TW202008814A - 用於增強使用者設備處的功率利用的實體上行鏈路共享通道功率縮放 - Google Patents

用於增強使用者設備處的功率利用的實體上行鏈路共享通道功率縮放 Download PDF

Info

Publication number
TW202008814A
TW202008814A TW108127715A TW108127715A TW202008814A TW 202008814 A TW202008814 A TW 202008814A TW 108127715 A TW108127715 A TW 108127715A TW 108127715 A TW108127715 A TW 108127715A TW 202008814 A TW202008814 A TW 202008814A
Authority
TW
Taiwan
Prior art keywords
transmission
power
tpmi
chains
pusch
Prior art date
Application number
TW108127715A
Other languages
English (en)
Other versions
TWI778287B (zh
Inventor
戈庫爾 史達仁
黃義
曉峰 王
彼得 加爾
傑庫馬 桑達拉拉貞
陳旺旭
楊緯
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202008814A publication Critical patent/TW202008814A/zh
Application granted granted Critical
Publication of TWI778287B publication Critical patent/TWI778287B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/545Signalisation aspects of the TPC commands, e.g. frame structure modifying TPC bits in special situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本揭示內容的某些態樣提供用於在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間對傳輸功率進行縮放的技術。在一些情況下,UE可以進行以下操作:決定發射功率預算;接收指示如何在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算的訊號傳遞;在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算;及根據所決定的發射功率分配,使用發送鏈來發送PUSCH。

