TW202009497A - Electric current sensor - Google Patents

Electric current sensor Download PDF

Info

Publication number
TW202009497A
TW202009497A TW108118714A TW108118714A TW202009497A TW 202009497 A TW202009497 A TW 202009497A TW 108118714 A TW108118714 A TW 108118714A TW 108118714 A TW108118714 A TW 108118714A TW 202009497 A TW202009497 A TW 202009497A
Authority
TW
Taiwan
Prior art keywords
anisotropic
slope surface
magnetization
magnetization direction
magnetoresistance
Prior art date
Application number
TW108118714A
Other languages
Chinese (zh)
Other versions
TWI714107B (en
Inventor
袁輔德
李彥琦
Original Assignee
愛盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛盛科技股份有限公司 filed Critical 愛盛科技股份有限公司
Priority to CN201910664113.4A priority Critical patent/CN110857952B/en
Priority to US16/547,604 priority patent/US11022632B2/en
Publication of TW202009497A publication Critical patent/TW202009497A/en
Application granted granted Critical
Publication of TWI714107B publication Critical patent/TWI714107B/en

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

An electric current sensor including a substrate, a first sloped surface, a second sloped surface, at least one conductive wire, a first anisotropic magnetoresistor (AMR) unit, a second AMR unit, a first magnetization direction setting device, and a second magnetization direction setting device is provided. The first sloped surface and the second sloped surface are disposed on the substrate and arranged in the first direction. The conductive wire extends along the second surface and is disposed beside the substrate. The first AMR unit is disposed on the first sloped surface. The second AMR unit is disposed on the second sloped surface. The first magnetization direction setting device and the second magnetization direction setting device are configured to set magnetization directions of the AMR units.

Description

電流感測器Current sensor

本發明是有關於一種感測器,且特別是有關於一種電流感測器。The invention relates to a sensor, and in particular to a current sensor.

電流感測是工業自動化中不可或缺的元素之一。近年來,電流感測的需求從工業用途擴展至智能居家與智慧城市領域的消費者產品與應用。高準確度、快速反應、小體積、低功耗及可靠的品質成為新一代電流感測器所追求的目標。Current sensing is one of the indispensable elements in industrial automation. In recent years, the demand for current sensing has expanded from industrial uses to consumer products and applications in smart homes and smart cities. High accuracy, fast response, small size, low power consumption and reliable quality have become the goals pursued by the new generation of current sensors.

目前有多種方法可以量測導體中的電流。舉例而言,可利用分路電阻器(shunt resistor)藉由量測橫跨其之電壓差來推算出電流。然而,此電阻相量小,因此電流消耗高,而不適用於小型或可攜式裝置。此外,高電流會產生熱,而造成其他問題。There are currently many ways to measure the current in a conductor. For example, a shunt resistor can be used to calculate the current by measuring the voltage difference across it. However, the resistance phasor is small, so the current consumption is high, and it is not suitable for small or portable devices. In addition, high currents can generate heat and cause other problems.

本發明提供一種電流感測器,具有高敏感度、高準確度及低功耗。The invention provides a current sensor with high sensitivity, high accuracy and low power consumption.

本發明的一實施例提出一種電流感測器,包括一基板、一第一斜坡面、一第二斜坡面、至少一導線、一第一異向性磁電阻單元、一第二異向性磁電阻單元、一第一磁化方向設定元件及一第二磁化方向設定元件。第一斜坡面與第二斜坡面設於基板上,且排列於一第一方向上。導線沿著一第二方向延伸,且配置於基板的一側。第一異向性磁電阻單元配置於第一斜坡面上,且第二異向性磁電阻單元配置於第二斜坡面上。第一磁化方向設定元件用以設定第一異向性磁電阻單元的磁化方向,且第二磁化方向設定元件用以設定第二異向性磁電阻單元的磁化方向。當一電流流經導線時,電流於第一斜坡面處所產生的一第三方向上的磁場分量相反於電流於第二斜坡面處所產生的第三方向上的磁場分量。第一方向、第二方向及第三方向彼此不同,且第一異向性磁電阻單元與第二異向性磁電阻單元的感測方向相對於第一方向與第三方向傾斜,且不同於第二方向。第一異向性磁電阻單元與第二異向性磁電阻單元電性連接,以輸出一電壓訊號。此電壓訊號對應於電流於第一斜坡面處與第二斜坡面處所產生的第三方向上的磁場分量。An embodiment of the present invention provides a current sensor, including a substrate, a first slope surface, a second slope surface, at least one wire, a first anisotropic magnetoresistive unit, and a second anisotropic magnetic The resistance unit, a first magnetization direction setting element and a second magnetization direction setting element. The first slope surface and the second slope surface are provided on the substrate and arranged in a first direction. The wire extends along a second direction and is disposed on one side of the substrate. The first anisotropic magnetoresistive unit is disposed on the first slope surface, and the second anisotropic magnetoresistive unit is disposed on the second slope surface. The first magnetization direction setting element is used to set the magnetization direction of the first anisotropic magnetoresistive unit, and the second magnetization direction setting element is used to set the magnetization direction of the second anisotropic magnetoresistive unit. When a current flows through the wire, a third-direction magnetic field component generated by the current at the first ramp surface is opposite to a third-direction magnetic field component generated by the current at the second ramp surface. The first direction, the second direction, and the third direction are different from each other, and the sensing directions of the first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit are inclined with respect to the first direction and the third direction, and are different from Second direction. The first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit are electrically connected to output a voltage signal. This voltage signal corresponds to the third-direction magnetic field component of the current generated at the first ramp surface and the second ramp surface.

在本發明的一實施例中,電流感測器更包括一第三斜坡面、一第四斜坡面、一第三異向性磁電阻單元及一第四異向性磁電阻單元。第三斜坡面與第四斜坡面設於基板上,其中第三斜坡面與第一斜坡面相對,第四斜坡面與第二斜坡面相對,且第一斜坡面、第三斜坡面、第四斜坡面及第二斜坡面依序排列於第一方向上。第三異向性磁電阻單元配置於第三斜坡面上,第一磁化方向設定元件也用以設定第三異向性磁電阻單元的磁化方向。第四異向性磁電阻單元配置於第四斜坡面上,第二磁化方向設定元件也用以設定第四異向性磁電阻單元的磁化方向。當電流流經導線時,因感應於電流所產生的磁場,第一異向性磁電阻單元所產生的電阻值變化相反於第三異向性磁電阻單元所產生的電阻值變化,且第二異向性磁電阻單元所產生的電阻值變化相反於第四異向性磁電阻單元所產生的電阻值變化。第一、第二、第三及第四異向性磁電阻單元電性連接成一惠斯登電橋,以輸出對應於第一、第二、第三及第四異向性磁電阻單元所產生的電阻值變化的電壓訊號。In an embodiment of the invention, the current sensor further includes a third slope surface, a fourth slope surface, a third anisotropic magnetoresistive unit, and a fourth anisotropic magnetoresistive unit. The third slope surface and the fourth slope surface are provided on the substrate, wherein the third slope surface is opposite to the first slope surface, the fourth slope surface is opposite to the second slope surface, and the first slope surface, the third slope surface, and the fourth The slope surface and the second slope surface are sequentially arranged in the first direction. The third anisotropic magnetoresistive unit is disposed on the third slope surface, and the first magnetization direction setting element is also used to set the magnetization direction of the third anisotropic magnetoresistive unit. The fourth anisotropic magnetoresistive unit is disposed on the fourth slope surface, and the second magnetization direction setting element is also used to set the magnetization direction of the fourth anisotropic magnetoresistive unit. When current flows through the wire, due to the magnetic field induced by the current, the change in resistance value generated by the first anisotropic magnetoresistive unit is opposite to the change in resistance value generated by the third anisotropic magnetoresistive unit, and the second The change in resistance value generated by the anisotropic magnetoresistive unit is opposite to the change in resistance value generated by the fourth anisotropic magnetoresistive unit. The first, second, third and fourth anisotropic magnetoresistive units are electrically connected to form a Wheatstone bridge to output corresponding to the first, second, third and fourth anisotropic magnetoresistive units The voltage signal of the change of the resistance value.

在本發明的一實施例中,電流感測器更包括一運算器,電性連接至惠斯登電橋的一輸出端,其中第一磁化方向設定元件與第二磁化方向設定元件將第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為一第一組合,以使惠斯登電橋之後輸出一第一電壓訊號,且第一磁化方向設定元件與第二磁化方向設定元件再將第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為相反於第一組合的一第二組合,以使惠斯登電橋之後輸出一第二電壓訊號。運算器用以將第二電壓訊號與第一電壓訊號相減,以輸出一對應於電流所產生的磁場的大小的輸出電壓訊號。In an embodiment of the invention, the current sensor further includes an arithmetic unit electrically connected to an output terminal of the Wheatstone bridge, wherein the first magnetization direction setting element and the second magnetization direction setting element , The second, third and fourth anisotropic magnetoresistive unit magnetization direction combination is set to a first combination, so that the Wheatstone bridge outputs a first voltage signal, and the first magnetization direction setting element and the first The second magnetization direction setting element sets the magnetization direction combination of the first, second, third, and fourth anisotropic magnetoresistive units to a second combination opposite to the first combination, so that the Wheatstone bridge outputs A second voltage signal. The arithmetic unit is used to subtract the second voltage signal from the first voltage signal to output an output voltage signal corresponding to the magnitude of the magnetic field generated by the current.

在本發明的一實施例中,運算器用以將第一電壓訊號與第二電壓訊號相加,以輸出一偏移電壓訊號。In an embodiment of the invention, the arithmetic unit is used to add the first voltage signal and the second voltage signal to output an offset voltage signal.

在本發明的一實施例中,惠斯登電橋對應於在第一方向上的外在磁場分量所輸出的電壓訊號為零,對應於在第二方向上的外在磁場分量所輸出的電壓訊號為零,且對應於在第三方向上的外在磁場分量所輸出的電壓訊號為零。In an embodiment of the invention, the Wheatstone bridge corresponds to the voltage signal output by the external magnetic field component in the first direction being zero, and corresponds to the voltage output by the external magnetic field component in the second direction The signal is zero, and the voltage signal output corresponding to the external magnetic field component in the third direction is zero.

在本發明的一實施例中,第一異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第一異向性磁電阻與一第二異向性磁電阻,第二異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第三異向性磁電阻與一第四異向性磁電阻,第三異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第五異向性磁電阻與一第六異向性磁電阻,且第四異向性磁電阻單元包括沿著第二方向的反方向依序排列的一第七異向性磁電阻與一第八異向性磁電阻。In an embodiment of the invention, the first anisotropic magnetoresistive unit includes a first anisotropic magnetic resistance and a second anisotropic magnetic resistance arranged in sequence along the reverse direction of the second direction, the second The anisotropic magneto-resistance unit includes a third anisotropic magneto-resistance and a fourth anisotropic magneto-resistance arranged in sequence along the reverse direction of the second direction. The third anisotropic magneto-resistance unit includes A fifth anisotropic magnetoresistance and a sixth anisotropic magnetoresistance are sequentially arranged in the opposite direction of the direction, and the fourth anisotropic magnetoresistance unit includes a first anisotropy sequentially arranged in the opposite direction of the second direction Seven anisotropic magnetoresistance and one eighth anisotropic magnetoresistance.

在本發明的一實施例中,在一第一時間,第一磁化方向設定元件將第一異向性磁電阻與第五異向性磁電阻的磁化方向設定為第二方向的反方向,且將第二異向性磁電阻與第六異向性磁電阻的磁化方向設定為第二方向;在第一時間,第二磁化方向設定元件將第三異向性磁電阻與第七異向性磁電阻的磁化方向設定為第二方向的反方向,且將第四異向性磁電阻與第八異向性磁電阻的磁化方向設定為第二方向;在一第二時間,第一磁化方向設定元件將第一異向性磁電阻與第五異向性磁電阻的磁化方向設定為第二方向,且將第二異向性磁電阻與第六異向性磁電阻的磁化方向設定為第二方向的反方向;在第二時間,第二磁化方向設定元件將第三異向性磁電阻與第七異向性磁電阻的磁化方向設定為第二方向,且將第四異向性磁電阻與第八異向性磁電阻的磁化方向設定為第二方向的反方向。In an embodiment of the invention, at a first time, the first magnetization direction setting element sets the magnetization directions of the first anisotropic magnetoresistance and the fifth anisotropic magnetoresistance to the opposite direction of the second direction, and The magnetization directions of the second anisotropic magnetoresistance and the sixth anisotropic magnetoresistance are set as the second direction; at the first time, the second magnetization direction setting element sets the third anisotropic magnetoresistance and the seventh anisotropy The magnetization direction of the magnetoresistance is set to the opposite direction of the second direction, and the magnetization directions of the fourth and eighth anisotropic magnetoresistances are set to the second direction; at a second time, the first magnetization direction The setting element sets the magnetization directions of the first anisotropic magnetoresistance and the fifth anisotropic magnetoresistance to the second direction, and sets the magnetization directions of the second anisotropic magnetoresistance and the sixth anisotropic magnetoresistance to the first The opposite direction of the two directions; at the second time, the second magnetization direction setting element sets the magnetization directions of the third anisotropic magnetoresistance and the seventh anisotropic magnetoresistance to the second direction, and sets the fourth anisotropic magnetization The magnetization directions of the resistance and the eighth anisotropic magnetoresistance are set to be opposite to the second direction.

在本發明的一實施例中,第一磁化方向設定元件與第二磁化方向設定元件為導電片、導電線圈、導線、導體或永久磁鐵。In an embodiment of the invention, the first magnetization direction setting element and the second magnetization direction setting element are conductive sheets, conductive coils, wires, conductors or permanent magnets.

在本發明的一實施例中,第一方向、第二方向及第三方向彼此互相垂直。In an embodiment of the invention, the first direction, the second direction and the third direction are perpendicular to each other.

在本發明的一實施例中,上述至少一導線為一個導線,第一斜坡面與第二斜坡面位於基板的一第一側,而導線位於基板的一第二側,且第一側相對於第二側。In an embodiment of the invention, the at least one wire is a wire, the first slope surface and the second slope surface are located on a first side of the substrate, and the wire is located on a second side of the substrate, and the first side is opposite to The second side.

在本發明的一實施例中,第一斜坡面與第二斜坡面分別位於基板的相對兩端之一側,而導線位於基板的中央的一側。In an embodiment of the present invention, the first slope surface and the second slope surface are respectively located on one side of the opposite ends of the substrate, and the wires are located on the side of the center of the substrate.

在本發明的一實施例中,上述至少一導線為二個導線,分別配置於基板的一第一端與一第二端旁,其中第一端相對於第二端,且此二個導線分別與第一端及第二端部分重疊。In an embodiment of the present invention, the at least one wire is two wires, which are respectively disposed beside a first end and a second end of the substrate, wherein the first end is opposite to the second end, and the two wires are respectively Partially overlaps the first and second ends.

在本發明的一實施例中,上述至少一導線為二個導線,分別配置於基板的一第一端與一第二端旁,其中第一端相對於第二端,且此二個導線分別不與第一端及第二端重疊。In an embodiment of the present invention, the at least one wire is two wires, which are respectively disposed beside a first end and a second end of the substrate, wherein the first end is opposite to the second end, and the two wires are respectively Does not overlap with the first and second ends.

在本發明的一實施例中,第一異向性磁電阻單元與第二異向性磁電阻單元電性連接成一惠斯登電橋,以輸出對應於第一異向性磁電阻單元與第二異向性磁電阻單元所產生的電阻值變化的電壓訊號。In an embodiment of the present invention, the first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit are electrically connected to form a Wheatstone bridge to output corresponding to the first anisotropic magnetoresistive unit and the first The voltage signal of the change of the resistance value generated by the two anisotropic magnetoresistive units.

在本發明的實施例的電流感測器中,由於採用了異向性磁電阻單元連接成惠斯登電橋來感測導線中的電流所產生的磁場,因此對電流的感測具有高敏感度與高準確度。此外,由於本發明的實施例的電流感測器是利用感測電流所產生的磁場的方式來反推電流的大小,而異向性磁電阻單元不會直接接觸到電流,因此可以具有較低的功耗。In the current sensor of the embodiment of the present invention, since the anisotropic magnetoresistive unit is connected as a Wheatstone bridge to sense the magnetic field generated by the current in the wire, it is highly sensitive to current sensing Degree and high accuracy. In addition, since the current sensor of the embodiment of the present invention uses the magnetic field generated by the current to reverse the magnitude of the current, and the anisotropic magnetoresistive unit does not directly contact the current, it can have a lower Power consumption.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

圖1是本發明的一實施例的一種電流感測器的上視示意圖,而圖2是圖1的電流感測器沿著A-A線的剖面示意圖。請參照圖1與圖2,本實施例的電流感測器100包括一基板210、一第一斜坡面S1、一第二斜坡面S2、至少一導線C(圖1中是以一個導線C為例)、一第一異向性磁電阻單元222、一第二異向性磁電阻單元224、一第一磁化方向設定元件M1及一第二磁化方向設定元件M2。第一斜坡面S1與第二斜坡面S2設於基板210上,且排列於一第一方向D1上。導線C沿著一第二方向D2延伸,且配置於基板210的一側。在本實施例中,基板210上設有絕緣層215,而第一斜坡面S1與第二斜坡面S2為絕緣層215的表面。然而,在其他實施例中,第一斜坡面S1與第二斜坡面S2也可以是基板210的表面。FIG. 1 is a schematic top view of a current sensor according to an embodiment of the invention, and FIG. 2 is a schematic cross-sectional view of the current sensor of FIG. 1 along line A-A. 1 and 2, the current sensor 100 of this embodiment includes a substrate 210, a first slope surface S1, a second slope surface S2, and at least one wire C (in FIG. 1, a wire C is used as Example), a first anisotropic magnetoresistive unit 222, a second anisotropic magnetoresistive unit 224, a first magnetization direction setting element M1 and a second magnetization direction setting element M2. The first slope surface S1 and the second slope surface S2 are disposed on the substrate 210 and are arranged in a first direction D1. The wire C extends along a second direction D2 and is disposed on one side of the substrate 210. In this embodiment, an insulating layer 215 is provided on the substrate 210, and the first slope surface S1 and the second slope surface S2 are the surfaces of the insulation layer 215. However, in other embodiments, the first slope surface S1 and the second slope surface S2 may also be the surface of the substrate 210.

導線C沿著一第二方向D2延伸,且配置於基板210的一側。在本實施例中,第一斜坡面S1與第二斜坡面S2位於基板210的一第一側(即圖2中的上側),而導線C位於基板210的一第二側(即圖2中的下側),其中第一側相對於第二側。此外,絕緣層215是位於基板210的第一側。在本實施例中,第一斜坡面S1與第二斜坡面S2分別位於基板210的相對兩端(即第一端212與第二端214)之一側(例如第一側),而導線C位於基板210的中央的一側(例如第二側)。此外,在本實施例中,導線C至第一斜坡面S1的距離可相等於導線C至第二斜坡面S2的距離。The wire C extends along a second direction D2 and is disposed on one side of the substrate 210. In this embodiment, the first slope surface S1 and the second slope surface S2 are located on a first side of the substrate 210 (ie, the upper side in FIG. 2 ), and the wire C is located on a second side of the substrate 210 (ie, in FIG. 2) The lower side), where the first side is opposite to the second side. In addition, the insulating layer 215 is located on the first side of the substrate 210. In this embodiment, the first slope surface S1 and the second slope surface S2 are respectively located on one side (eg, the first side) of the opposite ends (ie, the first end 212 and the second end 214) of the substrate 210, and the wire C Located on the side of the center of the substrate 210 (for example, the second side). In addition, in this embodiment, the distance from the wire C to the first slope surface S1 may be equal to the distance from the wire C to the second slope surface S2.

第一異向性磁電阻單元222配置於第一斜坡面S1上,且第二異向性磁電阻單元224配置於第二斜坡面S2上。第一磁化方向設定元件M1用以設定第一異向性磁電阻單元222的磁化方向。第二磁化方向設定元件M2用以設定第二異向性磁電阻單元224的磁化方向。The first anisotropic magnetoresistive unit 222 is disposed on the first slope surface S1, and the second anisotropic magnetoresistive unit 224 is disposed on the second slope surface S2. The first magnetization direction setting element M1 is used to set the magnetization direction of the first anisotropic magnetoresistive unit 222. The second magnetization direction setting element M2 is used to set the magnetization direction of the second anisotropic magnetoresistive unit 224.

當一電流I流經導線C時,電流I於第一斜坡面S1處所產生的一第三方向D3上的磁場分量HC(即圖2左上角的磁場分量HC)相反於電流I於第二斜坡面S2處所產生的第三方向D3上的磁場分量HC(即圖2右上角的磁場分量HC)。第一方向D1、第二方向D2及第三方向D3彼此不同,且第一異向性磁電阻單元222與第二異向性磁電阻單元224的感測方向312相對於第一方向D1與第三方向D3傾斜,且不同於第二方向D2。第一異向性磁電阻單元222與第二異向性磁電阻單元224電性連接,以輸出一電壓訊號。此電壓訊號對應於電流I於第一斜坡面S1處與第二斜坡面S2處所產生的第三方向D3上的磁場分量HC。When a current I flows through the wire C, the magnetic field component HC in the third direction D3 generated by the current I at the first ramp surface S1 (ie, the magnetic field component HC in the upper left corner of FIG. 2) is opposite to the current I on the second ramp The magnetic field component HC in the third direction D3 generated at the surface S2 (that is, the magnetic field component HC in the upper right corner of FIG. 2). The first direction D1, the second direction D2, and the third direction D3 are different from each other, and the sensing directions 312 of the first anisotropic magnetoresistive unit 222 and the second anisotropic magnetoresistive unit 224 are relative to the first direction D1 and the first The three directions D3 are inclined and are different from the second direction D2. The first anisotropic magnetoresistive unit 222 and the second anisotropic magnetoresistive unit 224 are electrically connected to output a voltage signal. This voltage signal corresponds to the magnetic field component HC in the third direction D3 generated by the current I at the first ramp surface S1 and the second ramp surface S2.

電流感測器100所存在的空間可以由彼此不同的第一方向D1、第二方向D2及第三方向D3所建構,在本實施例中,第一方向D1、第二方向D2及第三方向D3可以彼此互相垂直。然而,在其他實施例中,第一方向D1、第二方向D2及第三方向D3也可以是彼此不垂直且不相同。在本實施例中,第三方向D2是從基板210的第二側(即圖2中的下側)往基板210的第一側(即圖2中的上側)的方向。The space where the current sensor 100 exists can be constructed by the first direction D1, the second direction D2, and the third direction D3 that are different from each other. In this embodiment, the first direction D1, the second direction D2, and the third direction D3 can be perpendicular to each other. However, in other embodiments, the first direction D1, the second direction D2, and the third direction D3 may not be perpendicular to and different from each other. In this embodiment, the third direction D2 is a direction from the second side of the substrate 210 (ie, the lower side in FIG. 2) to the first side of the substrate 210 (ie, the upper side in FIG. 2 ).

在本實施例中,電流感測器更包括一第三斜坡面S3、一第四斜坡面S4、一第三異向性磁電阻單元226及一第四異向性磁電阻單元228。第三斜坡面S3與第四斜坡面S4設於基板210上,其中第三斜坡面S3與第一斜坡面S1相對,第四斜坡面S4與第二斜坡面S2相對,且第一斜坡面S1、第三斜坡面S3、第四斜坡面S4及第二斜坡面S2依序排列於第一方向D1上。在本實施例中,第三斜坡面S3與第四斜坡面S4為絕緣層215的表面。也就是說,絕緣層215具有兩個凹槽,第一斜坡面S1與第三斜坡面S3是其中一個凹槽的兩傾斜側壁,而第二斜坡面S2與第四斜坡面S4是另一個凹槽的兩傾斜側壁。然而,在其他實施例中,也可以是基板210具有兩個凹槽,而第一至第四斜坡面S1、S2、S3及S4為基板210的凹槽的傾斜側壁。In this embodiment, the current sensor further includes a third slope surface S3, a fourth slope surface S4, a third anisotropic magnetoresistive unit 226, and a fourth anisotropic magnetoresistive unit 228. The third slope surface S3 and the fourth slope surface S4 are provided on the substrate 210, wherein the third slope surface S3 is opposite to the first slope surface S1, the fourth slope surface S4 is opposite to the second slope surface S2, and the first slope surface S1 , The third slope surface S3, the fourth slope surface S4 and the second slope surface S2 are sequentially arranged in the first direction D1. In this embodiment, the third slope surface S3 and the fourth slope surface S4 are the surfaces of the insulating layer 215. That is, the insulating layer 215 has two grooves, the first slope surface S1 and the third slope surface S3 are the two inclined sidewalls of one of the grooves, and the second slope surface S2 and the fourth slope surface S4 are the other concave Two inclined side walls of the groove. However, in other embodiments, the substrate 210 may have two grooves, and the first to fourth slopes S1, S2, S3, and S4 are inclined sidewalls of the groove of the substrate 210.

第三異向性磁電阻單元226配置於第三斜坡面S3上,第一磁化方向設定元件M1也用以設定第三異向性磁電阻單元226的磁化方向。第四異向性磁電阻單元228配置於第四斜坡面S4上,第二磁化方向設定元件M2也用以設定第四異向性磁電阻單元228的磁化方向。當電流I流經導線C時,因感應於電流I所產生的磁場HC,第一異向性磁電阻單元222所產生的電阻值變化相反於第三異向性磁電阻單元226所產生的電阻值變化,且第二異向性磁電阻單元224所產生的電阻值變化相反於第四異向性磁電阻單元228所產生的電阻值變化,且第一、第二、第三及第四異向性磁電阻單元222、224、226及228電性連接成一惠斯登電橋,以輸出對應於第一、第二、第三及第四異向性磁電阻單元222、224、226及228所產生的電阻值變化的電壓訊號。The third anisotropic magnetoresistive unit 226 is disposed on the third slope surface S3, and the first magnetization direction setting element M1 is also used to set the magnetization direction of the third anisotropic magnetoresistive unit 226. The fourth anisotropic magnetoresistive unit 228 is disposed on the fourth slope surface S4, and the second magnetization direction setting element M2 is also used to set the magnetization direction of the fourth anisotropic magnetoresistive unit 228. When the current I flows through the wire C, due to the magnetic field HC induced by the current I, the resistance value generated by the first anisotropic magnetoresistive unit 222 changes contrary to the resistance generated by the third anisotropic magnetoresistive unit 226 Value changes, and the change in resistance value generated by the second anisotropic magnetoresistive unit 224 is opposite to the change in resistance value generated by the fourth anisotropic magnetoresistive unit 228, and the first, second, third, and fourth The directional magnetoresistive units 222, 224, 226, and 228 are electrically connected to form a Wheatstone bridge to output corresponding to the first, second, third, and fourth anisotropic magnetoresistive units 222, 224, 226, and 228 The resulting voltage signal changes in resistance.

在本實施例中,第一異向性磁電阻單元222包括沿著第二方向D2的反方向依序排列的一第一異向性磁電阻(anisotropic magnetoresistor, AMR)R1與一第二異向性磁電阻R2,第二異向性磁電阻單元224包括沿著第二方向D2的反方向依序排列的一第三異向性磁電阻R3與一第四異向性磁電阻R4,第三異向性磁電阻單元226包括沿著第二方向D2的反方向依序排列的一第五異向性磁電阻R5與一第六異向性磁電阻R6,且第四異向性磁電阻單元228包括沿著第二方向D2的反方向依序排列的一第七異向性磁電阻R7與一第八異向性磁電阻R8。上述的第一至第八異向性磁電阻R1~R8的數量都是各自以一個為例,然而,在其他實施例中,每一個異向性磁電阻亦可以用串聯的多個異向性磁電阻來取代。舉例而言,第一異向性磁電阻R1可以用多個串聯的第一異向性磁電阻R1來取代。In this embodiment, the first anisotropic magnetoresistive unit 222 includes a first anisotropic magnetoresistor (AMR) R1 and a second anisotropy arranged in sequence along the reverse direction of the second direction D2 Magnetoresistance R2, the second anisotropic magnetoresistive unit 224 includes a third anisotropic magnetoresistor R3 and a fourth anisotropic magnetoresistance R4 arranged in sequence along the reverse direction of the second direction D2, the third The anisotropic magneto-resistance unit 226 includes a fifth anisotropic magneto-resistance R5 and a sixth anisotropic magneto-resistance R6 sequentially arranged along the reverse direction of the second direction D2, and a fourth anisotropic magneto-resistance unit 228 includes a seventh anisotropic magnetoresistance R7 and an eighth anisotropic magnetoresistance R8 arranged in sequence along the reverse direction of the second direction D2. The numbers of the first to eighth anisotropic magnetoresistances R1 to R8 are each taken as an example. However, in other embodiments, each anisotropic magnetoresistance may also use a plurality of anisotropies connected in series. Magnetoresistance to replace. For example, the first anisotropic magnetoresistance R1 can be replaced with a plurality of first anisotropic magnetoresistance R1 connected in series.

在本實施例中,第一磁化方向設定元件M1與第二磁化方向設定元件M2及第一至第四異向性磁電阻單元222、224、226及228可設置於基板210上,而磁化方向設定元件與異向性磁電阻單元之間可藉由絕緣層來隔開。在本實施例中,第一磁化方向設定元件M1配置於第一及第三異向性磁電阻單元222、226下方,且第二磁化方向設定元件M2配置於第二及第四異向性磁電阻單元224、228下方。然而,在其他實施例中,亦可以是第一磁化方向設定元件M1配置於第一及第三異向性磁電阻單元222、226上方,且第二磁化方向設定元件M2配置於第二及第四異向性磁電阻單元224、228配置於上方。或者,在其他實施例中,第一磁化方向設定元件M1亦可以是在第一及第三異向性磁電阻單元222、226的上下兩方都有分佈,且第二磁化方向設定元件M2亦可以是在第二及第四異向性磁電阻單元224、228的上下兩方都有分佈。In this embodiment, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 and the first to fourth anisotropic magnetoresistive units 222, 224, 226, and 228 may be disposed on the substrate 210, and the magnetization direction The setting element and the anisotropic magnetoresistive unit can be separated by an insulating layer. In this embodiment, the first magnetization direction setting element M1 is disposed below the first and third anisotropic magnetoresistive units 222 and 226, and the second magnetization direction setting element M2 is disposed between the second and fourth anisotropic magnetism Below the resistance units 224, 228. However, in other embodiments, the first magnetization direction setting element M1 may be disposed above the first and third anisotropic magnetoresistive units 222, 226, and the second magnetization direction setting element M2 may be disposed between the second and second The four anisotropic magnetoresistive units 224 and 228 are arranged above. Alternatively, in other embodiments, the first magnetization direction setting element M1 may also be distributed on both the upper and lower sides of the first and third anisotropic magnetoresistive units 222 and 226, and the second magnetization direction setting element M2 It may be distributed on both the upper and lower sides of the second and fourth anisotropic magnetoresistive units 224 and 228.

另外,導線C可被一封裝體120包覆,而導線C的兩端則暴露於封裝體120外,其中封裝體120例如是絕緣材質。基板210可配置於封裝體120上。在本實施例中,導線C沿著第二方向D2延伸。In addition, the wire C may be covered by a package body 120, and both ends of the wire C are exposed outside the package body 120, wherein the package body 120 is made of an insulating material, for example. The substrate 210 can be disposed on the package body 120. In this embodiment, the wire C extends along the second direction D2.

圖3A與圖3B是用以說明圖1中的異向性磁電阻的運作原理。請先參照圖3A,異向性磁電阻300具有理髮店招牌(barber pole)狀結構,亦即其表面設有相對於異向性磁電阻300的延伸方向D傾斜45度延伸的多個短路棒(electrical shorting bar)310,這些短路棒310彼此相間隔且平行地設置於鐵磁膜(ferromagnetic film)320上,而鐵磁膜320為異向性磁電阻300的主體,其延伸方向即為異向性磁電阻300的延伸方向D。此外,鐵磁膜320的相對兩端可製作成尖端狀。3A and 3B are used to explain the operation principle of the anisotropic magnetoresistance in FIG. 1. Please refer to FIG. 3A first, the anisotropic magnetoresistance 300 has a barber pole (barber pole)-like structure, that is, the surface is provided with a plurality of short-circuit rods inclined by 45 degrees with respect to the extension direction D of the anisotropic magnetoresistance 300 (Electrical shorting bar) 310, these short-circuit bars 310 are spaced apart from each other and are arranged in parallel on a ferromagnetic film (ferromagnetic film) 320, and the ferromagnetic film 320 is the main body of the anisotropic magnetoresistance 300, and its extending direction is different The extending direction D of the directional magnetoresistance 300. In addition, the opposite ends of the ferromagnetic film 320 can be made into a pointed shape.

異向性磁電阻300在開始量測外在磁場H之前,可先藉由磁化方向設定元件(例如圖1的第一磁化方向設定元件M1或第二磁化方向設定元件M2)來設定其磁化方向,其中磁化方向設定元件例如是可以藉由通電產生磁場的線圈、導線、金屬片或導體。在圖3A中,磁化方向設定元件可藉由通電產生沿著延伸方向D的磁場,以使異向性磁電阻300具有磁化方向M。Before the measurement of the external magnetic field H, the anisotropic magnetoresistance 300 can be set by the magnetization direction setting element (such as the first magnetization direction setting element M1 or the second magnetization direction setting element M2 of FIG. 1) The magnetization direction setting element is, for example, a coil, a wire, a metal sheet, or a conductor that can generate a magnetic field by energization. In FIG. 3A, the magnetization direction setting element can generate a magnetic field along the extending direction D by energization, so that the anisotropic magnetoresistance 300 has the magnetization direction M.

接著,磁化方向設定元件不通電,以使異向性磁電阻300開始量測外在磁場H。當沒有外在磁場H時,異向性磁電阻300的磁化方向M維持在延伸方向D上,此時施加一電流i,使電流i從異向性磁電阻300的左端流往右端,則短路棒310附近的電流i的流向會與短路棒310的延伸方向垂直,而使得短路棒310附近的電流i流向與磁化方向M夾45度,此時異向性磁電阻300的電阻值為R。Next, the magnetization direction setting element is not energized, so that the anisotropic magnetoresistance 300 starts to measure the external magnetic field H. When there is no external magnetic field H, the magnetization direction M of the anisotropic magneto-resistance 300 is maintained in the extension direction D. At this time, a current i is applied, so that the current i flows from the left end to the right end of the anisotropic-magnetism resistance 300, then short circuit The flow direction of the current i near the bar 310 is perpendicular to the extending direction of the short-circuit bar 310, so that the current i near the short-circuit bar 310 flows at 45 degrees to the magnetization direction M. At this time, the resistance value of the anisotropic magnetoresistance 300 is R.

當有一外在磁場H朝向垂直於延伸方向D的方向時,異向性磁電阻300的磁化方向M會往外在磁場H的方向偏轉,而使得磁化方向與短路棒附近的電流i流向的夾角大於45度,此時異向性磁電阻300的電阻值有-ΔR的變化,即成為R-ΔR,也就是電阻值變小,其中ΔR大於0。When an external magnetic field H is oriented perpendicular to the extension direction D, the magnetization direction M of the anisotropic magnetoresistance 300 will be deflected in the direction of the external magnetic field H, so that the angle between the magnetization direction and the current i flowing near the short-circuit bar is greater than At 45 degrees, the resistance value of the anisotropic magnetoresistance 300 changes by -ΔR, which becomes R-ΔR, that is, the resistance value becomes smaller, where ΔR is greater than 0.

然而,若如圖3B所示,當圖3B的短路棒310的延伸方向設於與圖3A的短路棒310的延伸方向夾90度的方向時(此時圖3B的短路棒310的延伸方向仍與異向性磁電阻300的延伸方向D夾45度),且當有一外在磁場H時,此外在磁場H仍會使磁化方向M往外在磁場H的方向偏轉,此時磁化方向M與短路棒310附近的電流i流向的夾角會小於45度,如此異向性磁電阻300的電阻值會變成R+ΔR,亦即異向性磁電阻300的電阻值變大。However, as shown in FIG. 3B, when the extending direction of the short-circuit bar 310 of FIG. 3B is set at a direction 90 degrees from the extending direction of the short-circuit bar 310 of FIG. 3A (at this time, the extending direction of the short-circuit bar 310 of FIG. 3B is still 45 degrees with the extension direction D of the anisotropic magnetoresistance 300), and when there is an external magnetic field H, in addition to the magnetic field H will still deflect the magnetization direction M to the direction of the external magnetic field H, at this time the magnetization direction M and short circuit The included angle of the current i flowing near the rod 310 will be less than 45 degrees, so that the resistance value of the anisotropic magnetoresistance 300 becomes R+ΔR, that is, the resistance value of the anisotropic magnetoresistance 300 becomes larger.

此外,藉由磁化方向設定元件將異向性磁電阻300的磁化方向M設定為圖3A所示的反向時,之後在外在磁場H下的圖3A的異向性磁電阻300的電阻值會變成R+ΔR。再者,藉由磁化方向設定元件將異向性磁電阻300的磁化方向M設定為圖3B所示的反向時,之後在外在磁場H下的圖3B的異向性磁電阻300的電阻值會變成R-ΔR。In addition, when the magnetization direction setting element sets the magnetization direction M of the anisotropic magnetoresistance 300 to the reverse direction shown in FIG. 3A, the resistance value of the anisotropic magnetoresistance 300 of FIG. 3A under the external magnetic field H will be It becomes R+ΔR. In addition, when the magnetization direction setting element sets the magnetization direction M of the anisotropic magnetoresistance 300 to the reverse direction shown in FIG. 3B, the resistance value of the anisotropic magnetoresistance 300 of FIG. 3B under the external magnetic field H is thereafter Will become R-ΔR.

綜合上述可知,當短路棒310的設置方向改變時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之,且當磁化方向設定元件所設定的磁化方向M改變成反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之。當外在磁場H的方向變為反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之。然而,當通過異向性磁電阻300的電流i變成反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化則維持與原來相同正負號,即原本若為+ΔR,改變電流方向後仍為+ΔR,若原本為-ΔR,改變電流方向後仍為-ΔR。In summary, when the setting direction of the short-circuit bar 310 changes, the resistance value R of the anisotropic magnetoresistance 300 corresponding to the change of the external magnetic field H will change from +ΔR to -ΔR or vice versa, and when the magnetization direction setting element When the set magnetization direction M is changed to the reverse direction, the resistance value R of the anisotropic magnetoresistive 300 changes from +ΔR to −ΔR or vice versa according to the change in the external magnetic field H. When the direction of the external magnetic field H becomes reverse, the resistance value R of the anisotropic magnetic resistance 300 corresponding to the change of the external magnetic field H will change from +ΔR to −ΔR or vice versa. However, when the current i passing through the anisotropic magnetoresistance 300 becomes reverse, the resistance value R of the anisotropic magnetoresistance 300 corresponds to the change of the external magnetic field H and maintains the same sign as the original, that is, if it is originally +ΔR After changing the current direction, it is still +ΔR. If it was originally -ΔR, it is still -ΔR after changing the current direction.

依照上述的原則,便可藉由設計短路棒310的延伸方向或磁化方向設定元件所設定的磁化方向M來決定當異向性磁電阻300受到外在磁場H的某一分量時,異向性磁電阻300的電阻值R的變化方向,即電阻值R變大或變小,例如變化量是+ΔR或-ΔR。此外,與異向性磁電阻300的延伸方向D垂直的方向即為異向性磁電阻300的感測方向(如同圖1與圖2的感測方向312),也就是圖3A與圖3B中平行於外在磁場H的方向。According to the above principle, the anisotropy can be determined by designing the extension direction of the shorting bar 310 or the magnetization direction M set by the magnetization direction setting element when the anisotropic magnetoresistance 300 receives a certain component of the external magnetic field H The direction of change of the resistance value R of the magnetoresistance 300, that is, the resistance value R becomes larger or smaller, for example, the amount of change is +ΔR or -ΔR. In addition, the direction perpendicular to the extending direction D of the anisotropic magnetoresistance 300 is the sensing direction of the anisotropic magnetoresistance 300 (like the sensing direction 312 in FIGS. 1 and 2 ), that is, in FIGS. 3A and 3B The direction parallel to the external magnetic field H.

