TW202007782A - 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法 - Google Patents

在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法 Download PDF

Info

Publication number
TW202007782A
TW202007782A TW107127653A TW107127653A TW202007782A TW 202007782 A TW202007782 A TW 202007782A TW 107127653 A TW107127653 A TW 107127653A TW 107127653 A TW107127653 A TW 107127653A TW 202007782 A TW202007782 A TW 202007782A
Authority
TW
Taiwan
Prior art keywords
layer
coating
bandwidth
metal
optical element
Prior art date
Application number
TW107127653A
Other languages
English (en)
Other versions
TWI724319B (zh
Inventor
蘇普里亞 潔斯宛
Original Assignee
蘇普里亞 潔斯宛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蘇普里亞 潔斯宛 filed Critical 蘇普里亞 潔斯宛
Priority to TW107127653A priority Critical patent/TWI724319B/zh
Publication of TW202007782A publication Critical patent/TW202007782A/zh
Application granted granted Critical
Publication of TWI724319B publication Critical patent/TWI724319B/zh

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

本發明係揭示一種用於在紫外(UV)、極紫外(EUV)和/或軟X射線波長下操作的設備和系統中,使用的新類型的材料和相關組件。 本發明係關於增加EUV反射和透射材料的帶寬和一般性能。 這種材料結構和組合可用於製造諸如鏡子、透鏡或其他光學器件、面板、光源、光掩模、光致抗蝕劑或其他部件的部件,以用於諸如光刻、晶圓圖案化、天文和空間應用、生物醫學應用或其他應用中。