Description

用於增強使用者設備處的功率利用的實體上行鏈路共享通道功率縮放
本專利申請案主張以下申請案的權益:於2018年8月3日提出申請的美國臨時專利申請案第62/714,360號;於2018年9月28日提出申請的美國臨時專利申請案第62/739,048號;及於2019年4月11日提出申請的美國臨時專利申請案第62/832,789號,上述所有申請案被轉讓給本案的受讓人並且據此將上述所有申請經由引用的方式明確地併入本文。
本揭示內容的各態樣涉及無線通訊,並且更具體地,本揭示內容的各態樣涉及用於在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間對傳輸功率進行縮放的技術。
無線通訊系統被廣泛地部署以提供各種電信服務,諸如電話、視訊、資料、訊息傳遞、廣播等。此等無線通訊系統可以採用能夠藉由共享可用系統資源(例如,頻寬、發送功率等)來支援與多個使用者通訊的多工存取技術。此種多工存取系統的實例包括:僅舉幾例,第三代合作夥伴計畫(3GPP)、長期進化(LTE)系統、先進的LTE(LTE-A)系統、分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統和分時同步分碼多工存取(TD-SCDMA)系統。
在一些實例中,無線多工存取通訊系統可以包括數個基地台(BS),每個基地台能夠同時支援針對多個通訊設備(在其他方面被稱為使用者設備(UE))的通訊。在LTE或LTE-A網路中,一或多個基地台的集合可以定義進化型節點B(eNB)。在其他實例中(例如,在下一代網路、新無線電(NR)網路或5G網路中),無線多工存取通訊系統可以包括與數個中央單元(CU)(例如,中央節點(CN)、存取節點控制器(ANC)等等)相通訊的數個分散式單元(DU)(例如,邊緣單元(EU)、邊緣節點(EN)、無線電頭端(RH)、智慧無線電頭端(SRH)、發送接收點(TRP)等等),其中與中央單元相通訊的一或多個分散式單元的集合可以定義存取節點(例如,其可以被稱為基地台、5G NB、下一代節點B(gNB或gNodeB)、TRP等等)。基地台或分散式單元可以在下行鏈路通道(例如,用於從基地台或到UE的傳輸)和上行鏈路通道(例如,用於從UE到基地台或分散式單元的傳輸)上與UE集合通訊。
該等多工存取技術已經在各種電信標準中被採用以提供使不同無線設備能夠在城市、國家、地區甚至全球等級進行通訊的公共協定。新無線電(NR)(例如,5G)是新興的電信標準的實例。NR是對3GPP發佈的LTE行動服務標準的增強集合。其被設計為藉由以下各項來更好地支援行動寬頻網際網路存取:改進頻譜效率、降低成本、改進服務、利用新頻譜、和更好地與在下行鏈路(DL)和上行鏈路(UL)上使用具有循環字首(CP)的OFDMA的其他開放標準整合。為此目的,NR支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。
但是,隨著對行動寬頻存取的需求持續增加,需要NR和LTE技術中的進一步改進。優選的是,該等改進應該可應用於其他多工存取技術和採用該等技術的電信標準。
本揭示內容的系統、方法和設備均具有若干態樣,其中沒有單一一個態樣是僅負責其期望的屬性的。在不限制下文的申請專利範圍所表達的本揭示內容的範圍的情況下,現在將簡要論述一些特徵。在考慮該論述之後,並且尤其是在閱讀了標題名稱為「實施方式」的部分之後,將理解本揭示內容的特徵如何提供包括在無線網路中的存取點和站之間的改進的通訊的優勢。
某些態樣提供了一種用於由使用者設備(UE)進行無線通訊的方法。概括而言,方法包括:決定發射功率預算;在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間自主地分配發射功率預算;及根據所決定的發射功率分配,使用發送鏈來發送PUSCH。
某些態樣提供了一種用於由使用者設備(UE)進行無線通訊的方法。概括而言,方法包括:決定發射功率預算;接收指示如何在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算的訊號傳遞;在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算;及根據所決定的發射功率分配,使用發送鏈來發送PUSCH。
某些態樣提供了一種用於由網路實體進行無線通訊的方法。概括而言,方法包括:向使用者設備(UE)發送指示如何在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算的訊號傳遞;及接收從UE以基於訊號傳遞在發送鏈之間分配的發射功率發送的PUSCH。
本揭示內容的某些態樣亦提供能夠執行上述操作的各種裝置、構件和電腦可讀取媒體(或具有儲存在其上的用於執行上述操作的指令)。
為了實現前述和相關目的,一或多個態樣包括後文充分描述以及在申請專利範圍中特別指出的特徵。下文描述和附圖詳細闡述了一或多個態樣的某些說明性特徵。然而,該等特徵僅僅指示可以採用各個態樣的原理的各種方式中的一些方式。
本揭示內容的各態樣提供用於在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間對傳輸功率進行縮放的裝置、方法、處理系統和電腦可讀取媒體。
下文的描述提供實例,並且不是對申請專利範圍中闡述的範圍、應用性或實例的限制。可以在不脫離本揭示內容的範圍的情況下對論述的元素的功能和安排做出改變。各個實例可以酌情省略、替代或添加各種程序或部件。例如,所描述的方法可以按照不同於所描述的順序來執行,並且可以添加、省略或組合各個步驟。此外,關於一些實例所描述的特徵可以組合在一些其他實例中。例如,可以用本文中闡述的任何數量個態樣來實現裝置或實踐方法。另外,本揭示內容的範圍意欲覆蓋使用除了或不同於本文中闡述的本揭示內容的各個態樣的其他結構、功能性,或結構和功能性來實踐的此種裝置和方法。應該理解的是,可以由申請專利範圍的一或多個元素來體現本文中所揭示的本揭示內容的任何態樣。詞語「示例性的」在本文中用於意為「用作示例、實例或說明」。本文中被描述為「示例性的」任何態樣不必要解釋為比其他態樣更優選或更有優勢。
本文中描述的技術可以用於各種無線通訊技術,諸如LTE、CDMA、TDMA、FDMA、OFDMA、SC-FDMA和其他網路。術語「網路」和「系統」經常互換地使用。CDMA網路可以實現諸如通用陸地無線電存取(UTRA)、cdma2000等等之類的無線電技術。UTRA包括寬頻CDMA(WCDMA)和CDMA的其他變型。cdma2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如行動通訊全球系統(GSM)之類的無線電技術。OFDMA網路可以實現諸如NR(例如,5G RA)、進化型UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、快閃-OFDMA等等之類的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的一部分。
新無線電(NR)是結合5G技術論壇(5GTF)的正在開發的新興無線通訊技術。3GPP長期進化(LTE)和先進的LTE(LTE-A)是使用E-UTRA的UMTS的版本。在來自名為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在來自名為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了cdma2000和UMB。本文中描述的技術可以用於上文提到的無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚,儘管在本文中可以使用一般與3G及/或4G無線技術相關聯的術語來描述態樣,但是本揭示內容的態樣可以應用於基於其他代的通訊系統中,諸如5G及以後的,包括NR技術。
新無線電(NR)存取(例如,5G技術)可以支援各種無線通訊服務,諸如,以寬頻寬(例如,80 MHz以及更寬)為目標的增強型行動寬頻(eMBB)、以高載波頻率(例如,25 GHz以及更高)為目標的毫米波(mmW)、以非向後相容的MTC技術為目標的大規模機器類型通訊MTC(mMTC)、及/或以超可靠低時延通訊(URLLC)為目標的任務關鍵。該等服務可以包括時延和可靠性要求。該等服務亦可以具有不同的傳輸時間間隔(TTI),以滿足相應的服務品質(QoS)要求。另外,該等服務可以共存於同一子訊框中。 示例無線通訊系統
圖1示出可以在其中執行本揭示內容的各態樣的示例無線通訊網路100。例如,UE 120可以根據下文參照圖7和圖8描述的操作來分配發射功率。BS 110可以執行圖9的操作來將UE配置為執行圖8中圖示的操作。
無線通訊網路100可以是新無線電(NR)或5G網路。如圖1中所示,無線網路100可以包括數個基地台(BS)110和其他網路實體。BS可以是與使用者設備(UE)通訊的站。每個BS 110可以為特定地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以指服務該覆蓋區域的節點B(NB)及/或節點B子系統的覆蓋區域,取決於使用術語的上下文。在NR系統中,術語「細胞」和下一代節點B(gNB)、新無線電基地台(NR BS)、5G NB、存取點(AP)、或發送接收點(TRP)可以是可互換的。在一些實例中,細胞可以不一定是靜止的,並且細胞的地理區域可以根據行動BS的位置來移動。在一些實例中,基地台可以經由各種類型的回載介面(諸如直接實體連接、無線連接、虛擬網路或使用任何適用傳輸網路的類似者)來在無線通訊網路100中相互互連及/或互連到一或多個其他基地台或網路節點(未圖示)。
一般而言,任何數量的無線網路可以部署在給定地理區域中。每個無線網路可以支援特定無線電存取技術(RAT)並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等等。頻率亦可以被稱為載波、次載波、頻率通道、音調、次頻帶等等。每個頻率可以在給定地理區域中支援單個RAT以便避免不同RAT的無線網路之間的干擾。在一些情況下,可以部署NR或5G RAT網路。
基地台(BS)可以為巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對較大的地理區域(例如,半徑若干公里),並且可以允許具有服務訂閱的UE的不受限制存取。微微細胞可以覆蓋相對較小的地理區域並且可以允許具有服務訂閱的UE的不受限制存取。毫微微細胞可以覆蓋相對較小的地理區域(例如,家庭)並且可以允許具有與毫微微細胞的關聯的UE(例如,封閉用戶群組(CSG)中的UE、針對家庭中的使用者的UE等等)的受限制存取。針對巨集細胞的BS可以被稱為巨集BS。針對微微細胞的BS可以被稱為微微BS。針對毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1中圖示的實例中,BS 110a、110b和110c可以分別是針對巨集細胞102a、102b和102c的巨集BS。BS 110x可以是針對微微細胞102x的微微BS。BS 110y和110z可以分別是針對毫微微細胞102y和102z的毫微微BS。BS可以支援一或多個(例如,三個)細胞。
無線通訊網路100亦可以包括中繼站。中繼站是從上游站(例如,BS或UE)接收資料及/或其他資訊的傳輸並且向下游站(例如,UE或BS)發送資料及/或其他資訊的傳輸的站。中繼站亦可以是對針對其他UE的傳輸進行中繼的UE。在圖1中圖示的實例中,中繼站110r可以與BS 110a和UE 120r通訊以促進BS 110a和UE 120r之間的通訊。中繼站亦可以被稱為中繼BS、中繼器等等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼器等等)的異質網路。該等不同類型的BS可以在無線網路100中具有不同的發送功率位準、不同的覆蓋區域和對干擾不同的影響。例如,巨集BS可以具有較高發送功率位準(例如,20瓦特),而微微BS、毫微微BS和中繼器可以具有較低的發送功率位準(例如,1瓦特)。
