件之方法的製程示意圖。根據美國專利公開號2018/0053742A1之揭示內容,所述巨量轉移電子元件之方法包括多個製程步驟。首先,於步驟1之中,於一基板112’的表面上製作出呈陣列式排列的複數個LED晶粒200’(如圖2A所示)。接著,於步驟2之中,將一暫時性固定膜120’貼附至該基板112’的底面(如圖2A所示),例如:藍膜(Blue tape)。A large amount of micron-level LED dies are arranged on a substrate or a circuit board through a high-precision device. This process is called mass transfer. U.S. Patent Publication No. 2018/0053742A1 discloses a method for mass transfer of electronic components. Correspondingly, FIG. 2A, FIG. 2B and FIG. 2C are process schematic diagrams showing the method of mass transfer of electronic components disclosed in US Patent Publication No. 2018/0053742A1. According to the disclosure of US Patent Publication No. 2018/0053742A1, the method for mass transfer of electronic components includes multiple process steps. First, in step 1, a plurality of LED dies 200' arranged in an array are formed on the surface of a substrate 112' (as shown in FIG. 2A). Next, in step 2, a temporary fixing film 120' is attached to the bottom surface of the substrate 112' (as shown in FIG. 2A), such as a blue tape (Blue tape).

繼續地,於步驟3之中,係利用雷射蝕刻設備於基板112’的表面上製作出複數個刻痕(如圖2B所示);之後,再將基板112’翻轉過來,使得基板112’的底面朝上(如圖2B所示)。接著,於步驟4之中,係使用切割機沿著刻痕切割該基板112’進而獲得複數個子基板113’(如圖2C所示)。值得注意的是,每個子基板113’的表面上皆具有複數個LED晶粒200’。繼續地,使用真空吸附機將子基板113’移動至一承載基板BS’之上,使得每個LED晶粒200’的兩個電極皆與預設於承載基板BS’的表面之上的接合電極BE’達成電性連接。Continuously, in step 3, laser etching equipment is used to make a plurality of scores on the surface of the substrate 112' (as shown in FIG. 2B); afterwards, the substrate 112' is turned over again, so that the substrate 112' The bottom of the is facing up (as shown in Figure 2B). Next, in step 4, the substrate 112' is cut along the score using a dicing machine to obtain a plurality of sub-substrates 113' (as shown in FIG. 2C). It is worth noting that each sub-substrate 113' has a plurality of LED dies 200' on its surface. Continue to use a vacuum suction machine to move the sub-substrate 113' onto a carrier substrate BS', so that the two electrodes of each LED die 200' and the bonding electrode preset on the surface of the carrier substrate BS' BE' reached an electrical connection.

於製造廠內實際使用過前述巨量轉移電子元件之方法的半導體元件工程師應該都知道,在執行基板112’的翻轉處理的過程中,有部分的LED晶粒200’因受到外來應力的作用而損壞。並且,使用真空吸附機移動子基板113’的過程中,又會有部分的LED晶粒200’因受到外來應力的作用而損壞。值得特別說明的是,承載基板BS’通常為印刷電路板或軟性電路板。因此,當LED晶粒200’被巨量轉移至軟性電路板之後,軟性電路板的彎折或彎曲也會施加應力至設於其上的複數個LED晶粒200’, 因而造成部分的LED晶粒200’的損壞。Semiconductor component engineers who have actually used the aforementioned method of mass-transferring electronic components in the manufacturing plant should be aware that during the process of performing the flipping process of the substrate 112', some of the LED die 200' are subjected to external stress. damage. Moreover, during the process of moving the sub-substrate 113' using a vacuum suction machine, part of the LED die 200' may be damaged due to external stress. It is worth noting that the carrier substrate BS' is usually a printed circuit board or a flexible circuit board. Therefore, when the LED die 200' is transferred to the flexible circuit board in a large amount, the bending or bending of the flexible circuit board will also apply stress to the plurality of LED die 200' provided thereon, thus causing part of the LED die 200' Grain 200' damage.

由上述說明可知,現有技術雖然已經能夠藉由藍膜與真空吸附機的使用將巨量的微米等級的LED晶粒佈置在一軟性基板或者一印刷電路板之上,然而在巨量轉移的過程中卻造成可觀的LED晶粒的損傷或毀損。顯然地,這樣的巨量轉移方法仍舊於實務應用上顯示出缺陷與不足;有鑑於此,本案之發明人係極力加以研究發明,而終於研發完成本發明之一種可提升巨量轉移良率的微發光二極體。It can be seen from the above description that although the prior art has been able to arrange a huge amount of micron-level LED die on a flexible substrate or a printed circuit board through the use of a blue film and a vacuum adsorption machine, the process of mass transfer However, it causes considerable damage or damage to the LED die. Obviously, such a massive transfer method still shows defects and deficiencies in practical applications; in view of this, the inventor of this case tried his best to research and invent, and finally developed a method that can improve the yield of massive transfer. Microluminescent diode.

本發明之主要目的在於提出一種可提升巨量轉移良率的微發光二極體。特別地,本發明係於一微發光二極體的表面覆上一第一保護層與一第二保護層,使得表面覆有第一保護層與第二保護層的微發光二極體能夠表現出較高的外來應力之耐受程度。如此,單一微發光二極體在進行基板轉移或多個微發光二極體在進行巨量轉移之時,其表層或其它區域便不會因受到外來應力的作用而導致變形、破裂或崩壞。同時,為了避免第一保護層與第二保護層會影響微發光二極體的正常出光,本發明特別令第一保護層的折射率小於第二半導體材料層,並同時令第二保護層折射率小於第一保護層。The main purpose of the present invention is to propose a micro-luminescent diode that can increase the yield of a large amount of transfer. In particular, the present invention is to coat the surface of a micro-luminescent diode with a first protective layer and a second protective layer, so that the micro-luminescent diode covered with the first protective layer and the second protective layer can express Out of a higher degree of tolerance to external stress. In this way, when a single microluminescent diode is transferred to a substrate or a plurality of microluminescent diodes are transferred to a large amount, its surface layer or other regions will not be deformed, cracked or broken due to external stress . At the same time, in order to prevent the first protective layer and the second protective layer from affecting the normal light emission of the microluminescent diode, the present invention specifically makes the refractive index of the first protective layer smaller than that of the second semiconductor material layer, and at the same time refracts the second protective layer The rate is less than the first protective layer.

為了達成上述本發明之主要目的,本案發明人係提供所述可提升巨量轉移良率的微發光二極體的一實施例,係包括: 一基板; 一第一半導體材料層,係形成於該基板之上; 一主動層,係形成於該第一半導體材料層之上; 一第二半導體材料層,係形成於該主動層之上; 一第一保護層,係形成於該第二半導體材料層之上,並具有一第一開口與一第二開口;其中,該第一保護層係同時覆蓋該第二半導體材料層的側面、該主動層的側面、以及該第一半導體材料層的側面與部分表面; 一第二保護層,係形成於該第一保護層之上,並具有對應於該第一開口的一第三開口與對應於該第二開口的一第四開口; 一第一電極,係透過該第二開口與該第四開口而形成於該第一半導體材料層之上;以及 一第二電極,係透過該第一開口與該第三開口而形成於該第二半導體材料層之上; 其中,該第一保護層的折射率係小於該第二半導體材料層,且該第二保護層折射率係小於該第一保護層。In order to achieve the above-mentioned main objective of the present invention, the inventor of the present invention provides an embodiment of the micro-luminescent diode that can increase the mass transfer yield, which includes: a substrate; a first semiconductor material layer formed on On the substrate; an active layer formed on the first semiconductor material layer; a second semiconductor material layer formed on the active layer; a first protective layer formed on the second semiconductor Above the material layer, and has a first opening and a second opening; wherein the first protective layer covers the side of the second semiconductor material layer, the side of the active layer, and the first semiconductor material layer at the same time Side and part of the surface; a second protective layer formed on the first protective layer and having a third opening corresponding to the first opening and a fourth opening corresponding to the second opening; a first An electrode formed on the first semiconductor material layer through the second opening and the fourth opening; and a second electrode formed on the second semiconductor through the first opening and the third opening Above the material layer; wherein, the refractive index of the first protective layer is smaller than the second semiconductor material layer, and the refractive index of the second protective layer is smaller than the first protective layer.

並且,為了達成上述本發明之主要目的,本案發明人係同時提供所述可提升巨量轉移良率的微發光二極體的另一實施例,係包括: 一基板; 一第一布拉格反射鏡,係形成於該基板之上; 一第一半導體材料層,係形成於該第一布拉格反射鏡之上; 一主動層,係形成於該第一半導體材料層之上; 一第二半導體材料層,係形成於該主動層之上;以及 一第二布拉格反射鏡,係形成於該第二半導體材料層之上; 一第一保護層,係覆蓋該第二布拉格反射鏡的表面與側面、該第二半導體材料層的表面與側面、該主動層的側面、該第一半導體材料層的側面、與該第一布拉格反射鏡的側面,並具有一第一開口與一第二開口; 一第二保護層,係形成於該第一保護層之上,並具有對應於該第一開口的一第三開口與對應於該第二開口的一第四開口; 一第一電極,係透過該第二開口與該第四開口而形成於該第一半導體材料層之上;以及 一第二電極,係透過該第一開口與該第三開口而形成於該第二半導體材料層之上; 其中,該第一保護層的折射率係小於該第二半導體材料層,且該第二保護層折射率係小於該第一保護層。In addition, in order to achieve the above-mentioned main objective of the present invention, the inventor of the present invention also provides another embodiment of the microluminescent diode that can improve the mass transfer yield, which includes: a substrate; a first Bragg reflector Is formed on the substrate; a first semiconductor material layer is formed on the first Bragg reflector; an active layer is formed on the first semiconductor material layer; a second semiconductor material layer Is formed on the active layer; and a second Bragg reflector is formed on the second semiconductor material layer; a first protective layer covers the surface and sides of the second Bragg reflector, the The surface and sides of the second semiconductor material layer, the side of the active layer, the side of the first semiconductor material layer, and the side of the first Bragg reflector, and have a first opening and a second opening; a second A protective layer is formed on the first protective layer, and has a third opening corresponding to the first opening and a fourth opening corresponding to the second opening; a first electrode penetrates through the second An opening and the fourth opening are formed on the first semiconductor material layer; and a second electrode is formed on the second semiconductor material layer through the first opening and the third opening; wherein, the The refractive index of the first protective layer is smaller than that of the second semiconductor material layer, and the refractive index of the second protective layer is smaller than that of the first protective layer.

為了能夠更清楚地描述本發明所提出之一種可提升巨量轉移良率的微發光二極體,以下將配合圖式,詳盡說明本發明之較佳實施例。In order to be able to more clearly describe the micro-luminescent diode proposed by the present invention, which can increase the mass transfer yield, the following will explain the preferred embodiments of the present invention in detail with reference to the drawings.

第一實施例First embodiment

請參閱圖3,係顯示本發明之一種可提升巨量轉移良率的微發光二極體的第一實施例的示意性立體圖,並且,圖4係顯示本發明之可提升巨量轉移良率的微發光二極體的第一剖視圖。熟悉發光二極體的基礎元件設計與製作的工程師應該可透過圖3與圖4推知,本發明之可提升巨量轉移良率的微發光二極體1(下文簡稱“微發光二極體”)的第一實施例係包括了標準的發光二極體的基礎結構。如圖3與圖4所示,此新式微發光二極體1係於結構上包括:一基板10、形成於該基板10之上的一第一半導體材料層11、形成於該第一半導體材料層11之上的一主動層12、形成於該主動層12之上的 一第二半導體材料層13、一第一保護層14、 一第二保護層15、一第一電極16、以及一第二電極17。Please refer to FIG. 3, which is a schematic perspective view of a first embodiment of a micro-luminescent diode of the present invention that can increase the mass transfer yield, and FIG. 4 shows the invention can improve the mass transfer yield. First cross-sectional view of a micro-luminescent diode. Engineers familiar with the design and manufacture of basic components of light-emitting diodes should be able to infer from FIG. 3 and FIG. 4 that the micro-luminescent diode 1 of the present invention that can increase the mass transfer yield (hereinafter referred to as "micro-luminescent diode") ) The first embodiment includes the basic structure of a standard light-emitting diode. As shown in FIGS. 3 and 4, the new type micro-luminescent diode 1 includes: a substrate 10, a first semiconductor material layer 11 formed on the substrate 10, and a first semiconductor material formed on the substrate 10 An active layer 12 on the layer 11, a second semiconductor material layer 13 formed on the active layer 12, a first protective layer 14, a second protective layer 15, a first electrode 16, and a first二electrode 17.

特別地,該第一保護層14係形成於該第二半導體材料層13之上,並具有一第一開口與一第二開口。並且,圖4係顯示第一保護層14係同時覆蓋該第二半導體材料層13的側面、該主動層12的側面、以及該第一半導體材料層11的側面與部分表面。於此,必須加以解釋的是,圖3僅顯示第一保護層14僅覆蓋該第二半導體材料層13的表面,主要目的在於露出微發光二極體1的每一個材料層。另一方面,第二保護層15係形成於該第一保護層14之上,並具有對應於該第一開口的一第三開口與對應於該第二開口的一第四開口。如圖3與圖4所示,第一電極16係透過該第二開口與該第四開口而形成於該第一半導體材料層11之上,且第二電極17係透過該第一開口與該第三開口而形成於該第二半導體材料層13之上。當然,隨著發光顏色的不同,第一半導體材料層11、主動層12與第二半導體材料層13的製程材料的選用也會跟著不同。傳統上,GaP、GaAsP、及AlGaAs為主動層12的主要材料,使得主動層12能夠發出波長範圍介於580nm至740nm之間的可見光。然而,隨著有機金屬化學氣相沉積(metal-organic chemical vapor deposition, MOCVD)製程技術越趨進步,氮化鎵(GaN)、氮化鋁鎵(Alx Ga1-x N)、或氮化銦鎵(Inx Ga1-x N)於是成為主動層12的主要材料。In particular, the first protective layer 14 is formed on the second semiconductor material layer 13 and has a first opening and a second opening. 4 shows that the first protective layer 14 covers the side of the second semiconductor material layer 13, the side of the active layer 12, and the side and part of the surface of the first semiconductor material layer 11. Here, it must be explained that FIG. 3 only shows that the first protective layer 14 only covers the surface of the second semiconductor material layer 13, and the main purpose is to expose each material layer of the microluminescent diode 1. On the other hand, the second protective layer 15 is formed on the first protective layer 14 and has a third opening corresponding to the first opening and a fourth opening corresponding to the second opening. As shown in FIGS. 3 and 4, the first electrode 16 is formed on the first semiconductor material layer 11 through the second opening and the fourth opening, and the second electrode 17 is passed through the first opening and the The third opening is formed on the second semiconductor material layer 13. Of course, the selection of the process materials for the first semiconductor material layer 11, the active layer 12 and the second semiconductor material layer 13 will be different along with the different emission colors. Traditionally, GaP, GaAsP, and AlGaAs are the main materials of the active layer 12, so that the active layer 12 can emit visible light with a wavelength ranging from 580nm to 740nm. However, as metal-organic chemical vapor deposition (MOCVD) process technology becomes more advanced, gallium nitride (GaN), aluminum gallium nitride (Al x Ga 1-x N), or nitride Indium gallium (In x Ga 1-x N) then becomes the main material of the active layer 12.

一般而言,包含GaN的主動層12可以發出藍色光。此外,熟悉LED晶粒(die)之設計與製造的元件工程師應該都知道,透過增加x的值(x<1)可以令包含Inx Ga1-x N的主動層12發出長波長的光。相對地,藉由增加x的值(x<1)可以令包含Alx Ga1-x N的主動層12發出短波長的光。於此,必須補充說明的是,以GaN、Alx Ga1-x N或Inx Ga1-x N製成的主動層12會於第一半導體材料層11與第二半導體材料層13之間形成單一量子井結構。因此,第一半導體材料層11與第二半導體材料層13可以視為主動層12的下包覆層(Lower cladding layer)與上包覆層(Upper cladding layer);其中,所述第一半導體材料層11之製造材料為N型氮化鎵(n-type gallium nitride, n-GaN),例如摻雜矽(Si)的氮化鎵。相反地,所述第二半導體材料層13之製造材料為P型氮化鎵(p-type gallium nitride, p-GaN),例如摻雜鎂(Mg)的氮化鎵。進一步地,也可以將主動層12設計成一個多重量子井結構,藉此方式提升電子電洞於主動層12內的復合效率。多重量子井結構可為下列任一者:氮化鎵與氮化銦鎵(Inx Ga1-x N)的多重堆疊結構、氮化鎵與氮化鋁鎵(Alx Ga1-x N)的多重堆疊結構、或氮化鋁鎵(Alx Ga1-x N)與氮化銦鎵(Inx Ga1-x N)的多重堆疊結構。In general, the active layer 12 containing GaN can emit blue light. In addition, component engineers familiar with the design and manufacture of LED dies should know that by increasing the value of x (x<1), the active layer 12 including In x Ga 1-x N can emit long-wavelength light. In contrast, by increasing the value of x (x<1), the active layer 12 including Al x Ga 1-x N can emit light of a short wavelength. Here, it must be added that the active layer 12 made of GaN, Al x Ga 1-x N or In x Ga 1-x N is between the first semiconductor material layer 11 and the second semiconductor material layer 13 Form a single quantum well structure. Therefore, the first semiconductor material layer 11 and the second semiconductor material layer 13 can be regarded as a lower cladding layer and an upper cladding layer of the active layer 12; wherein, the first semiconductor material The manufacturing material of the layer 11 is N-type gallium nitride (n-type gallium nitride, n-GaN), for example, silicon (Si) doped gallium nitride. Conversely, the second semiconductor material layer 13 is made of p-type gallium nitride (p-type gallium nitride, p-GaN), such as magnesium-doped (Mg) gallium nitride. Further, the active layer 12 can also be designed as a multiple quantum well structure, thereby improving the recombination efficiency of the electron holes in the active layer 12. The multiple quantum well structure can be any of the following: multiple stacked structures of gallium nitride and indium gallium nitride (In x Ga 1-x N), gallium nitride and aluminum gallium nitride (Al x Ga 1-x N) Multi-stack structure of aluminum gallium nitride (Al x Ga 1-x N) and indium gallium nitride (In x Ga 1-x N).

再者,該第一電極16與該第二電極17的製造材料可為下列任一者:鋁(Al)、銀(Ag)、鈦(Ti)、鎳(Ni)、金(Au)、銅(Cu)、鉻(Cr)、鉑(Pt)、前述任兩者之組合、或前述任兩者以上之組合。值得特別強調的是,本發明之技術特徵在於,藉由第一保護層14與第二保護層15所提供的保護效果,單一微發光二極體1在進行基板轉移或多個微發光二極體1在進行巨量轉移之時,其表層或其它區域便不會因受到外來應力的作用而導致變形、破裂或崩壞。特別地,為了避免第一保護層14與第二保護層15會影響主動層12所發出的光的正常出光,本發明特別令第一保護層14的折射率小於第二半導體材料層13,並同時令第二保護層15的折射率小於第一保護層14。Furthermore, the manufacturing materials of the first electrode 16 and the second electrode 17 can be any of the following: aluminum (Al), silver (Ag), titanium (Ti), nickel (Ni), gold (Au), copper (Cu), chromium (Cr), platinum (Pt), a combination of any two of the foregoing, or a combination of any two or more of the foregoing. It is worth emphasizing that the technical feature of the present invention is that, with the protective effect provided by the first protective layer 14 and the second protective layer 15, a single microluminescent diode 1 is performing substrate transfer or multiple microluminescent diodes When the body 1 is transferred in a large amount, its surface layer or other areas will not be deformed, cracked or collapsed due to the external stress. In particular, in order to prevent the first protective layer 14 and the second protective layer 15 from affecting the normal light emission of the active layer 12, the present invention specifically makes the refractive index of the first protective layer 14 smaller than the second semiconductor material layer 13, and At the same time, the refractive index of the second protective layer 15 is made smaller than that of the first protective layer 14.

由上述說明可知,表面覆有第一保護層14與第二保護層15的微發光二極體1能夠表現出較高的外來應力之耐受程度。因此,單一微發光二極體1在進行基板轉移或多個微發光二極體1在進行巨量轉移之時,其表層或其它區域便不會因受到外來應力的作用而導致變形、破裂或崩壞。當然,完成基板轉移之前,微發光二極體1的基板通常是藍寶石(Sapphire)基板或尖晶石(Spinnel)基板。值得注意的是,完成基板轉移之後,微發光二極體1的基板可能會替換成尖晶石(Spinnel) 基板、碳化矽(SiC) 基板、陶瓷基板、聚醯亞胺(Polyimide)基板、硬質印刷電路板、或軟性印刷電路板。必須補充說明的是,第一半導體材料層11與第二半導體材料層13之主要製造材料皆為氮化鎵(GaN),其折射率與晶格常數整理於下表(1)之中。 表(1)

Figure 107134344-A0304-0001
As can be seen from the above description, the micro-luminescent diode 1 whose surface is covered with the first protective layer 14 and the second protective layer 15 can exhibit a high degree of tolerance to external stress. Therefore, when a single microluminescent diode 1 is transferring a substrate or a plurality of microluminescent diodes 1 are transferring a large amount, its surface layer or other areas will not be deformed, cracked or damaged by external stress. Collapsed. Of course, before the substrate transfer is completed, the substrate of the microluminescent diode 1 is usually a sapphire substrate or a spinel substrate. It is worth noting that after the substrate transfer is completed, the substrate of the microluminescent diode 1 may be replaced with a spinel substrate, a silicon carbide (SiC) substrate, a ceramic substrate, a polyimide (Polyimide) substrate, or a hard substrate Printed circuit board, or flexible printed circuit board. It must be added that the main manufacturing materials of the first semiconductor material layer 11 and the second semiconductor material layer 13 are all gallium nitride (GaN), and their refractive indexes and lattice constants are summarized in the following table (1). Table 1)
Figure 107134344-A0304-0001

可想而知,選用第一保護層14的製程材料時,必須同時考量材料的折射率以及晶格常數。特別是,第一保護層14的製程材料的折射率必須小於GaN,且其必須由晶格常數匹配於GaN單晶材料所製成,例如:氮化鋁(AlN) 、未摻雜的氮化鎵(undoped GaN)、或氧化鋅(ZnO),這些材料的折射率與晶格常數整理於下表(2)之中。 表(2)

Figure 107134344-A0304-0002
It is conceivable that when the process material of the first protective layer 14 is selected, the refractive index and lattice constant of the material must be considered simultaneously. In particular, the refractive index of the process material of the first protective layer 14 must be smaller than that of GaN, and it must be made of lattice constant matching GaN single crystal material, such as aluminum nitride (AlN), undoped nitride Gallium (undoped GaN), or zinc oxide (ZnO), the refractive index and lattice constant of these materials are collated in the following table (2). Table 2)
Figure 107134344-A0304-0002

必須補充說明的是,第一保護層14的製造材料也可以選用晶格常數接近整數倍於GaN的單晶材料,例如:II-VI族半導體化合物的硫化鋅(ZnS)與II-VI族半導體化合物的硒化鋅(ZnSe)。前述材料的折射率與晶格常數整理於下表(3)之中。 表(3)

Figure 107134344-A0304-0003
It must be added that the manufacturing material of the first protective layer 14 can also be a single crystal material with a lattice constant close to an integer multiple of GaN, for example: zinc sulfide (ZnS) of group II-VI semiconductor compound and group II-VI semiconductor Compound of zinc selenide (ZnSe). The refractive index and lattice constant of the aforementioned materials are summarized in the following table (3). table 3)
Figure 107134344-A0304-0003

另一方面,該第二保護層15的製造材料可為下列任一者:氧化鋁(Al2 O3 )、氧化鉿(HfO2 )、氧化鎂(MgO)、氧化鋅(ZnO)、或氧化釔(Y2 O3 )。前述材料的折射率整理於下表(4)之中。 表(4)

Figure 107134344-A0304-0004
On the other hand, the manufacturing material of the second protective layer 15 may be any one of the following: aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), magnesium oxide (MgO), zinc oxide (ZnO), or oxide Yttrium (Y 2 O 3 ). The refractive indexes of the aforementioned materials are summarized in the following table (4). Table 4)
Figure 107134344-A0304-0004

繼續地參閱圖5,係顯示本發明之可提升巨量轉移良率的微發光二極體的第二剖視圖,比較圖4可以發現,圖5所示的微發光二極體1更包括了:形成於該第二保護層15與該第一保護層14的一緩衝層BF。為了進一步地提升微發光二極體1對於外來應力的耐受力,本發明於該第二保護層15與該第一保護層14之間插入一緩衝層BF。值得注意的是,若第二保護層15為一第一金屬氧化物層,則可定義該緩衝層BF為一第二金屬氧化物層;並且,組成該緩衝層BF的一第二金屬元素的原子之大小係小於組成該第二保護層15的一第一金屬元素的原子之大小。其中,第一金屬氧化物層與第二金屬氧化物層的示範性材料整理於下表(5)之中。 表(5)

Figure 107134344-A0304-0005
Continuing to refer to FIG. 5, which is a second cross-sectional view of the microluminescent diode of the present invention that can increase the mass transfer yield. Comparing FIG. 4, it can be found that the microluminescent diode 1 shown in FIG. 5 further includes: A buffer layer BF formed on the second protective layer 15 and the first protective layer 14. In order to further improve the tolerance of the microluminescent diode 1 to external stress, the present invention inserts a buffer layer BF between the second protective layer 15 and the first protective layer 14. It is worth noting that if the second protective layer 15 is a first metal oxide layer, the buffer layer BF can be defined as a second metal oxide layer; and, a second metal element constituting the buffer layer BF The size of the atoms is smaller than that of a first metal element constituting the second protective layer 15. The exemplary materials of the first metal oxide layer and the second metal oxide layer are listed in the following table (5). table 5)
Figure 107134344-A0304-0005

第二實施例Second embodiment

請參閱圖6,係顯示本發明之一種可提升巨量轉移良率的微發光二極體的第二實施例的第一剖視圖。熟悉發光二極體的基礎元件設計與製作的工程師應該可透過圖6推知,本發明之可提升巨量轉移良率的微發光二極體1(下文簡稱“微發光二極體”)的第二實施例係包括了垂直共振腔面射雷射(Vertical cavity surface emitting laser, VCSEL)的基礎結構。如圖6,此新式微發光二極體1係於結構上包括:一基板20、形成於該基板20之上的一第一布拉格反射鏡21、形成於該第一布拉格反射鏡21之上的一第一半導體材料層22、形成於該第一半導體材料層22之上的一主動層23、形成於該主動層23之上的一第二半導體材料層24、形成於該第二半導體材料層24之上的一第二布拉格反射鏡25、一第一保護層26、一第二保護層27、一第一電極28、以及一第二電極29。Please refer to FIG. 6, which is a first cross-sectional view of a second embodiment of a microluminescent diode of the present invention that can increase the mass transfer yield. Engineers familiar with the design and manufacture of basic components of light-emitting diodes should be able to deduce from FIG. 6 that the present invention can improve the mass transfer yield of microluminescent diode 1 (hereinafter referred to as "microluminescent diode"). The second embodiment includes a basic structure of a vertical cavity surface emitting laser (VCSEL). As shown in FIG. 6, the structure of the new micro-luminescent diode 1 includes: a substrate 20, a first Bragg reflector 21 formed on the substrate 20, and a first Bragg reflector 21 formed on the substrate 20 A first semiconductor material layer 22, an active layer 23 formed on the first semiconductor material layer 22, a second semiconductor material layer 24 formed on the active layer 23, formed on the second semiconductor material layer A second Bragg mirror 25, a first protective layer 26, a second protective layer 27, a first electrode 28, and a second electrode 29 above the 24.

一般而言,第一布拉格反射鏡(Bragg reflection mirror, DBR)21通常為n型DBR由AlX Ga1-X As/Al1-Y GaY As重複堆疊而成,其中,n型DBR可透過對未摻雜DBR進行矽(Si)摻雜之後獲得。相反地,第二布拉格反射鏡25則為p型DBR,也是由AlX Ga1-X As/Al1-Y GaY As重複堆疊而成,其中,p型DBR可透過對未摻雜DBR進行碳(C)摻雜之後獲得。另一方面,第一半導體材料層22與第二半導體材料層24分別做為主動層23(亦即,多重量子井)的下包覆層(Lower cladding layer)與上包覆層(Upper cladding layer),其製造材料分別為n型的III-V族半導體複合物與p型的III-V族半導體複合物。Generally speaking, the first Bragg reflection mirror (DBR) 21 is usually an n-type DBR formed by repeatedly stacking Al X Ga 1-X As/Al 1-Y Ga Y As, wherein the n-type DBR is transparent Obtained after doping silicon (Si) with undoped DBR. Conversely, the second Bragg mirror 25 is a p-type DBR, which is also formed by repeatedly stacking Al X Ga 1-X As/Al 1-Y Ga Y As, where p-type DBR can be carried out by undoped DBR Obtained after carbon (C) doping. On the other hand, the first semiconductor material layer 22 and the second semiconductor material layer 24 serve as a lower cladding layer and an upper cladding layer of the active layer 23 (ie, multiple quantum wells), respectively ), the manufacturing materials are n-type group III-V semiconductor composite and p-type group III-V semiconductor composite.

繼續地參閱圖7與圖8,係分別顯示本發明之可提升巨量轉移良率的微發光二極體的第二實施例的第二剖視圖與第三剖視圖。本發明的技術特徵在於,於垂直共振腔面射雷射元件(VCSEL)的表面上依序形成一第一保護層26與一第二保護層27,並特別令該第一保護層26的折射率小於該第二半導體材料層24,且同時令該第二保護層27的折射率小於該第一保護層26。顯然,本發明並不限定微發光二極體1的第二實施例(即,VCSEL)必須完全相同於圖6所示結構。舉例而言,圖7顯示第二半導體材料層24與主動層23之間係形成有一(環狀)氧化層ACO,該氧化層ACO係用以界定出一出光口(light outcoupling aperture)。Continuing to refer to FIG. 7 and FIG. 8, they respectively show a second cross-sectional view and a third cross-sectional view of the second embodiment of the microluminescent diode of the present invention that can increase the mass transfer yield. The technical feature of the present invention is that a first protective layer 26 and a second protective layer 27 are formed in order on the surface of the vertical resonant cavity surface-emitting laser (VCSEL), and in particular, the first protective layer 26 is refracted The rate is smaller than that of the second semiconductor material layer 24, and at the same time, the refractive index of the second protective layer 27 is smaller than that of the first protective layer 26. Obviously, the present invention does not limit the second embodiment (ie, VCSEL) of the microluminescent diode 1 to be exactly the same as the structure shown in FIG. 6. For example, FIG. 7 shows that a (ring) oxide layer ACO is formed between the second semiconductor material layer 24 and the active layer 23, and the oxide layer ACO is used to define a light outcoupling aperture.

另一方面,比較圖6與圖8可以發現,圖8顯示第二半導體材料層24與主動層23之間係形成有材質與第一半導體材料層22相同的一中間半導體材料層24a。如此設計,係使得一穿隧接面(tunnel junction)TJ形成於該中間半導體材料層24a與該第二半導體材料層24的接面處,並自該接面處往第二半導體材料層24內部延伸。值得注意的是,於圖8之中,第一布拉格反射鏡21與第一半導體材料層22之間更插入有一第一接合層(bonding layer)22a,且第二布拉格反射鏡25與第二半導體材料層24之間亦插入有一第二接合層24b。On the other hand, comparing FIG. 6 with FIG. 8, it can be found that FIG. 8 shows that an intermediate semiconductor material layer 24 a having the same material as the first semiconductor material layer 22 is formed between the second semiconductor material layer 24 and the active layer 23. The design is such that a tunnel junction TJ is formed at the junction of the intermediate semiconductor material layer 24a and the second semiconductor material layer 24, and from the junction to the inside of the second semiconductor material layer 24 extend. It is worth noting that in FIG. 8, a first bonding layer 22a is further inserted between the first Bragg reflector 21 and the first semiconductor material layer 22, and the second Bragg reflector 25 and the second semiconductor A second bonding layer 24b is also inserted between the material layers 24.

同樣地,表面覆有第一保護層26與第二保護層27的垂直共振腔面射雷射(亦極,微發光二極體1)能夠表現出較高的外來應力之耐受程度。因此,單一微發光二極體1在進行基板轉移或多個微發光二極體1在進行巨量轉移之時,其表層或其它區域便不會因受到外來應力的作用而導致變形、破裂或崩壞。當然,完成基板轉移之前,微發光二極體1的基板通常是藍寶石(Sapphire)基板或尖晶石(Spinnel)基板。值得注意的是,完成基板轉移之後,微發光二極體1的基板可能會替換成尖晶石(Spinnel) 基板、碳化矽(SiC) 基板、陶瓷基板、聚醯亞胺(Polyimide)基板、硬質印刷電路板、或軟性印刷電路板。Similarly, the surface of the vertical cavity covered with the first protective layer 26 and the second protective layer 27 can emit a laser (ie, micro-luminescent diode 1) that can exhibit a higher tolerance to external stress. Therefore, when a single microluminescent diode 1 is transferring a substrate or a plurality of microluminescent diodes 1 are transferring a large amount, its surface layer or other areas will not be deformed, cracked or damaged by external stress. Collapsed. Of course, before the substrate transfer is completed, the substrate of the microluminescent diode 1 is usually a sapphire substrate or a spinel substrate. It is worth noting that after the substrate transfer is completed, the substrate of the microluminescent diode 1 may be replaced with a spinel substrate, a silicon carbide (SiC) substrate, a ceramic substrate, a polyimide (Polyimide) substrate, or a hard substrate Printed circuit board, or flexible printed circuit board.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。It must be emphasized that the above detailed description is a specific description of possible embodiments of the present invention, but this embodiment is not intended to limit the patent scope of the present invention, and any equivalent implementation or change without departing from the technical spirit of the present invention, Should be included in the patent scope of this case.

<本發明> 1:可提升巨量轉移良率的微發光二極體 10:基板 11:第一半導體材料層 12:主動層 13:第二半導體材料層 14:第一保護層 15:第二保護層 16:第一電極 17:第二電極 BF:緩衝層 20:基板 21:第一布拉格反射鏡 22:第一半導體材料層 23:主動層 24:第二半導體材料層 25:第二布拉格反射鏡 26:第一保護層 27:第二保護層 28:第一電極 29:第二電極 ACO:氧化層 24a:中間半導體材料層 TJ:穿隧接面 22a:第一接合層 24b:第二接合層 <The present invention> 1: Micro-luminescent diodes that can increase the yield of mass transfer 10: substrate 11: The first semiconductor material layer 12: Active layer 13: Second semiconductor material layer 14: The first protective layer 15: Second protective layer 16: First electrode 17: Second electrode BF: buffer layer 20: substrate 21: The first Prague mirror 22: The first semiconductor material layer 23: Active layer 24: Second semiconductor material layer 25: Second Prague mirror 26: The first protective layer 27: Second protective layer 28: First electrode 29: Second electrode ACO: oxide layer 24a: intermediate semiconductor material layer TJ: Tunneling junction 22a: first junction layer 24b: second junction layer

<習知> 112’:基板 200’:LED晶粒 120’:暫時性固定膜 113’:子基板 BS’:承載基板 BE’:接合電極 RLED’:紅光微發光二極體 GLED’:綠光微發光二極體 BLED’:藍光微發光二極體 1’:顯示面板 101’:電性連接墊 10’:基板 <Xizhi> 112’: Substrate 200’: LED die 120’: Temporary fixation membrane 113’: daughter board BS’: carrier substrate BE’: splice electrode RLED’: red light-emitting diode GLED’: Green light micro-emitting diode BLED’: Blue light-emitting diode 1’: Display panel 101’: Electrical connection pad 10’: substrate

圖1係顯示現有的微發光二極體顯示面板; 圖2A、圖2B與圖2C係顯示美國專利公開號2018/0053742A1所揭示的巨量轉移電子元件之方法的製程示意圖; 圖3係顯示本發明之一種可提升巨量轉移良率的微發光二極體的第一實施例的示意性立體圖; 圖4係顯示本發明之可提升巨量轉移良率的微發光二極體的第一剖視圖; 圖5係顯示本發明之可提升巨量轉移良率的微發光二極體的第二剖視圖; 圖6係顯示本發明之一種可提升巨量轉移良率的微發光二極體的第二實施例的第一剖視圖; 圖7係顯示本發明之可提升巨量轉移良率的微發光二極體的第二實施例的第二剖視圖;以及 圖8係顯示本發明之可提升巨量轉移良率的微發光二極體的第二實施例的第三剖視圖。FIG. 1 shows a conventional micro-luminous diode display panel; FIGS. 2A, 2B, and 2C are process schematic diagrams showing the method of mass transfer of electronic components disclosed in US Patent Publication No. 2018/0053742A1; FIG. 3 shows the present A schematic perspective view of a first embodiment of a microluminescent diode capable of improving the mass transfer yield of the invention; FIG. 4 is a first cross-sectional view showing the microluminescent diode of the present invention capable of increasing the mass transfer yield Figure 5 is a second cross-sectional view of the microluminescent diode of the present invention that can increase the mass transfer yield; Figure 6 is a second cross-sectional view of the microluminescent diode of the present invention that can improve the mass transfer yield 7 is a second cross-sectional view of a second embodiment of a microluminescent diode of the present invention that can increase the mass transfer yield; and FIG. 8 is a second cross-sectional view of the present invention that can increase the mass transfer Third cross-sectional view of the second embodiment of the yield micro-emitting diode.

1:可提升巨量轉移良率的微發光二極體 1: Micro-luminescent diodes that can increase the yield of mass transfer

10:基板 10: substrate

11:第一半導體材料層 11: The first semiconductor material layer

12:主動層 12: Active layer

13:第二半導體材料層 13: Second semiconductor material layer

14:第一保護層 14: The first protective layer

15:第二保護層 15: Second protective layer

16:第一電極 16: First electrode

17:第二電極 17: Second electrode

Claims (20)

一種微發光二極體,係包括: 一基板; 一第一半導體材料層,係形成於該基板之上; 一主動層,係形成於該第一半導體材料層之上; 一第二半導體材料層,係形成於該主動層之上; 一第一保護層,係形成於該第二半導體材料層之上,並具有一第一開口與一第二開口;其中,該第一保護層係同時覆蓋該第二半導體材料層的側面、該主動層的側面、以及該第一半導體材料層的側面與部分表面; 一第二保護層,係形成於該第一保護層之上,並具有對應於該第一開口的一第三開口與對應於該第二開口的一第四開口; 一第一電極,係透過該第二開口與該第四開口而形成於該第一半導體材料層之上;以及 一第二電極,係透過該第一開口與該第三開口而形成於該第二半導體材料層之上; 其中,該第一保護層的折射率係小於該第二半導體材料層,且該第二保護層的折射率係小於該第一保護層。A micro light emitting diode includes: a substrate; a first semiconductor material layer formed on the substrate; an active layer formed on the first semiconductor material layer; a second semiconductor material layer Is formed on the active layer; a first protective layer is formed on the second semiconductor material layer and has a first opening and a second opening; wherein, the first protective layer covers both The side of the second semiconductor material layer, the side of the active layer, and the side and part of the surface of the first semiconductor material layer; a second protective layer is formed on the first protective layer and has a corresponding to A third opening of the first opening and a fourth opening corresponding to the second opening; a first electrode formed on the first semiconductor material layer through the second opening and the fourth opening; and A second electrode is formed on the second semiconductor material layer through the first opening and the third opening; wherein, the refractive index of the first protective layer is smaller than the second semiconductor material layer, and the first The refractive index of the second protective layer is smaller than that of the first protective layer. 如申請專利範圍第1項所述之微發光二極體,其中,該基板可為下列任一種:尖晶石(Spinnel)基板、碳化矽(SiC) 基板、藍寶石(Sapphire) 基板、陶瓷基板、聚醯亞胺(Polyimide)基板、或印刷電路板。The micro-luminescent diode as described in item 1 of the patent application scope, wherein the substrate may be any of the following: spinel substrate, silicon carbide (SiC) substrate, sapphire (Sapphire) substrate, ceramic substrate, Polyimide (Polyimide) substrate, or printed circuit board. 如申請專利範圍第1項所述之微發光二極體,其中,該第一半導體材料層的製造材料為N型氮化鎵(n-type gallium nitride, n-GaN),且該第二半導體材料層之製造材料為P型氮化鎵(p-type gallium nitride, p-GaN)。The micro light emitting diode as described in item 1 of the patent application range, wherein the manufacturing material of the first semiconductor material layer is N-type gallium nitride (n-GaN), and the second semiconductor The material of the material layer is p-type gallium nitride (p-GaN). 如申請專利範圍第1項所述之微發光二極體,其中,所述主動層為形成於該第一半導體材料層與該第二半導體材料層之間的單一量子井結構,且該主動層的製造材料可為下列任一者:氮化鎵(GaN)、氮化鋁鎵(Alx Ga1-x N)、或氮化銦鎵(Inx Ga1-x N)。The microluminescent diode as described in item 1 of the patent application scope, wherein the active layer is a single quantum well structure formed between the first semiconductor material layer and the second semiconductor material layer, and the active layer The manufacturing material can be any of the following: gallium nitride (GaN), aluminum gallium nitride (Al x Ga 1-x N), or indium gallium nitride (In x Ga 1-x N). 如申請專利範圍第1項所述之微發光二極體,其中,所述主動層為形成於該第一半導體材料層與該第二半導體材料層之間的多重量子井結構,且該多重量子井結構可為下列任一者:氮化鎵與氮化銦鎵(Inx Ga1-x N)的多重堆疊結構、氮化鎵與氮化鋁鎵(Alx Ga1-x N)的多重堆疊結構、或氮化鋁鎵(Alx Ga1-x N)與氮化銦鎵(Inx Ga1-x N)的多重堆疊結構。The micro-luminescent diode according to item 1 of the patent application scope, wherein the active layer is a multiple quantum well structure formed between the first semiconductor material layer and the second semiconductor material layer, and the multiple quantum The well structure can be any of the following: multiple stack structures of gallium nitride and indium gallium nitride (In x Ga 1-x N), multiple layers of gallium nitride and aluminum gallium nitride (Al x Ga 1-x N) A stacked structure, or a multiple stacked structure of aluminum gallium nitride (Al x Ga 1-x N) and indium gallium nitride (In x Ga 1-x N). 如申請專利範圍第1項所述之微發光二極體,其中,該第一電極與該第二電極的製造材料可為下列任一者:鋁(Al)、銀(Ag)、鈦(Ti)、鎳(Ni)、金(Au)、銅(Cu)、鉻(Cr)、鉑(Pt)、前述任兩者之組合、或前述任兩者以上之組合。The microluminescent diode as described in item 1 of the patent application scope, wherein the manufacturing material of the first electrode and the second electrode may be any one of the following: aluminum (Al), silver (Ag), titanium (Ti ), nickel (Ni), gold (Au), copper (Cu), chromium (Cr), platinum (Pt), a combination of any two of the foregoing, or a combination of any two or more of the foregoing. 如申請專利範圍第1項所述之微發光二極體,其中,該第一保護層與該第二保護層的厚度係介於1奈米至50奈米之間。The micro light emitting diode as described in item 1 of the patent application range, wherein the thickness of the first protective layer and the second protective layer is between 1 nm and 50 nm. 如申請專利範圍第1項所述之微發光二極體,其中,該第一保護層的製造材料可為下列任一者:氮化鋁(AlN)、未摻雜的氮化鎵(undoped GaN)、氧化鋅(ZnO)、硫化鋅(ZnS)、或硒化鋅(ZnSe),且該第二保護層的製造材料可為下列任一者:氧化鋁(Al2 O3 )、氧化鉿(HfO2 )、氧化鎂(MgO)、氧化鋅(ZnO)、或氧化釔(Y2 O3 )。The micro light emitting diode as described in item 1 of the patent application scope, wherein the manufacturing material of the first protective layer may be any one of the following: aluminum nitride (AlN), undoped gallium nitride (undoped GaN) ), zinc oxide (ZnO), zinc sulfide (ZnS), or zinc selenide (ZnSe), and the manufacturing material of the second protective layer may be any of the following: aluminum oxide (Al 2 O 3 ), hafnium oxide ( HfO 2 ), magnesium oxide (MgO), zinc oxide (ZnO), or yttrium oxide (Y 2 O 3 ). 如申請專利範圍第1項所述之微發光二極體,其中,該第二保護層與該第一保護層之間更包括一緩衝層。The micro light emitting diode as described in item 1 of the patent application scope, wherein a buffer layer is further included between the second protective layer and the first protective layer. 如申請專利範圍第9項所述之微發光二極體,其中,該第二保護層為一第一金屬氧化物層,且該緩衝層為一第二金屬氧化物層;並且,組成該緩衝層的一第二金屬元素的原子之大小係小於組成該第二保護層的一第一金屬元素的原子之大小。The micro light emitting diode as described in item 9 of the patent application scope, wherein the second protective layer is a first metal oxide layer, and the buffer layer is a second metal oxide layer; and, the buffer The size of an atom of a second metal element of the layer is smaller than the size of an atom of a first metal element constituting the second protective layer. 一種微發光二極體,係包括: 一基板; 一第一布拉格反射鏡,係形成於該基板之上; 一第一半導體材料層,係形成於該第一布拉格反射鏡之上; 一主動層,係形成於該第一半導體材料層之上; 一第二半導體材料層,係形成於該主動層之上;以及 一第二布拉格反射鏡,係形成於該第二半導體材料層之上; 一第一保護層,係覆蓋該第二布拉格反射鏡的表面與側面、該第二半導體材料層的表面與側面、該主動層的側面、該第一半導體材料層的側面、與該第一布拉格反射鏡的側面,並具有一第一開口與一第二開口; 一第二保護層,係形成於該第一保護層之上,並具有對應於該第一開口的一第三開口與對應於該第二開口的一第四開口; 一第一電極,係透過該第二開口與該第四開口而形成於該第一半導體材料層之上;以及 一第二電極,係透過該第一開口與該第三開口而形成於該第二半導體材料層之上; 其中,該第一保護層的折射率係小於該第二半導體材料層,且該第二保護層折射率係小於該第一保護層。A micro light emitting diode includes: a substrate; a first Bragg reflector formed on the substrate; a first semiconductor material layer formed on the first Bragg reflector; an active layer Is formed on the first semiconductor material layer; a second semiconductor material layer is formed on the active layer; and a second Bragg reflector is formed on the second semiconductor material layer; The first protective layer covers the surface and the side of the second Bragg reflector, the surface and the side of the second semiconductor material layer, the side of the active layer, the side of the first semiconductor material layer, and the first Bragg reflection The side of the mirror has a first opening and a second opening; a second protective layer is formed on the first protective layer, and has a third opening corresponding to the first opening and corresponding to the first opening A fourth opening of the second opening; a first electrode formed on the first semiconductor material layer through the second opening and the fourth opening; and a second electrode through the first opening and The third opening is formed on the second semiconductor material layer; wherein, the refractive index of the first protective layer is smaller than the second semiconductor material layer, and the refractive index of the second protective layer is smaller than the first protective layer . 如申請專利範圍第11項所述之微發光二極體,其中,該基板可為下列任一種:尖晶石(Spinnel)基板、碳化矽(SiC) 基板、藍寶石(Sapphire) 基板、陶瓷基板、聚醯亞胺(Polyimide)基板、或印刷電路板。The microluminescent diode as described in item 11 of the patent application scope, wherein the substrate may be any one of the following: spinel substrate, silicon carbide (SiC) substrate, sapphire (Sapphire) substrate, ceramic substrate, Polyimide (Polyimide) substrate, or printed circuit board. 如申請專利範圍第11項所述之微發光二極體,係為一垂直共振腔面射雷射元件(Vertical cavity surface emitting laser device, VCSEL device)。The micro-emitting diode as described in item 11 of the patent application scope is a vertical cavity surface emitting laser device (VCSEL device). 如申請專利範圍第11項所述之微發光二極體,其中,該第一半導體材料層的製造材料為N型的III-V族半導體複合物,且該第二半導體材料層之製造材料為P型的III-V族半導體複合物。The microluminescent diode as described in item 11 of the patent application range, wherein the manufacturing material of the first semiconductor material layer is an N-type III-V semiconductor compound, and the manufacturing material of the second semiconductor material layer is P-type III-V semiconductor compound. 如申請專利範圍第11項所述之微發光二極體,其中,所述主動層為形成於該第一半導體材料層與該第二半導體材料層之間的單一量子井結構或一多重量子井結構。The microluminescent diode as described in item 11 of the patent application range, wherein the active layer is a single quantum well structure or a multiple quantum formed between the first semiconductor material layer and the second semiconductor material layer Well structure. 如申請專利範圍第11項所述之微發光二極體,其中,該第一電極與該第二電極的製造材料可為下列任一者:鋁(Al)、銀(Ag)、鈦(Ti)、鎳(Ni)、金(Au)、銅(Cu)、鉻(Cr)、鉑(Pt)、前述任兩者之組合、或前述任兩者以上之組合。The micro-emitting diode as described in item 11 of the patent application scope, wherein the manufacturing material of the first electrode and the second electrode may be any one of the following: aluminum (Al), silver (Ag), titanium (Ti ), nickel (Ni), gold (Au), copper (Cu), chromium (Cr), platinum (Pt), a combination of any two of the foregoing, or a combination of any two or more of the foregoing. 如申請專利範圍第11項所述之微發光二極體,其中,該第一保護層與該第二保護層的厚度係介於1奈米至50奈米之間。The micro light emitting diode as described in item 11 of the patent application range, wherein the thickness of the first protective layer and the second protective layer is between 1 nm and 50 nm. 如申請專利範圍第11項所述之微發光二極體,其中,該第一保護層的製造材料可為下列任一者:氮化鋁(AlN)、氮化鎵(GaN)、硫化鋅(ZnS)、或硒化鋅(ZnSe),且該第二保護層的製造材料可為下列任一者:氧化鋁(Al2 O3 )、氧化鉿 (HfO2 )、氧化鈦(TiO2 )、氧化釔(Y2 O3 )。The micro light emitting diode as described in item 11 of the patent application scope, wherein the manufacturing material of the first protective layer may be any one of the following: aluminum nitride (AlN), gallium nitride (GaN), zinc sulfide ( ZnS), or zinc selenide (ZnSe), and the manufacturing material of the second protective layer may be any of the following: aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), titanium oxide (TiO 2 ), Yttrium oxide (Y 2 O 3 ). 如申請專利範圍第11項所述之微發光二極體,其中,該第二保護層與該第一保護層之間更包括一緩衝層。The micro light-emitting diode as described in item 11 of the patent application range, wherein a buffer layer is further included between the second protective layer and the first protective layer. 如申請專利範圍第19項所述之微發光二極體,其中,該第二保護層為一第一金屬氧化物層,且該緩衝層為一第二金屬氧化物層;並且,組成該緩衝層的一第二金屬元素的原子之大小係小於組成該第二保護層的一第一金屬元素的原子之大小。The micro light emitting diode as described in Item 19 of the patent application range, wherein the second protective layer is a first metal oxide layer, and the buffer layer is a second metal oxide layer; and, the buffer The size of an atom of a second metal element of the layer is smaller than the size of an atom of a first metal element constituting the second protective layer.
TW107134344A 2018-09-28 2018-09-28 Micro led device for enhancing production yield of mass transfer TWI680602B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107134344A TWI680602B (en) 2018-09-28 2018-09-28 Micro led device for enhancing production yield of mass transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107134344A TWI680602B (en) 2018-09-28 2018-09-28 Micro led device for enhancing production yield of mass transfer

Publications (2)

Publication Number Publication Date
TWI680602B TWI680602B (en) 2019-12-21
TW202013782A true TW202013782A (en) 2020-04-01

Family

ID=69582445

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107134344A TWI680602B (en) 2018-09-28 2018-09-28 Micro led device for enhancing production yield of mass transfer

Country Status (1)

Country Link
TW (1) TWI680602B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771314B (en) * 2016-08-18 2022-07-21 新世紀光電股份有限公司 Method of mass transferring electronic device
TWI611599B (en) * 2016-10-27 2018-01-11 友達光電股份有限公司 Temporary carrier device, display panel, and methods of manufacturing both, and method of testing micro light emitting devices
TWI622167B (en) * 2016-12-30 2018-04-21 錼創科技股份有限公司 Display device

Also Published As

Publication number Publication date
TWI680602B (en) 2019-12-21

Similar Documents

Publication Publication Date Title
JP5130730B2 (en) Semiconductor light emitting device
JP4882792B2 (en) Semiconductor light emitting device
US9263652B2 (en) Semiconductor light-emitting device
KR102427642B1 (en) Semiconductor light emitting device
JP6934812B2 (en) Light emitting element and light emitting element array including it
KR100708936B1 (en) Nitride semiconductor light emitting device for flip-chip
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
US11817435B2 (en) Light emitting device for display and LED display apparatus having the same
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
US11735696B2 (en) Light-emitting diode, and light-emitting diode package, light-emitting diode module and display device including the same
JP2012256918A (en) Nitride-based semiconductor light-emitting element and manufacturing method for the same
JPH06314822A (en) Gallium nitride compound semiconductor light emitting element and electrode formation thereof
CN102194847B (en) Light emitting diode, light emitting diode package, method of manufacturing light emitting diode and lighting system
JP2013171982A (en) Semiconductor light-emitting element and manufacturing method of the same
JP2008300621A (en) Semiconductor light-emitting element and its manufacturing method
US11329204B2 (en) Micro light emitting diode and manufacturing method of micro light emitting diode
US20140264413A1 (en) Semiconductor light emitting element, light emitting device, and method for manufacturing semiconductor light emitting element
CN110034214A (en) Semiconductor light-emitting apparatus
JP2012124321A (en) Semiconductor light-emitting element, lamp and method of manufacturing semiconductor light-emitting element
JP2008016629A (en) Manufacturing method of group iii nitride light emitting diode element
US10147858B1 (en) Flexible LED device and flexible LED panel
TWI680602B (en) Micro led device for enhancing production yield of mass transfer
CN110970532B (en) Micro light-emitting diode capable of improving mass transfer yield
US20200251640A1 (en) Light emitting diode and manufacturing method thereof
KR100661606B1 (en) Nitride semiconductor device