Description

在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法
本發明的領域是光學材料、EUV材料以及尤其是用於許多傳統光學材料強烈吸收的波長範圍的反射材料的設計和製造。
光學光刻系統通常用於如設備等的製造。這種系統的分辨能力與曝光波長成正比。因此,較短的波長可以改善製造中的分辨率。極紫外光刻(EUVL)使用極紫外(EUV)波長(約120納米至0.1納米)的電磁輻射。因此,這些波長的光子具有約10電子伏特(eV)至12.4keV(分別對應於124nm和0.1nm)的能量。極紫外波長可以由諸如等離子體和同步加速器光源的裝置人工產生。將EUV波長用於光刻具有減小諸如半導體芯片以及聚合物電子器件,太陽能電池,生物技術,醫療技術之類的應用中的特徵尺寸的潛在優勢。
諸如鏡子、透鏡、濾光器、反射器,檢測器或收集器等的無源光學元件通常用於較大的光系統中。例如,光刻系統是微加工工藝,其使用光來圖案化薄膜或矽晶圓的部分。它使用光將幾何圖案從光掩模轉移到光敏化學光刻膠上,或簡單地抵抗晶圓上的光敏化學光刻膠。該系統具有可以產生目標波長光的光源,並且該光在到達晶圓平面之前,通過具有許多光學元件的光路傳送。實際上,光路在光源和矽晶片之間具有十幾個反射鏡並不罕見。目前,許多光刻系統在193nm的目標波長下工作,但是為了支持更好的分辨率和更細小的加工工藝,甚至會使用更短的波長。 EUV紫外光刻使用13.5nm的光。然而,大多數天然材料在這些短波長處具有高吸收性,導致通過非常低效且有損耗的光路,將光傳遞到晶圓。因此,需要新的材料或改進的材料,它們在13.5nm處具有高響應性和諧振性,使其反射率光譜輪廓具有振幅又高、光譜頻率也寬的特點。
在光刻中,鏡子,透鏡,濾光器,薄膜和檢測器組成的系統用於計量,透射,反射和其他部件。在單個系統中,組件的頻譜和角度帶寬是給定的,並且必須最小化一個組件到下一個組件的不匹配,或避免系統透射的最大化。通過系統透射或從組件到組件反射的輻射稱為帶內輻射。由於光刻系統具有旨在產生特定目標頻率的光源,因此重要的是光路中的每個光學元件也要針對該波長進行調諧和優化。如果不是這樣,整個系統的效率會十分低下,功率會遭到浪費,並且通過帶外輻射、熱量生成和對大量光源的需求的方式損壞光學器件。在許多光學元件之間實現優化是非常困難的,因為每個元件僅在非常窄的頻帶中具有峰值反射率。以使所有光學元件在該窄峰值帶中完美地反射的方式構造所有光學元件的可能性非常低。幾個光學元件之間的峰值帶的這種不匹配是光學路徑中的總體浪費和低效率的主要原因。
用於光刻元件的反射材料或鍍膜的選擇通常受到嚴格限制。傳統材料組合由鉬 - 矽(Mo-Si)多層組成,理論上可產生高達67%的反射率。每個鍍膜都具有反射光譜曲線和反射角度曲線。反射光譜曲線將反射率指定為輻射波長的函數。反射角度曲線指定反射率作為輻射入射角的函數(從0到90度,其中第一個通常是掠入射,後者是垂直入射)。頻譜寬度,或通常表徵為半峰全寬(“FWHM”)。當反射率為其值的50%時,FWHM帶寬是光譜範圍。 Mo-Si層用於EUV光刻系統中的反射鏡,收集器和光掩模。其他傳統的多層組合包括鎢和碳化硼、鎢和碳,同被視為最先進的技術。由於最大化峰值反射率是主要考慮因素,因此通常選擇組合材料以產生最高的絕對光譜反射率。然而,如果將峰值反射率最大化與窄光譜帶寬相結合,則在連續的組件序列中稱為帶內輻射的穿透輻射會受到組件之間的匹配峰值光譜波長和反射鍍膜的帶寬的限制。在反射率響應或曲線中,重要的不僅是峰值反射率,還有光譜帶寬、平均光譜反射率和總帶內輻射,或反射率曲線和x軸之間的積分面積。
在光刻系統中傳輸到晶圓的能量也受到反射鍍膜的帶寬、其總反射光譜範圍和每個部件傳輸的能量的限制。帶外輻射被組件吸收繼而導致組件的不良升溫。
因此,需要改善UV、DUV或EUV波長中較短波長的反射鍍膜的帶寬。
本公開一般涉及與紫外(UV)、深紫外(DUV)、遠紫外(EUV)和軟X射線輻射一起使用的材料,裝置,設備和方法,例如在光刻(EUVL)或其他應用中。 更具體但非排他地說,本公開涉及用於UV,EUV和軟X射線應用的材料和部件,以及在使用EUV輻射的設備,裝置和系統中製造和使用這些材料和部件的方法。
在某些實例中,本公開涉及可以在曝光系統中使用的元件,其中該系統或子系統包括用於透射具有某一波長的光的光源。
在另一實例中,本發明涉及一種可用於包含有光掩模,鏡子或透鏡,基板元件的曝光系統的元件。系統或子系統可包括光源以透射具有某一波長的光。元件可包括具有多個結構特徵的材料或一種或多種材料組合。
在另一個實例中,涉及了用於光學元件和光刻相關裝置及組件的鍍膜。
本發明公開了一種與光學元件一起使用的新型材料,其中光學元件被構造成在UV、DUV或EUV帶寬(0.1nm至250nm)目標波長下運作的。新材料的應用增加了光學元件的光譜或角度帶寬,使其超過了目標帶寬下現有反射器的光譜或角度帶寬。
通過精確匹配峰值波長和/或增加光譜帶寬,可以避免帶寬失配。增加光譜帶寬有幾個優點。它允許更多的能量通過整個光刻系統傳送並傳送到晶圓。它增加了每條光譜曲線的平均光譜反射率,因此降低了從一個元件到下一個元件的帶寬不匹配的可能性。增加帶寬意味著增加帶內光譜輻射,並且減少光學部件因帶外輻射而需要的冷卻。
增加角度帶寬允許在部件上具有較大入射角的光透過系統。越大的入射角的允許系統設計出更高數值的孔徑。
本發明涉及材料的構成和組合,其增加光譜和角度帶寬,並且反射率或透射曲線中的峰值性能遠超現有技術反射器觀察到的值。作為參考,現有技術的反射器是熔融石英或矽襯底上的鉬矽(Mo-Si)鍍膜。從模擬和實驗來看,帶寬是半峰全寬(FWHM)。對於Mo-Si,光譜的半峰全寬為0.63nm,角度帶寬為+/- 10.8度(從垂直入射角度,90度)。峰值反射率為73%,在峰值反射率保持在70%以上的有效角度範圍是與垂直入射角度相差+/- 6度的範圍,也稱為物體側的主光線角度(CRAO)。從部件間傳輸的能量或帶內輻射可以與反射率(透射)響應曲線的歸一化積分成比例地計算,此後稱為積分能量。平均反射率是給定波長組的平均光譜或角反射率。角度帶寬可能會在掠射角附近或在法線角附近增加。
圖1示出了作為關於(a)Mo-Si多層疊層的波長( 90度)和(b)角度( 13.5nm) 函數的反射率響應100。 其FWHM光譜帶寬為0.63nm。角度帶寬為+/- 10.8度。 CRAO為+/- 6度。傳輸的帶內能量與12.70(arb單位)成正比。平均光譜反射率為25%。峰值光譜反射率為73%。
本發明公開了特定金屬,合金,化合物,混合物,有機材料及其組合用於調節或增加反射率(透射)響應曲線的光譜和角度帶寬 。本發明涉及可以沉積在基材上的單層薄膜或鍍膜,多層薄膜組合(一維鍍膜),或甚至二維和三維鍍膜,例如具有二維或三維特徵或週期的鍍膜。鍍膜可以是多孔鍍膜,或那些具有高內表面積、自支撐並具有納米級特徵的薄膜 。基板包括Si或SiO¬2,或藍寶石,或玻璃。
具體地,本發明涉及金屬(M)、碳(C)和氫族元素(H)的組合,其中H可以是任何輕元素,例如元素週期表中的氦,氫,氖或其他氣體或元素氣體等,用於製造M x C y H z組合的材料,其中x,y,z指質量、體積、比率或化學計量比率,並且 x> 0,y≥0,z> 0,並且x和y和z可以是任何數字。例如,在矽襯底上的Mx Cy Hz 的多層鍍膜(交替層)和Si可用於形成高反射,更寬帶寬的反射鏡。 X,y或z可以是任何數,整數或非整數,並且包括非化學計量組合。
使用這種材料的製造的有典型光學元件和部件,包括鏡子、濾光器、透鏡、檢測器、反射器、薄膜、基板、刻面、覆蓋層、覆蓋層、保護層、內擴散層、阻擋層、膜、收集器 。這些組件可用於光刻系統,印刷、掃描、望遠鏡、檢查工具、光源、激光器、成像工具。
金屬(M)的實例包括鉬、鈮、釕、鋯、鍀、鉑、鈀、金、鎳以及元素週期表第4、5和6行中的所有金屬。
H族元素的實例包括氦、氫、氖或其他元素氣體。這些可以在M沉積期間與M和C結合,並且被捕獲在鍍膜內。氦氣是一種精選氣體,因為它具有惰性非反應性,並且重量輕,透明度高。
在一個實例中,金屬在He環境中的共沉積可導致He在該環境中的摻入。類似地,金屬M和碳源的共蒸發也可以形成混合或混雜的材料。
在一些情況下,M的存在不是必需的,可以使用純碳或烴。特別是二維或三維材料,即具有多個二維或三維結構特徵的材料。在這種情況下,x = 0。對於1D多層膜也是這種情況,其使用無金屬組合材料或介電組合材料也是層狀材料的一種,例如Si-Hy Cz
在其他情況下,可能會不需要H或C,在這種情況下,y或z可以是,但不能同時是零, 並且x將不為零。例如,在MoC的例子中,x = 1,y = 0,z = 1,並且在Mo2 C中,x = 2,y = 0,z = 1。
在一個實例中,x,y,z> 1,y>z>x 。在另一個實例中,y和z> x。這裡不考慮x = 0,y = 0,z = 0的情況。必須存在至少一個非零數量。類似地, x≠0,y = 0,z = 0的情況也不被認為是本發明的一部分,因為已經存在許多純金屬/電介質多層。本發明具體涉及:如文中所定義的H和C,部分或全部用於材料組合的情況。
碳(C)和由(H)定義的元素,其中H是氫,包括烴、碳化物、氫化物、卡賓,以及氫和碳的任何有機金屬複合物,或任何金屬(M)原子通過配合基與碳(C)或(H)的連接 。類似地,用於儲氫的任何材料或用於儲氫的催化劑也是合適的候選物。組合的材料也可以是M,C和H的金屬有機骨架膜。重要的是在複合物中不存在氧。
C的存在使得材料對高溫更穩健,並且更不易受氧污染,並且可以是保護層、覆蓋層或多層的一部分。
我們對摻雜材料,烴污染物和氫氣泡進行了重要區分。本發明不涉及任何這些情況。摻雜是指將雜質注入另一種材料中,通常數量級比純材料小。摻雜對反射率帶寬或響應幅度的影響最小。烴污染是指烴沉積在隨機或不希望的位置(異相)的鏡面鍍膜上。這導致多餘的吸收或散射,並因此導致反射率降低。在污染中,烴沒有以正確的比例或位置與金屬適當地結合。它是無意和隨機的,並且是偶然存在而不是想要出現在一個預計的精確的位置。這不是受控沉積的一部分。氫氣泡是指氫氣積聚在的不良的泡中。這也降低了反射率,因為它沒有與金屬適當地結合,並且導致異相反射或散射。類似地,也不考慮使用環境氣體來製備玻璃基板的情況,因為這種情況不會影響鍍膜的反射/透射性能或帶寬。
這裡,用於在光刻工具中使用的元件不包括使用來自等離子體源的碎片轟擊元件的操作活動,也不用環境氣體進行原位清潔。這些不是製造過程的一部分,而是在其開發之後。
可以使用幾種方法將金屬與氦、氫和/或碳結合。一些實例包括氫化金屬、金屬氫配合物、共蒸發、共濺射、共沉積、氣相沉積,熱退火和真空室中的其他沉積方法。烴的實例有,烷烴、烯烴和炔烴、癸烷、戊烷、並五苯。其他合適的分子組合包括富勒烯,即C60 。例如,金屬可以在環境氣體、緩衝氣體或其他氣體中沉積,以形成富含氫的、氫化的或富氫金屬。混合氣體或環境氣體的實例包括He / Ar、He / N2 、He / H2 、Ne / He H2 / Ar、或N2 / H2 、Ne / Ar、Ne / N2 、Ne / He、 Ne / H2
金屬有機配合物包括例如茂金屬,或苯/甲苯基化合物,或環戊二烯基環,或原子或分子通過配合基連接的其他配合物。碳的實例包括類金剛石碳,石墨烯,石墨,雙鍵碳,單鍵碳。
MoC和Mo2 C可用於提高溫度穩定性,尤其是在多維結構中,並且會減少氧化,會降低反射率。這種情況可以在構建的反射或透射鍍膜中考慮,並不在覆蓋層或保護層中並不必要。本發明不包括MoC / Si或Mo2 C / Si多層的特殊情況。
下面提供了本發明中使用的定義列表:
Figure 107127653-A0304-0001
光刻中使用的光學元件包括光掩模、鏡子、檢測器、反射器、光譜純度濾光片、濾光片、薄膜、衍射光柵、偏振器、收集器。每個元件通常會包含基底,例如:熔融石英、矽、玻璃、鉻,接著是反射或透射鍍膜和任選的保護層。這些元件中的每一個都使用基於一組純元素的類似材料作為其材料的基礎,例如,鉬、矽、鈮,釕、鍀、鋯、鍶。
“金屬”是指週期表中的元素是金屬的,並且由於在價電子層中具有比中性金屬元素更多或更少的電子而可以是中性的、帶負電的或帶正電的。可用於本發明的金屬包括鹼金屬、鹼土金屬、過渡金屬和後過渡金屬。鹼土金屬包括Be、Mg、Ca、Sr和Ba。過渡金屬包括Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Mg、Tc、Ru、Rh、Pd、Ag、Cd、La、Hf、Ta 、W、Re、Os、Ir、Pt、Au、Hg、Al和Ac。後過渡金屬包括Al、Ga、In、Tl、Ge、Sn、Pb、Sb、Bi和Po。稀土金屬包括Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu。鹼金屬包括Li、Na、K、Rb和Cs。本領域技術人員可理解,上述金屬可各自採用幾種不同的氧化態,所有這些都可用於本發明。
圖4中示出了反射鍍膜的典型實例。該結構包含基板,局部熔融的二氧化矽,玻璃,鉻,矽,石英,1D多層布拉格反射鍍膜,例如, Mo-Si、Nb-Si、W-Si、Ru-Si或本發明中描述的其他材料,或在美國專利申請號15/198,291中找到的,該專利申請通過引用結合到本文中。多層由許多層組成。多層由每組材料形成雙層對的多層交替材料組成。視情況,在疊層或雙層疊層的頂部可為覆蓋層,或者是通常由釕或其他貴金屬製成的鍍膜保護層。
圖4示出了已知的多層反射光學元件400,其具有基板402和多層疊層411,多層疊層411由許多雙層對409構成。每個雙層對具有材料1 405的第一層和材料2 407的第二層。眾所周知且常見的是,其中一層可以是Si,另一層是Mo。
在另一個實例中,多層鍍膜可以由3D結構代替,或者具有多個結構特徵或一種或多種材料組合,例如美國專利申請號13/745,618中所述的那些,其通過引入作為參考,如同完整闡述一樣。在這個實例下,3D架構可以由單個金屬或其他材料製成。
在另一個實例中,例如,如在薄膜中使用的那樣,鍍膜可以在膜上,或者在沒有基底的情況下懸浮。鍍膜可以由單一材料或薄膜或多孔結構組成。材料可以是Mo或Si或金屬矽化物。
本發明公開了一種實例,其用Mx Hy Cz 組合材料代替多層反射鍍膜中的一個或多個層,薄膜中使用的透射材料,或3D結構中的材料。
Mx Hy Cz 組合材料在使用受控沉積技術製造鍍膜期間製造,其中在受控位置和比例下有意且謹慎地將其分布在鍍膜中以均勻地影響材料在受控位置的光學性質。這與鍍膜的操作使用不同,例如,鏡子放置在等離子體源的前面並從源處或真空室中的碎片接收碳氫化合物,並且這些碳氫化合物或顆粒缺陷或離子隨機地定位在鍍膜中,成為元件操作使用的負面影響。
具體來說,在包含多層架構的實例中,Mx Hy Cz 組合材料可以代替例如雙層對的一個或多個層,或者交替層的一個或多個層,或者架構的一個或多個層。淨效果是改進了的,如圖2所示的反射光譜和/或角度曲線200。對於Mx Cy Hz -Si的多層疊層,反射率響應是(a)波長和 (b) 角度的函數 。 FWHM光譜帶寬為0.76nm,角度帶寬為+/- 10.8度, CRAO +/- 8度,傳輸的帶內能量與16.14(arb單位)成正比,平均光譜反射率為31%,峰值光譜反射率為76%。與現有技術的Mo-Si相比,反射率曲線的改進包括:增加了FWHM,增加了光譜帶寬或增加了帶寬輻射中的角度帶寬,更少的帶寬失配或改善的曲線峰值幅度。例如,在典型的多層反射鍍膜中,例如, Mo-Si,Mx Hy Cz 組合材料可以代替Mo、 Si或同時代替兩者。 MoHy Cz - Si。圖5以多層(501,502)架構500示出了本發明。
圖3示出了沉積在SiO2 襯底上的單層鍍膜的反射率響應300。這是在13.5nm的反射率響應, 並且測為從掠射(0度)到垂直(90度)入射的角度的函數。在一個實例中,沉積金屬鍍膜(M),其角度帶寬(FWHM)為25度。在第二個例子中,沉積具有相似厚度的Mx Hy Cz 鍍膜,其角度帶寬(FWHM)為51.3度。這些多層鍍膜的沉積技術有濺射、離子束沉積、PECVD、原子層沉積、離子輔助沉積、電子束沉積、化學氣相沉積、熱蒸發、離子注入、分子束外延。在濺射或離子束沉積或電子束沉積的情況下,帶電粒子可用於轟擊目標,因此可以平滑地,有時均勻地沉積這些層,並且完全控制Mx Hy Cz 的量、位置和分布。在一個實例中,沉積Mx Hy Cz 組合材料過程裡,可以使用氬、氮、氦、氫、氪或氖離子。類似地,也可以使用含有氣體形式的這些元素中的兩種或更多種組合的混合氣體。
該過程包括在腔室內裝載交替材料的兩個目標,用上述兩種或更多種離子的組合轟擊每個目標,並且可選地將兩種材料中的每一種的薄層沉積到基底上。
類似的過程用於離子束沉積,其中一個或多個離子的第二束或混合離子,離子輔助沉積束,可以被引導到基板附近,在基底增加靶材料羽流的相互作用,隨之形成薄膜。
該方法的另一個實例包括在沉積室中共濺射或共蒸發混合材料。例如,在環境或混合氣體存在下,可以在相同的真空沉積系統中,濺射或蒸發烴的同時濺射過渡金屬。
用於薄膜的沉積技術也可包括原子層沉積、氣相沉積、電沉積或離子注入。在這種情況下,可以共形地沉積金屬,然後用烴蒸氣,氣體,環境氣體或混合氣體進行後處理。
圖6示出了具有沉積到3D結構605中的光學元件600。在這種情況下,可以共形地沉積金屬,然後用烴蒸氣、氣體、環境或混合氣體進行後處理。光學元件600可以具有可選的覆蓋層603,並且在一些情況下可能具有襯底607。 在其他情況下,例如,如果光學元件被構造為膜結構的一部分,則可以不需要襯底。 圖6也可以由本文所述的有機金屬配合物形成。
B. 3D 結構實例
以下結構可在光學元件上用於透射鍍膜、薄膜或作為薄膜的一部分, 它也可以用在鏡子或掩模上的反射鍍膜中。
2D或3D結構由自組裝有機合成模板、聚合物、有機無機雜化物或金屬有機絡合物形成。這種配合物含有金屬(M)、碳和氫原子,例如例如茂金屬、苯/甲苯基化合物、環戊二烯基環,或其他配合物,其中原子或分子通過配合基連接。碳的實例包括類金剛石碳、石墨烯、石墨、雙鍵碳、單鍵碳。
美國專利No.9,322,964中描述了用於本發明的實用的三維反射光子晶體。該材料包括了可以在需要在一個或多個電磁波長範圍內操作的實例中應用的特徵。在一個實例中,結構特徵的尺寸與在極紫外應用中使用的波長的量級大致相同。例如,結構特徵可具有約13.5nm的尺寸。在一些實例中,結構特徵尺寸的量級可以在 10到20nm。在一些實例中,該材料可具有0.001nm至10nm範圍內的結構特徵。在一些實例中,該材料可具有10nm至250nm範圍內的結構特徵。這些特徵可稱為納米級特徵。納米級特徵可以是一維的,二維的或三維的。該結構特徵可以大部分減少材料的電磁吸收。例如,在一些應用中,納米級特徵可以與該應用中使用的輻射的波長近似相關。該材料可包括亞波長特徵。
納米級特徵可包括例如週期性或半週期性,准週期性或非週期性結構,重複或重複元素。週期性結構可以是一維,二維或三維結構。該結構可以是分層結構的一部分,或者是基板上的一部分。基底可以是平面的。週期性結構的實例包括納米顆粒的2D或3D陣列、螺旋形結構、球體、圓柱體、片段、瑞士卷結構。納米級特徵可以是任意尺寸、任何形狀的,例如但不限於:層、膜、球、塊、棱錐、環、多孔結構、圓柱體、連接狀、貝殼狀、自由形狀、手性結構、半球、段或以上任何組合。
該材料可包括如梯度結構。例如,在任何維度中的分層結構,其中材料內的一些層會從之前一層增加或減少:長度、深度、厚度、週期或重複單元。在一個實例中,如果以這樣的方式布置層以產生漸變折射率,則針對更寬範圍的波長或角度產生定制的光學響應。該結構可以是分層結構的一部分,或者是基板上的一部分。
該材料還可包括聚合物。該材料還可包含聚合物的微米或納米結構特徵。聚合物也可以是犧牲材料、軟模板或支架結構。聚合物可以在二維或三維中自組裝。
聚合物結構可以使用Mx Hy Cz 組合材料與有機金屬配合物絡合,然後形成2D或3D結構。
C.示例
圖5示出了本發明為依據的布拉格反射器500。圖5示出了兩個實例。在一個實例501中,多層疊層511沉積在基板502上。在示例501中,每個雙層對509都具有Si層和Mx Cy Hz 材料層。會形成覆蓋層515以保護頂部雙層對。在示例2 502中,每個雙層對509具有Mo層和Mx Cy Hz 材料層。可以形成覆蓋層515以保護頂部雙層對。在另外一示例中(未示出)的雙層對可以有以 Mx Cy Hz 材料構成的第一層,和與第一層Mx Cy Hz 材料的比例不同的第二層。
圖6示出了自組裝到給定的3D結構,具有由Mx Cy Hz 材料形成的單層鍍膜的 3D 結構鍍膜。
D.塗料的用途
本發明包括在與光刻,成像和印刷系統和設備有關的設備中的鍍膜的使用,以及其中的組件和元件。這包括光源,掃描儀工具,檢查工具,計量和製造工具。
雖然以上詳細描述已經示出,描述和指出了適用於各種實例的新穎特徵,但是應當理解的是各種省略、替換、以及在形式和裝置細節或描述算法的變化可以由在不脫離本公開的精神的情況下做出。因此,前面的描述中的任何內容都不旨在暗示任何特定的特徵、特性、步驟、模塊或塊是必需的或必不可少的。如將認識到的,本文描述的過程可以在不提供本文闡述的所有特徵和所有效益的形式內體現,因為一些特徵可以與其他特徵分開使用或實踐。保護範圍由所附申請專利範圍第1項限定,而不是由前面的描述限定。
100‧‧‧反射率響應200‧‧‧反射光譜和/或角度曲線300‧‧‧反射率響應400‧‧‧多層反射光學元件402‧‧‧基板405‧‧‧材料1407‧‧‧材料2409‧‧‧雙層對411‧‧‧多層疊層500‧‧‧布拉格反射器501‧‧‧示例502‧‧‧基板509‧‧‧雙層對511‧‧‧多層疊層515‧‧‧覆蓋層600‧‧‧光學元件603‧‧‧覆蓋層605‧‧‧3D結構607‧‧‧襯底
結合以下附圖的詳細描述,可以更全面地理解本公開,其中: 圖1示出了多層Mo-Si的結構中,(a)波長與(b)角度函數的反射率響應。 FWHM光譜帶寬為0.63nm。 圖2示出了多層Mx Hy Cz -Si結構中,(a)波長與(b)角度函數的反射率響應。FWHM光譜帶寬為0.76nm。 圖3示出了沉積在SiO2襯底上的單層鍍膜的反射率響應。反射率響應為13.5nm,並且測量為從掠射(0度)到垂直(90度)入射的角度的函數。在一個實例中,沉積金屬鍍膜(M),其角度帶寬(FWHM)為25度。在第二個例子中,沉積具有相似厚度的Mx Hy Cz 鍍膜,其角度帶寬(FWHM)為51.3度。 圖4顯示了一種已知的多層布拉格(Bragg)反射鍍膜的結構。該結構由一疊替代材料,材料1和基板上的材料2(多層)以及保護層或覆蓋層組成。 圖5顯示了多層布拉格反射鍍膜的結構。該架構由基板上的一疊替代材料(多層)以及保護層或覆蓋層組成。該疊層材料由Mx Hy Cz 和矽的雙層對組成,或者M和Si-Mx Hy Cz 組成。 圖6示出了具有Mx Hy Cz 材料的3D架構,其形成鍍膜的直接部分。
100‧‧‧反射率響應

Claims (32)

  1. 一種用於光學元件的多層布拉格反射鍍膜,該光學元件用於操作UV、DUV或EUV帶寬中的目標波長的光學系統,該鍍膜包括: 基質; 重複的多層雙層對形成多層疊層;每個雙層對還包括: 第一層;和 由Mx Cy Hz 比例的碳,H族元素和金屬形成的層;並且可選有保護性覆蓋層;並且 其中的x> = 0,y> = 0,並且z> = 0;排除x = y = z = 0,以及x = 1,y = z = 0。
  2. 如請求項1所述的鍍膜,其中所述第一層由碳,H組元素和金屬的比率為Mx Cy Hz 形成,其中y> = 0,並且z> = 0。
  3. 如請求項1所述的鍍膜,其中H-基團元素是氦、氫、氖或元素氣體。
  4. 如請求項1所述的鍍膜,其中所述H-基團元素被捕獲在Mx Cy Hz 層中。
  5. 如請求項1的鍍膜,其中金屬(M)是選自元素週期表中第4、5、6行的金屬,或者是以下任何一種金屬:鉬、鈮、釕、鋯、鍀、鉑、鈀、金或鎳。
  6. 如請求項1的鍍膜,其中碳(C)和氫(H)是烴、碳化物、氫化物、卡賓、或氫和碳的有機金屬配合物。
  7. 一種用於光學元件的反射鍍膜或透射鍍膜,該光學元件用於操作UV、DUV或EUV帶寬中的目標波長的光學系統,該鍍膜包括: 用於由一種或多種尺寸特徵構成的的鍍膜中的組合材料Mx Cy Hz
  8. 如請求項7所述的鍍膜,其中該鍍膜被施加到基底或薄膜上。
  9. 如請求項7所述的鍍膜,其中所述鍍膜還包括覆蓋層。
  10. 如請求項7所述的鍍膜,其中碳(C)和氫(H)是烴、碳化物、氫化物、卡賓、或氫和碳的有機金屬配合物。
  11. 如請求項7所述的鍍膜,其中金屬原子(M)通過配合基與碳(C)或氫(H)鍵合。
  12. 如請求項1所述的鍍膜,其中該鍍膜使所述光學元件的光譜帶寬大於目標波長下的Mo-Si多層鍍膜的光譜帶寬。
  13. 如請求項1所述的鍍膜,其中該鍍膜使所述光學元件的角度帶寬大於目標波長處的Mo-Si多層鍍膜的角度帶寬。
  14. 如請求項1所述的鍍膜,其中該鍍膜是光掩模、鏡子、透鏡、過濾器、覆蓋層、覆蓋層、基底、薄膜、薄膜、反射器、檢測器、收集器中的一層。
  15. 如請求項1所述的鍍膜,其中的所述基底是局部熔融的二氧化矽、玻璃、鉻、矽、石英、1D多層布拉格反射、Mo-Si、Nb-Si、W-Si或Ru-Si。
  16. 如請求項1所述的鍍膜,其中所述保護性覆蓋層是貴金屬。
  17. 如請求項1所述的鍍膜,其中所述第一層是Si。
  18. 一種製造用於光學元件的材料鍍膜的方法,所述材料鍍膜在0.1nm至250nm的目標波長下運作,包括: 以MxCyHz 比率組合金屬(M),碳(C)和H-氣體(H)形成的一種組合材料,其中x>= 0,y> = 0,並且z> = 0; 用兩種或多種離子的組合轟擊Mx Cy Hz 組合材料;以及 使用受控沉積技術均勻沉積Mx Cy Hz 組合材料到一層; x = y = z = 0除外。
  19. 如請求項18所述的方法,還包括: 提供第二層材料; 用兩種或多種離子的組合轟擊第二層材料;並且 使用受控沉積技術將第二材料均勻地沉積到用於多層鍍膜的層對中。
  20. 如請求項18所述的方法,其中所述離子選自氬、氮、氦、氫、氪和氖離子。
  21. 如請求項18所述的方法,其中所述H-氣體是氦氣、氫氣、氖氣或元素氣體。
  22. 如請求項18所述的方法,其中所述受控沉積技術是濺射、離子束沉積、PECVD、原子層沉積、離子輔助沉積、電子束沉積、化學氣相沉積、熱蒸發、離子注入或分子束外延。
  23. 如請求項18所述的方法,其中所述H族元素被捕獲在 MxCyHz 層中。
  24. 如請求項9 所述的方法,其中所述的組合步驟包括有:使用一種或多種配合基梳理M、C和H。
  25. 如請求項18所述的方法,其中所述組合步驟包括將M與C和H以烴的形式組合 。
  26. 如請求項18所述的方法,其中所述組合步驟包括將M、C和H組合以形成金屬有機框架或有機金屬絡合物。
  27. 如請求項18所述的方法,其中所述金屬(M)是選自元素週期表的第4、5或6行的金屬。
  28. 如請求項18所述的方法,其中所述沉積的材料使所述光學元件在目標波長下的光譜帶寬大於所述 的Mo-Si多層鍍膜的光譜帶寬。
  29. 如請求項18所述的方法,其中所述沉積的材料使所述光學元件在目標波長下的角度帶寬大於Mo-Si多層鍍膜的角度帶寬。
  30. 如請求項18所述的方法,其中所述光學元件是光掩模、鏡子、透鏡、濾光器、覆蓋層、覆蓋層、基板、薄膜、薄膜、反射器、檢測器或收集器、或應用在光源中。
  31. 一種製造用於光學元件的材料鍍膜的方法,所述材料鍍膜在0.1nm至250nm的目標波長下運作,包括: 使用受控沉積技術將過渡金屬沉積為光學元件中的一層; 使用受控沉積技術在光學元件層中沉積碳氫化合物; 並且 其中受控沉積同時,並且在環境氣體存在下完成。
  32. 如請求項30所述的方法,其中所述環境氣體是氦氣、氫氣、氖氣、氬氣或元素氣體。
TW107127653A 2018-08-08 2018-08-08 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法 TWI724319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107127653A TWI724319B (zh) 2018-08-08 2018-08-08 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107127653A TWI724319B (zh) 2018-08-08 2018-08-08 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法

Publications (2)

Publication Number Publication Date
TW202007782A true TW202007782A (zh) 2020-02-16
TWI724319B TWI724319B (zh) 2021-04-11

Family

ID=70412950

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127653A TWI724319B (zh) 2018-08-08 2018-08-08 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法

Country Status (1)

Country Link
TW (1) TWI724319B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117026190A (zh) * 2023-08-15 2023-11-10 同济大学 一种抑制极紫外钪基多层膜脆化的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229652B1 (en) * 1998-11-25 2001-05-08 The Regents Of The University Of California High reflectance and low stress Mo2C/Be multilayers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117026190A (zh) * 2023-08-15 2023-11-10 同济大学 一种抑制极紫外钪基多层膜脆化的制备方法
CN117026190B (zh) * 2023-08-15 2024-02-23 同济大学 一种抑制极紫外钪基多层膜脆化的制备方法

Also Published As

Publication number Publication date
TWI724319B (zh) 2021-04-11

Similar Documents

Publication Publication Date Title
JP3652221B2 (ja) 反射度を高めた多層極端紫外線ミラー
TWI427334B (zh) Euv蝕刻裝置反射光學元件
US6833223B2 (en) Multilayer-film reflective mirrors and optical systems comprising same
CN107402417B (zh) 多层反射镜
JP5716038B2 (ja) Euvリソグラフィ用反射光学素子
US20120250144A1 (en) Reflective optical element and method for operating an euv lithography apparatus
TWI528117B (zh) 光譜純度濾光器
US20200124957A1 (en) Photomask having reflective layer with non-reflective regions
US20100033702A1 (en) Coated mirrors and their fabrication
WO2013113537A2 (en) Optical element, lithographic apparatus incorporating such an element, method of manufacturing an optical element
CN111868570B (zh) 在光刻与应用中使用极端紫外线辐射的材料、元件及方法
TWI724319B (zh) 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法
US9703209B2 (en) Reflective optical element for grazing incidence in the EUV wavelength range
Louis Physics and technology development of multilayer EUV reflective optics
US20230266673A1 (en) Optical element, in particular for reflecting euv radiation, optical arrangement, and method for manufacturing an optical element
US20210373212A1 (en) High reflectance and high thermal stability in reactively sputtered multilayers
Suzuki et al. Pattern replication in EUV interference lithography
Uzoma et al. Multilayer Reflective Coatings for BEUV Lithography: A Review. Nanomaterials 2021, 11, 2782
vd Meer et al. Materials for soft X-ray and EUV multi-layer mirrors
Anderson Development of near atomically perfect diffraction gratings for EUV and soft x-rays with very high efficiency and resolving power
JP2006228840A (ja) 軟x線光学素子及び軟x線光学機器