無線通訊網路100可以支援同步或非同步操作。對於同步操作,BS可以具有相似的訊框時序,並且來自不同BS的傳輸可以在時間上近似對準。對於非同步操作,BS可以具有不同訊框時序,並且來自不同BS的傳輸可以不在時間上對準。本文中所描述的技術可以用於同步和非同步操作二者。
網路控制器130可以耦合到BS集合並且為該等BS提供協調和控制。網路控制器130可以經由回載來與BS 110通訊。BS 110亦可以,例如,經由無線或有線回載(例如,直接或間接地)相互通訊。
UE 120(例如,120x、120y等等)可以遍佈無線網路100分佈,並且每個UE可以是靜止的或行動的。UE亦可以被稱為行動站、終端、存取終端、用戶單元、站、客戶駐地設備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、攝像機、遊戲設備、上網本、智慧型電腦、超極本、電器、醫療設備或醫療裝備、生物度量感測器/設備、諸如智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧首飾(例如,智慧戒指、智慧手鏈等等)之類的可穿戴設備、娛樂設備(例如,音樂設備、視頻設備、衛星無線電等等)、交通工具部件或感測器、智慧型儀器表/感測器、工業製造裝備、全球定位系統設備或者被配置為經由無線或有線媒體通訊的任何其他適當設備。一些UE可以被視為機器類型通訊(MTC)設備或進化型MTC(eMTC)設備。MTC和eMTC UE包括,例如,機器人、無人機、遠端設備、感測器、儀器表、監測器、位置標籤等等,其可以與BS、另一個設備(例如,遠端設備)或某個其他實體來通訊。無線節點可以提供,例如經由有線或無線通訊鏈路的針對網路或到網路(例如,諸如網際網路或蜂巢網路之類的廣域網)的連接。一些UE可以被視為物聯網設備,其可以是窄頻物聯網設備。
某些無線網路(例如,LTE)在下行鏈路上使用正交分頻多工(OFDM)並且在上行鏈路上使用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分為多個(K個)正交次載波,該等正交次載波亦通常被稱為音調、頻段等等。每個次載波可以是利用資料來調制的。一般而言,調制符號在頻域中利用OFDM來發送,以及在時域中利用SC-FDM來發送。相鄰次載波之間的間距可以是固定的,並且次載波總數(K)可以取決於系統頻寬。例如,次載波的間距可以是15 kHz並且最小資源分配(稱為「資源區塊」(RB))可以是12個次載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫茲(MHz)的系統頻寬,標稱快速傅裡葉變換(FFT)大小可以分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分為次頻帶。例如,次頻帶可以覆蓋1.08 MHz(亦即,6個資源區塊),並且針對1.25、2.5、5、10或20 MHz的系統頻寬可以分別有1、2、4、8或16個次頻帶。
儘管本文中描述的實例的態樣可以是與LTE技術相關聯的,但是本揭示內容的態樣可以應用於其他無線通訊系統(諸如NR)。NR可以在上行鏈路和下行鏈路上使用具有CP的OFDM,並且包括對使用TDD的半雙工操作的支援。可以支援波束成形並且波束方向可以被動態地配置。亦可以支援具有預編碼的MIMO傳輸。DL中的MIMO配置可以支援具有多層DL傳輸高達8個串流以及每UE高達2個串流的高達8個發射天線。可以支援具有每UE高達2個串流的多層傳輸。可以支援具有高達8個服務細胞的對多個細胞的聚合。
在一些實例中,可以排程到空中介面的存取,其中排程實體(例如,基地台)在其服務區域或細胞內的一些或所有設備和裝置之間分配用於通訊的資源。排程實體可以負責針對一或多個從屬實體的排程、指派、重新配置和釋放資源。亦即,對於排程的通訊,從屬實體使用由排程實體分配的資源。基地台不是起到排程實體作用的僅有實體。在一些實例中,UE可以起到排程實體的作用,並且可以排程針對一或多個從屬實體(例如,一或多個其他UE)的資源,並且其他UE可以使用由UE排程的資源用於無線通訊。在一些實例中,UE可以在同級間(P2P)網路及/或網狀網路中起到排程實體的作用。在網狀網路實例中,除了與排程實體通訊之外,UE可以相互直接通訊。
在圖1中,具有雙箭頭的實線指示在UE與服務BS之間的期望傳輸,該服務BS是被指定為在下行鏈路及/或上行鏈路上為UE服務的BS。具有雙箭頭的細虛線指示在UE與BS之間的干擾性傳輸。
圖2示出了分散式無線電存取網路(RAN)200的示例邏輯架構,其可以在圖1中示出的無線通訊網路100中實現。5G存取節點206可以包括存取節點控制器(ANC)202。ANC 202可以是分散式RAN 200的中央單元(CU)。到下一代核心網路(NG-CN)204的回載介面可以終止於ANC 202處。到相鄰下一代存取節點(NG-AN)210的回載介面可以終止於ANC 202處。ANC 202可以包括一或多個發送接收點(TRP)208(例如,細胞、BS、gNB等)。
TRP 208可以是分散式單元(DU)。TRP 208可以連接到單個ANC(例如,ANC 202)或多於一個ANC(未示出)。例如,對於RAN共用、作為服務的無線電(RaaS)以及服務特定AND部署而言,TRP 208可以連接到多於一個ANC。TRP 208均可以包括一或多個天線埠。TRP 208可以被配置為向UE的單獨地(例如,動態選擇)或聯合地(例如,聯合傳輸)服務傳輸量。
分散式RAN 200的邏輯架構可以支援跨越不同部署類型的前傳方案。例如,邏輯架構可以是基於發送網路能力(例如,頻寬、時延及/或信號干擾)的。
分散式RAN 200的邏輯架構可以與LTE共用特徵及/或部件。例如,下一代存取節點(NG-AN)210可以支援與NR的雙重連接,並且可以共用針對LTE和NR的公共前傳。
分散式RAN 200的邏輯架構可以實現在兩個或多個TRP 208之間的協調,例如,在TRP內及/或經由ANC 202跨越TRP。可以不使用TRP間介面。
邏輯功能可以動態地分佈在分散式RAN 200的邏輯架構中。如將參照圖5更詳細描述的,可以將無線電資源控制(RRC)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層和實體(PHY)層適應性地放置在DU(例如,TRP 208)或CU(例如,ANC 202)處。
圖3示出了根據本揭示內容的各態樣的分散式無線電存取網路(RAN)300的示例實體架構。集中式核心網路單元(C-CU)302可以託管核心網路功能。C-CU 302可以是集中部署的。C-CU 302功能可以被卸載(例如,到先進無線服務(AWS)),以便應對峰值容量。
集中式RAN單元(C-RU)304可以託管一或多個ANC功能。可選地,C-RU 304可以在本端託管核心網路功能。C-RU 304可以具有分散式部署。C-RU 304可以接近網路邊緣。
DU 306可以託管一或多個TRP(邊緣節點(EN)、邊緣單元(EU)、無線電頭端(RH)、智慧無線電頭端(SRH)等)。DU可以位於具有射頻(RF)功能的網路的邊緣處。
圖4示出了(如在圖1中描繪的)BS 110和UE 120的示例部件,其可以用於實現本揭示內容的各態樣。例如,UE 120的天線452、處理器466、458、464及/或控制器/處理器480、及/或BS 110的天線434、處理器420、460、438及/或控制器/處理器440可以用於執行本文描述的各種技術和方法。
在BS 110處,發送處理器420可以從資料來源412接收資料並從控制器/處理器440接收控制資訊。控制資訊可以針對實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)、分組公共PDCCH(GC PDCCH)等等。資料可以針對實體下行鏈路共享通道(PDSCH)等等。處理器420可以對資料和控制資訊進行處理(例如,編碼和符號映射)以分別獲得資料符號和控制符號。處理器420亦可以產生參考符號,例如針對主要同步信號(PSS)、次要同步信號(SSS)和細胞特定參考信號(CRS)。若可應用,發送(TX)多輸入多輸出(MIMO)處理器430可以在資料符號、控制符號及/或參考符號上執行空間處理(例如,預編碼),並且可以向調制器(MOD)432a至432t提供輸出符號串流。每個調制器432可以處理相應的輸出符號串流(例如,用於OFDM等)以獲取輸出取樣串流。每個調制器可以進一步對輸出取樣串流進行處理(例如,轉換為類比、放大、濾波和升頻轉換)以獲得下行鏈路信號。來自調制器432a至432t的下行鏈路信號可以分別經由天線434a至434t來發送。
在UE 120處,天線452a至452r可以從基地台110接收下行鏈路信號,並且可以將接收的信號分別提供給收發機中的解調器(DEMOD)454a至454r。每個解調器454可以對相應接收的信號進行調節(例如,濾波、放大、降頻轉換和數位化)以獲得輸入取樣。每個解調器可以進一步處理輸入取樣(例如,用於OFDM等等)以獲得接收的符號。MIMO偵測器456可以從所有解調器452a至452r獲得接收的符號,在接收的符號上執行MIMO偵測(若可應用),並提供偵測出的符號。接收處理器458可以對偵測出的符號進行處理(例如,解調、解交錯和解碼),將針對UE 120的解碼資料提供給資料槽460並將解碼的控制資訊提供給控制器/處理器480。
在上行鏈路上,在UE 120處,發送處理器464可以對來自資料來源462的資料(例如,針對實體上行鏈路共享通道(PUSCH))以及來自控制器/處理器480的控制資訊(例如,針對實體上行鏈路控制通道(PUCCH))進行接收和處理。發送處理器464亦可以產生針對參考信號(例如,針對探測參考信號(SRS))的參考符號。來自發送處理器464的符號可以由TX MIMO處理器466進行預編碼(若可應用),由收發機中的解調器454a至454r進行進一步處理(例如,用於SC-FDM等等),並且發送給基地台110。在BS 110處,來自UE 120的上行鏈路信號可以由天線434來接收,由調制器432進行處理,由MIMO偵測器436來偵測(若可應用),並且由接收處理器438來進一步處理以獲得由UE 120發送的經解碼的資料和控制資訊。接收處理器438可以將解碼的資料提供給資料槽439,並將解碼的控制資訊提供給控制器/處理器440。
控制器/處理器440和480可以分別導引基地台110和UE 120處的操作。處理器440及/或BS 110處的其他處理器和模組可以針對本文中描述的技術執行或導引過程執行。記憶體442和482可以分別儲存針對BS 110和UE 120的資料和程式碼。排程器444可以排程UE用於下行鏈路及/或上行鏈路上的資料傳輸。
圖5根據本揭示內容的態樣示出了圖示用於實現通訊協定堆疊的實例的圖500。示出的通訊協定堆疊可以由在無線通訊系統(諸如5G系統(例如,支援基於上行鏈路的行動性的系統))中操作的設備來實現。圖500示出包括以下各項的通訊協定堆疊:無線電資源控制(RRC)層510、封包資料彙聚協定(PDCP)層515、無線電鏈路控制(RLC)層520、媒體存取控制(MAC)層525和實體(PHY)層530。在各個實例中,協定堆疊的層可以實現為分離的軟體模組、處理器或ASIC的部分、由通訊鏈路來連接的非並置設備的部分或其各種組合。並置或非並置實現方式可以用於,例如針對網路存取設備(例如,AN、CU及/或DU)或UE的協定堆疊中。
第一選項505-a顯示協定堆疊的分離實現方式,其中協定堆疊的實現方式是在集中式網路存取設備(例如,圖2中的ANC 202)和分散式網路存取設備(例如,圖2中的DU 208)之間分離的。在第一選項505-a中,RRC層510和PDCP層515可以由中央單元來實現,並且RLC層520、MAC層525和PHY層530可以由DU來實現。在各個實例中,CU和DU可以是並置的或非並置的。第一選項505-a可以用在巨集細胞、微細胞或微微細胞部署中。
第二選項505-b顯示協定堆疊的統一實現方式,其中協定堆疊在單個網路存取設備中實現。在第二選項中,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530均可以由AN來實現。第二選項505-b可以用在例如毫微微細胞部署中。
無論網路存取設備是否實現協定堆疊的一部分或全部,UE皆可以實現如505-c中所示的整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530)。
在LTE中,基本傳輸時間間隔(TTI)或封包持續時間是1 ms子訊框。在NR中,子訊框仍然是1 ms,但是基本TTI被稱為時槽。子訊框包含可變數量的時槽(例如,1、2、4、8、16……個時槽),這取決於次載波間隔。NR RB是12個連續頻率次載波。NR可以支援15 KHz的基本次載波間隔,並且可以相對於基本次載波間隔來定義其他次載波間隔,例如,30 kHz、60 kHz、120 kHz、240 kHz等。符號和時槽長度隨著次載波間隔縮放。CP長度亦取決於次載波間隔。
圖6是圖示針對NR的訊框格式600的實例的圖。可以將針對下行鏈路和上行鏈路中的每一者的傳輸等時線劃分成無線電訊框的單元。每一個無線電訊框可以具有預定的持續時間(例如,10 ms),以及可以被劃分成具有0到9的索引的10個子訊框,每一個該等子訊框為1 ms。取決於次載波間隔,每一個子訊框可以包括可變數量的時槽。取決於次載波間隔,每一個時槽可以包括可變數量的符號週期(例如,7或14個符號)。可以向每個時槽中的符號週期指派索引。微型時槽(其可以稱為子時槽結構)代表具有小於時槽的持續時間(例如,2、3、或4個符號)的發送時間間隔。
時槽中之每一個符號可以指示用於資料傳輸的鏈路方向(例如,DL、UL或靈活的),以及可以動態地切換針對每個子訊框的鏈路方向。鏈路方向可以基於時槽格式。每個時槽可以包括DL/UL資料以及DL/UL控制資訊。
在NR中,發送同步信號/實體廣播通道(SS/PBCH)區塊(亦被稱為同步信號區塊(SSB))。SS/PBCH區塊包括PSS、SSS和兩個符號PBCH。可以在固定時槽位置中發送SS/PBCH區塊(諸如圖6中所示出的符號2-5)。PSS和SSS可以由UE用於細胞搜尋和獲取。PSS可以提供半訊框時序,SS可以提供CP長度和訊框時序。PSS和SSS可以提供細胞標識。PBCH攜帶一些基本系統資訊,諸如下行鏈路系統頻寬、無線電訊框內的時序資訊、SS短脈衝集週期、系統訊框編號等等。可以將SS/PBCH區塊組織成SS短脈衝以支援波束掃瞄。諸如剩餘最小系統資訊(RMSI)、系統資訊區塊(SIB)、其他系統資訊(OSI)之類的另外系統資訊,可以在某些子訊框中在實體下行鏈路共享通道(PDSCH)上發送。
在一些環境下,兩個或多個從屬實體(例如,UE)可以使用副鏈路(sidelink)信號來彼此之間進行通訊。此種副鏈路通訊的現實世界應用可以包括公共安全、鄰近服務、UE到網路中繼、交通工具到交通工具(V2V)通訊、萬物網路(IoE)通訊、物聯網通訊、關鍵任務網格及/或各種其他適當的應用。通常,副鏈路信號可以代表在不將通訊經由排程實體(例如,UE或BS)來進行中繼的情況下(即使排程實體可以用於排程及/或控制目的),從一個從屬實體(例如,UE1)傳送到另一個從屬實體(例如,UE2)的信號。在一些實例中,可以使用許可的頻譜來傳送副鏈路信號(不同於通常使用免許可的頻譜的無線區域網路)。
UE可以在各種無線電資源配置下進行操作,該等配置包括與使用專用資源集(例如,無線電資源控制(RRC)專用狀態,等等)來發送引導頻相關聯的配置,或者與使用公共資源集(例如,RRC公共狀態,等等)來發送引導頻相關聯的配置。當在RRC專用狀態下操作時,UE可以選擇專用資源集以用於向網路發送引導頻信號。當在RRC公共狀態下操作時,UE可以選擇公共資源集以用於向網路發送引導頻信號。在任一情況下,由UE發送的引導頻信號皆可以由一或多個網路存取設備(諸如AN或DU或者其部分)來接收。每一個接收網路存取設備可以被配置為:接收和量測在公共資源集上發送的引導頻信號,以及亦接收和量測在分配給UE的專用資源集上發送的引導頻信號,對於該等UE,網路存取設備是針對UE的網路存取設備監測集合的成員。接收網路存取設備中的一或多個或者接收網路存取設備,或者接收網路存取設備向其發送對引導頻信號的量測的CU,可以使用量測來辨識針對UE的服務細胞,或者針對UE中的一或多個UE發起服務細胞的改變。 用於實現UE處的全功率利用的示例PUSCH功率縮放
本揭示內容的各態樣提供了用於在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間對傳輸功率進行縮放的技術。
如本文所使用的,發送鏈通常是指在信號路徑中用於取得基頻信號並且產生RF信號的部件集合。示例發送鏈部件包括數位類比轉換器(DAC)、調制器、功率放大器(PA)以及各種濾波器和開關。相反,接收鏈通常是指在信號路徑中用於取得RF信號並且產生基頻信號的部件集合。示例接收鏈部件包括降頻轉換器、解調器、及類比數位轉換器(ADC)以及各種濾波器和開關。
對於上行鏈路資料傳輸,根據習知的PUSCH功率縮放方法,向UE指派單個傳輸(Tx)功率預算,在所有可用的發送鏈和所指派的RB之間均勻地分離該單個Tx功率預算。
遺憾地是,當根據習知方法來均勻地分離Tx功率預算時,可能存在UE無法以全功率進行發送的場景。例如,一個此種場景是以下情況:其中UE具有四個Tx鏈並且被指派了預編碼器[1 1 0 0]。若UE被指派了為𝑃_𝑃𝑈𝑆𝐶𝐻 的發射功率預算,則期望UE根據諸如下文的2步演算法之類的多步驟程序來對傳輸功率進行縮放: (a)將該功率縮放具有非零PUSCH傳輸的天線埠數量與配置的天線埠數量之比, (b)在要在其上發送非零PUSCH的天線埠之間相等地分離所產生的經縮放的功率。
當遵循2步演算法時,對於上文四個TX鏈和預編碼器[1 1 0 0]的實例而言,步驟(a)產生為𝑃_𝑃𝑈𝑆𝐶𝐻 /2的經縮放的功率,在步驟(b)中,在攜帶非零PUSCH的兩個埠之間相等地分離該經縮放的功率。因此,兩個埠均被指派了𝑃_𝑃𝑈𝑆𝐶𝐻 /4,結果是僅一半的Tx功率預算被利用。
本揭示內容的各態樣藉由提供新功率分配方法和訊號傳遞機制來提供可以幫助解決該問題的技術。該等技術可以幫助更高效地利用Tx功率預算,尤其是在利用具有異構功率放大器(PA)和相干/非相干天線的發送鏈的UE中。如本文中所使用的,異構通常是指具有不同的額定輸出功率的PA。
以下描述假設以下記法:N 是指配置的天線埠的數量;K 是指具有非零PUSCH的天線埠的數量; 𝑃_𝑃𝑈𝑆𝐶𝐻 是指PUSCH傳輸功率預算; 𝑃_𝑎是指在步驟(a)之後獲得的經縮放的傳輸功率;及 𝑃_b是指在步驟(b)之後向發送非零PUSCH的每個埠分配的功率。
根據一個提議的解決方案,可以允許UE自主地決定其自身的發射功率分配。在該上下文中,自主意味著例如UE可以在不需要來自基地台的額外訊號傳遞的情況下,按照其認為合適的方式來分配其Tx功率預算。
圖7示出根據本揭示內容的各態樣的由使用者設備(UE)進行的用於PUSCH傳輸的自主縮放傳輸功率的示例操作700。例如,操作700可以由圖1和圖4中圖示的UE 120來執行。
操作700在702處藉由決定發射功率預算開始。在704處,UE在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間自主地分配發射功率預算。在706處,UE根據所決定的發射功率分配,使用發送鏈來發送PUSCH。
在此種情況下,可以允許被指派了目標𝑃_𝑃𝑈𝑆𝐶𝐻 的UE按照其決定,在多個Tx鏈之間分離該功率(假設其保存了被指派用於PUSCH傳輸的任何預編碼器的完整性)。如本文所使用的,完整性通常是指功率分配的影響等同於將預編碼器縮放一純量值。在此種情況下,在UE被允許自主地決定功率分配的情況下,可以忽略上述2步演算法中的步驟(a)和(b)。
該自主方法可以在分配發射功率時向UE提供最大的靈活性。該方法可以尤其有益於在其發送鏈中具有異構PA的UE。由於基地台不太可能知道異構PA的額定輸出功率,因此UE最有能力決定在發送鏈之間對功率的正確分配,例如,藉由將對每個發送鏈供電的PA的獨立額定輸出功率的因素考慮在內。
該自主方法可以被認為是開放迴路方案,因為其不要求來自gNB的額外訊號傳遞(例如,除了目標𝑃_𝑃𝑈𝑆𝐶𝐻 的初始訊號傳遞之外),這與下文描述的其他技術是相反的。
換言之,在該等其他技術中,網路實體(例如,gNB)可以向UE提供用於決定UE如何執行Tx功率縮放的訊號傳遞。
圖8示出根據本揭示內容的各態樣的可以由UE執行的用於基於網路訊號傳遞來對PUSCH傳輸的傳輸功率進行縮放的示例操作800。例如,操作800可以由圖1和圖4中圖示的UE 120來執行。
操作800在802處藉由決定發射功率預算開始。在804處,UE接收指示如何在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算的訊號傳遞。在806處,UE在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算。在808處,UE根據所決定的發射功率分配,使用發送鏈來發送PUSCH。
圖9示出根據本揭示內容的態樣的用於由網路實體(諸如eNB)進行的無線通訊的示例操作900。例如,操作900可以由圖1和圖4中圖示的BS/gNB 110來執行,以用信號通知UE根據上述圖8的操作來執行傳輸功率縮放。
操作900在902處藉由如下操作開始:向使用者設備(UE)發送指示如何在用於實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配發射功率預算的訊號傳遞。在904處,網路實體從UE接收以基於該訊號傳遞在發送鏈之間分配的發射功率來發送的PUSCH。
在一些情況下,可以經由單個位元(1位元)訊號傳遞來提供Tx功率縮放。例如,gNB可以提供指示UE是否能夠跳過上述兩步演算法中的部分的單個位元。例如,該單個位元可以選擇性地開啟/關閉執行上述步驟(a),而可以總是執行步驟(b)(不考慮用信號通知的位元值)。可以例如經由排程PUSCH的許可或者經由一些其他類型的訊號傳遞來提供該單個位元。
藉由跳過初始縮放步驟(a),可以在發送非零PUSCH的埠之間指派整個Tx功率預算。
該改變的效果可以藉由考慮上文提供的相同實例來闡明,其中UE具有四個Tx鏈並且被指派了預編碼器[1 1 0 0]。在該實例中,若禁用步驟(a)(允許UE跳過該步驟),則發送非零PUSCH的兩個埠之每一個埠被指派𝑃_𝑃𝑈𝑆𝐶𝐻 /2的功率(而不是根據在其中執行初始縮放的習知演算法的𝑃_𝑃𝑈𝑆𝐶𝐻 /4)。因此,在該實例中,使用整個分配的Tx功率預算。
即使被允許,某些UE可能亦無法跳過縮放步驟,例如,這取決於其功率放大器的額定輸出功率。為了解決此種情況,一些UE可以被配置為用信號通知(例如,顯式地指示)關於其是否能夠支援該1位元訊號傳遞。可以將該指示例如作為UE能力資訊來提供。作為替代,可以允許UE隱式地忽略該訊號傳遞並且繼續執行步驟(a)和步驟(b)兩者。
在一些情況下,gNB可以提供指示UE要如何執行發射功率縮放的多位元訊號傳遞。例如,gNB可以提供用於UE根據公共功率提升來執行發射功率縮放的多位元訊號傳遞。對單位元方法的該替代方案可以提供用於功率分配的更細細微性的方法,該方法可以藉由向上文已經描述的前兩個步驟添加第三步驟(「步驟(c)」)來實現。
在該步驟(c)中,可以允許UE經由公共功率提升因數𝛼來進一步改變如從步驟(a)和(b)獲得的功率。例如,假設𝛼是2位元的訊號傳遞參數,則𝛼可以指示圖10中圖示的值。因此,在該實例中使用2位元,gNB可以實現將在步驟(b)後獲得的功率提升四個值中的一個值(例如,提升額外的0、1、2或3 dB)。
可以假設與上文相同的實例來描述採用此種方式的功率提升,其中UE具有4個Tx鏈並且被指派了預編碼器[1 1 0 0]。在該實例中,步驟(a)和(b)之後跟有步驟(c),其中𝛼被指示為「11」。在此種情況下,使用如圖10中所示的α功率提升表,允許每個埠將其功率提升額外的3 dB,使得每埠的有效功率是𝑃_𝑃𝑈𝑆𝐶𝐻 /2。因此,不難看出,使用該方法,UE再次能夠使用所有可用功率。
藉由考慮針對步驟(c)用信號通知的𝛼與以dB標度的對𝛽_𝑑𝐵 的提升或者等同地以線性標度的𝛽_𝑙𝑖𝑛𝑒𝑎𝑟 相對應,可以更容易地理解該結果。因此,被指派給每個埠的新功率是𝑃_𝑐=𝑃_𝑏×𝛽_𝑙𝑖𝑛𝑒𝑎𝑟 。在上文實例中,3 dB與線性標度中的2x增益相對應,並且因此,從𝑃_𝑃𝑈𝑆𝐶𝐻 /4增益到𝑃_𝑃𝑈𝑆𝐶𝐻 /2。
當然,使用2位元來用信號通知參數𝛼僅是實例。在一些情況下,可以使用多於2個的位元來實現更細的細微性。
在一些情況下,可以(在gNB處及/或UE處)採取一或多個動作,以確保步驟(c)中的功率提升不以超過原始指派的功率𝑃_𝑃𝑈𝑆𝐶𝐻 而告終。例如,此種動作可以包括: (1)整體地防止此種情況。例如,只有確保在埠之間指派的總功率不超過𝑃_𝑃𝑈𝑆𝐶𝐻 的彼等𝛼的值可以被認為是有效或被允許的。由gNB進行的信號通知可以確保功率分配是有效的,使得不發生此種情況(例如,gNB可以考慮用信號通知的提升的影響並且僅用信號通知有效的值); (2)對於功率提升將導致超過𝑃_𝑃𝑈𝑆𝐶𝐻 的情況,可以忽略步驟(c)。在此種情況下,𝛽_𝑙𝑖𝑛𝑒 可以有效地預設為1; (3)作為對上文的替代,若違反總功率約束(𝑃_𝑏 x 𝛽_𝑙𝑖𝑛𝑒𝑎𝑟 x 𝐾≧𝑃_𝑃𝑈𝑆𝐶𝐻 ),則P_c 可以被設置為:P_c =min ( _𝑏 x 𝛽_𝑙𝑖𝑛𝑒𝑎𝑟 ,𝑃_𝑃𝑈𝑆𝐶𝐻 /𝐾)
該等退避機制允許將用信號通知預編碼器和用信號通知公共功率提升因數分離(decouple)。這可以幫助簡化訊號傳遞,因為公共功率提升因數可以被指示一次並且在若干預編碼器之間進行使用,其中K 反映針對每個用信號通知的預編碼器的具有非零PUSCH的埠數量。
在先前的論述中,可能重要的是,被指派給具有非零PUSCH傳輸的埠的功率P_c 不超過該天線埠上的功率放大器的最大額定輸出功率。為了避免此種場景,UE可以向eNB用信號通知/報告UE的(RF)能力。該訊號傳遞可以指示:例如,UE所支援的最大公共功率提升。
在一些情況下,作為對如上述的用信號通知多位元的功率提升參數的擴展,可以以每埠為基礎來指定功率提升因數(亦即,𝛼1 , 𝛼2 , …, 𝛼𝑁 (假設N 個埠))。該方法可以在如何向每個埠指派發射功率方面允許甚至更大的靈活性。
可以藉由假設如下的實例來描述此種每埠的方法:其中𝑃_𝑏 是在步驟(a)和(b)之後每埠所指派的功率,並且針對步驟(c)用信號通知的𝛼i 與以dB標度的為𝛽_( 𝑖 , 𝑑𝐵 ) 的提升或者等同地𝛽_( 𝑖 , 𝑙𝑖𝑛𝑒𝑎𝑟 ) 相對應。則在線性標度中,根據該方法向第i埠指派的新功率是: 𝑃_( 𝑐 , 𝑖 ) =𝑃_𝑏 ×𝛽_( 𝑖 , 𝑙𝑖𝑛𝑒𝑎𝑟 ) 在一些情況下,每個𝛼i 的位元寬度可以是不同的。
若先驗地已知具有非零PUSCH的埠,則僅用信號通知針對具有非零PUSCH的埠的𝛼i 的值是足夠的(但是若預編碼器改變/當預編碼器改變時,可能要求額外的訊號傳遞)。替代地,(對應於不同的預編碼的)每埠的功率提升值可以針對所有天線埠被用信號通知一次,並且在若干傳輸之間進行使用(即使當預編碼改變時)。
與上文的單個值情況類似,可以在「每埠」情況中採取步驟,以確保步驟(c)中的功率提升不超過原始指派的功率𝑃_𝑃𝑈𝑆𝐶𝐻 。換言之,可以採取該等步驟以確保:
Figure 02_image001
, 例如,此種動作可以包括: (1)整體地防止此種情況。例如,只有確保在埠之間指派的總功率不超過𝑃_𝑃𝑈𝑆𝐶𝐻的彼等𝛼的值可以被認為是有效或被允許的。由gNB進行的信號通知可以確保功率分配是有效的,使得不發生此種情況; (2)對於此種情況,可以忽略步驟(c),這有效地意味著𝛽_n, 𝑙𝑖𝑛𝑒ar針對所有埠預設為1; (3)替代地,若違反總功率約束,這意味著:
Figure 02_image003
, 則針對發送非零PUSCH的所有埠,P_c,i 可以被設置為𝑃_𝑃𝑈𝑆𝐶𝐻/𝐾。
該等退避機制有效地允許將用信號通知預編碼器和用信號通知每埠功率提升因數分離。每埠功率提升因數可以被指示一次並且在若干預編碼器之間進行使用,其中K 反映針對每個用信號通知的預編碼器的具有非零PUSCH的埠數量。在先前的論述中,可能重要的是,被指派給具有非零PUSCH傳輸的埠的功率P_c,i 不超過該天線埠上的功率放大器的最大額定輸出功率。為了避免此種場景,UE可以向eNB用信號通知/報告關於UE所支援的最大每埠功率提升的RF能力。
本揭示內容的態樣亦提供可以被認為是針對如下的情況的增強的各種額外特徵:其中允許UE決定針對PUSCH傳輸的功率分配。該增強可以適用於:例如,向UE提供某種級別的自主性或者當gNB不知道UE實現方式時的任何功率分配方案。
在一些此種情況下,(由UE)在伴隨著PUSCH傳輸的功率餘量報告(PHR)中指示的值可以取決於用於PUSCH傳輸的發送預編碼矩陣指示符(TPMI)。通常,每個TPMI可以具有不同的PHR值,例如,由於在與不同TPMI相關聯的不同發送鏈中使用的功率放大器中的不同特性。
由於這一點,當允許UE自主地決定功率分配時,UE所使用的實際發射功率可以是取決於TPMI的。換言之,基於具有PUSCH傳輸的時槽的PHR亦可以取決於在該時槽中使用的準確TPMI。這可以藉由考慮具有2個天線埠的UE的實例來說明: 具有20 dBm PA的第一埠;及 具有23 dBm PA的第二埠。
假設要求UE以17 dBm的功率進行發送,則對於與預編碼器[1,0](其選擇第一埠)相對應的TPMI,PHR應當指示為3 dB(20 dBm–17 dBm)的餘量。在另一方面,若TPMI與預編碼器[0,1](其選擇第二埠)相對應,則PHR應當指示為6 dB(20 dBm–14 dBm)的餘量。
出於該原因,伴隨著PUSCH傳輸的PHR應當指示針對在該時槽中使用的TPMI的適當值。在一些情況下,可能沒有必要明確地標記(或用信號通知)準確的TPMI,因為gNB可能已經知道所使用的TPMI,因此gNB可以在gNB一端對TPMI進行追蹤。
假設在該實例中用信號通知的PHR是針對特定TPMI的,可能重要的是,UE在某個時間段內保持其實現方式/配置是一致的。例如,可能期望的是,UE避免過於頻繁地(每個時槽地)動態切換埠到Tx鏈映射。
如上文提及的,在一些情況下,gNB可以提供一或多個位元的訊號傳遞來指示UE是否要以與習知方法(例如,當前在標準中指定的方法)不同的方式來分配功率。然而,在一些情況下,可能不允許UE背離所指定的內容(例如,UE可能無法跳過功率縮放步驟)。因此,可能期望的是UE(例如,在撥叫建立期間)指示對該特徵的支援,如上文所提及的。
此外,在一些情況下,UE是否支援該特定特徵(或類似特徵)可以取決於UE針對載波聚合(CA)所支援的一或多個頻帶組合。
例如,若存在三個分量載波(cc1,cc2和cc3),則UE可以支援組合cc1+cc3和cc2+cc3。因此,除了通常指示對該等頻帶組合的支援之外,UE亦可以指示:針對每個支援的頻帶組合,是否支援對功率分配規則的改變。
在一些情況下,UE可以提供一對位元,該對位元的值指示UE針對支援的頻帶組合之每一個頻帶組合是否支援新的功率分配規則。例如,假設來自上文實例的位元組合,若UE支援針對cc1+cc3組合的新規則,但是不支援針對cc2+cc3組合的新規則,則UE可以用信號通知如下對:[Cc1+cc3, b=1]和[cc2+cc3, b=0],其中位元b用於指示對新的功率分配規則的支援。
如上文所論述的,天線可能具有不同的天線相干性。在某些系統中,可以將天線分類為相干、非相干或部分相干的。例如,若兩個天線埠的相對相位在探測參考信號(SRS)傳輸與使用相同埠的後續實體上行鏈路共享通道(PUSCH)傳輸的時間之間保持不變,則可以稱這兩個天線埠是相干的。PUSCH預編碼可能受天線相干性的影響。相干天線可以一致地(例如,其相對相位保持不變)進行動作,並且預編碼可以跨越所有天線。非相干天線彼此獨立地進行動作,並且不在天線之間維持預編碼。部分相干天線可以包括是相干的天線的子集,但是在該等子集之間可能不是相干的,並且預編碼僅跨越相干天線集合之間。
在具有不同的天線相干性的某些系統中,PUSCH傳輸可以限於(例如,局限於)相干天線集合。在此種情況下,預編碼器編碼簿可以限於相干天線。因此,一些天線(例如,不相干的天線)不被用於發送PUSCH。在不使用該等天線的情況下,PUSCH傳輸可能不是以全功率進行的。
如上文所論述的,在一些實例中,若修改了(例如,在用於UE對傳輸功率進行縮放的習知2步演算法之後的)功率分配規則,則以全功率進行的傳輸是可能的。
在一些情況下,UE可以在每個發送(TX)鏈上具有全速率的情況下支援全上行鏈路傳輸功率。例如,此種UE可以具有含有23 dBm和23 dBm PA(例如,針對具有兩個TX鏈的UE)的功率類別(例如,被稱為PC3)。這可以被稱為UE能力1或「cap1」UE。
在一些情況下,UE可以在沒有TX鏈被假設為遞送全速率功率(例如,沒有TX鏈具有全PA)的情況下支援全上行鏈路傳輸功率。例如,UE可以具有含有20 dBm和20 dBm PA(例如,針對具有兩個TX鏈的UE)的功率類別(例如,PC3)。這可以被稱為UE能力2或「cap2」UE。
在一些情況下,UE可以在TX鏈的子集具有全速率的PA的情況下支援全上行鏈路傳輸功率。例如,UE可以具有含有23 dBm和20 dBm PA(例如,針對具有兩個TX鏈的UE)的功率類別(例如,PC3)。這可以被稱為UE能力3或「cap3」UE。
在一些情況下,單個位元(b)可以用於指示UE是否支援全功率。例如,UE可以指示功率縮放因數(例如,將位元設置等於1),以指示可以跳過2步縮放演算法中的步驟(a),或者UE可以設置功率縮放因數(例如,設置為零)或者在SRS資源中選擇非零功率數量及/或總埠數量,以指示不跳過2步縮放演算法中的步驟(a)(例如,遵從/堅持習知的功率縮放演算法)。
在一些情況下,cap1 UE可以被配置為總是跳過步驟(a)(例如,將位元設置為1),並且cap2 UE可以被配置為總是堅持步驟(a)(例如,將位元設置為0)。在一說明性實例中,b=1可以指示UE支援全功率,其中功率縮放因數等於1(總是);b=0可以指示UE支援全功率,其中功率縮放因數等於SRS資源中的非零埠數量/總埠數量。在一些實例(例如,針對cap3 UE)中,UE可以每發送預編碼矩陣指示符(TPMI)或每TPMI組地用信號通知單個位元(b),以指示UE針對該TPMI/TPMI組是否支援全功率。
在一些實例中,某些TPMI可以基於其用於某些TMPI的用途來進行分類。例如,可以將某些TPMI分類為:僅能夠由相干UE使用的TPMI、僅能夠由相干UE和部分相干UE使用的TPMI、或者僅可以由相干UE、部分相干UE和非相干UE使用的TPMI。因此,寬編碼簿可以被配置用於相干UE,以及該相干編碼簿的子集可以用於非相干UE和部分相干UE。
在一些實例中,UE可以指示具有多達K 個TPMI的列表,針對該TMPI的列表跳過2步縮放演算法中的步驟(a)。對於該等TPMI,UE跳過功率縮放規則的第一步並且僅遵從第二步。針對可以跳過步驟(a)的TMPI的列表可以是從相干編碼簿集合中選擇的(例如,可以不限於被允許用於非相干UE或部分相干UE的編碼簿子集)。
在一說明性實例中,具有四個17 dBm PA的cap2非相干PC3 UE可以列出單個TPMI[1 1 1 1 ](來自相干編碼簿集合)。儘管TPMI[1 1 1 1 ]正常情況下可能不被允許用於非相干UE,但是該指示可以隱式地向gNB指示:UE能夠支援TPMI上的全功率。例如,UE可以經由循環分集延遲(CDD)實現方式來支援TPMI上的全功率。CCD可以向一個經預編碼的埠添加額外的(循環)延遲,而不向另一埠添加額外的(循環)延遲。用於不同埠的不同延遲可以添加另外的非相干性。在該實例中,可以不實際地跳過功率縮放規則步驟(例如,因為所有天線埠皆被使用,因此其不受步驟(a)規則影響),但是可以向gNB指示CDD解決方案的可用性。在另一個說明性實例中,具有兩個17 dBm PA和兩個20 dBm PA的cap3非相干PC3 UE可以向gNB列出TPMI[1 1 1 1 ]和TPMI[0 0 1 1 ]。
本文中揭示的方法包括用於實現方法的一或多個步驟或動作。方法步驟及/或動作可以在不脫離請求項的範圍的情況下彼此互換。換言之,除非指定步驟或動作的特定順序,否則特定步驟及/或動作的順序及/或使用可以在不脫離請求項範圍的情況下被修改。
如本文中所使用的,代表項目列表的「中的至少一個」的片語指的是彼等項目的任何組合,包括單個成員。舉例而言,「a、b或c中的至少一個」意欲涵蓋a、b、c、a-b、a-c、b-c和a-b-c,以及具有相同元素的倍數的任何組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或a、b和c的任何其他順序)。
如本文中所用的,術語「決定」包含廣泛的各種的動作。例如,「決定」可以包括運算、計算、處理、匯出、研究、查詢(例如,在表中、資料庫中或另一個資料結構中查詢)、確認等等。此外,「決定」可以包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)等等。此外,「決定」可以包括解決、選擇、挑選、建立等等。
為使本領域技藝人士能夠實踐本文中所描述的各個態樣,提供了先前描述。對於本領域技藝人士而言,對該等態樣的各種修改將是顯而易見的,並且本文中所定義的整體原理可以適用於其他態樣。因此,申請專利範圍不意欲受限於本文中圖示的態樣,而是要符合與申請專利範圍表達的相一致的全部範圍,其中除非如此具體聲明,否則以單數形式提到的元素不意欲是意為「一個且僅一個」,而是意為「一或多個」。除非明確地另有聲明,否則術語「一些」代表一或多個。對於本領域技藝人士已知的或稍後將知的,對貫穿本揭示內容所描述的各個態樣的元素的所有結構性和功能性均等物明確地以引用的形式併入本文,並且意欲由申請專利範圍來包含。此外,本文中所揭示的沒有是意欲奉獻給公眾的,不管該揭示內容是否在申請專利範圍中有明確地敘述。沒有申請專利範圍元素是要在專利法施行細則的規定下解釋的,除非利用片語「用於…的構件」來明確地敘述元素,或者在方法請求項的情況下,使用片語「用於…的步驟」來敘述元素。
上文描述的方法的各種操作可以由能夠執行對應功能的任何適用構件來執行。構件可以包括各種硬體及/或軟體部件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。一般而言,在附圖中示出操作的情況下,彼等操作可以具有對應的相應構件加功能部件。例如,圖7、圖8和圖9中圖示的各種操作可以由圖4中圖示的各種處理器來執行。更具體地,圖7和圖8的操作700和800可以由圖4中圖示的UE 120的處理器466、458、464及/或控制器/處理器480中的一或多項來執行,而圖9的操作900可以由圖4中圖示的BS 110的處理器420、460、438及/或控制器/處理器440來執行。
可以利用被設計為執行本文所述功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯設備(PLD)、個別閘門或者電晶體邏輯、個別硬體部件或者其任意組合,來實現或執行結合本揭示內容所描述的各種說明性邏輯區塊、模組和電路。通用處理器可以是微處理器,但是在替代方案中,處理器可以是任何商業可用的處理器、控制器、微控制器或者狀態機。處理器亦可以實現為計算設備的組合,例如,DSP和微處理器的組合、複數個微處理器、一或多個微處理器與DSP核心的結合或者任何其他此種配置。
若在硬體中實現,則示例硬體配置可以包括無線節點中的處理系統。處理系統可以利用匯流排架構來實現。取決於處理系統的具體應用和整體設計約束,匯流排可以包括任何數量的互連的匯流排和橋接器。匯流排可以將各種電路鏈接到一起,包括處理器、機器可讀取媒體和匯流排介面。除了其他事物之外,匯流排介面可以用於經由匯流排來將網路配接器連接到處理系統。網路配接器可以用於實現PHY層的信號處理功能。在使用者終端120(見圖1)的情況下,使用者介面(例如,鍵盤、顯示器、滑鼠、操縱桿等等)也可以連接到匯流排。匯流排亦可以鏈接各種其他電路,諸如時序源、周邊設備、電壓調節器、功率管理電路等等,這是本領域熟知的,並且因此將不再進一步描述。處理器可以利用一或多個通用及/或專用處理器來實現。實例包括微處理器、微控制器、DSP處理器和能夠執行軟體的其他電路。本領域的技藝人士將會認識到如何取決於特定應用和施加到整體系統上的整體設計約束來最好地實現針對處理系統所描述的功能。
若在軟體中實現,則功能可以作為電腦可讀取媒體上的一或多個指令或代碼來儲存或發送。無論被稱為軟體、韌體、中介軟體、微代碼、硬體描述語言或者其他,軟體應該廣義地解釋為意為指令、資料或其任何組合。電腦可讀取媒體包括電腦儲存媒體和通訊媒體二者,該通訊媒體包括促進電腦程式從一個地方向另一個地方傳送的任何媒體。處理器可以負責管理匯流排和一般處理,包括對儲存在機器可讀儲存媒體上的軟體模組的執行。電腦可讀取儲存媒體可以耦合到處理器,使得處理器能夠從儲存媒體讀取資訊和向其寫入資訊。在替代方案中,儲存媒體可以整合到處理器中。舉例而言,機器可讀取媒體可以包括傳輸線、由資料調制的載波及/或其上儲存有指令的與無線節點分離的電腦可讀取儲存媒體,其全部皆可以由處理器經由匯流排介面來存取。替代地或者另外,機器可讀取媒體或其任意部分可以整合到處理器中,諸如可以是利用快取記憶體及/或通用暫存器檔的情況。機器可讀取儲存媒體的實例可以包括,舉例而言,RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電子可抹除可程式設計唯讀記憶體)、暫存器、磁碟、光碟、硬碟驅動或任何其他適當的儲存媒體或者其任何組合。機器可讀取媒體可以體現在電腦程式產品中。
軟體模組可以包括單個指令或多個指令,並且可以在不同程式中和跨多個儲存媒體分佈在若干不同程式碼片段上。電腦可讀取媒體可以包括數個軟體模組。軟體模組包括指令,該等指令當被諸如處理器之類的裝置執行時使得處理系統執行各種功能。軟體模組可以包括發送模組和接收模組。每個軟體模組可以位於單個儲存設備中或分佈於多個儲存設備中。舉例而言,當出現觸發事件時可以從硬體驅動將軟體模組載入RAM。在對軟體模組的執行期間,處理器可以將指令中的一些指令載入快取記憶體以提高存取速度。隨後可以將一或多個快取記憶體線載入到通用暫存器檔中用於由處理器來執行。在下文提到軟體模組的功能時,將理解的是此種功能是由處理器在執行來自軟體模組的指令時實現的。
此外,任何連接被適當地稱作電腦可讀取媒體。例如,若使用同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外線(IR)、無線電和微波)來將軟體從網站、伺服器或其他遠端源進行發送,則同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外線(IR)、無線電和微波)包括在對媒體的定義內。本文中所用的磁碟和光碟,包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地複製資料,而光碟則利用鐳射來光學地複製資料。因此,在一些態樣中,電腦可讀取媒體可以包括非暫時性電腦可讀取媒體(例如,有形媒體)。另外,對於其他態樣,電腦可讀取媒體可以包括暫時性電腦可讀取媒體(例如,信號)。上文的組合也應該包括在電腦可讀取媒體的範圍內。
因此,某些態樣可以包括用於執行本文中提供的操作的電腦程式產品。例如,此種電腦程式產品可以包括其上儲存(及/或編碼)有指令的電腦可讀取媒體,指令可由一或多個處理器來執行以執行本文中描述的操作。例如,用於執行本文中描述的以及在圖7、圖8及/或圖9中示出的操作的指令。
此外,要瞭解的是,若適用,用於執行本文描述的方法和技術的模組及/或其他適當構件可以由使用者終端及/或基地台來下載或者以其他方式獲得。例如,此種設備可以耦合到伺服器,以促進對用於執行本文描述方法的構件的傳送。替代地,本文描述的各種方法可以經由儲存構件(例如,RAM、ROM、諸如壓縮光碟(CD)或軟碟之類的實體儲存媒體等等)來提供,使得在使用者終端及/或基地台耦合到設備或向設備提供儲存構件時,該使用者終端及/或基地台可以獲得各種方法。此外,可以使用用於將本文所描述的方法和技術提供給設備的任何其他適合的技術。
要理解的是,請求項不限於上述的具體配置和部件。在不脫離請求項的範圍的情況下,可以對上文描述的方法和裝置的安排、操作和細節做出各種修改、改變和變化。
100‧‧‧無線通訊網路 102a‧‧‧巨集細胞 102b‧‧‧巨集細胞 102c‧‧‧巨集細胞 102x‧‧‧微微細胞 102y‧‧‧毫微微細胞 102z‧‧‧毫微微細胞 110‧‧‧BS 110a‧‧‧BS 110b‧‧‧BS 110c‧‧‧BS 110r‧‧‧中繼站 110x‧‧‧BS 110y‧‧‧BS 110z‧‧‧BS 120‧‧‧UE 120r‧‧‧UE 120x‧‧‧UE 120y‧‧‧UE 130‧‧‧網路控制器 200‧‧‧分散式無線電存取網路(RAN) 202‧‧‧存取節點控制器(ANC) 204‧‧‧下一代核心網路(NG-CN) 206‧‧‧5G存取節點 208‧‧‧發送接收點(TRP) 210‧‧‧下一代存取節點(NG-AN) 300‧‧‧分散式無線電存取網路(RAN) 302‧‧‧集中式核心網路單元(C-CU) 304‧‧‧集中式RAN單元(C-RU) 306‧‧‧DU 412‧‧‧資料來源 420‧‧‧發送處理器 430‧‧‧發送(TX)多輸入多輸出(MIMO)處理器 432a‧‧‧調制器(MOD) 432t‧‧‧調制器(MOD) 434a‧‧‧天線 434t‧‧‧天線 436‧‧‧MIMO偵測器 438‧‧‧接收處理器 439‧‧‧資料槽 440‧‧‧控制器/處理器 442‧‧‧記憶體 444‧‧‧排程器 452a‧‧‧天線 452r‧‧‧天線 454a‧‧‧解調器(DEMOD) 454r‧‧‧解調器(DEMOD) 456‧‧‧MIMO偵測器 458‧‧‧接收處理器 460‧‧‧資料槽 462‧‧‧資料來源 464‧‧‧發送處理器 466‧‧‧TX‧‧‧MIMO處理器 480‧‧‧控制器/處理器 482‧‧‧記憶體 500‧‧‧圖 505-a‧‧‧第一選項 505-b‧‧‧第二選項 510‧‧‧無線電資源控制(RRC)層 515‧‧‧封包資料彙聚協定(PDCP)層 520‧‧‧無線電鏈路控制(RLC)層 525‧‧‧媒體存取控制(MAC)層 530‧‧‧實體(PHY)層 600‧‧‧訊框格式 700‧‧‧操作 702‧‧‧方塊 704‧‧‧方塊 706‧‧‧方塊 800‧‧‧操作 802‧‧‧方塊 804‧‧‧方塊 806‧‧‧方塊 808‧‧‧方塊 900‧‧‧操作 902‧‧‧方塊 904‧‧‧方塊
為了詳細地理解前述的本揭示內容的特徵的方式,可以有參照態樣的上文簡要概述的較具體的描述,其中的一些態樣在附圖中示出。但是,要注意的是,附圖僅僅圖示本揭示內容的某些典型態樣,並且由此不被視為對其範圍的限制,因為描述可以允許其他的同樣有效的態樣。
圖1是概念性地示出根據本揭示內容的某些態樣的示例電信系統的方塊圖。
圖2是示出根據本揭示內容的某些態樣的分散式無線電存取網路(RAN)的示例邏輯架構的方塊圖。
圖3是示出根據本揭示內容的某些態樣的分散式RAN的示例實體架構的圖。
圖4是概念性地示出根據本揭示內容的某些態樣的示例基地台(BS)和使用者設備(UE)的設計的方塊圖。
圖5是圖示根據本揭示內容的某些態樣的用於實現通訊協定堆疊的實例的圖。
圖6示出根據本揭示內容的某些態樣的新無線電(NR)系統的訊框格式的實例。
圖7示出根據本揭示內容的各態樣的可以由使用者設備(UE)執行的示例操作。
圖8示出根據本揭示內容的各態樣的可以由使用者設備(UE)執行的示例操作。
圖9示出根據本揭示內容的各態樣的可以由網路實體執行的示例操作。
圖10示出根據本揭示內容的各態樣的示例功率提升參數值。
為了促進理解,已經在有可能的地方使用了相同的元件符號,以指定對於附圖而言共用的相同元素。預期的是,在一個態樣中揭示的元素在無特定敘述的情況下可以有利地用在其他態樣上。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
800‧‧‧操作
802‧‧‧方塊
804‧‧‧方塊
806‧‧‧方塊
808‧‧‧方塊

Claims (64)

  1. 一種由一使用者設備(UE)進行無線通訊的方法,包括以下步驟: 決定一發射功率預算;接收指示如何在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配該發射功率預算的訊號傳遞;在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間來分配該發射功率預算;及根據所決定的該發射功率分配,使用該等發送鏈來發送該PUSCH。
  2. 如請求項1所述之方法,其中: 該訊號傳遞指示該UE是否能夠跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  3. 如請求項2所述之方法,其中該至少一個步驟涉及以下步驟:將該發射功率預算縮放具有一非零PUSCH傳輸的一天線埠數量與配置的天線埠的一數量之一比。
  4. 如請求項2所述之方法,進一步包括以下步驟:提供指示該UE是否支援跳過該至少一個步驟的訊號傳遞。
  5. 如請求項4所述之方法,其中該UE支援用於針對該UE支援的用於載波聚合的一或多個頻帶組合,在發送鏈之間分配功率的一程序。
  6. 如請求項5所述之方法,其中由該UE提供的該訊號傳遞指示該一或多個頻帶組合,其中該UE支援針對該一或多個頻帶組合,跳過用於在發送鏈之間分配功率的該程序。
  7. 如請求項2所述之方法,其中該UE被配置為:根據該等發送鏈中的功率放大器的一額定值,而不考慮該訊號傳遞,來執行該至少一個步驟。
  8. 如請求項1所述之方法,其中: 該訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後應用的至少一個功率提升參數。
  9. 如請求項8所述之方法,進一步包括以下步驟:提供指示由該UE支援的一功率提升水平的訊號傳遞。
  10. 如請求項9所述之方法,其中所指示的該功率提升水平支援是基於該等發送鏈中的一或多個功率放大器的一參考功率位準和一額定功率來計算的。
  11. 如請求項8所述之方法,進一步包括以下步驟:採取一或多個動作,以確保應用該功率提升參數不導致超過該發射功率預算。
  12. 如請求項8所述之方法,其中: 該UE提供的訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後,以一每埠為基礎來應用的功率提升參數。
  13. 如請求項12所述之方法,其中由該UE提供的該訊號傳遞包括以下各項中的至少一項: 具有不同位元寬度的針對不同埠的功率提升參數;對僅針對如一預編碼器指示的具有非零PUSCH的埠的功率提升參數的一指示;在該預編碼器改變的情況下的功率提升參數的額外訊號傳遞;或者對針對所有天線埠的功率提升參數的一指示,而不考慮一預編碼器,其中該等功率提升參數是在多個傳輸之間以一每埠為基礎來應用的,即使當該預編碼器改變時。
  14. 如請求項1所述之方法,進一步包括以下步驟:提供指示該UE是否支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟的訊號傳遞。
  15. 如請求項14所述之方法,其中由該UE提供的該訊號傳遞包括以下各項中的至少一項: 指示該UE是否支援該跳過的一單個位元;每發送預編碼矩陣指示符(TPMI)或TPMI組的、用於指示該UE針對該TPMI或TPMI組是否支援該跳過的一單個位元;或者發送預編碼矩陣指示符(TPMI)的一列表,該UE針對該TPMI的列表支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  16. 一種由一網路實體進行無線通訊的方法,包括以下步驟: 向一使用者設備(UE)發送指示如何在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配一發射功率預算的訊號傳遞;及接收從該UE以基於該訊號傳遞在發送鏈之間分配的發射功率發送的該PUSCH。
  17. 如請求項16所述之方法,其中: 該訊號傳遞指示該UE是否能夠跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  18. 如請求項17所述之方法,進一步包括以下步驟:接收指示該UE是否支援跳過該至少一個步驟的訊號傳遞。
  19. 如請求項16所述之方法,其中: 向該UE發送的該訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後應用的至少一個功率提升參數。
  20. 如請求項19所述之方法,進一步包括以下步驟: 從該UE接收指示由該UE支援的一功率提升水平的訊號傳遞;及基於所指示的由該UE支援的該功率提升水平來決定該至少一個功率提升參數。
  21. 如請求項19所述之方法,其中: 向該UE發送的該訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後,以一每埠為基礎來應用的功率提升參數。
  22. 如請求項21所述之方法,其中向該UE發送的該訊號傳遞包括以下各項中的至少一項: 具有不同位元寬度的針對不同埠的功率提升參數;對僅針對如一預編碼器所指示的具有非零PUSCH的埠的功率提升參數的一指示;在該預編碼器改變的情況下的功率提升參數的額外訊號傳遞;或者對針對所有天線埠的功率提升參數的一指示,而不考慮一預編碼器,其中該等功率提升參數是在多個傳輸之間以一每埠為基礎來應用的,即使當該預編碼器改變時。
  23. 如請求項16所述之方法,其中由該UE提供的訊號傳遞指示一或多個頻帶組合,該UE支援用於針對該一或多個頻帶組合,在發送鏈之間分配功率的一程序。
  24. 如請求項23所述之方法,其中由該網路實體提供的該訊號傳遞指示:該等頻帶組合中的一或多個頻帶組合;及針對所指示的該一或多個頻帶組合,如何在用於該PUSCH傳輸的發送鏈之間分配該發射功率預算。
  25. 如請求項16所述之方法,進一步包括:從該UE獲得指示該UE是否支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟的訊號傳遞。
  26. 如請求項25所述之方法,其中從該UE獲得的該訊號傳遞包括以下各項中的至少一項: 指示該UE是否支援該跳過的一單個位元;每發送預編碼矩陣指示符(TPMI)或TPMI組的、用於指示該UE針對該TPMI或TPMI組是否支援該跳過的一單個位元;或者發送預編碼矩陣指示符(TPMI)的一列表,該UE針對該TPMI的列表支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  27. 一種由一使用者設備(UE)進行無線通訊的方法,包括以下步驟: 決定一發射功率預算;在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間自主地分配該發射功率預算;及根據所決定的該發射功率分配,使用該等發送鏈來發送該PUSCH。
  28. 如請求項27所述之方法,其中: 該PUSCH是使用一經指派的預編碼器來發送的;及該發射功率分配是按以下方式來執行的:藉由將該預編碼器有效地縮放一純量來維持該預編碼器的一方向。
  29. 如請求項27所述之方法,其中: 該等發送鏈利用不同的功率放大器(PA);及該發射功率分配是至少部分地基於該等不同的PA的獨立額定輸出功率的。
  30. 如請求項27所述之方法,進一步包括以下步驟: 提供一功率餘量報告(PHR),該PHR指示至少部分地基於用於該PUSCH傳輸的一發送預編碼矩陣指示符(TPMI)來決定的一值。
  31. 如請求項27所述之方法,進一步包括以下步驟:提供指示該UE是否支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟的訊號傳遞。
  32. 如請求項31所述之方法,其中由該UE提供的該訊號傳遞包括以下各項中的至少一項: 指示該UE是否支援該跳過的一單個位元;每發送預編碼矩陣指示符(TPMI)或TPMI組的、用於指示該UE針對該TPMI或TPMI組是否支援該跳過的一單個位元;或者發送預編碼矩陣指示符(TPMI)的一列表,該UE針對該TPMI的列表支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  33. 一種用於由一使用者設備(UE)進行無線通訊的裝置,包括: 至少一個處理器和記憶體,其被配置為:決定一發射功率預算;接收指示如何在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配該發射功率預算的訊號傳遞;在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配該發射功率預算;及根據所決定的該發射功率分配,使用該等發送鏈來發送該PUSCH。
  34. 如請求項33所述之裝置,其中: 該訊號傳遞指示該UE是否能夠跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  35. 如請求項34所述之裝置,其中該至少一個步驟涉及以下步驟:將該發射功率預算縮放具有一非零PUSCH傳輸的一天線埠數量與配置的天線埠的一數量之一比。
  36. 如請求項34所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:提供指示該UE是否支援跳過該至少一個步驟的訊號傳遞。
  37. 如請求項36所述之裝置,其中該UE支援用於針對該UE支援的用於載波聚合的一或多個頻帶組合,在發送鏈之間分配功率的一程序。
  38. 如請求項37所述之裝置,其中由該UE提供的該訊號傳遞指示該一或多個頻帶組合,該UE支援針對該一或多個頻帶組合,跳過用於在發送鏈之間分配功率的該程序。
  39. 如請求項34所述之裝置,其中該UE被配置為:根據該等發送鏈中的功率放大器的一額定值,而不考慮該訊號傳遞,來執行該至少一個步驟。
  40. 如請求項33所述之裝置,其中: 該訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後應用的至少一個功率提升參數。
  41. 如請求項40所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:提供指示由該UE支援的一功率提升水平的訊號傳遞。
  42. 如請求項41所述之裝置,其中所指示的該功率提升水平支援是基於該等發送鏈中的一或多個功率放大器的一參考功率位準和一額定功率來計算的。
  43. 如請求項40所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:採取一或多個動作,以確保應用該功率提升參數不導致超過該發射功率預算。
  44. 如請求項40所述之裝置,其中: 該UE提供的訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後,以一每埠為基礎來應用的功率提升參數。
  45. 如請求項44所述之裝置,其中由該UE提供的該訊號傳遞包括以下各項中的至少一項: 具有不同位元寬度的針對不同埠的功率提升參數;對僅針對如一預編碼器指示的具有非零PUSCH的埠的功率提升參數的一指示;在該預編碼器改變的情況下的功率提升參數的額外訊號傳遞;或者對針對所有天線埠的功率提升參數的一指示,而不考慮一預編碼器,其中該等功率提升參數是在多個傳輸之間以一每埠為基礎來應用的,即使當該預編碼器改變時。
  46. 如請求項33所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:提供指示該UE是否支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟的訊號傳遞。
  47. 如請求項46所述之裝置,其中由該UE提供的該訊號傳遞包括以下各項中的至少一項: 指示該UE是否支援該跳過的一單個位元;每發送預編碼矩陣指示符(TPMI)或TPMI組的、用於指示該UE針對該TPMI或TPMI組是否支援該跳過的一單個位元;或者發送預編碼矩陣指示符(TPMI)的一列表,該UE針對該TPMI的列表支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  48. 一種由一網路實體進行無線通訊的裝置,包括: 至少一個處理器和記憶體,其被配置為:向一使用者設備(UE)發送指示如何在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間分配一發射功率預算的訊號傳遞;及接收從該UE以根據該訊號傳遞在發送鏈之間分配的發射功率發送的該PUSCH。
  49. 如請求項48所述之裝置,其中: 該訊號傳遞指示該UE是否能夠跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  50. 若請求項49所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:接收指示該UE是否支援跳過該至少一個步驟的訊號傳遞。
  51. 如請求項48所述之裝置,其中: 向該UE發送的該訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後應用的至少一個功率提升參數。
  52. 如請求項51所述之裝置,其中該至少一個處理器和記憶體被進一步配置為: 從該UE接收指示由該UE支援的一功率提升水平的訊號傳遞;及基於所指示的由該UE支援的該功率提升水平來決定該至少一個功率提升參數。
  53. 如請求項51所述之裝置,其中: 向該UE發送的該訊號傳遞包括多個位元,該等多個位元指示用於該UE在執行用於在發送鏈之間分配該發射功率預算的一多步驟程序之後,以一每埠為基礎來應用的功率提升參數。
  54. 如請求項53所述之裝置,其中向該UE發送的該訊號傳遞包括以下各項中的至少一項: 具有不同位元寬度的針對不同埠的功率提升參數;對僅針對如一預編碼器所指示的具有非零PUSCH的埠的功率提升參數的一指示;在該預編碼器改變的情況下的功率提升參數的額外訊號傳遞;或者對針對所有天線埠的功率提升參數的一指示,而不考慮一預編碼器,其中該等功率提升參數是在多個傳輸之間以一每埠為基礎來應用的,即使當該預編碼器改變時。
  55. 如請求項48所述之裝置,其中由該UE提供的訊號傳遞指示一或多個頻帶組合,該UE支援用於針對該一或多個頻帶組合,在發送鏈之間分配功率的一程序。
  56. 如請求項55所述之裝置,其中由該網路實體提供的該訊號傳遞指示:該等頻帶組合中的一或多個頻帶組合;及針對所指示的該一或多個頻帶組合,如何在用於該PUSCH傳輸的發送鏈之間分配該發射功率預算。
  57. 如請求項48所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:從該UE獲得指示該UE是否支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟的訊號傳遞。
  58. 如請求項57所述之裝置,其中從該UE獲得的該訊號傳遞包括以下各項中的至少一項: 指示該UE是否支援該跳過的一單個位元;每發送預編碼矩陣指示符(TPMI)或TPMI組的、用於指示該UE針對該TPMI或TPMI組是否支援該跳過的一單個位元;或者發送預編碼矩陣指示符(TPMI)的一列表,該UE針對該TPMI的列表支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
  59. 一種由一使用者設備(UE)進行無線通訊的裝置,包括: 至少一個處理器和記憶體,其被配置為:決定一發射功率預算;在用於一實體上行鏈路共享通道(PUSCH)傳輸的發送鏈之間自主地分配該發射功率預算;及根據所決定的該發射功率分配,使用該等發送鏈來發送該PUSCH。
  60. 如請求項59所述之裝置,其中: 該PUSCH是使用一經指派的預編碼器來發送的;及該發射功率分配是按以下方式來執行的:藉由將該預編碼器有效地縮放一純量來維持該預編碼器的一方向。
  61. 如請求項59所述之裝置,其中: 該等發送鏈利用不同的功率放大器(PA);及該發射功率分配是至少部分地基於該等不同的PA的獨立額定輸出功率的。
  62. 如請求項59所述之裝置,其中該至少一個處理器和記憶體被進一步配置為: 提供一功率餘量報告(PHR),該PHR指示至少部分地基於用於該PUSCH傳輸的一發送預編碼矩陣指示符(TPMI)來決定的一值。
  63. 如請求項59所述之裝置,其中該至少一個處理器和記憶體被進一步配置為:提供指示該UE是否支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟的訊號傳遞。
  64. 如請求項63所述之裝置,其中由該UE提供的該訊號傳遞包括以下各項中的至少一項: 指示該UE是否支援該跳過的一單個位元;每發送預編碼矩陣指示符(TPMI)或TPMI組的、用於指示該UE針對該TPMI或TPMI組是否支援該跳過的一單個位元;或者發送預編碼矩陣指示符(TPMI)的一列表,該UE針對該TPMI的列表支援跳過用於在發送鏈之間分配該發射功率預算的一多步驟程序中的至少一個步驟。
TW108127715A 2018-08-03 2019-08-05 用於增強使用者設備處的功率利用的實體上行鏈路共享通道功率縮放 TWI778287B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201862714360P 2018-08-03 2018-08-03
US62/714,360 2018-08-03
US201862739048P 2018-09-28 2018-09-28
US62/739,048 2018-09-28
US201962832789P 2019-04-11 2019-04-11
US62/832,789 2019-04-11
US16/530,744 US11191033B2 (en) 2018-08-03 2019-08-02 Physical uplink shared channel power scaling to enhance power utilization at a user equipment
US16/530,744 2019-08-02

Publications (2)

Publication Number Publication Date
TW202008814A true TW202008814A (zh) 2020-02-16
TWI778287B TWI778287B (zh) 2022-09-21

Family

ID=69229269

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127715A TWI778287B (zh) 2018-08-03 2019-08-05 用於增強使用者設備處的功率利用的實體上行鏈路共享通道功率縮放

Country Status (5)

Country Link
US (1) US11191033B2 (zh)
EP (2) EP4369803A2 (zh)
CN (2) CN112534887A (zh)
TW (1) TWI778287B (zh)
WO (1) WO2020028887A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11516743B2 (en) * 2018-11-13 2022-11-29 Samsung Electronics Co., Ltd. Uplink power scaling for advanced wireless communication systems
CN111224698B (zh) * 2018-11-23 2021-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11271626B2 (en) 2018-12-06 2022-03-08 Samsung Electronics Co., Ltd. Full power uplink transmission for advanced wireless communication systems
CN113519131A (zh) * 2019-02-13 2021-10-19 Idac控股公司 上行链路(ul)多输入多输出(mimo)全传输(tx)功率
WO2020167069A1 (ko) * 2019-02-14 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 상향 링크 전송을 위한 전송 전력 결정 방법 및 이를 위한 장치
WO2021102788A1 (en) * 2019-11-28 2021-06-03 Apple Inc. Apparatus, system, and method for enhanced mobile station power transmission
CN114930924A (zh) * 2020-02-12 2022-08-19 苹果公司 全功率上行链路传输增强
US20230156608A1 (en) * 2020-04-03 2023-05-18 Lg Electronics Inc. Method for performing, by ue, carrier aggregation via first carrier wave and second carrier wave, in wireless communication system, and apparatus therefor
US20230029514A1 (en) * 2020-04-08 2023-02-02 Apple Inc. Upper layer design for release 16 mimo enhancement
CN116114278A (zh) * 2020-05-14 2023-05-12 株式会社Ntt都科摩 终端、无线通信方法以及基站
WO2022204662A2 (en) * 2021-03-23 2022-09-29 Qualcomm Incorporated Sidelink coherency management
US20240163804A1 (en) * 2021-03-31 2024-05-16 Beijing Xiaomi Mobile Software Co., Ltd. Open-loop power control method and apparatus for pusch, and storage medium
EP4338546A1 (en) * 2021-05-17 2024-03-20 Huawei Technologies Co., Ltd. Wireless apparatus and communication method for flexible radio frequency chain configurations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209070A1 (en) * 2009-10-02 2017-08-23 Interdigital Patent Holdings, Inc. Method and apparatus for controlling transmit power of transmissions on more than one component carrier
US8909283B2 (en) 2011-10-11 2014-12-09 Telefonaktiebolaget L M Ericsson (Publ) Transmit power adjustment to reduce a relative phase discontinuity
US10476567B2 (en) * 2018-04-06 2019-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Power control for new radio uplink single-user multiple-input-multiple- output communication
US10952151B2 (en) * 2018-04-19 2021-03-16 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems

Also Published As

Publication number Publication date
EP4369803A2 (en) 2024-05-15
TWI778287B (zh) 2022-09-21
US20200045644A1 (en) 2020-02-06
CN117479281A (zh) 2024-01-30
WO2020028887A1 (en) 2020-02-06
US11191033B2 (en) 2021-11-30
EP3831130A1 (en) 2021-06-09
CN112534887A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
TWI778287B (zh) 用於增強使用者設備處的功率利用的實體上行鏈路共享通道功率縮放
TWI809033B (zh) 針對具有重複的重疊上行鏈路資源配置的uci傳輸
TWI762700B (zh) 用於載波聚合中的srs天線切換的方法和裝置
TW201838369A (zh) 用於單載波波形的控制資源集合
TW201840157A (zh) 組共用pdcch中的時槽格式指示符(sfi)和時槽聚合水平指示以及sfi衝突處理
TW201931906A (zh) 用於具有不同的數位方案的上行鏈路的時序提前粒度
TW201844018A (zh) 剩餘系統資訊傳輸訊窗的配置
TW201924376A (zh) 非週期性追蹤參考信號
KR20210144715A (ko) 빔 표시 재사용
TW201941560A (zh) 針對超可靠度低延遲通訊(urllc)的頻寬部分(bwp)管理上的考量
TW201902275A (zh) 在新無線中多工傳呼信號與同步信號
TWI816894B (zh) 對處理的下行鏈路控制資訊(dci)的數量的限制
TW202005169A (zh) 用於多天線使用者設備的保護時段最佳化
TW201914351A (zh) 用於多種無線電存取技術的緩衝器管理
TW201824913A (zh) 依賴於次頻帶集合的上行鏈路功率控制
CN111052841B (zh) 用于urllc的取决于链路的调度请求格式
TW201843973A (zh) 經由不同模式中的dmrs/pbch的時序指示
TW201946426A (zh) 用於不活動行動性的信號傳遞
TW202010349A (zh) 用於csi-rs和srs傳輸的延遲最小化
JP2021511742A (ja) アップリンク電力制御構成
TW201924390A (zh) 無線通訊中的干擾緩解
TW201909676A (zh) 在新無線電中將解調參考信號和同步信號進行多工處理
TW201906358A (zh) 長上行鏈路短脈衝通道設計
TW202139616A (zh) 在同一子訊框中支援多個srs
CN115428353A (zh) 波束切换中断时间

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent