TW202013717A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TW202013717A
TW202013717A TW107132617A TW107132617A TW202013717A TW 202013717 A TW202013717 A TW 202013717A TW 107132617 A TW107132617 A TW 107132617A TW 107132617 A TW107132617 A TW 107132617A TW 202013717 A TW202013717 A TW 202013717A
Authority
TW
Taiwan
Prior art keywords
semiconductor device
gate
dielectric
neck support
item
Prior art date
Application number
TW107132617A
Other languages
Chinese (zh)
Other versions
TWI676289B (en
Inventor
林志威
邱柏豪
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107132617A priority Critical patent/TWI676289B/en
Application granted granted Critical
Publication of TWI676289B publication Critical patent/TWI676289B/en
Publication of TW202013717A publication Critical patent/TW202013717A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A high-voltage semiconductor device is provided. The device includes a semiconductor substrate having a high-voltage well region, a gate dielectric layer on the semiconductor substrate, a T-shape gate on the gate dielectric layer, the T-shape gate having overhangs extending beyond a neck portion of the T-shape gate, a dielectric neck support disposed underneath the dielectric neck support, an etch stop feature disposed underneath the dielectric neck support, a pair of drift regions disposed on opposite sides of the T-shape gate in the high-voltage well region, and a pair of source/drain regions in the pair of drift regions.

Description

半導體裝置及其製造方法 Semiconductor device and its manufacturing method

本揭露係關於一種半導體裝置,且特別是關於具有蝕刻終止部件的高壓半導體裝置。 The present disclosure relates to a semiconductor device, and more particularly to a high-voltage semiconductor device with an etch stop component.

高壓半導體裝置技術適用於高電壓與高功率的積體電路領域,此處之「高壓」用語所指的是高崩潰電壓(breakdown down voltage)。傳統高壓半導體裝置,例如雙擴散汲極金氧半場效電晶體(Double Diffused Drain MOSFET,DDDMOS)及橫向擴散金氧半場效電晶體(Lateral diffused MOSFET,LDMOS),主要用於高於或約為18V的元件應用領域。高壓半導體裝置技術的優點在於符合成本效益,且易相容於其他製程,已廣泛應用於顯示器驅動IC元件、電源供應器、電力管理、通訊、車用電子或工業控制等領域中。 The high-voltage semiconductor device technology is applicable to the field of high-voltage and high-power integrated circuits. The term “high-voltage” here refers to a high breakdown down voltage. Traditional high-voltage semiconductor devices, such as Double Diffused Drain MOSFET (DDDMOS) and Lateral diffused MOSFET (LDMOS), are mainly used for higher than or about 18V Component application areas. The advantage of high-voltage semiconductor device technology is that it is cost-effective and easily compatible with other processes. It has been widely used in display driver IC components, power supplies, power management, communications, automotive electronics, or industrial control.

雙擴散汲極金氧半場效電晶體(DDDMOS)具有體積小、輸出電流大的特性,廣泛應用在切換式穩壓器(switch regulator)中。雙擴散汲極係由二個摻雜區形成用於高壓金氧半場效電晶體的一源極或一汲極。 The double diffusion drain metal oxide half field effect transistor (DDDMOS) has the characteristics of small size and large output current, and is widely used in switch regulators. The double diffusion drain is formed by two doped regions to form a source electrode or a drain electrode for the high-voltage metal-oxide half-field effect transistor.

通常在設計DDDMOS時,主要考慮的是低導通電阻(on-resistance,Ron)以及高崩潰電壓(breakdown voltage, BV)。在DDDMOS的設計中,若將汲極與通道區之間的間距(space)縮短(例如,利用自對準製程將汲極自對準於閘極間隙壁),可降低DDDMOS的導通電阻。然而,DDDMOS的崩潰電壓會降低且漏電流會增加。 Usually when designing DDDMOS, the main considerations are low on-resistance (on-resistance, R on ) and high breakdown voltage (breakdown voltage, BV). In the design of DDDMOS, if the space between the drain and the channel region is shortened (for example, the drain is self-aligned to the gate spacer by a self-alignment process), the on-resistance of DDDMOS can be reduced. However, the breakdown voltage of DDDMOS will decrease and the leakage current will increase.

因此,雖然現有高壓半導體裝置大致上合乎其預期目的,其並非在所有方面都完全令人滿意。 Therefore, although the existing high-voltage semiconductor device generally meets its intended purpose, it is not completely satisfactory in all aspects.

本揭露一實施例提供一種半導體裝置,包括:一半導體基板,具有一高壓井區;一閘極介電層,位於上述半導體基板上;一T型閘極,位於上述閘極介電層上,上述T型閘極具有延伸超出上述T型閘極之頸部的複數突出結構(overhangs);一介電頸部支撐件,設置在上述T型閘極的該複數突出結構下方;一蝕刻終止部件,設置在上述介電頸部支撐件下方;一對漂移區,設置在上述T型閘極兩側的上述高壓井區中;以及一對源極/汲極區,位於上述漂移區內。 An embodiment of the present disclosure provides a semiconductor device, including: a semiconductor substrate having a high-pressure well region; a gate dielectric layer on the semiconductor substrate; and a T-shaped gate electrode on the gate dielectric layer, The T-gate has a plurality of overhangs that extend beyond the neck of the T-gate; a dielectric neck support is provided under the plurality of overhangs of the T-gate; an etching stopper , Located below the dielectric neck support; a pair of drift regions, located in the high-pressure well regions on both sides of the T-gate; and a pair of source/drain regions, located in the drift region.

本揭露一實施例提供一種半導體裝置的製造方法,包括:提供一半導體基板,其具有一高壓井區;於上述基板上形成一閘極介電層;於上述高壓井區內形成一對漂移區;於上述閘極介電層上形成一蝕刻終止層;於上述蝕刻終止層上形成一介電頸部支撐件,其中上述蝕刻終止層在形成上述介電頸部支撐件時作為蝕刻終點;於上述閘極介電層上形成一T型閘極,其中上述T型閘極具有延伸超出T型閘極之頸部的複數突出結構(overhangs)於上述介電頸部支撐件上;以及於上述漂移區內形成一對源極/汲極區。 An embodiment of the present disclosure provides a method for manufacturing a semiconductor device, including: providing a semiconductor substrate having a high voltage well region; forming a gate dielectric layer on the substrate; forming a pair of drift regions in the high voltage well region Forming an etch stop layer on the gate dielectric layer; forming a dielectric neck support on the etch stop layer, wherein the etch stop layer serves as an etching end point when forming the dielectric neck support; A T-shaped gate is formed on the gate dielectric layer, wherein the T-shaped gate has a plurality of overhangs extending over the neck of the T-shaped gate on the dielectric neck support; and on the above A pair of source/drain regions is formed in the drift region.

10‧‧‧高壓半導體裝置 10‧‧‧High voltage semiconductor device

100‧‧‧半導體基板 100‧‧‧Semiconductor substrate

100a‧‧‧主動區 100a‧‧‧Active area

102‧‧‧高壓井區 102‧‧‧High pressure well area

104‧‧‧隔離結構 104‧‧‧Isolated structure

106‧‧‧閘極介電層 106‧‧‧ Gate dielectric layer

108‧‧‧漂移區 108‧‧‧Drift zone

110‧‧‧蝕刻終止層 110‧‧‧Etching stop layer

110a‧‧‧蝕刻終止部件 110a‧‧‧Etching stop parts

112‧‧‧介電支撐層 112‧‧‧Dielectric support layer

112a‧‧‧介電頸部支撐件 112a‧‧‧Dielectric neck support

120‧‧‧T型閘極 120‧‧‧T gate

120b‧‧‧橫條部 120b‧‧‧Bar Department

120b'‧‧‧突出結構 120b'‧‧‧ prominent structure

120n‧‧‧頸部 120n‧‧‧Neck

120s‧‧‧側壁 120s‧‧‧Side wall

122‧‧‧側壁間隔物 122‧‧‧Side wall spacer

132‧‧‧源極/汲極區 132‧‧‧Source/Drain

134‧‧‧頂部摻雜區 134‧‧‧ Top doped region

D1‧‧‧第一距離 D1‧‧‧ First distance

D2‧‧‧第二距離 D2‧‧‧Second distance

D3‧‧‧第三距離 D3‧‧‧ Third distance

D4‧‧‧第四距離 D4‧‧‧ Fourth distance

E‧‧‧邊緣 E‧‧‧edge

S‧‧‧距離 S‧‧‧Distance

W‧‧‧寬度 W‧‧‧Width

以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 The embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. It should be noted that according to standard practices in the industry, various features are not drawn to scale and are used for illustration only. In fact, the size of the elements may be arbitrarily enlarged or reduced to clearly show the features of the present disclosure.

第1-3、4A、4B、5、6圖係根據本揭露一實施例繪示出高壓半導體裝置之製造方法的剖面示意圖。 FIGS. 1-3, 4A, 4B, 5, and 6 are schematic cross-sectional views illustrating a method of manufacturing a high-voltage semiconductor device according to an embodiment of the present disclosure.

第7A圖係根據本揭露一實施繪示出高壓半導體裝置的俯視圖。 FIG. 7A is a top view illustrating a high-voltage semiconductor device according to an implementation of the present disclosure.

第7B圖係根據本揭露另一實施繪示出高壓半導體裝置的俯視圖。 FIG. 7B is a top view illustrating a high-voltage semiconductor device according to another implementation of the present disclosure.

第8A-8B圖係根據本揭露一實施繪示出高壓半導體裝置之汲極的電流-電壓關係圖。 8A-8B are diagrams illustrating the current-voltage relationship of the drain of a high-voltage semiconductor device according to an implementation of the present disclosure.

以下的揭示內容提供許多不同的實施例或範例,以展示本揭露的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述 配置之間的關係。 The following disclosure provides many different embodiments or examples to show the different components of the present disclosure. The following will disclose specific examples of components and arrangements in this specification to simplify the disclosure. Of course, these specific examples are not intended to limit this disclosure. For example, if the following summary of the description of this specification describes the formation of the first component on or above the second component, it means that it includes an embodiment where the formed first and second components are in direct contact, and also includes Additional components can be formed between the first and second components, and the first and second components are embodiments that are not in direct contact. In addition, various examples in this disclosure description may use repeated reference symbols and/or words. The purpose of these repeated symbols or words is to simplify and clarify, not to limit the relationship between the various embodiments and/or the configurations.

再者,為了方便描述圖示中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在...之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖示所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。 Furthermore, in order to conveniently describe the relationship between an element or component and another element or components in the illustration, relative terms such as "below", "below", "lower", "" can be used "Above", "upper" and the like. In addition to the orientation shown in the illustration, the relative spatial terms also cover different orientations of the device in use or operation. When the device is turned to different orientations (for example, rotated 90 degrees or other orientations), the relative adjectives used in space will also be interpreted according to the turned orientation.

以下說明本揭露實施例之高壓半導體裝置及其製造方法。然而,應理解的是,以下的實施例僅用於說明以特定方法製作及使用本發明實施例,並非用以侷限本發明的範圍。本領域具有通常知識者將可容易理解在其他實施例的範圍內可做各種的修改。再者,雖然下述的方法實施例是以特定順序進行說明,但其他方法實施例可以另一合乎邏輯的順序進行,且可包括少於或多於此處討論的步驟。 The following describes the high-voltage semiconductor device and the method of manufacturing the disclosed embodiment. However, it should be understood that the following embodiments are only used to illustrate that the embodiments of the present invention are made and used by a specific method, and are not intended to limit the scope of the present invention. Those of ordinary skill in the art will readily understand that various modifications can be made within the scope of other embodiments. Furthermore, although the method embodiments described below are described in a specific order, other method embodiments may be performed in another logical order, and may include fewer or more steps than discussed herein.

本揭露之實施例提供一種高壓半導體裝置,例如雙擴散汲極金氧半場效電晶體(DDDMOS),其利用位於T型閘極邊緣下方的介電頸部支撐件來提升高壓半導體裝置的崩潰電壓。如此一來,當增加通道區與汲極之間的間距並縮小高壓半導體裝置尺寸以改善其導通電阻及降低漏電流時,高壓半導體裝置仍然能夠具有適當或所需的崩潰電壓。 Embodiments of the present disclosure provide a high-voltage semiconductor device, such as a double-diffused drain metal oxide half field effect transistor (DDDMOS), which uses a dielectric neck support under the edge of the T-gate to increase the breakdown voltage of the high-voltage semiconductor device . In this way, when the distance between the channel region and the drain is increased and the size of the high-voltage semiconductor device is reduced to improve its on-resistance and reduce the leakage current, the high-voltage semiconductor device can still have an appropriate or required breakdown voltage.

此外,在一些實施例中,本揭露利用終點偵測(end Point Detection)蝕刻製程(亦稱為終點模式(end mode)蝕刻)形成上述介電頸部支撐件。有別於利用時限模式(time mode)蝕刻 製程來形成介電頸部支撐件,使用終點模式蝕刻製程能更有效率且精確的控制介電頸部支撐件的厚度,並可擴大操作寬裕度。 In addition, in some embodiments, the present disclosure uses an end point detection etching process (also referred to as end mode etching) to form the dielectric neck support. Different from using a time mode etching process to form the dielectric neck support, using the end mode etching process can more efficiently and accurately control the thickness of the dielectric neck support, and can expand the operating margin.

第1至6圖是根據本發明的一些實施例,繪示出形成第6圖之高壓半導體裝置10在各個不同階段的製程剖面示意圖。第7A及7B圖係根據本揭露不同實施例繪示出高壓半導體裝置的俯視圖,為了簡化清晰之目的,第7A及7B圖中並未繪示出全部的部件。首先請參照第1圖,提供一半導體基板100,其具有一高壓井區102及至少一隔離結構104。上述隔離結構104用以在半導體基板100的高壓井區102內定義出主動區100a,並電性隔離形成於主動區內的半導體基板100之中及/或之上的各式裝置結構。在一實施例中,半導體基板100可為矽基板、矽鍺(silicon germanium,SiGe)基板、化合物半導體(compound semiconductor)基板、塊體半導體(bulk semiconductor)基板、絕緣層上覆矽(silicon on insulator,SOI)基板或類似基板。 FIGS. 1 to 6 are schematic cross-sectional views of manufacturing processes at various stages of forming the high-voltage semiconductor device 10 of FIG. 6 according to some embodiments of the present invention. FIGS. 7A and 7B are top views illustrating high-voltage semiconductor devices according to different embodiments of the present disclosure. For simplicity and clarity, not all components are illustrated in FIGS. 7A and 7B. First, referring to FIG. 1, a semiconductor substrate 100 is provided, which has a high-voltage well region 102 and at least one isolation structure 104. The isolation structure 104 is used to define an active area 100 a in the high-voltage well area 102 of the semiconductor substrate 100, and electrically isolate various device structures formed in and/or on the semiconductor substrate 100 in the active area. In an embodiment, the semiconductor substrate 100 may be a silicon substrate, a silicon germanium (SiGe) substrate, a compound semiconductor substrate, a bulk semiconductor substrate, or silicon on insulator , SOI) substrate or similar substrate.

在一些實施例中,上述隔離結構104包含淺溝槽隔離(shallow trench isolation,STI)結構、矽局部氧化(local oxidation of silicon,LOCOS)結構,其他合適之隔離結構部件或上述之組合。在一些實施例中,半導體基板100可具有第一導電型,例如P型或N型。再者,高壓井區102具有第一導電型。在一範例中,高壓井區102為P型,且具有範圍在約1.0×1015ions/cm3至約1.0×1017ions/cm3的摻雜濃度,例如約5.0×1016ions/cm3。在另一範例中,高壓井區102為N型,且範圍在約1.0 ×1015ions/cm3至約1.0×1017ions/cm3的摻雜濃度,例如約6.0×1016ions/cm3In some embodiments, the isolation structure 104 includes a shallow trench isolation (STI) structure, a local oxidation of silicon (LOCOS) structure, other suitable isolation structure components, or a combination thereof. In some embodiments, the semiconductor substrate 100 may have a first conductivity type, for example, P-type or N-type. Furthermore, the high-pressure well region 102 has a first conductivity type. In one example, the high-pressure well region 102 is P-type and has a doping concentration ranging from about 1.0×10 15 ions/cm 3 to about 1.0×10 17 ions/cm 3 , for example, about 5.0×10 16 ions/cm 3 . In another example, the high-pressure well region 102 is N-type and has a doping concentration ranging from about 1.0×10 15 ions/cm 3 to about 1.0×10 17 ions/cm 3 , for example, about 6.0×10 16 ions/cm 3 .

請參照第2圖,在高壓井區102上形成閘極介電層106。在一些實施例中,閘極介電層106覆蓋整個主動區100a,且延伸於隔離結構104上方。上述閘極介電層106可為或包括氧化矽(silicon oxide)、氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)、高介電常數(high-k)介電材料(具有介電常數大於約7.0的材料)、或其它任何適合之介電材料、或上述之組合。舉例來說,上述閘極介電層106可包括二氧化矽。在一實施例中,閘極介電層106具有範圍在約300Å至約500Å的厚度。可使用熱氧化(thermal oxidation)法、化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)、原子層沉積(atomic layer deposition,ALD)及/或其他合適方法形成上述閘極介電層106。 Referring to FIG. 2, a gate dielectric layer 106 is formed on the high-pressure well region 102. In some embodiments, the gate dielectric layer 106 covers the entire active area 100 a and extends above the isolation structure 104. The gate dielectric layer 106 may be or include silicon oxide, silicon nitride, silicon oxynitride, high-k dielectric material (with dielectric Materials with a constant greater than about 7.0), or any other suitable dielectric material, or a combination of the above. For example, the gate dielectric layer 106 may include silicon dioxide. In one embodiment, the gate dielectric layer 106 has a thickness ranging from about 300Å to about 500Å. Thermal oxidation, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and/or other suitable methods may be used The above-mentioned gate dielectric layer 106 is formed.

接著,繼續參照第2圖,在對應主動區100a的高壓井區102內形成漂移區(drift region)108。在一實施例中,漂移區108的深度小於隔離結構104的深度。上述漂移區108具有不同於第一導電型的一第二導電型。在一範例中,第一導電型可為P型,而第二導電型則為N型。在另一範例中,第一導電型可為N型,而第二導電型則為P型。可利用光微影製程(photolithography process)形成佈植遮罩(未繪示)於高壓井區102之上,接著進行離子佈植以形成上述漂移區108,且在漂移區108之間定義出通道區(未繪示)。再者,可在形成漂移區108之後,對漂移區108進行一退火製程,例如快速熱退火(RTA), 此快速熱退火持續時間約5秒至20秒,例如約10秒。 Next, with continued reference to FIG. 2, a drift region 108 is formed in the high-pressure well region 102 corresponding to the active region 100 a. In one embodiment, the depth of the drift region 108 is smaller than the depth of the isolation structure 104. The drift region 108 has a second conductivity type different from the first conductivity type. In one example, the first conductivity type may be P type, and the second conductivity type is N type. In another example, the first conductivity type may be N type, and the second conductivity type is P type. A photolithography process can be used to form an implantation mask (not shown) on the high-pressure well region 102, followed by ion implantation to form the drift region 108, and a channel is defined between the drift regions 108 Area (not shown). Furthermore, after the drift region 108 is formed, an annealing process may be performed on the drift region 108, such as rapid thermal annealing (RTA). The duration of the rapid thermal annealing is about 5 seconds to 20 seconds, such as about 10 seconds.

請參照第3圖,形成蝕刻終止層(etch stop layer)110覆蓋閘極介電層106,並在蝕刻終止層110上形成介電支撐層112(亦可稱為介電層112),上述蝕刻終止層110及介電層112將在後續製程中分別形成為蝕刻終止部件110a及介電頸部支撐件112a(如第4A-4B圖所示)。 Referring to FIG. 3, an etch stop layer 110 is formed to cover the gate dielectric layer 106, and a dielectric support layer 112 (also referred to as a dielectric layer 112) is formed on the etch stop layer 110. The termination layer 110 and the dielectric layer 112 will be formed into an etch stop part 110a and a dielectric neck support 112a (as shown in FIGS. 4A-4B) in a subsequent process.

蝕刻終止層110可在進行蝕刻製程時作為蝕刻終點的機制以停止蝕刻製程,此稱為終點偵測(end point detection)蝕刻製程。有別於使用時限模式的蝕刻製程,終點偵測蝕刻製程能更有效率且精確的控制介電頸部支撐件的厚度,並可擴大製程窗口。蝕刻終止層110可由與相鄰的膜層或部件(即,介電層112及/或閘極介電層106)中具有不同蝕刻選擇性的材料形成。在一些實施例中,此蝕刻終止層110可包括或可為介電材料,例如含氮材料、含矽材料、及/或含碳材料。舉例來說,蝕刻終止層110可包括或為氮化矽(silicon nitride)、碳氮化矽(silicon carbon nitride)、氮化碳(carbon nitride)、氮氧化矽(silicon oxynitride)、碳氧化矽(silicon carbon oxide)、相似材料、或上述之組合。 The etch stop layer 110 can be used as a mechanism for etching the end point during the etching process to stop the etching process. This is called an end point detection (end point detection) etching process. Unlike the etching process using the time-limited mode, the end point detection etching process can more efficiently and accurately control the thickness of the dielectric neck support, and can expand the process window. The etch stop layer 110 may be formed of materials with different etch selectivities in adjacent film layers or components (ie, the dielectric layer 112 and/or the gate dielectric layer 106). In some embodiments, this etch stop layer 110 may include or may be a dielectric material, such as a nitrogen-containing material, a silicon-containing material, and/or a carbon-containing material. For example, the etch stop layer 110 may include or be silicon nitride, silicon carbon nitride, carbon nitride, silicon oxynitride, silicon oxynitride ( silicon carbon oxide), similar materials, or a combination of the above.

在另一些實施例中,此蝕刻終止層110可包括或可為導電材料或半導體材料,例如多晶矽(polysilicon)。在蝕刻終止層110被形成為蝕刻終止部件110a後,此包括導電材料或半導體材料的蝕刻終止部件110a可作為場板(field plate)運作。場板可重建通道的電場強度分布狀況,其可降低閘極(靠近汲極端)的電場峰值,進而提高崩潰電壓。可藉由沉積製程、 電鍍及/或其他合適方法形成蝕刻終止層110,舉例來說,上述沉積方法可以是化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(例如,濺鍍)、原子層沉積(atomic layer deposition,ALD)、或其他沉積方法。 In other embodiments, the etch stop layer 110 may include or may be a conductive material or a semiconductor material, such as polysilicon. After the etch stop layer 110 is formed as the etch stop part 110a, the etch stop part 110a including a conductive material or a semiconductor material may function as a field plate. The field plate can reconstruct the distribution of the electric field intensity of the channel, which can reduce the peak value of the electric field of the gate electrode (near the drain terminal), thereby increasing the breakdown voltage. The etch stop layer 110 may be formed by a deposition process, electroplating, and/or other suitable methods. For example, the deposition method may be chemical vapor deposition (CVD), physical vapor deposition (eg, sputtering) , Atomic layer deposition (atomic layer deposition, ALD), or other deposition methods.

在一些實施例中,介電層112及閘極介電層106包括相同的材料,例如介電層112及閘極介電層106皆可包括二氧化矽。在另一些實施例中,介電層112及閘極介電層106可包括不同的材料。舉例來說,閘極介電層106可包括二氧化矽,而介電層112可包括氮化矽、氮氧化矽或其他高介電常數介電材料(例如,HfO2、ZrO2、Al2O3、或TiO2等等)。可藉由沉積方法形成介電層112,例如化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)、或其他沉積技術。在一特定實施例中,上述閘極介電層106為二氧化矽。在一特定實施例中,上述介電層112為二氧化矽。在一特定實施例中,上述蝕刻終止層110為氮化矽。在另一特定實施例中,上述蝕刻終止層110為多晶矽。 In some embodiments, the dielectric layer 112 and the gate dielectric layer 106 include the same material. For example, both the dielectric layer 112 and the gate dielectric layer 106 may include silicon dioxide. In other embodiments, the dielectric layer 112 and the gate dielectric layer 106 may include different materials. For example, the gate dielectric layer 106 may include silicon dioxide, and the dielectric layer 112 may include silicon nitride, silicon oxynitride, or other high dielectric constant dielectric materials (eg, HfO 2 , ZrO 2 , Al 2 O 3 , or TiO 2 etc.). The dielectric layer 112 may be formed by a deposition method, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or other deposition techniques. In a specific embodiment, the gate dielectric layer 106 is silicon dioxide. In a particular embodiment, the dielectric layer 112 is silicon dioxide. In a specific embodiment, the etch stop layer 110 is silicon nitride. In another specific embodiment, the etch stop layer 110 is polysilicon.

請參照第4A圖,使用光微影及蝕刻製程將上述蝕刻終止層110及介電層112分別形成為蝕刻終止部件110a及介電頸部支撐件112a。一般而言,光微影製程包括,沉積光阻材料(未繪示)、曝光及顯影,以去除部分的光阻材料。殘餘的光阻材料保護位於其下方的材料(例如,介電層112及蝕刻終止層110)屏蔽於後續之製程步驟(例如,蝕刻)。在一些實施例中,形成光阻層(未繪示)覆蓋介電層112,藉由使用適當光遮罩將光阻曝露至光中以圖案化光阻。可接著藉由顯影以去除光阻的曝 露或未曝露部分,其取決於使用的是正光阻或是負光阻。接著,可使用此圖案化光阻蝕刻介電層112及蝕刻終止層110,從而分別形成蝕刻終止部件110a及介電頸部支撐件112a。上述介電頸部支撐件112a可降低位於閘極(將於後續製程中形成)邊緣下方的電場及降低閘極-汲極電容,進而提昇高壓半導體裝置的崩潰電壓及增加高壓半導體裝置的切換特性(switching characteristic)。此外,利用蝕刻終止層110作為蝕刻終點以蝕刻介電層112來形成上述介電頸部支撐件112a的方法(即,終點模式蝕刻製程)具有一些優點,舉例來說,有別於利用時限模式(time mode)蝕刻製程來形成介電頸部支撐件112a,使用終點模式蝕刻製程能更有效率且精確的控制介電頸部支撐件112a的厚度,並可擴大操作寬裕度。在一些實施例中,包括導電材料或半導體材料的蝕刻終止部件110a可作為場板(field plate)運作以進一步提升高壓半導體裝置的崩潰電壓。 Referring to FIG. 4A, the etch stop layer 110 and the dielectric layer 112 are formed into an etch stop part 110a and a dielectric neck support 112a using photolithography and an etching process, respectively. Generally speaking, the photolithography process includes depositing a photoresist material (not shown), exposing and developing to remove part of the photoresist material. The remaining photoresist material protects the underlying materials (eg, dielectric layer 112 and etch stop layer 110) from subsequent process steps (eg, etching). In some embodiments, a photoresist layer (not shown) is formed to cover the dielectric layer 112, and the photoresist is patterned by exposing the photoresist to light by using an appropriate photomask. The exposed or unexposed portions of the photoresist can then be removed by development, depending on whether positive or negative photoresist is used. Next, the patterned photoresist can be used to etch the dielectric layer 112 and the etch stop layer 110 to form an etch stop part 110a and a dielectric neck support 112a, respectively. The above-mentioned dielectric neck support 112a can reduce the electric field located under the edge of the gate (to be formed in the subsequent process) and reduce the gate-drain capacitance, thereby improving the breakdown voltage of the high-voltage semiconductor device and increasing the switching characteristics of the high-voltage semiconductor device (switching characteristic). In addition, the method of using the etch stop layer 110 as an etch endpoint to etch the dielectric layer 112 to form the above-described dielectric neck support 112a (ie, the end mode etching process) has some advantages, for example, it is different from using the time limit mode (time mode) etching process to form the dielectric neck support 112a, using the end-point mode etching process can more efficiently and accurately control the thickness of the dielectric neck support 112a, and can expand the operating margin. In some embodiments, the etch stop member 110a including a conductive material or a semiconductor material may operate as a field plate to further increase the breakdown voltage of the high-voltage semiconductor device.

在一實施例中,介電頸部支撐件112a的厚度約在500Å至700Å的範圍。在一實施例中,蝕刻終止部件110a的厚度約在300Å至500Å的範圍。上述蝕刻製程可為乾蝕刻或濕蝕刻製程,例如反應離子蝕刻(reactive ion etch,RIE)、中性束蝕刻(neutral beam etch,NBE)、相似製程、或上述之組合。此蝕刻可為非等向性(anisotropic)的。在一實施例中,介電頸部支撐件112a具有U型的上視輪廓(如第7A圖所示),且介電頸部支撐件112a具有一寬度W。在其他實施例中,介電頸部支撐件112a具有環(loop)型的上視輪廓(如第7B圖所示)。此外,在一些實施例中,如第4A圖所示,上述蝕刻終止部件110a及介電頸部支 撐件112a可具有相同的尺寸。舉例來說,可在單一蝕刻步驟中同時形成蝕刻終止部件110a及介電頸部支撐件112a。在另一些實施例中,如第4B圖所示,上述蝕刻終止部件110a及介電頸部支撐件112a可具有不同的尺寸。舉例來說,可藉由額外的光微影製程形成額外的圖案化光阻,以在不同的兩個蝕刻步驟中分別形成蝕刻終止部件110a及介電頸部支撐件112a。 In one embodiment, the thickness of the dielectric neck support 112a is approximately in the range of 500Å to 700Å. In one embodiment, the thickness of the etch stop member 110a is approximately in the range of 300Å to 500Å. The above etching process may be a dry etching or a wet etching process, such as reactive ion etching (RIE), neutral beam etching (NBE), a similar process, or a combination thereof. This etching may be anisotropic. In one embodiment, the dielectric neck support 112a has a U-shaped top-view profile (as shown in FIG. 7A), and the dielectric neck support 112a has a width W. In other embodiments, the dielectric neck support 112a has a loop-shaped top-view profile (as shown in FIG. 7B). In addition, in some embodiments, as shown in FIG. 4A, the above-mentioned etching stopper 110a and the dielectric neck support 112a may have the same size. For example, the etch stop part 110a and the dielectric neck support 112a can be simultaneously formed in a single etching step. In other embodiments, as shown in FIG. 4B, the etch stop member 110a and the dielectric neck support 112a may have different sizes. For example, an additional photolithography process may be used to form an additional patterned photoresist to form the etch stop part 110a and the dielectric neck support 112a in two different etching steps.

請參照第5圖,於閘極介電層106上形成一T型閘極120。接著,於T型閘極120的兩相對側壁120s上形成側壁間隔物122。上述T型閘極120包括橫條部(bar portion)120b及頸部(neck portion)120n,其中橫條部120b延伸超出頸部120n的部份為突出結構(overhang)120b’。在一實施例中,如第7A及7B圖所示,具有U型或環型的上視輪廓的介電頸部支撐件112a自T型閘極120的側壁122a突出一第一距離D1,上述第一距離D1大於側壁間隔物122的寬度。此外,介電頸部支撐件112a自T型閘極120的側壁122a延伸至T型閘極120下方的第二距離D2(即,突出結構120b’的寬度)大於第一距離D1。如此一來,可透過具有U型或環型上視輪廓的介電頸部支撐件112a來降低位於T型閘極120邊緣下方的電場並降低閘極-汲極電容(Gate-Drain Capacitance,Cgd)。再者,從上視角度來看,介電頸部支撐件112a中垂直於T型閘極120的部分自主動區100a的一邊緣E向外突出一第三距離D3。此外,介電頸部支撐件112a自主動區100a的一邊緣E向主動區100a延伸的一第四距離D4小於第三距離D3。 Please refer to FIG. 5, a T-shaped gate 120 is formed on the gate dielectric layer 106. Next, sidewall spacers 122 are formed on the two opposite sidewalls 120s of the T-gate 120. The T-gate 120 includes a bar portion 120b and a neck portion 120n, wherein the portion of the bar portion 120b extending beyond the neck 120n is an overhang 120b'. In one embodiment, as shown in FIGS. 7A and 7B, a dielectric neck support 112a having a U-shaped or ring-shaped top-view profile protrudes from the side wall 122a of the T-shaped gate 120 by a first distance D1, as described above The first distance D1 is greater than the width of the sidewall spacer 122. In addition, the second distance D2 (i.e., the width of the protruding structure 120b') of the dielectric neck support 112a extending from the sidewall 122a of the T-gate 120 to below the T-gate 120 is greater than the first distance D1. In this way, the electric field under the edge of the T-gate 120 can be reduced and the gate-drain capacitance (Gate-Drain Capacitance, Cgd) can be reduced by the dielectric neck support 112a having a U-shaped or ring-shaped top-view profile ). Furthermore, from the top view, the portion of the dielectric neck support 112a perpendicular to the T-gate 120 protrudes outward from an edge E of the active area 100a by a third distance D3. In addition, a fourth distance D4 that the dielectric neck support 112a extends from an edge E of the active area 100a to the active area 100a is smaller than the third distance D3.

在一些實施例中,T型閘極120包括多晶矽、金屬 材料、金屬矽化物、其他合適導電材料或上述之組合。可藉由適當的沉積製程(例如,化學氣相沉積、物理氣相沉積、有機金屬化學氣相沉積(metal-organic chemical vapor deposition,MOCVD))及/或矽化(silicidation)製程、微影製程及蝕刻製程(例如,乾蝕刻製程或濕蝕刻製程)形成上述T型閘極120。上述側壁間隔物122包括與用於T型閘極120的材料不同的材料。在一些實施例中,側壁間隔物122包括介電材料,例如氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride)。在一實施例中,在形成T型閘極120之後,藉由在高壓半導體裝置10之上共形沉積介電材料以形成一或多個層(未繪示)。接下來,進行非等向性蝕刻製程以去除部分上述一或多個層來形成側壁間隔物122。 In some embodiments, the T-gate 120 includes polysilicon, metal materials, metal silicides, other suitable conductive materials, or combinations thereof. It can be carried out by an appropriate deposition process (for example, chemical vapor deposition, physical vapor deposition, metal-organic chemical vapor deposition (MOCVD)) and/or silicidation process, lithography process and An etching process (for example, a dry etching process or a wet etching process) forms the T-gate 120 described above. The above-mentioned sidewall spacer 122 includes a material different from that used for the T-gate 120. In some embodiments, the sidewall spacer 122 includes a dielectric material, such as silicon nitride or silicon oxynitride. In one embodiment, after the T-gate 120 is formed, one or more layers (not shown) are formed by conformally depositing a dielectric material on the high-voltage semiconductor device 10. Next, an anisotropic etching process is performed to remove part of the one or more layers to form the sidewall spacer 122.

請參照第6圖,形成具有第一導電型的源極/汲極區132於對應的漂移區108內,同時於T型閘極120的頂部形成頂部摻雜區134。在一實施例中,源極/汲極區132的摻雜濃度大於作為雙擴散汲極區的漂移區108。再者,源極/汲極區132與頂部摻雜區134具有相同導電型及相同摻雜濃度。在一實施例中,源極/汲極區132可與側壁間隔物122橫向隔開一距離S(亦即,源極/汲極區132未自對準於側壁間隔物122)以降低高壓半導體裝置10的漏電流。上述距離S範圍大約在0.15微米至0.30微米。此外,上述頂部摻雜區134可降低T型閘極120的接觸電阻。 Referring to FIG. 6, a source/drain region 132 having a first conductivity type is formed in the corresponding drift region 108, and a top doped region 134 is formed on top of the T-gate 120. In one embodiment, the doping concentration of the source/drain region 132 is greater than the drift region 108 as a double-diffused drain region. Furthermore, the source/drain region 132 and the top doped region 134 have the same conductivity type and the same doping concentration. In an embodiment, the source/drain region 132 may be laterally separated from the sidewall spacer 122 by a distance S (ie, the source/drain region 132 is not self-aligned to the sidewall spacer 122) to reduce high voltage semiconductors Leakage current of device 10. The aforementioned distance S ranges from approximately 0.15 to 0.30 microns. In addition, the top doped region 134 can reduce the contact resistance of the T-gate 120.

可利用光微影製程形成佈植遮罩(未繪示)於高壓井區102之上,接著進行離子佈植以形成上述源極/汲極區 132,且在T型閘極120的頂部形成頂部摻雜區134。在形成源極/汲極區132之後,可利用習知金屬化製程,於第6圖的結構上形成一金屬化層(未繪示)。如此一來,便可形成高壓半導體裝置10。在一實施例中,金屬化層可包括一內層介電(ILD)層及位於內層介電(ILD)層內的一內連接結構。在一實施例中,內連接結構至少包括耦接至源極/汲極區132及頂部摻雜區134的金屬電極。 A photolithography process may be used to form an implantation mask (not shown) on the high-pressure well region 102, followed by ion implantation to form the source/drain region 132, and formed on top of the T-gate 120 The top doped region 134. After forming the source/drain regions 132, a conventional metallization process may be used to form a metallization layer (not shown) on the structure of FIG. In this way, the high-voltage semiconductor device 10 can be formed. In one embodiment, the metallization layer may include an interlayer dielectric (ILD) layer and an interconnect structure located in the interlayer dielectric (ILD) layer. In one embodiment, the interconnect structure at least includes a metal electrode coupled to the source/drain region 132 and the top doped region 134.

第8A/8B圖係根據本發明實施例分別繪示出具有N型/P型高壓井區的雙擴散汲極金氧半場效電晶體之汲極的電流-電壓曲線。虛線代表不具有場板之雙擴散汲極金氧半場效電晶體,即蝕刻終止部件為介電材料的實施例,例如氮化矽。實線表示具有場板之雙擴散汲極金氧半場效電晶體,即蝕刻終止部件為導電材料或半導體材料的實施例,例如多晶矽。由第8A-8B圖可看出,無論是具有N型/P型高壓井區的雙擴散汲極金氧半場效電晶體,具有場板之雙擴散汲極金氧半場效電晶體皆較不具有場板之雙擴散汲極金氧半場效電晶體有較高之崩潰電壓。 Figures 8A/8B are current-voltage curves of the drain of a double-diffused drain metal-oxide half-field transistor with N-type/P-type high-pressure wells according to an embodiment of the present invention. The dotted line represents an embodiment of a double-diffusion drain metal oxide half field effect transistor without a field plate, that is, an embodiment in which the etching stop member is a dielectric material, such as silicon nitride. The solid line represents an embodiment of a double-diffusion drain metal oxide half field effect transistor with a field plate, that is, an embodiment where the etching stop member is a conductive material or a semiconductor material, such as polysilicon. As can be seen from Figures 8A-8B, whether it is a double-diffused drain metal oxide half-field transistor with an N-type/P-type high-pressure well area, a double-diffused drain metal oxide half-field transistor with a field plate is less The double-diffusion drain metal oxide half field effect transistor with field plate has a higher breakdown voltage.

請參考第6圖,在本揭露之實施例中,高壓半導體裝置10包括一半導體基板100,其具有一高壓井區102及至少一隔離結構104。上述隔離結構104於半導體基板100的高壓井區102內定義出一主動區100a。 Please refer to FIG. 6. In the embodiment of the present disclosure, the high-voltage semiconductor device 10 includes a semiconductor substrate 100 having a high-voltage well region 102 and at least one isolation structure 104. The isolation structure 104 defines an active area 100 a in the high-voltage well area 102 of the semiconductor substrate 100.

在本實施例中,高壓半導體裝置10更包括位於半導體基板100之上的閘極介電層106、以及位於閘極介電層106上方的一T型閘極120。在一實施例中,閘極介電層106位於高 壓井區102上,覆蓋整個主動區100a並延伸於隔離結構104上方。在一特定實施例中,閘極介電層106可包括二氧化矽。上述T型閘極120包括橫條部(bar portion)120b及頸部(neck portion)120n,其中橫條部120b延伸超出頸部120n的部份為突出結構(overhang)120b’,如第6圖所示。在一實施例中,上述T型閘極120可包括多晶矽。在一實施例中,上述T型閘極120具有頂部摻雜區134,以降低T型閘極120的接觸電阻。 In this embodiment, the high-voltage semiconductor device 10 further includes a gate dielectric layer 106 on the semiconductor substrate 100 and a T-gate 120 on the gate dielectric layer 106. In one embodiment, the gate dielectric layer 106 is located on the high-pressure well region 102, covering the entire active region 100a and extending above the isolation structure 104. In a particular embodiment, the gate dielectric layer 106 may include silicon dioxide. The T-gate 120 includes a bar portion 120b and a neck portion 120n, wherein the portion of the bar portion 120b extending beyond the neck 120n is an overhang 120b', as shown in FIG. 6 As shown. In one embodiment, the T-gate 120 may include polysilicon. In one embodiment, the T-gate 120 has a top doped region 134 to reduce the contact resistance of the T-gate 120.

在本實施例中,高壓半導體裝置10更包括介電頸部支撐件112a,設置在T型閘極120的突出結構120b’下方,其中上述介電頸部支撐件112a延伸超出突出結構120b’的邊緣。介電頸部支撐件112a位於高壓井區102上。介電頸部支撐件112a為圖案化介電層而未覆蓋整個主動區100a或延伸於隔離結構104上方。如第7A及7B圖所示,介電頸部支撐件112a至少部分環繞T型閘極120。在一些實施例中,介電頸部支撐件112a可具有U型的上視輪廓,在另一些實施例中,介電頸部支撐件112a可具有環型的上視輪廓。在一實施例中,介電頸部支撐件112a及閘極介電層106包括相同的材料,例如二氧化矽。在其他實施例中,介電頸部支撐件112a及閘極介電層106可包括不同的材料。 In this embodiment, the high-voltage semiconductor device 10 further includes a dielectric neck support 112a disposed under the protruding structure 120b' of the T-gate 120, wherein the dielectric neck support 112a extends beyond the protruding structure 120b' edge. The dielectric neck support 112a is located on the high-pressure well area 102. The dielectric neck support 112a is a patterned dielectric layer that does not cover the entire active area 100a or extends above the isolation structure 104. As shown in FIGS. 7A and 7B, the dielectric neck support 112a at least partially surrounds the T-shaped gate 120. In some embodiments, the dielectric neck support 112a may have a U-shaped top-view profile, and in other embodiments, the dielectric neck support 112a may have a ring-shaped top-view profile. In one embodiment, the dielectric neck support 112a and the gate dielectric layer 106 include the same material, such as silicon dioxide. In other embodiments, the dielectric neck support 112a and the gate dielectric layer 106 may include different materials.

在本實施例中,高壓半導體裝置10更包括蝕刻終止部件110a,設置在介電頸部支撐件112a下方。在一些實施例中,蝕刻終止部件110a具有與介電頸部支撐件112a相同的尺寸,而在另一些實施例中,蝕刻終止部件110a較介電頸部支撐件112a之寬度寬。在一些實施例中,蝕刻終止部件110a包括導 電材料或半導體材料,以作為場板。在一特定實施例中,上述蝕刻終止部件110a為多晶矽。 In this embodiment, the high-voltage semiconductor device 10 further includes an etch stop member 110a, which is disposed below the dielectric neck support 112a. In some embodiments, the etch stop member 110a has the same size as the dielectric neck support 112a, while in other embodiments, the etch stop member 110a is wider than the width of the dielectric neck support 112a. In some embodiments, the etch stop member 110a includes a conductive material or a semiconductor material to serve as a field plate. In a specific embodiment, the etch stop 110a is polysilicon.

在本實施例中,高壓半導體裝置10更包括設置在T型閘極120兩側的高壓井區102中的一對漂移區108,以及設置在上述漂移區108中的一對源極/汲極區132。 In this embodiment, the high-voltage semiconductor device 10 further includes a pair of drift regions 108 disposed in the high-voltage well regions 102 on both sides of the T-gate 120, and a pair of source/drain electrodes disposed in the drift region 108 District 132.

在本實施例中,高壓半導體裝置10更包括側壁間隔物122,覆蓋介電頸部支撐件112a且沿著T型閘極120之突出結構120b’延伸,其中介電頸部支撐件112a較上述側壁間隔物122的寬度寬。在一實施例中,源極/汲極區132與側壁間隔物122橫向隔開一距離S。 In this embodiment, the high-voltage semiconductor device 10 further includes a sidewall spacer 122 that covers the dielectric neck support 112a and extends along the protruding structure 120b' of the T-gate 120, wherein the dielectric neck support 112a is higher than the above The width of the sidewall spacer 122 is wide. In one embodiment, the source/drain region 132 is laterally separated from the sidewall spacer 122 by a distance S.

根據上述實施例,在形成具有由U型或環型的介電層高壓半導體裝置的過程中,利用蝕刻終止層作為蝕刻終點以蝕刻介電支撐層來形成介電頸部支撐件的方法(即,終點模式蝕刻製程)具有一些優點,舉例來說,有別於利用時限模式(time mode)蝕刻製程來形成介電頸部支撐件,使用終點模式蝕刻製程能更有效率且精確的控制介電頸部支撐件的厚度,並可擴大操作寬裕度。此外,包括導電材料或半導體材料的蝕刻終止部件可具有場板功效,可進一步提升裝置的崩潰電壓。如此一來,在高壓半導體裝置設計中,源極/汲極區可與側壁間隔物橫向隔開一距離,以增加通道區與源極/汲極區之間的間距,進而減少高壓半導體裝置的漏電流。再者,可透過縮小高壓半導體裝置的的平面尺寸而降低高壓半導體裝置的導通電阻。 According to the above embodiment, in the process of forming a high-voltage semiconductor device having a U-shaped or ring-shaped dielectric layer, a method of forming a dielectric neck support using an etching stop layer as an etching end point to etch the dielectric support layer (ie , End-point mode etching process) has some advantages, for example, different from the use of time mode etching process to form the dielectric neck support, using the end mode etching process can more efficiently and accurately control the dielectric The thickness of the neck support, and can expand the operating margin. In addition, the etch stop member including conductive material or semiconductor material can have a field plate effect, which can further increase the breakdown voltage of the device. In this way, in the design of high-voltage semiconductor devices, the source/drain regions can be laterally separated from the sidewall spacer to increase the distance between the channel region and the source/drain regions, thereby reducing the high-voltage semiconductor device Leakage current. Furthermore, the on-resistance of the high-voltage semiconductor device can be reduced by reducing the planar size of the high-voltage semiconductor device.

以上概略說明了本揭露數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭露可更為容易理解。任 何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本揭露實施例的目的及/或獲得相同的優點。任何所屬技術領域內具有通常知識者亦可理解與上述等同的結構或製程並未脫離本揭露之精神及保護範圍內,且可在不脫離本揭露之精神及範圍內,當可作更動、替代與潤飾。 The above outlines the features of several embodiments of the present disclosure, so that those with ordinary knowledge in the art can more easily understand the present disclosure. Those of ordinary skill in the art should understand that this description can be easily used as a basis for changes or design of other structures or processes to perform the same purposes and/or obtain the same advantages as the disclosed embodiments. Any person with ordinary knowledge in the technical field can also understand that the structure or process equivalent to the above does not deviate from the spirit and scope of the disclosure, and can be changed or replaced without departing from the spirit and scope of the disclosure With retouch.

10‧‧‧高壓半導體裝置 10‧‧‧High voltage semiconductor device

100‧‧‧半導體基板 100‧‧‧Semiconductor substrate

100a‧‧‧主動區 100a‧‧‧Active area

102‧‧‧高壓井區 102‧‧‧High pressure well area

104‧‧‧隔離結構 104‧‧‧Isolated structure

106‧‧‧閘極介電層 106‧‧‧ Gate dielectric layer

108‧‧‧漂移區 108‧‧‧Drift zone

110a‧‧‧蝕刻終止部件 110a‧‧‧Etching stop parts

112a‧‧‧介電頸部支撐件 112a‧‧‧Dielectric neck support

120‧‧‧T型閘極 120‧‧‧T gate

120b‧‧‧橫條部 120b‧‧‧Bar Department

120b'‧‧‧突出結構 120b'‧‧‧ prominent structure

120n‧‧‧頸部 120n‧‧‧Neck

120s‧‧‧側壁 120s‧‧‧Side wall

122‧‧‧側壁間隔物 122‧‧‧Side wall spacer

132‧‧‧源極/汲極區 132‧‧‧Source/Drain

134‧‧‧頂部摻雜區 134‧‧‧ Top doped region

S‧‧‧距離 S‧‧‧Distance

Claims (20)

一種半導體裝置,包括:一半導體基板,具有一高壓井區;一閘極介電層,位於該半導體基板上;一T型閘極,位於該閘極介電層上,該T型閘極具有延伸超出該T型閘極之頸部的複數突出結構(overhangs);一介電頸部支撐件,設置在該T型閘極的該複數突出結構下方;一蝕刻終止部件,設置在該介電頸部支撐件下方;一對漂移區,設置在該T型閘極兩側的該高壓井區中;以及一對源極/汲極區,位於該對漂移區內。 A semiconductor device includes: a semiconductor substrate with a high-pressure well region; a gate dielectric layer on the semiconductor substrate; and a T-type gate on the gate dielectric layer, the T-type gate having A plurality of overhangs extending beyond the neck of the T-shaped gate; a dielectric neck support member disposed under the plurality of protruded structures of the T-shaped gate; an etching stop member disposed at the dielectric Below the neck support; a pair of drift regions arranged in the high-pressure well regions on both sides of the T-gate; and a pair of source/drain regions located in the pair of drift regions. 如申請專利範圍第1項所述之半導體裝置,更包括一側壁間隔物,覆蓋該介電頸部支撐件且沿著該T型閘極之該複數突出結構的側壁延伸。 The semiconductor device described in item 1 of the patent application further includes a sidewall spacer covering the dielectric neck support and extending along the sidewall of the plurality of protruding structures of the T-gate. 如申請專利範圍第2項所述之半導體裝置,其中該側壁間隔物與該源極/汲極區橫向隔開一距離。 The semiconductor device as described in item 2 of the patent application scope, wherein the sidewall spacer is laterally separated from the source/drain region by a distance. 如申請專利範圍第2項所述之半導體裝置,其中該介電頸部支撐件較該側壁間隔物的寬度寬。 The semiconductor device as described in item 2 of the patent application range, wherein the dielectric neck support is wider than the width of the sidewall spacer. 如申請專利範圍第1項所述之半導體裝置,其中在上視圖中,該介電頸部支撐件至少部份環繞該T型閘極。 The semiconductor device as described in item 1 of the patent application range, wherein in a top view, the dielectric neck support member at least partially surrounds the T-shaped gate. 如申請專利範圍第5項所述之半導體裝置,其中該介電頸部支撐件具有U型的上視輪廓。 The semiconductor device as described in item 5 of the patent application range, wherein the dielectric neck support has a U-shaped top-view profile. 如申請專利範圍第5項所述之半導體裝置,其中該介電頸 部支撐件具有環(loop)型的上視輪廓。 A semiconductor device as described in item 5 of the patent application range, wherein the dielectric neck support has a loop-shaped top-view profile. 如申請專利範圍第1項所述之半導體裝置,其中該介電頸部支撐件延伸超出該複數突出結構的邊緣。 The semiconductor device as described in item 1 of the patent application range, wherein the dielectric neck support extends beyond the edge of the plurality of protruding structures. 如申請專利範圍第1項所述之半導體裝置,其中該蝕刻終止部件較該介電頸部支撐件之寬度寬。 The semiconductor device as described in item 1 of the patent application range, wherein the etch stop member is wider than the width of the dielectric neck support. 如申請專利範圍第1項所述之半導體裝置,其中該蝕刻終止部件包括一導電材料或半導體材料,以作為場板。 The semiconductor device as described in item 1 of the patent application scope, wherein the etch stop member includes a conductive material or a semiconductor material as a field plate. 如申請專利範圍第10項所述之半導體裝置,其中該蝕刻終止部件為多晶矽(polysilicon)。 The semiconductor device as described in item 10 of the patent application range, wherein the etch stop member is polysilicon. 一種半導體裝置之製造方法,包括:提供一半導體基板,其具有一高壓井區;於該基板上形成一閘極介電層;於該高壓井區內形成一對漂移區;於該閘極介電層上形成一蝕刻終止層;於該蝕刻終止層上形成一介電頸部支撐件,其中該蝕刻終止層在形成該介電頸部支撐件時作為蝕刻終點;於該閘極介電層上形成一T型閘極,其中該T型閘極具有延伸超出該T型閘極之頸部的複數突出結構(overhangs)於該介電頸部支撐件上;以及於該漂移區內形成一對源極/汲極區。 A method for manufacturing a semiconductor device includes: providing a semiconductor substrate having a high-pressure well region; forming a gate dielectric layer on the substrate; forming a pair of drift regions in the high-pressure well region; and interposing the gate electrode Forming an etch stop layer on the electrical layer; forming a dielectric neck support on the etch stop layer, wherein the etch stop layer serves as an etching end point when forming the dielectric neck support; on the gate dielectric layer Forming a T-shaped gate, wherein the T-shaped gate has a plurality of overhangs extending beyond the neck of the T-shaped gate on the dielectric neck support; and forming a in the drift region For source/drain regions. 如申請專利範圍第12項所述之半導體裝置之製造方法,更包括形成一側壁間隔物,覆蓋該介電頸部支撐件且沿著該T型閘極之該複數突出結構的側壁延伸。 The method of manufacturing a semiconductor device as described in item 12 of the patent application scope further includes forming a sidewall spacer that covers the dielectric neck support and extends along the sidewall of the plurality of protruding structures of the T-gate. 如申請專利範圍第13項所述之半導體裝置之製造方法, 其中該介電頸部支撐件較該側壁間隔物的寬度寬。 A method of manufacturing a semiconductor device as described in item 13 of the patent application range, wherein the dielectric neck support is wider than the width of the sidewall spacer. 如申請專利範圍第12項所述之半導體裝置之製造方法,其中在上視圖中,該介電頸部支撐件至少部份環繞該T型閘極。 The method of manufacturing a semiconductor device as described in item 12 of the patent application range, wherein in a top view, the dielectric neck support member at least partially surrounds the T-shaped gate. 如申請專利範圍第12項所述之半導體裝置之製造方法,其中該介電頸部支撐件延伸超出該複數突出結構的邊緣。 The method for manufacturing a semiconductor device as described in item 12 of the patent application range, wherein the dielectric neck support extends beyond the edge of the plurality of protruding structures. 如申請專利範圍第12項所述之半導體裝置之製造方法,其中該蝕刻終止部件較該介電頸部支撐件之寬度寬。 The method of manufacturing a semiconductor device as described in item 12 of the patent application range, wherein the etching stop member is wider than the width of the dielectric neck support. 如申請專利範圍第12項所述之半導體裝置之製造方法,其中該蝕刻終止部件包括一導電材料或半導體材料,以作為場板。 The method for manufacturing a semiconductor device as described in item 12 of the patent application range, wherein the etching stop member includes a conductive material or a semiconductor material to serve as a field plate. 如申請專利範圍第18項所述之半導體裝置之製造方法,其中該蝕刻終止部件為多晶矽(polysilicon)。 The method for manufacturing a semiconductor device as described in item 18 of the patent application range, wherein the etching stop member is polysilicon. 如申請專利範圍第12項所述之半導體裝置之製造方法,其中該T型閘極具有一頂部摻雜區,且該頂部摻雜區與該源極/汲極區具有相同導電型及相同摻雜濃度。 The method for manufacturing a semiconductor device as described in item 12 of the patent application range, wherein the T-gate has a top doped region, and the top doped region and the source/drain region have the same conductivity type and the same doping Miscellaneous concentration.
TW107132617A 2018-09-17 2018-09-17 Semiconductor device and method for manufacturing the same TWI676289B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107132617A TWI676289B (en) 2018-09-17 2018-09-17 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107132617A TWI676289B (en) 2018-09-17 2018-09-17 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI676289B TWI676289B (en) 2019-11-01
TW202013717A true TW202013717A (en) 2020-04-01

Family

ID=69188775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132617A TWI676289B (en) 2018-09-17 2018-09-17 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI676289B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301185B2 (en) * 2004-11-29 2007-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. High-voltage transistor device having an interlayer dielectric etch stop layer for preventing leakage and improving breakdown voltage
TWI578534B (en) * 2012-08-08 2017-04-11 聯華電子股份有限公司 High voltage metal-oxide-semiconductor transistor device
US20140264588A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Co. Ltd. Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) with Step Oxide
TWI682546B (en) * 2016-05-24 2020-01-11 聯華電子股份有限公司 High-voltage metal-oxide-semiconductor transistor and fabrication method thereof
US9876069B1 (en) * 2017-05-18 2018-01-23 Vanguard International Semiconductor Corporation High-voltage semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI676289B (en) 2019-11-01

Similar Documents

Publication Publication Date Title
US20210036112A1 (en) Ldmosfet device and method for making the same
US8067293B2 (en) Power semiconductor device and method of manufacturing the same
TWI470790B (en) Trench gate mosfet
US10777551B2 (en) Integrated semiconductor device and method for manufacturing the same
US20120228704A1 (en) High-Voltage MOSFET with High Breakdown Voltage and Low On-Resistance and Method of Manufacturing the Same
TWI407564B (en) Power semiconductor with trench bottom poly and fabrication method thereof
US9876069B1 (en) High-voltage semiconductor device and method for manufacturing the same
US10056461B2 (en) Composite masking self-aligned trench MOSFET
JP2006505949A (en) Planarization of gate materials to improve the critical dimensions of semiconductor device gates.
KR20190142881A (en) Integrated circuit device
TW201351640A (en) Device and method for manufacturing the same
TWI455318B (en) High voltage semiconductor device and method for manufacturing the same
US11594631B2 (en) LDMOS transistor and manufacture thereof
CN112928153B (en) Semiconductor structure and forming method thereof
TWI732182B (en) Semiconductor devices and methods for forming the same
CN110957349B (en) Semiconductor device and method for manufacturing the same
TW202021132A (en) Laterally diffused metal oxide semiconductor device
TWI676289B (en) Semiconductor device and method for manufacturing the same
CN108695386B (en) High voltage semiconductor device and method for manufacturing the same
TWI546956B (en) Trench gate mosfet
US20160056237A1 (en) Semiconductor device and semiconductor device manufacturing method
US20200227552A1 (en) Semiconductor device with dielectric neck support and method for manufacturing the same
TWI618246B (en) High-voltage semiconductor device and method for manufacturing the same
CN110690116A (en) Semiconductor structure and manufacturing method thereof
US11688805B2 (en) Integrated circuit structure and method for forming the same