圖4A與圖4B分別繪示圖1之電流感測器於第一時間與第二時間之異向性磁電阻的磁化方向及其後的電阻值變化,並繪示了第一至第八異向性磁電阻R1~R8中的短路棒的延伸方向。請參照圖4A與圖4B,在本實施例中,第一至第八異向性磁電阻R1~R8的延伸方向皆為第二方向D2,而其短路棒310的延伸方向則如圖4A所繪示,在第一與第四異向性磁電阻單元222與228中,第一、第二、第七及第八異向性磁電阻R1、R2、R7及R8的短路棒310分別在兩個不同的方向上與第二方向D2夾45度,且這兩個不同的方向是平行第一斜坡面S1與第四斜坡面S4。此外,在第二與第三異向性磁電阻單元224與226中,第三、第四、第五及第六異向性磁電阻R3、R4、R5及R6的短路棒310分別在另兩個不同的方向上與第二方向D2夾45度,且這兩個不同的方向是平行第二斜坡面S2與第三斜坡面S3。在本實施例中,第一斜坡面S1與第四斜坡面S4平行,第二斜坡面S2與第三斜坡面S3平行,且第一斜坡面S1與第二斜坡面S2分別往不同的方向傾斜。4A and 4B respectively illustrate the magnetization direction of the anisotropic magnetoresistance of the current sensor of FIG. 1 at the first time and the second time and the change of the resistance value afterwards, and show the first to eighth differences The extending direction of the short-circuit bars in the directional magnetoresistances R1 to R8. Please refer to FIGS. 4A and 4B. In this embodiment, the extending directions of the first to eighth anisotropic magnetoresistances R1 to R8 are all the second direction D2, and the extending direction of the shorting bar 310 is as shown in FIG. 4A It is shown that in the first and fourth anisotropic magnetoresistive units 222 and 228, the shorting bars 310 of the first, second, seventh and eighth anisotropic magnetoresistive resistors R1, R2, R7 and R8 are respectively in two The two different directions are 45 degrees from the second direction D2, and the two different directions are parallel to the first slope surface S1 and the fourth slope surface S4. In addition, in the second and third anisotropic magnetoresistive units 224 and 226, the shorting bars 310 of the third, fourth, fifth and sixth anisotropic magnetoresistive resistors R3, R4, R5 and R6 are respectively in the other two The two different directions are 45 degrees from the second direction D2, and the two different directions are parallel to the second slope surface S2 and the third slope surface S3. In this embodiment, the first slope surface S1 is parallel to the fourth slope surface S4, the second slope surface S2 is parallel to the third slope surface S3, and the first slope surface S1 and the second slope surface S2 are respectively inclined in different directions .

當導線C被通以電流I(如圖1、圖2、圖4A與圖4B所繪示)時,在導線C中的電流I的方向例如為第二方向D2。此時,電流I在第一、第二、第五及第六異向性磁電阻R1、R2、R5及R6上產生沿著第三方向D3的磁場分量HC,且電流I在第三、第四、第七及第八異向性磁電阻R3、R4、R7及R8上產生沿著第三方向D3的反方向的磁場分量HC。此外,在本實施例中,當電流I流經導線C時,電流I於第一斜坡面S1及第三斜坡面S3處(即在第一異向性磁電阻單元222與第三異向性磁電阻單元226處)所產生的磁場在第三方向D3上的分量(即圖2、圖4A與圖4B左方的磁場分量HC,其朝向第三方向D3)的方向相反於電流I於第二斜坡面S2及第四斜坡面S4處(即在第二異向性磁電阻單元224與第四異向性磁電阻單元228處)所產生的磁場在第三方向D3上的分量(即圖2、圖4A與圖4B右方的磁場分量HC,其朝向第三方向D3的反方向)的方向。When the wire C is supplied with the current I (as shown in FIGS. 1, 2, 4A, and 4B), the direction of the current I in the wire C is, for example, the second direction D2. At this time, the current I generates a magnetic field component HC along the third direction D3 on the first, second, fifth, and sixth anisotropic magnetoresistances R1, R2, R5, and R6, and the current I is in the third, 4. The seventh and eighth anisotropic magnetoresistances R3, R4, R7, and R8 generate a magnetic field component HC in the reverse direction of the third direction D3. In addition, in this embodiment, when the current I flows through the wire C, the current I is at the first slope surface S1 and the third slope surface S3 (ie, the first anisotropic magnetoresistive unit 222 and the third anisotropy Magnetoresistive unit 226) the component of the magnetic field in the third direction D3 (ie, the magnetic field component HC on the left in FIGS. 2, 4A, and 4B, which faces the third direction D3) is opposite to the current I in the third The components of the magnetic field in the third direction D3 generated by the second ramp surface S2 and the fourth ramp surface S4 (that is, at the second anisotropic magnetoresistive unit 224 and the fourth anisotropic magnetoresistive unit 228) 2. The magnetic field component HC on the right in FIGS. 4A and 4B faces the direction opposite to the third direction D3).

在一第一時間,第一磁化方向設定元件M1將第一異向性磁電阻R1與第五異向性磁電阻R5的磁化方向M15設定為第二方向D2的反方向,且將第二異向性磁電阻R2與第六異向性磁電阻R6的磁化方向M26設定為第二方向D2。此外,在第一時間,第二磁化方向設定元件M2將第三異向性磁電阻R3與第七異向性磁電阻R7的磁化方向M37設定為第二方向D2的反方向,且將第四異向性磁電阻R4與第八異向性磁電阻R8的磁化方向M48設定為第二方向D2。在本實施例中,第一磁化方向設定元件M1與第二磁化方向設定元件M2例如為可以藉由通電產生磁場的導電線圈、導線、導電片(例如金屬片)或導體,只要是能夠產生沿著磁化方向M15、M26、M37、M48的磁場之導電結構皆可作為第一磁化方向設定元件M1與第二磁化方向設定元件M2。At a first time, the first magnetization direction setting element M1 sets the magnetization directions M15 of the first anisotropic magnetoresistance R1 and the fifth anisotropic magnetoresistance R5 to the opposite direction of the second direction D2, and sets the second anisotropy The magnetization directions M26 of the anisotropic magnetoresistance R2 and the sixth anisotropic magnetoresistance R6 are set to the second direction D2. In addition, at the first time, the second magnetization direction setting element M2 sets the magnetization directions M37 of the third anisotropic magnetoresistance R3 and the seventh anisotropic magnetoresistance R7 to the opposite direction of the second direction D2, and sets the fourth The magnetization directions M48 of the anisotropic magneto resistance R4 and the eighth anisotropic magneto resistance R8 are set to the second direction D2. In this embodiment, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 are, for example, conductive coils, wires, conductive sheets (such as metal sheets) or conductors that can generate a magnetic field by energization, as long as they can generate The conductive structures of the magnetic fields with the magnetization directions M15, M26, M37, and M48 can be used as the first magnetization direction setting element M1 and the second magnetization direction setting element M2.

在第一時間之後,第一磁化方向設定元件M1與第二磁化方向設定元件M2會停止產生磁場,例如第一磁化方向設定元件M1與第二磁化方向設定元件M2不再被通以電流而產生磁場,此時,第一、第二、第五及第六異向性磁電阻R1、R2、R5及R6便能夠感應於電流I所產生的磁場分量HC(圖2、圖4A及圖4B左方的磁場分量HC)而分別產生+ΔR、+ΔR、-ΔR及-ΔR的電阻值變化,且第三、第四、第七及第八異向性磁電阻R3、R4、R7及R8便能夠感應於電流I所產生的磁場分量HC(圖2、圖4A及圖4B右方的磁場分量HC)而分別產生-ΔR、-ΔR、+ΔR及+ΔR的電阻值變化。After the first time, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 will stop generating magnetic fields, for example, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 are no longer generated by passing current Magnetic field, at this time, the first, second, fifth and sixth anisotropic magnetoresistances R1, R2, R5 and R6 can induce the magnetic field component HC generated by the current I (Figure 2, Figure 4A and Figure 4B left Square magnetic field component HC) and the resistance value changes of +ΔR, +ΔR, -ΔR and -ΔR, respectively, and the third, fourth, seventh and eighth anisotropic magnetoresistances R3, R4, R7 and R8 The resistance value of -ΔR, -ΔR, +ΔR, and +ΔR can be induced by the magnetic field component HC (the magnetic field component HC on the right in FIGS. 2, 4A, and 4B) generated by the current I, respectively.

在本實施例中,第一異向性磁電阻R1、第二異向性磁電阻R2、第三異向性磁電阻R3及第四異向性磁電阻R4可從接點P1依序串聯至接點P2,接點P3可電性連接至第二異向性磁電阻R2與第四異向性磁電阻R4之間的導電路徑,第五異向性磁電阻R5與第六異向性磁電阻R6可從接點P1依序串聯至接點P4,而第七異向性磁電阻R7與第八異向性磁電阻R8可從接點P2依序串聯至接點P5。接點P3可接收參考電壓VDD,而接點P4與接點P5可耦接至地(ground),此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會是(VDD)×(-ΔR/R),其可以為輸出訊號,此輸出訊號為一差分訊號,其大小會對應於磁場分量HC的大小,進而對應於流經導線C的電流I的大小,此後將此輸出訊號稱為第一電壓訊號V1 。在另一實施例中,亦可以是接點P3耦接至地,而接點P4與接點P5接收參考電壓VDD。In this embodiment, the first anisotropic magneto resistance R1, the second anisotropic magneto resistance R2, the third anisotropic magneto resistance R3 and the fourth anisotropic magneto resistance R4 can be serially connected from the contact P1 to The contact P2 and the contact P3 can be electrically connected to the conductive path between the second anisotropic magneto-resistance R2 and the fourth anisotropic magneto-resistance R4, the fifth anisotropic magneto-resistance R5 and the sixth anisotropic magneto The resistor R6 may be serially connected from the contact P1 to the contact P4, and the seventh anisotropic magnetic resistance R7 and the eighth anisotropic magnetic resistance R8 may be serially connected from the contact P2 to the contact P5. The contact P3 can receive the reference voltage VDD, and the contact P4 and the contact P5 can be coupled to the ground. The voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time will be (VDD)×(-ΔR/R), which can be an output signal. The output signal is a differential signal, the magnitude of which corresponds to the magnitude of the magnetic field component HC, and then the magnitude of the current I flowing through the wire C, and thereafter This output signal is referred to as the first voltage signal V 1 . In another embodiment, the contact P3 may be coupled to ground, and the contact P4 and the contact P5 receive the reference voltage VDD.

在此之後的一第二時間,第一磁化方向設定元件M1將第一異向性磁電阻R1與第五異向性磁電阻R5的磁化方向M15’設定為第二方向D2,且將第二異向性磁電阻R2與第六異向性磁電阻R6的磁化方向M26’設定為第二方向D2的反方向。此外,在第二時間,第二磁化方向設定元件M2將第三異向性磁電阻R3與第七異向性磁電阻R7的磁化方向M37’設定為第二方向D2,且將第四異向性磁電阻R4與第八異向性磁電阻R8的磁化方向M48’設定為第二方向D2的反方向。At a second time thereafter, the first magnetization direction setting element M1 sets the magnetization directions M15′ of the first anisotropic magnetoresistance R1 and the fifth anisotropic magnetoresistance R5 to the second direction D2, and sets the second The magnetization directions M26' of the anisotropic magnetoresistance R2 and the sixth anisotropic magnetoresistance R6 are set to be opposite to the second direction D2. In addition, at the second time, the second magnetization direction setting element M2 sets the magnetization directions M37′ of the third anisotropic magnetoresistance R3 and the seventh anisotropic magnetoresistance R7 to the second direction D2, and sets the fourth anisotropy The magnetization directions M48' of the magneto-resistance R4 and the eighth anisotropic magneto-resistance R8 are set to be opposite to the second direction D2.

在第二時間之後,第一磁化方向設定元件M1與第二磁化方向設定元件M2會停止產生磁場,此時,第一、第二、第五及第六異向性磁電阻R1、R2、R5及R6便能夠感應於電流I所產生的磁場分量HC而分別產生-ΔR、-ΔR、+ΔR及+ΔR的電阻值變化,且第三、第四、第七及第八異向性磁電阻R3、R4、R7及R8便能夠感應於電流I所產生的磁場分量HC而分別產生+ΔR、+ΔR、-ΔR及-ΔR的電阻值變化。此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會是(VDD)×(ΔR/R),其可以為輸出訊號,此輸出訊號為一差分訊號,其大小會對應於磁場分量HC的大小,進而對應於流經導線C的電流I的大小,此後將此輸出訊號稱為第二電壓訊號V2After the second time, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 stop generating magnetic fields. At this time, the first, second, fifth, and sixth anisotropic magnetoresistances R1, R2, R5 R6 and R6 can induce the magnetic field component HC generated by the current I to produce resistance changes of -ΔR, -ΔR, +ΔR and +ΔR, and the third, fourth, seventh and eighth anisotropic magnetoresistance R3, R4, R7, and R8 can induce the magnetic field component HC generated by the current I to generate resistance changes of +ΔR, +ΔR, -ΔR, and -ΔR, respectively. The voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time will be (VDD)×(ΔR/R), which can be the output signal, and the output signal is a differential signal, the size of which It will correspond to the magnitude of the magnetic field component HC, and then to the magnitude of the current I flowing through the wire C. Hereinafter, this output signal will be referred to as the second voltage signal V 2 .

圖5為圖4A與圖4B的惠斯登電橋的輸出電壓-電流曲線圖,而圖6繪示圖4A與圖4B的惠斯登電橋耦接至一運算器。請參照圖4A、圖4B、圖5與圖6,在本實施例中,電流感測器100更包括一運算器400,電性連接至惠斯登電橋的一輸出端(即接收第一電壓訊號V1 與第二電壓訊號V2 ),其中第一磁化方向設定元件M1與第二磁化方向設定元件M2將第一、第二、第三及第四異向性磁電阻單元222、224、226及228的磁化方向組合設定為一第一組合(即如圖4A之磁化方向M15、磁化方向M26、磁化方向M37及磁化方向M48的組合),以使惠斯登電橋之後輸出第一電壓訊號V1 ,且第一磁化方向設定元件M1與第二磁化方向設定元件M2再將第一、第二、第三及第四異向性磁電阻單元222、224、226及228的磁化方向組合設定為相反於第一組合的一第二組合(即如圖4B之磁化方向M15’、磁化方向M26’、磁化方向M37’及磁化方向M48’的組合),以使惠斯登電橋之後輸出第二電壓訊號V2 。運算器400用以將第二電壓訊號V2 與第一電壓訊號V1 相減,以輸出一對應於電流I所產生的磁場的大小的輸出電壓訊號Vout 。此外,在本實施例中,運算器400亦可用以將第一電壓訊號V1 與第二電壓訊號V2 相加,以輸出一偏移電壓訊號VoffFIG. 5 is an output voltage-current curve diagram of the Wheatstone bridge of FIGS. 4A and 4B, and FIG. 6 illustrates that the Wheatstone bridge of FIGS. 4A and 4B is coupled to an arithmetic unit. Please refer to FIG. 4A, FIG. 4B, FIG. 5 and FIG. 6, in this embodiment, the current sensor 100 further includes an arithmetic unit 400, which is electrically connected to an output terminal of the Wheatstone bridge (ie, receives the first Voltage signal V 1 and second voltage signal V 2 ), wherein the first magnetization direction setting element M1 and the second magnetization direction setting element M2 divide the first, second, third and fourth anisotropic magnetoresistive units 222, 224 , 226, and 228 are set to a first combination of magnetization directions (ie, the combination of magnetization direction M15, magnetization direction M26, magnetization direction M37, and magnetization direction M48 as shown in FIG. 4A), so that the Wheatstone bridge outputs the first Voltage signal V 1 , and the first magnetization direction setting element M1 and the second magnetization direction setting element M2 then convert the magnetization directions of the first, second, third, and fourth anisotropic magnetoresistive units 222, 224, 226, and 228 The combination is set to a second combination opposite to the first combination (ie, the combination of the magnetization direction M15′, the magnetization direction M26′, the magnetization direction M37′, and the magnetization direction M48′ as shown in FIG. 4B), so that after the Wheatstone bridge The second voltage signal V 2 is output. The operator 400 is used to subtract the second voltage signal V 2 from the first voltage signal V 1 to output an output voltage signal V out corresponding to the magnitude of the magnetic field generated by the current I. In addition, in this embodiment, the arithmetic unit 400 can also be used to add the first voltage signal V 1 and the second voltage signal V 2 to output an offset voltage signal V off .

具體而言,運算器400可包括一算術運算器410與一算術運算器420,其中算術運算器410例如為一加法器,其用以將第一電壓訊號V1 與第二電壓訊號V2 相加,以輸出偏移電壓訊號Voff 。此外,算術運算器420例如為一減法器,其用以將第二電壓訊號V2 與第一電壓訊號V1 相減,以輸出對應於電流I所產生的磁場的大小的輸出電壓訊號VoutSpecifically, the operator 400 may include an arithmetic operator 410 and an arithmetic operator 420, wherein the arithmetic operator 410 is, for example, an adder, which is used to phase the first voltage signal V 1 and the second voltage signal V 2 Add to output the offset voltage signal V off . In addition, the arithmetic operator 420 is, for example, a subtractor for subtracting the second voltage signal V 2 and the first voltage signal V 1 to output an output voltage signal V out corresponding to the magnitude of the magnetic field generated by the current I .

由圖5可知,惠斯登電橋的輸出電壓-電流曲線可能存在一偏移電壓訊號Voff ,而第一電壓訊號V1 與第二電壓訊號V2 相加之後則可剩下偏移電壓訊號Voff ,且第二電壓訊號V2 與第一電壓訊號V1 相減後,其輸出電壓-電流曲線會通過電壓與電流皆為零的點,而使得在某一段範圍內電壓與電流幾乎成正比,而使得電阻值變化ΔR可以準確地經由輸出電壓訊號Vout 來估算。As can be seen from FIG. 5, the output voltage-current curve of the Wheatstone bridge may have an offset voltage signal V off , and the offset voltage may be left after the first voltage signal V 1 and the second voltage signal V 2 are added. After the signal V off and the second voltage signal V 2 and the first voltage signal V 1 are subtracted, the output voltage-current curve will pass through the point where both the voltage and the current are zero, making the voltage and current almost within a certain range It is proportional to the resistance value change ΔR can be accurately estimated by the output voltage signal V out .

在本實施例中,接點P1~P5及運算器400例如是存在於基板210中,而基板210為一線路基板,例如是半導體基板。In this embodiment, the contacts P1 to P5 and the arithmetic unit 400 are, for example, present in the substrate 210, and the substrate 210 is a circuit substrate, for example, a semiconductor substrate.

圖7繪示圖1之電流感測器於第一時間之異向性磁電阻的磁化方向及其後受到三個不同方向的外在磁場分量時的電阻值變化,而圖8及圖9分別繪示圖1之電流感測器於第二時間之異向性磁電阻的磁化方向及其後受到三個不同方向的外在磁場分量時的電阻值變化。請先參照圖7,第一磁化方向設定元件M1與第二磁化方向設定元件M2在第一時間完成磁化方向M15、M26、M37、M48的設定之後,當有一沿著第一方向D1的外在磁場分量HE1存在時,第一至第八異向性磁電阻R1~R8所產生的電阻值變化分別為-ΔR、-ΔR、+ΔR、+ΔR、-ΔR、-ΔR、+ΔR及+ΔR,如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。FIG. 7 illustrates the change of the resistance value of the current sensor of FIG. 1 when the magnetization direction of the anisotropic magnetoresistance and the external magnetic field components in three different directions are followed, and FIGS. 8 and 9 are respectively FIG. 1 shows the change of the resistance value of the current sensor of FIG. 1 at the second time when the magnetization direction of the anisotropic magnetoresistance and the subsequent external magnetic field components in three different directions are received. Please refer to FIG. 7 first, after the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M15, M26, M37, M48 at the first time, when there is an external direction along the first direction D1 When the magnetic field component HE1 is present, the resistance value changes generated by the first to eighth anisotropic magnetoresistances R1 to R8 are -ΔR, -ΔR, +ΔR, +ΔR, -ΔR, -ΔR, +ΔR, and +ΔR In this way, when the contact P3 receives the reference voltage VDD and the contact P4 and the contact P5 are coupled to ground, the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time Will be zero.

請再參照圖8,第一磁化方向設定元件M1與第二磁化方向設定元件M2在第二時間完成磁化方向M15’、M26’、M37’、M48’的設定之後,當有一沿著第二方向D2的外在磁場分量HE2存在時,第一至第八異向性磁電阻R1~R8所產生的電阻值變化皆為零,這是因為第二方向D2不是第一至第八異向性磁電阻R1~R8所能感測的方向。如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。8 again, after the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M15', M26', M37', and M48' at the second time, when one of them is along the second direction When the external magnetic field component HE2 of D2 exists, the resistance value changes of the first to eighth anisotropic magnetoresistances R1 to R8 are all zero, because the second direction D2 is not the first to eighth anisotropy magnetism The direction that resistors R1~R8 can sense. In this way, when the contact P3 receives the reference voltage VDD, and the contact P4 and the contact P5 are coupled to ground, the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time will be Is zero.

請再參照圖9,第一磁化方向設定元件M1與第二磁化方向設定元件M2在第二時間完成磁化方向M15’、M26’、M37’、M48’的設定之後,當有一沿著第三方向D3的外在磁場分量HE3存在時,第一至第八異向性磁電阻R1~R8所產生的電阻值變化分別為-ΔR、-ΔR、-ΔR、-ΔR、+ΔR、+ΔR、+ΔR及+ΔR。如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。9 again, after the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M15', M26', M37', and M48' at the second time, when one of them is along the third direction When the external magnetic field component HE3 of D3 is present, the resistance values generated by the first to eighth anisotropic magnetoresistances R1 to R8 are -ΔR, -ΔR, -ΔR, -ΔR, +ΔR, +ΔR, + ΔR and +ΔR. In this way, when the contact P3 receives the reference voltage VDD, and the contact P4 and the contact P5 are coupled to ground, the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge formed at this time will be Is zero.

也就是說,在本實施例中,惠斯登電橋對應於在第一方向D1上的外在磁場分量HE1所輸出的電壓訊號為零,對應於在第二方向D2上的外在磁場分量HE2所輸出的電壓訊號為零,且對應於在第三方向D3上的外在磁場分量HE3所輸出的電壓訊號為零。因此,無論外在磁場是在哪個方向上,都不會影響本實施例的電流感測器100的感測結果,也就是不會對電流感測器100的輸出電壓產生干擾。That is to say, in this embodiment, the Wheatstone bridge corresponds to the external magnetic field component HE1 in the first direction D1 and the voltage signal output by the HE1 is zero, corresponding to the external magnetic field component in the second direction D2 The voltage signal output by HE2 is zero, and the voltage signal output by HE3 corresponding to the external magnetic field component in the third direction D3 is zero. Therefore, no matter which direction the external magnetic field is in, it will not affect the sensing result of the current sensor 100 of this embodiment, that is, it will not interfere with the output voltage of the current sensor 100.

以上惠斯登電橋對於外在磁場分量HE1的反應是以第一時間之後的反應為例,而以上惠斯登電橋對於外在磁場分量HE2及HE3的反應是以第二時間之後的反應為例,至於在第二時間之後,即在第一磁化方向設定元件M1與第二磁化方向設定元件M2在第二時間完成如圖4B的磁化方向M15’、M26’、M37’、M48’的設定之後,第一至第八異向性磁電阻R1~R8反應於外在磁場分量HE1所產生的電阻值變化分別為+ΔR、+ΔR、-ΔR、-ΔR、+ΔR、+ΔR、-ΔR及-ΔR,如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。而在第一磁化方向設定元件M1與第二磁化方向設定元件M2在第一時間完成如圖4A的磁化方向M15、M26、M37、M48的設定之後,對於外在磁場分量HE2,第一至第八異向性磁電阻R1~R8不會受到它們的影響,因此不會產生電阻值變化,因此惠斯登電橋中接點P1與接點P2之間的電壓差仍會為零;而對於外在磁場分量HE3,第一至第八異向性磁電阻R1~R8反應於外在磁場分量HE3所產生的電阻值變化分別為+ΔR、+ΔR、+ΔR、+ΔR、-ΔR、-ΔR、-ΔR及-ΔR,如此一來,當接點P3接收參考電壓VDD,而接點P4與接點P5耦接至地時,此時形成的惠斯登電橋中接點P1與接點P2之間的電壓差會為零。所以,無論是在第一時間或第二時間之後,本實施例的電流感測器100皆不會受到任何方向的外在磁場的干擾。The response of the above Wheatstone bridge to the external magnetic field component HE1 is based on the reaction after the first time, while the response of the above Wheatstone bridge to the external magnetic field components HE2 and HE3 is after the second time For example, after the second time, the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the magnetization directions M15', M26', M37', and M48' of FIG. 4B at the second time. After setting, the first to eighth anisotropic magnetoresistances R1 to R8 react to the external magnetic field component HE1, and the resistance value changes are +ΔR, +ΔR, -ΔR, -ΔR, +ΔR, +ΔR,- ΔR and -ΔR, in this way, when the contact P3 receives the reference voltage VDD, and the contact P4 and the contact P5 are coupled to the ground, the contact P1 and the contact P2 of the Wheatstone bridge formed at this time The voltage difference between them will be zero. After the first magnetization direction setting element M1 and the second magnetization direction setting element M2 complete the setting of the magnetization directions M15, M26, M37, and M48 as shown in FIG. 4A at the first time, for the external magnetic field component HE2, the first to the first The eight anisotropic magnetoresistances R1~R8 will not be affected by them, so there will be no change in resistance value, so the voltage difference between the contact P1 and the contact P2 in the Wheatstone bridge will still be zero; The external magnetic field component HE3, the first to the eighth anisotropic magnetoresistances R1 to R8 react to the external magnetic field component HE3 and the resistance value changes are +ΔR, +ΔR, +ΔR, +ΔR, -ΔR,- ΔR, -ΔR, and -ΔR, so that when the contact P3 receives the reference voltage VDD and the contact P4 and the contact P5 are coupled to ground, the contact P1 and the contact of the Wheatstone bridge formed at this time The voltage difference between points P2 will be zero. Therefore, no matter after the first time or the second time, the current sensor 100 of this embodiment will not be disturbed by the external magnetic field in any direction.

此外,基板210中或基板210上也可設有一反饋線圈(feedback coil),其與第一至第八異向性磁電阻R1~R8至少部分重疊,以作為閉迴路控制(close-loop control)的用途。In addition, a feedback coil may be provided in or on the substrate 210, which at least partially overlaps the first to eighth anisotropic magnetoresistances R1 to R8 to serve as a close-loop control (close-loop control) the use of.

圖10為本發明的另一實施例的電流感測器的上視示意圖。請參照圖10,本實施例的電流感測器100a類似於圖1、圖2、圖4A及圖4B的電流感測器100,而兩者的差異如下所述。在本實施例中,電流感測器100a的第一磁化方向設定元件M1a與第二磁化方向設定元件M2a皆為永久磁鐵,其中第一磁化方向設定元件M1a用以將第一、第二、第五及第六異向性磁電阻R1、R2、R5及R6的磁化方向設定為磁化方向M1256,其指向第二方向D2的反方向,且第二磁化方向設定元件M2a用以將第三、第四、第七及第八異向性磁電阻R3、R4、R7及R8的磁化方向設定為磁化方向M3478,其指向第二方向D2的反方向。10 is a schematic top view of a current sensor according to another embodiment of the invention. Please refer to FIG. 10, the current sensor 100 a of this embodiment is similar to the current sensor 100 of FIGS. 1, 2, 4A, and 4B, and the differences between the two are as follows. In this embodiment, both the first magnetization direction setting element M1a and the second magnetization direction setting element M2a of the current sensor 100a are permanent magnets, wherein the first magnetization direction setting element M1a is used to combine the first, second, and second The magnetization directions of the fifth and sixth anisotropic magnetoresistances R1, R2, R5, and R6 are set to the magnetization direction M1256, which points in the opposite direction of the second direction D2, and the second magnetization direction setting element M2a is used 4. The magnetization directions of the seventh and eighth anisotropic magnetoresistances R3, R4, R7, and R8 are set to the magnetization direction M3478, which points in the opposite direction of the second direction D2.

此外,第一、第三、第五及第七異向性磁電阻R1、R3、R5及R7的短路棒的延伸方向可分別相同於圖4A中的第一、第三、第五及第七異向性磁電阻R1、R3、R5及R7的短路棒的延伸方向,而與圖4A不同的是,在本實施例中,第二異向性磁電阻R2的短路棒的延伸方向相同於第一異向性磁電阻R1的短路棒的延伸方向,第四異向性磁電阻R4的短路棒的延伸方向相同於第三異向性磁電阻R3的短路棒的延伸方向,第六異向性磁電阻R6的短路棒的延伸方向相同於第五異向性磁電阻R5的短路棒的延伸方向,且第八異向性磁電阻R8的短路棒的延伸方向相同於第七異向性磁電阻R7的短路棒的延伸方向。In addition, the extending directions of the shorting bars of the first, third, fifth, and seventh anisotropic magnetoresistances R1, R3, R5, and R7 may be the same as the first, third, fifth, and seventh in FIG. 4A The anisotropic magnetoresistance R1, R3, R5 and R7 extend the direction of the short-circuit bar, and unlike FIG. 4A, in this embodiment, the extension direction of the short-circuit bar of the second anisotropic magnetoresistance R2 is the same as the The extension direction of the short-circuit bar of an anisotropic magneto-resistance R1, the extension direction of the short-circuit bar of the fourth anisotropy-resistance R4 is the same as the extension direction of the short-circuit bar of the third anisotropy-resistance R3, the sixth anisotropy The extending direction of the short-circuit bar of the magneto-resistance R6 is the same as the extending direction of the short-circuit bar of the fifth anisotropic magneto-resistance R5, and the extending direction of the short-circuit bar of the eighth anisotropic magneto-resistance R8 is the same as the seventh anisotropic magneto-resistance The extension direction of the shorting bar of R7.

如此一來,當電流I流經導線C時,第一至第八異向性磁電阻R1~R8所連接而成的惠斯登電橋亦能夠輸出對應的電壓訊號。In this way, when the current I flows through the wire C, the Wheatstone bridge connected by the first to eighth anisotropic magnetoresistances R1 to R8 can also output the corresponding voltage signal.

圖11為本發明的又一實施例的電流感測器的上視示意圖。請參照圖11,本實施例的電流感測器100b類似於圖4A的電流感測器100,而兩者的差異如下所述。本實施例的電流感測器100b包括第一異向性磁電阻單元222與第二異向性磁電阻單元224,但不包括如圖4A之第三異向性磁電阻單元226與第四異向性磁電阻單元228。11 is a schematic top view of a current sensor according to another embodiment of the invention. Referring to FIG. 11, the current sensor 100 b of this embodiment is similar to the current sensor 100 of FIG. 4A, and the difference between the two is as follows. The current sensor 100b of this embodiment includes a first anisotropic magnetoresistive unit 222 and a second anisotropic magnetoresistive unit 224, but does not include the third anisotropic magnetoresistive unit 226 and the fourth anisotropic magnetoresistive unit as shown in FIG. 4A. Directional magnetoresistive unit 228.

在本實施例中,第一異向性磁電阻R1的短路棒310的延伸方向相同於圖4A中的第一異向性磁電阻R1的短路棒310的延伸方向,且第三異向性磁電阻R3的短路棒310的延伸方向相同於圖4A中的第三異向性磁電阻R3的短路棒310的延伸方向。然而,與圖4A不同之處在於,在本實施例中,第二異向性磁電阻R2的短路棒310的延伸方向相同於第一異向性磁電阻R1的短路棒310的延伸方向,且第四異向性磁電阻R4的短路棒310的延伸方向相同於第三異向性磁電阻R3的短路棒310的延伸方向。In this embodiment, the extending direction of the short-circuit bar 310 of the first anisotropic magnetoresistance R1 is the same as the extending direction of the short-circuit bar 310 of the first anisotropic magneto-resistance R1 in FIG. 4A, and the third anisotropic magnetism The extending direction of the short-circuit bar 310 of the resistor R3 is the same as the extending direction of the short-circuit bar 310 of the third anisotropic magnetoresistance R3 in FIG. 4A. However, the difference from FIG. 4A is that, in this embodiment, the extending direction of the short-circuit bar 310 of the second anisotropic magnetoresistance R2 is the same as the extending direction of the short-circuit bar 310 of the first anisotropic magneto-resistance R1, and The extending direction of the short-circuit bar 310 of the fourth anisotropic magnetoresistance R4 is the same as the extending direction of the short-circuit bar 310 of the third anisotropic magneto-resistance R3.

此外,在第一時間,第一磁化方向設定元件M1將第一異向性磁電阻R1的磁化方向設定為磁化方向M10,其指向第二方向D2的反方向;第一磁化方向設定元件M1將第二異向性磁電阻R2的磁化方向設定為磁化方向M20,其指向第二方向D2;第二磁化方向設定元件M2將第三異向性磁電阻R3的磁化方向設定為磁化方向M30,其指向第二方向D2的反方向;第二磁化方向設定元件M2將第四異向性磁電阻R4的磁化方向設定為磁化方向M40,其指向第二方向D2。如此一來,在第一時間之後,當電流I流經導線C時,且當第三接點P3’與第四接點P4’接收參考電壓VDD,而第五接點P5’與第六接點P6’耦接至地時,第一至第四異向性磁電阻R1、R2、R3及R4的電阻值變化會分別為+ΔR、-ΔR、-ΔR、+ΔR,此時第一接點P1’與第二接點P2’之間的電壓差會是(VDD)×(-ΔR/R),其可以為輸出訊號,此輸出訊號為一差分訊號,其大小會對應於磁場分量HC的大小,進而對應於流經導線C的電流I的大小。同理,在第二時間時,當第一磁化方向設定元件M1與第二磁化方向設定元件M2將第一至第四異向性磁電阻R1~R4的磁化方向組合設定為相反於圖11的組合時,第一接點P1’與第二接點P2’之間的電壓差會是(VDD)×(+ΔR/R)。In addition, at the first time, the first magnetization direction setting element M1 sets the magnetization direction of the first anisotropic magnetoresistance R1 to the magnetization direction M10, which points in the opposite direction of the second direction D2; the first magnetization direction setting element M1 will The magnetization direction of the second anisotropic magnetoresistance R2 is set to the magnetization direction M20, which points to the second direction D2; the second magnetization direction setting element M2 sets the magnetization direction of the third anisotropic magnetoresistance R3 to the magnetization direction M30, which It points in the opposite direction of the second direction D2; the second magnetization direction setting element M2 sets the magnetization direction of the fourth anisotropic magnetoresistance R4 as the magnetization direction M40, which points in the second direction D2. In this way, after the first time, when the current I flows through the wire C, and when the third contact P3' and the fourth contact P4' receive the reference voltage VDD, the fifth contact P5' and the sixth contact When point P6' is coupled to ground, the resistance values of the first to fourth anisotropic magnetoresistances R1, R2, R3, and R4 will be +ΔR, -ΔR, -ΔR, +ΔR, respectively. The voltage difference between the point P1' and the second contact P2' will be (VDD)×(-ΔR/R), which can be an output signal, and the output signal is a differential signal, the magnitude of which corresponds to the magnetic field component HC The magnitude of, in turn, corresponds to the magnitude of the current I flowing through the wire C. Similarly, at the second time, when the first magnetization direction setting element M1 and the second magnetization direction setting element M2 set the magnetization directions of the first to fourth anisotropic magnetoresistances R1 to R4 to be opposite to those of FIG. 11 When combined, the voltage difference between the first contact P1' and the second contact P2' will be (VDD) × (+ΔR/R).

在本實施例中,第一異向性磁電阻R1與第二異向性磁電阻R2從第三接點P3’依序串聯至第五接點P5’,第三異向性磁電阻R3與第四異向性磁電阻R4從第四接點P4’依序串聯至第六接點P6’,第一接點P1’耦接至第一異向性磁電阻R1與第二異向性磁電阻R2之間的導電路徑,而第二接點P2’耦接至第三異向性磁電阻R3與第四異向性磁電阻R4之間的導電路徑。In this embodiment, the first anisotropic magnetoresistance R1 and the second anisotropic magnetoresistance R2 are connected in series from the third contact P3' to the fifth contact P5' in sequence, and the third anisotropic magnetoresistance R3 and The fourth anisotropic magnetoresistance R4 is serially connected from the fourth contact P4' to the sixth contact P6', and the first contact P1' is coupled to the first anisotropic magnetoresistance R1 and the second anisotropic magnetism The conductive path between the resistors R2, and the second contact P2' is coupled to the conductive path between the third anisotropic magnetic resistor R3 and the fourth anisotropic magnetic resistor R4.

換言之,在本實施例中,第一異向性磁電阻單元222與第二異向性磁電阻單元224電性連接成一惠斯登電橋,以輸出對應於第一異向性電阻單元222與第二異向性電阻單元224所產生的電阻值變化的電壓訊號。In other words, in this embodiment, the first anisotropic magnetoresistive unit 222 and the second anisotropic magnetoresistive unit 224 are electrically connected to form a Wheatstone bridge to output corresponding to the first anisotropic resistance unit 222 and The voltage signal of the resistance value generated by the second anisotropic resistance unit 224 changes.

圖12A為本發明的再一實施例的電流感測器的上視示意圖,而圖12B為圖12A的電流感測器沿著A1-A1線的剖面示意圖。請參照圖12A與圖12B,本實施例的電流感測器100c類似於圖1與圖2的電流感測器100,而兩者的差異如下所述。在本實施例中,電流感測器100c具有二個導線C1與C2,分別配置於基板的第一端212與第二端214旁,其中第一端212相對於第二端214,且二個導線C1與C2分別不與第一端212及第二端214重疊。在本實施例中,導線C1與C2均沿著第二方向D2延伸。當電流I1與I2沿著第二方向D2的反方向分別流經導線C1與導線C2時,電流I1會在第一斜坡面S1與第三斜坡面S3處產生指向第三方向D3的磁場分量HC,而電流I2會在第二斜坡面S2與第四斜坡面S4處產生指向第三方向D3的反方向的磁場分量HC。如此一來,第一至第四異向性磁電阻單元222、224、226及228所連接而成的惠斯登電橋便能夠輸出對應於電流I1與電流I2的大小的電壓訊號。在本實施例中,電流I1的大小與方向相同於電流I2的大小與方向。FIG. 12A is a schematic top view of a current sensor according to still another embodiment of the present invention, and FIG. 12B is a schematic cross-sectional view of the current sensor of FIG. 12A along line A1-A1. 12A and 12B, the current sensor 100c of this embodiment is similar to the current sensor 100 of FIGS. 1 and 2, and the difference between the two is as follows. In this embodiment, the current sensor 100c has two wires C1 and C2, which are respectively disposed beside the first end 212 and the second end 214 of the substrate, wherein the first end 212 is opposite to the second end 214, and two The wires C1 and C2 do not overlap with the first end 212 and the second end 214, respectively. In this embodiment, the wires C1 and C2 both extend along the second direction D2. When the currents I1 and I2 flow respectively through the wire C1 and the wire C2 along the opposite direction of the second direction D2, the current I1 generates a magnetic field component HC directed to the third direction D3 at the first slope surface S1 and the third slope surface S3 And the current I2 will generate a magnetic field component HC directed in the opposite direction of the third direction D3 at the second slope surface S2 and the fourth slope surface S4. In this way, the Wheatstone bridge connected by the first to fourth anisotropic magnetoresistive units 222, 224, 226, and 228 can output a voltage signal corresponding to the magnitude of the current I1 and the current I2. In this embodiment, the magnitude and direction of the current I1 are the same as the magnitude and direction of the current I2.

本發明不限制電流感測器100c中導線的數量,在其他實施例中,電流感測器100c中的導線也可以是大於2個。The present invention does not limit the number of wires in the current sensor 100c. In other embodiments, the wires in the current sensor 100c may be more than two.

圖13A為本發明的另一實施例的電流感測器的上視示意圖,而圖13B為圖13A的電流感測器沿著A2-A2線的剖面示意圖。請參照圖13A與圖13B,本實施例的電流感測器100d類似於圖12A與圖12B的電流感測器100c,而兩者的差異如下所述。在本實施例的電流感測器100d中,導線C1與導線C2分別與基板210的第一端212與第二端214部分重疊,如此仍然可以在第一斜坡面S1與第三斜坡面S3處產生指向第三方向D3的磁場分量HC,且可以在第二斜坡面S2與第四斜坡面S4處產生指向第三方向D3的反方向的磁場分量。13A is a schematic top view of a current sensor according to another embodiment of the invention, and FIG. 13B is a schematic cross-sectional view of the current sensor of FIG. 13A along line A2-A2. 13A and 13B, the current sensor 100d of this embodiment is similar to the current sensor 100c of FIGS. 12A and 12B, and the difference between the two is as follows. In the current sensor 100d of this embodiment, the wires C1 and C2 partially overlap the first end 212 and the second end 214 of the substrate 210, respectively, so that they can still be at the first slope surface S1 and the third slope surface S3 A magnetic field component HC directed to the third direction D3 is generated, and a magnetic field component directed to the opposite direction of the third direction D3 can be generated at the second ramp surface S2 and the fourth ramp surface S4.

綜上所述,在本發明的實施例的電流感測器中,由於採用了異向性磁電阻單元連接成惠斯登電橋來感測導線中的電流所產生的磁場,因此對電流的感測具有高敏感度與高準確度。此外,由於本發明的實施例的電流感測器是利用感測電流所產生的磁場的方式來反推電流的大小,而異向性磁電阻單元不會直接接觸到電流,因此可以具有較低的功耗。In summary, in the current sensor of the embodiment of the present invention, since the anisotropic magnetoresistive unit is connected as a Wheatstone bridge to sense the magnetic field generated by the current in the wire, the current Sensing has high sensitivity and high accuracy. In addition, since the current sensor of the embodiment of the present invention uses the magnetic field generated by the current to reverse the magnitude of the current, and the anisotropic magnetoresistive unit does not directly contact the current, it can have a lower Power consumption.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100、100a、100b、100c、100d‧‧‧電流感測器 120‧‧‧封裝體 210‧‧‧基板 212‧‧‧第一端 214‧‧‧第二端 215‧‧‧絕緣層 222‧‧‧第一異向性磁電阻單元 224‧‧‧第二異向性磁電阻單元 226‧‧‧第三異向性磁電阻單元 228‧‧‧第四異向性磁電阻單元 300‧‧‧異向性磁電阻 310‧‧‧短路棒 312‧‧‧感測方向 320‧‧‧鐵磁膜 400‧‧‧運算器 410、420‧‧‧算術運算器 C‧‧‧導線 D‧‧‧延伸方向 D1‧‧‧第一方向 D2‧‧‧第二方向 D3‧‧‧第三方向 H‧‧‧外在磁場 HC‧‧‧磁場分量 HE1、HE2、HE3‧‧‧外在磁場分量 I、i、I1、I2‧‧‧電流 M、M10、M1256、M15、M15’、M20、M26、M26’、M30、M3478、M37、M37’、M40、M48、M48’‧‧‧磁化方向 M1、M1a‧‧‧第一磁化方向設定元件 M2、M2a‧‧‧第二磁化方向設定元件 P1、P1’、P2、P2’、P3、P3’、P4、P4’、P5、P5’、P6’‧‧‧接點 R1‧‧‧第一異向性磁電阻 R2‧‧‧第二異向性磁電阻 R3‧‧‧第三異向性磁電阻 R4‧‧‧第四異向性磁電阻 R5‧‧‧第五異向性磁電阻 R6‧‧‧第六異向性磁電阻 R7‧‧‧第七異向性磁電阻 R8‧‧‧第八異向性磁電阻 ΔR‧‧‧電阻值變化 S1‧‧‧第一斜坡面 S2‧‧‧第二斜坡面 S3‧‧‧第三斜坡面 S4‧‧‧第四斜坡面 V1‧‧‧第一電壓訊號 V2‧‧‧第二電壓訊號 Voff‧‧‧偏移電壓訊號 Vout‧‧‧輸出電壓訊號100, 100a, 100b, 100c, 100d ‧‧‧ current sensor 120‧‧‧ package 210‧‧‧ substrate 212‧‧‧ first end 214‧‧‧ second end 215‧‧‧ insulation layer 222‧‧ ‧The first anisotropic magnetoresistive unit 224‧‧‧The second anisotropic magnetoresistive unit 226‧‧‧The third anisotropic magnetoresistive unit 228‧‧‧The fourth anisotropic magnetoresistive unit 300‧‧‧ Directional magnetoresistance 310‧‧‧Short bar 312‧‧‧Sense direction 320‧‧‧Ferromagnetic film 400‧‧‧‧Arithmetic 410, 420‧‧‧Arithmetic arithmetic unit C‧‧‧ Lead D‧‧‧ Extension direction D1‧‧‧ First direction D2‧‧‧Second direction D3‧‧‧ Third direction H‧‧‧External magnetic field HC‧‧‧Magnetic field components HE1, HE2, HE3‧‧‧External magnetic field components I, i, I1, I2‧‧‧ Current M, M10, M1256, M15, M15', M20, M26, M26', M30, M3478, M37, M37', M40, M48, M48'‧‧‧Magnetization direction M1, M1a‧‧ ‧First magnetization direction setting element M2, M2a‧‧‧‧Second magnetization direction setting element P1, P1', P2, P2', P3, P3', P4, P4', P5, P5', P6' Point R1‧‧‧The first anisotropic magneto resistance R2‧‧‧The second anisotropic magneto resistance R3‧‧‧The third anisotropy magneto resistance R4‧‧‧The fourth anisotropy magneto resistance R5‧‧‧ Five anisotropic magnetoresistance R6‧‧‧Sixth anisotropy magnetism R7‧‧‧Seventh anisotropy magnetoresistance R8‧‧‧Eighth anisotropy magnetoresistance ΔR‧‧‧Resistance value change S1‧‧‧ The first slope surface S2‧‧‧The second slope surface S3‧‧‧The third slope surface S4‧‧‧The fourth slope surface V 1 ‧‧‧ The first voltage signal V 2 ‧‧‧The second voltage signal V off ‧‧ ‧Offset voltage signal V out ‧‧‧Output voltage signal

圖1是本發明的一實施例的一種電流感測器的上視示意圖。 圖2是圖1的電流感測器沿著A-A線的剖面示意圖。 圖3A與圖3B是用以說明圖1中的異向性磁電阻的運作原理。 圖4A與圖4B分別繪示圖1之電流感測器於第一時間與第二時間之異向性磁電阻的磁化方向及其後的電阻值變化。 圖5為圖4A與圖4B的惠斯登電橋的輸出電壓-電流曲線圖。 圖6繪示圖4A與圖4B的惠斯登電橋耦接至一運算器。 圖7繪示圖1之電流感測器於第一時間之異向性磁電阻的磁化方向及其後受到三個不同方向的外在磁場分量時的電阻值變化。 圖8及圖9分別繪示圖1之電流感測器於第二時間之異向性磁電阻的磁化方向及其後受到三個不同方向的外在磁場分量時的電阻值變化。 圖10為本發明的另一實施例的電流感測器的上視示意圖。 圖11為本發明的又一實施例的電流感測器的上視示意圖。 圖12A為本發明的再一實施例的電流感測器的上視示意圖。 圖12B為圖12A的電流感測器沿著A1-A1線的剖面示意圖。 圖13A為本發明的另一實施例的電流感測器的上視示意圖。 圖13B為圖13A的電流感測器沿著A2-A2線的剖面示意圖。FIG. 1 is a schematic top view of a current sensor according to an embodiment of the invention. 2 is a schematic cross-sectional view of the current sensor of FIG. 1 along line A-A. 3A and 3B are used to explain the operation principle of the anisotropic magnetoresistance in FIG. 1. 4A and 4B respectively illustrate the magnetization direction of the anisotropic magnetoresistance of the current sensor of FIG. 1 at the first time and the second time and the change in resistance value thereafter. FIG. 5 is an output voltage-current curve diagram of the Wheatstone bridge of FIGS. 4A and 4B. FIG. 6 illustrates that the Wheatstone bridge of FIGS. 4A and 4B is coupled to an arithmetic unit. FIG. 7 illustrates the change in resistance of the current sensor of FIG. 1 when the magnetization direction of the anisotropic magnetoresistance at the first time and the external magnetic field components in three different directions are subsequently received. FIG. 8 and FIG. 9 respectively illustrate the resistance value change of the current sensor of FIG. 1 when the magnetization direction of the anisotropic magnetoresistance at the second time and the external magnetic field components in three different directions are subsequently received. 10 is a schematic top view of a current sensor according to another embodiment of the invention. 11 is a schematic top view of a current sensor according to another embodiment of the invention. FIG. 12A is a schematic top view of a current sensor according to still another embodiment of the invention. 12B is a schematic cross-sectional view of the current sensor of FIG. 12A along line A1-A1. FIG. 13A is a schematic top view of a current sensor according to another embodiment of the invention. 13B is a schematic cross-sectional view of the current sensor of FIG. 13A along line A2-A2.

100‧‧‧電流感測器 100‧‧‧current sensor

210‧‧‧基板 210‧‧‧ substrate

212‧‧‧第一端 212‧‧‧The first end

214‧‧‧第二端 214‧‧‧second end

222‧‧‧第一異向性磁電阻單元 222‧‧‧The first anisotropic magnetoresistive unit

224‧‧‧第二異向性磁電阻單元 224‧‧‧The second anisotropic magnetoresistive unit

226‧‧‧第三異向性磁電阻單元 226‧‧‧The third anisotropic magnetoresistive unit

228‧‧‧第四異向性磁電阻單元 228‧‧‧The fourth anisotropic magnetoresistive unit

312‧‧‧感測方向 312‧‧‧Sense direction

C‧‧‧導線 C‧‧‧Wire

D1‧‧‧第一方向 D1‧‧‧First direction

D2‧‧‧第二方向 D2‧‧‧Second direction

D3‧‧‧第三方向 D3‧‧‧third direction

I‧‧‧電流 I‧‧‧Current

M1‧‧‧第一磁化方向設定元件 M1‧‧‧First magnetization direction setting element

M2‧‧‧第二磁化方向設定元件 M2‧‧‧Second magnetization direction setting element

R1‧‧‧第一異向性磁電阻 R1‧‧‧The first anisotropic magnetoresistance

R2‧‧‧第二異向性磁電阻 R2‧‧‧Second anisotropic magnetoresistance

R3‧‧‧第三異向性磁電阻 R3‧‧‧The third anisotropic magnetoresistance

R4‧‧‧第四異向性磁電阻 R4‧‧‧ Fourth anisotropic magnetoresistance

R5‧‧‧第五異向性磁電阻 R5‧‧‧The fifth anisotropic magnetoresistance

R6‧‧‧第六異向性磁電阻 R6‧‧‧Sixth anisotropic magnetoresistance

R7‧‧‧第七異向性磁電阻 R7‧‧‧The seventh anisotropic magnetoresistance

R8‧‧‧第八異向性磁電阻 R8‧‧‧Eighth anisotropic magnetoresistance

S1‧‧‧第一斜坡面 S1‧‧‧The first slope

S2‧‧‧第二斜坡面 S2‧‧‧Second slope surface

S3‧‧‧第三斜坡面 S3‧‧‧The third slope

S4‧‧‧第四斜坡面 S4‧‧‧The fourth slope

Claims (14)

一種電流感測器,包括: 一基板; 一第一斜坡面與一第二斜坡面,設於該基板上,且排列於一第一方向上; 至少一導線,沿著一第二方向延伸,且配置於該基板的一側; 一第一異向性磁電阻單元,配置於該第一斜坡面上; 一第二異向性磁電阻單元,配置於該第二斜坡面上; 一第一磁化方向設定元件,用以設定該第一異向性磁電阻單元的磁化方向;以及 一第二磁化方向設定元件,用以設定該第二異向性磁電阻單元的磁化方向, 其中,當一電流流經該導線時,該電流於該第一斜坡面處所產生的一第三方向上的磁場分量相反於該電流於該第二斜坡面處所產生的該第三方向上的磁場分量,該第一方向、該第二方向及該第三方向彼此不同,且該第一異向性磁電阻單元與該第二異向性磁電阻單元的感測方向相對於該第一方向與該第三方向傾斜,且不同於該第二方向,該第一異向性磁電阻單元與該第二異向性磁電阻單元電性連接,以輸出一電壓訊號,該電壓訊號對應於該電流於該第一斜坡面處與該第二斜坡面處所產生的該第三方向上的磁場分量。A current sensor, including: A substrate A first slope surface and a second slope surface, which are arranged on the substrate and arranged in a first direction; At least one wire extending along a second direction and disposed on one side of the substrate; A first anisotropic magnetoresistive unit arranged on the first slope surface; A second anisotropic magnetoresistive unit disposed on the second slope surface; A first magnetization direction setting element for setting the magnetization direction of the first anisotropic magnetoresistive unit; and A second magnetization direction setting element for setting the magnetization direction of the second anisotropic magnetoresistive unit, When a current flows through the wire, a third-direction magnetic field component generated by the current at the first ramp surface is opposite to the third-direction magnetic field component generated by the current at the second ramp surface, The first direction, the second direction, and the third direction are different from each other, and the sensing directions of the first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit are relative to the first direction and the third direction The three directions are inclined and different from the second direction, the first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit are electrically connected to output a voltage signal, the voltage signal corresponding to the current in the The third-direction upward magnetic field component generated at the first slope surface and the second slope surface. 如申請專利範圍第1項所述的電流感測器,更包括: 一第三斜坡面與一第四斜坡面,設於該基板上,其中該第三斜坡面與該第一斜坡面相對,該第四斜坡面與該第二斜坡面相對,且該第一斜坡面、該第三斜坡面、該第四斜坡面及該第二斜坡面依序排列於該第一方向上; 一第三異向性磁電阻單元,配置於該第三斜坡面上,該第一磁化方向設定元件也用以設定該第三異向性磁電阻單元的磁化方向;以及 一第四異向性磁電阻單元,配置於該第四斜坡面上,該第二磁化方向設定元件也用以設定該第四異向性磁電阻單元的磁化方向,其中當該電流流經該導線時,因感應於該電流所產生的磁場,該第一異向性磁電阻單元所產生的電阻值變化相反於該第三異向性磁電阻單元所產生的電阻值變化,且該第二異向性磁電阻單元所產生的電阻值變化相反於該第四異向性磁電阻單元所產生的電阻值變化,且該第一、第二、第三及第四異向性磁電阻單元電性連接成一惠斯登電橋,以輸出對應於該第一、第二、第三及第四異向性磁電阻單元所產生的電阻值變化的電壓訊號。The current sensor as described in item 1 of the patent application scope further includes: A third slope surface and a fourth slope surface are provided on the substrate, wherein the third slope surface is opposite to the first slope surface, the fourth slope surface is opposite to the second slope surface, and the first slope The surface, the third slope surface, the fourth slope surface and the second slope surface are sequentially arranged in the first direction; A third anisotropic magnetoresistive unit disposed on the third slope surface, the first magnetization direction setting element is also used to set the magnetization direction of the third anisotropic magnetoresistive unit; and A fourth anisotropic magnetoresistive unit is disposed on the fourth slope surface, and the second magnetization direction setting element is also used to set the magnetization direction of the fourth anisotropic magnetoresistive unit, wherein when the current flows through the When conducting a wire, due to the magnetic field induced by the current, the change in resistance value generated by the first anisotropic magnetoresistive unit is opposite to the change in resistance value generated by the third anisotropic magnetoresistive unit, and the second The change in resistance value generated by the anisotropic magnetoresistive unit is opposite to the change in resistance value generated by the fourth anisotropic magnetoresistive unit, and the first, second, third, and fourth anisotropic magnetoresistive units are electrically It is connected to a Wheatstone bridge to output a voltage signal corresponding to the change in resistance value generated by the first, second, third and fourth anisotropic magnetoresistive units. 如申請專利範圍第2項所述的電流感測器,更包括一運算器,電性連接至該惠斯登電橋的一輸出端,其中該第一磁化方向設定元件與該第二磁化方向設定元件將該第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為一第一組合,以使該惠斯登電橋之後輸出一第一電壓訊號,且該第一磁化方向設定元件與該第二磁化方向設定元件再將該第一、第二、第三及第四異向性磁電阻單元的磁化方向組合設定為相反於該第一組合的一第二組合,以使該惠斯登電橋之後輸出一第二電壓訊號,該運算器用以將該第二電壓訊號與該第一電壓訊號相減,以輸出一對應於該電流所產生的該磁場的大小的輸出電壓訊號。The current sensor as described in item 2 of the patent application scope further includes an arithmetic unit electrically connected to an output end of the Wheatstone bridge, wherein the first magnetization direction setting element and the second magnetization direction The setting element sets the magnetization direction combination of the first, second, third and fourth anisotropic magnetoresistive units to a first combination, so that the Wheatstone bridge outputs a first voltage signal, and the The first magnetization direction setting element and the second magnetization direction setting element set the magnetization direction combinations of the first, second, third and fourth anisotropic magnetoresistive units to a second opposite to the first combination Combination, so that the Wheatstone bridge outputs a second voltage signal afterwards, the calculator is used to subtract the second voltage signal from the first voltage signal to output a magnetic field corresponding to the magnetic field generated by the current The size of the output voltage signal. 如申請專利範圍第3項所述的電流感測器,其中該運算器用以將該第一電壓訊號與該第二電壓訊號相加,以輸出一偏移電壓訊號。The current sensor as described in item 3 of the patent application scope, wherein the arithmetic unit is used to add the first voltage signal and the second voltage signal to output an offset voltage signal. 如申請專利範圍第2項所述的電流感測器,其中該惠斯登電橋對應於在該第一方向上的外在磁場分量所輸出的電壓訊號為零,對應於在該第二方向上的外在磁場分量所輸出的電壓訊號為零,且對應於在該第三方向上的外在磁場分量所輸出的電壓訊號為零。The current sensor as described in item 2 of the patent application scope, wherein the Wheatstone bridge corresponds to the voltage signal output by the external magnetic field component in the first direction being zero, corresponding to the second direction The voltage signal output by the external magnetic field component on is zero, and the voltage signal corresponding to the external magnetic field component in the third direction is zero. 如申請專利範圍第2項所述的電流感測器,其中該第一異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第一異向性磁電阻與一第二異向性磁電阻,該第二異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第三異向性磁電阻與一第四異向性磁電阻,該第三異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第五異向性磁電阻與一第六異向性磁電阻,且該第四異向性磁電阻單元包括沿著該第二方向的反方向依序排列的一第七異向性磁電阻與一第八異向性磁電阻。The current sensor as described in item 2 of the patent application scope, wherein the first anisotropic magnetoresistive unit includes a first anisotropic magnetoresistive and a first Two anisotropic magnetoresistances, the second anisotropic magnetoresistance unit includes a third anisotropic magnetoresistance and a fourth anisotropic magnetoresistance arranged in sequence along the reverse direction of the second direction The three anisotropic magneto-resistance units include a fifth anisotropic magneto-resistance and a sixth anisotropic magneto-resistance arranged in sequence along the opposite direction of the second direction, and the fourth anisotropic magneto-resistance unit includes A seventh anisotropic magnetoresistance and an eighth anisotropic magnetoresistance are sequentially arranged along the reverse direction of the second direction. 如申請專利範圍第6項所述的電流感測器,其中在一第一時間,該第一磁化方向設定元件將該第一異向性磁電阻與該第五異向性磁電阻的磁化方向設定為該第二方向的反方向,且將該第二異向性磁電阻與該第六異向性磁電阻的磁化方向設定為該第二方向;在該第一時間,該第二磁化方向設定元件將該第三異向性磁電阻與該第七異向性磁電阻的磁化方向設定為該第二方向的反方向,且將該第四異向性磁電阻與該第八異向性磁電阻的磁化方向設定為該第二方向;在一第二時間,該第一磁化方向設定元件將該第一異向性磁電阻與該第五異向性磁電阻的磁化方向設定為該第二方向,且將該第二異向性磁電阻與該第六異向性磁電阻的磁化方向設定為該第二方向的反方向;在該第二時間,該第二磁化方向設定元件將該第三異向性磁電阻與該第七異向性磁電阻的磁化方向設定為該第二方向,且將該第四異向性磁電阻與該第八異向性磁電阻的磁化方向設定為該第二方向的反方向。The current sensor as described in item 6 of the patent application range, wherein at a first time, the first magnetization direction setting element magnetizes the first anisotropic magnetoresistance and the fifth anisotropic magnetoresistance Set to the opposite direction of the second direction, and set the magnetization directions of the second anisotropic magnetoresistance and the sixth anisotropic magnetoresistance to the second direction; at the first time, the second magnetization direction The setting element sets the magnetization directions of the third anisotropic magnetoresistance and the seventh anisotropic magnetoresistance to the opposite direction of the second direction, and sets the fourth anisotropic magnetoresistance and the eighth anisotropy The magnetization direction of the magnetoresistance is set to the second direction; at a second time, the first magnetization direction setting element sets the magnetization directions of the first anisotropic magnetoresistance and the fifth anisotropic magnetoresistance to the first Two directions, and the magnetization directions of the second anisotropic magnetoresistance and the sixth anisotropic magnetoresistance are set to be opposite to the second direction; at the second time, the second magnetization direction setting element sets The magnetization directions of the third anisotropic magnetoresistance and the seventh anisotropic magnetoresistance are set to the second direction, and the magnetization directions of the fourth anisotropic magnetoresistance and the eighth anisotropic magnetoresistance are set to The opposite direction of the second direction. 如申請專利範圍第1項所述的電流感測器,其中該第一磁化方向設定元件與該第二磁化方向設定元件為導電片、導電線圈、導線、導體或永久磁鐵。The current sensor as described in item 1 of the patent application range, wherein the first magnetization direction setting element and the second magnetization direction setting element are conductive sheets, conductive coils, wires, conductors or permanent magnets. 如申請專利範圍第1項所述的電流感測器,其中該第一方向、該第二方向及該第三方向彼此互相垂直。The current sensor according to item 1 of the patent application scope, wherein the first direction, the second direction, and the third direction are perpendicular to each other. 如申請專利範圍第1項所述的電流感測器,其中該至少一導線為一個導線,該第一斜坡面與該第二斜坡面位於該基板的一第一側,而該導線位於該基板的一第二側,且該第一側相對於該第二側。The current sensor according to item 1 of the patent application scope, wherein the at least one wire is a wire, the first slope surface and the second slope surface are located on a first side of the substrate, and the wire is located on the substrate A second side, and the first side is opposite to the second side. 如申請專利範圍第10項所述的電流感測器,其中該第一斜坡面與該第二斜坡面分別位於該基板的相對兩端之一側,而該導線位於該基板的中央的一側。The current sensor as recited in item 10 of the patent application range, wherein the first slope surface and the second slope surface are respectively located on one side of the opposite ends of the substrate, and the wire is located on the side of the center of the substrate . 如申請專利範圍第1項所述的電流感測器,其中該至少一導線為二個導線,分別配置於該基板的一第一端與一第二端旁,其中該第一端相對於該第二端,且該二個導線分別與該第一端及該第二端部分重疊。The current sensor according to item 1 of the patent application scope, wherein the at least one wire is two wires, which are respectively disposed beside a first end and a second end of the substrate, wherein the first end is opposite to the The second end, and the two wires partially overlap the first end and the second end, respectively. 如申請專利範圍第1項所述的電流感測器,其中該至少一導線為二個導線,分別配置於該基板的一第一端與一第二端旁,其中該第一端相對於該第二端,且該二個導線分別不與該第一端及該第二端重疊。The current sensor according to item 1 of the patent application scope, wherein the at least one wire is two wires, which are respectively disposed beside a first end and a second end of the substrate, wherein the first end is opposite to the The second end, and the two wires do not overlap with the first end and the second end, respectively. 如申請專利範圍第1項所述的電流感測器,其中該第一異向性磁電阻單元與該第二異向性磁電阻單元電性連接成一惠斯登電橋,以輸出對應於第一異向性磁電阻單元與第二異向性磁電阻單元所產生的電阻值變化的電壓訊號。The current sensor as described in item 1 of the patent application scope, wherein the first anisotropic magnetoresistive unit and the second anisotropic magnetoresistive unit are electrically connected to form a Wheatstone bridge, and the output corresponds to the first A voltage signal of a change in resistance value generated by an anisotropic magnetoresistive unit and a second anisotropic magnetoresistive unit.
TW108118714A 2018-08-22 2019-05-30 Electric current sensor TWI714107B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910664113.4A CN110857952B (en) 2018-08-22 2019-07-23 Current sensor
US16/547,604 US11022632B2 (en) 2018-08-22 2019-08-22 Electric current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862720932P 2018-08-22 2018-08-22
US62/720,932 2018-08-22

Publications (2)

Publication Number Publication Date
TW202009497A true TW202009497A (en) 2020-03-01
TWI714107B TWI714107B (en) 2020-12-21

Family

ID=70766401

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118714A TWI714107B (en) 2018-08-22 2019-05-30 Electric current sensor

Country Status (1)

Country Link
TW (1) TWI714107B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126330B2 (en) * 2004-06-03 2006-10-24 Honeywell International, Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
US8659285B2 (en) * 2008-10-09 2014-02-25 Nxp B.V. Current sensor and current sensing method
US20120068698A1 (en) * 2010-09-17 2012-03-22 Industrial Technology Research Institute Structure of tmr and fabrication method of integrated 3-axis magnetic field sensor and sensing circuit
TW201508301A (en) * 2014-09-16 2015-03-01 Voltafield Technology Corp Bridge and magnetic sensor assembly having the same
TWI565958B (en) * 2015-05-08 2017-01-11 愛盛科技股份有限公司 Magnetic field sensing apparatus and magnetic field sensing module
TWI638140B (en) * 2016-11-09 2018-10-11 愛盛科技股份有限公司 Magnetic field sensing apparatus

Also Published As

Publication number Publication date
TWI714107B (en) 2020-12-21

Similar Documents

Publication Publication Date Title
JP5500785B2 (en) Magnetic sensor
JP6403326B2 (en) Current sensor
JP4807535B2 (en) Magnetic sensor
CN110857952B (en) Current sensor
JP6107942B2 (en) Magnetic current sensor and current measuring method
TWI633321B (en) Tunneling magneto-resistor device for sensing magnetic field
JP6886222B2 (en) Magnetic sensor
CN110837067B (en) Magnetic field sensing device
JPWO2013129276A1 (en) Magnetic sensor element
JP2017072375A (en) Magnetic sensor
JP2015219227A (en) Magnetic sensor
TWI695965B (en) Magnetic field sensing device
KR20160005733A (en) Magnetic field sensor device
CN110837066B (en) Magnetic field sensing device
JP2012063203A (en) Magnetic sensor
US11243275B2 (en) Magnetic field sensing device
TWI714107B (en) Electric current sensor
TWI703338B (en) Electric current sensor
CN110857951B (en) Current sensor
WO2015125699A1 (en) Magnetic sensor
TWI711833B (en) Magnetic field sensing device
TWI703336B (en) Magnetic field sensing device
WO2015146640A1 (en) Current sensor
TWI705262B (en) Magnetic field sensing apparatus
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus