TW202005000A - Formation of staircase structure in 3D memory - Google Patents
Formation of staircase structure in 3D memory Download PDFInfo
- Publication number
- TW202005000A TW202005000A TW107123434A TW107123434A TW202005000A TW 202005000 A TW202005000 A TW 202005000A TW 107123434 A TW107123434 A TW 107123434A TW 107123434 A TW107123434 A TW 107123434A TW 202005000 A TW202005000 A TW 202005000A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- stepped
- steps
- stacked layers
- layers
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title description 13
- 238000000034 method Methods 0.000 claims abstract description 119
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 238000009966 trimming Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims description 82
- 239000000463 material Substances 0.000 claims description 70
- 238000003860 storage Methods 0.000 claims description 61
- 239000004020 conductor Substances 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 31
- 239000011810 insulating material Substances 0.000 claims description 17
- 238000001312 dry etching Methods 0.000 claims description 14
- 238000001459 lithography Methods 0.000 claims description 14
- 238000001039 wet etching Methods 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- -1 tungsten nitride Chemical class 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 229910021332 silicide Inorganic materials 0.000 claims description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 4
- 238000004544 sputter deposition Methods 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 description 36
- 229920002120 photoresistant polymer Polymers 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/50—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76816—Aspects relating to the layout of the pattern or to the size of vias or trenches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
- H01L23/5283—Cross-sectional geometry
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/41—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/50—EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53214—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53242—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53257—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53271—Conductive materials containing semiconductor material, e.g. polysilicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Drying Of Semiconductors (AREA)
- Weting (AREA)
Abstract
Description
本公開的實施例涉及三維(3D)記憶體件及其製作方法。Embodiments of the present disclosure relate to three-dimensional (3D) memory devices and methods of making the same.
透過改進製程技術、電路設計、程式設計演算法和製作製程使平面儲存單元縮放到更小的尺寸。然而,隨著儲存單元的特徵尺寸接近下限,平面製程和製作技術變得更有挑戰性,而且成本更高。因此,平面儲存單元的儲存密度接近上限。Through the improvement of process technology, circuit design, programming algorithms and manufacturing processes, the planar storage unit is scaled to a smaller size. However, as the feature size of the storage unit approaches the lower limit, the planar manufacturing process and manufacturing technology become more challenging and the cost is higher. Therefore, the storage density of the planar storage unit is close to the upper limit.
3D記憶體架構能夠解決平面儲存單元中的密度限制。3D記憶體架構包括記憶體陣列以及用於控制往返於記憶體陣列的信號的週邊裝置。典型的3D記憶體架構包括佈置在襯底之上的閘電極的堆疊層,其中,複數個半導體通道穿過字線並與字線交叉進入襯底。字線與半導體通道的交叉點形成了記憶體單元。The 3D memory architecture can solve the density limitation in planar storage units. The 3D memory architecture includes a memory array and peripheral devices for controlling signals to and from the memory array. A typical 3D memory architecture includes a stacked layer of gate electrodes arranged above a substrate, where a plurality of semiconductor channels pass through the word line and cross the word line into the substrate. The intersection of the word line and the semiconductor channel forms a memory cell.
3D記憶體架構需要電接觸方案以允許對每個個體記憶體單元的控制。一種電接觸規劃是形成連接至每個個體記憶體單元的字線的階梯結構。階梯結構已經被用於沿典型3D記憶體件中的半導體通道連接多於32條字線。The 3D memory architecture requires an electrical contact scheme to allow control of each individual memory unit. One electrical contact planning is to form a stepped structure of word lines connected to each individual memory cell. The ladder structure has been used to connect more than 32 word lines along the semiconductor channels in a typical 3D memory device.
隨著半導體技術的進步,諸如3D NAND記憶體件的3D記憶體件不斷地使更多的氧化物/氮化物(ON)層縮放。結果,用於形成這樣的階梯結構的現有多週期修整和蝕刻過程受到低生產量的困擾並且成本高昂。As semiconductor technology advances, 3D memory devices, such as 3D NAND memory devices, continue to scale more oxide/nitride (ON) layers. As a result, the existing multi-cycle trimming and etching processes used to form such stepped structures suffer from low throughput and are costly.
文中公開了一種用於形成3D記憶體件的階梯結構的方法的實施例。所公開的結構和方法提供了很多益處,包括但不限於降低了3D記憶體件的製作複雜性和製造成本。Disclosed herein is an embodiment of a method for forming a stepped structure of a 3D memory device. The disclosed structures and methods provide many benefits, including but not limited to reducing the manufacturing complexity and manufacturing cost of 3D memory devices.
在一些實施例中,一種用於形成3D記憶體件的方法包括:形成包括設置在襯底之上的複數個電介質層對的交替堆疊層,以及形成階梯區域,其中,所述階梯區域中的每一者具有在第一方向上具有第一數量(M)的臺階的階梯結構,其中,所述M個臺階中的每一者暴露所述交替堆疊層中的堆疊層的表面的部分,並且所述第一數量M為正數。所述方法還包括去除第一複數個階梯區域處的所述交替堆疊層的M個堆疊層。所述方法還包括:使用第一遮罩堆疊層去除所述階梯區域中的每一者處的交替堆疊層的2M個堆疊層的部分;對所述第一遮罩堆疊層進行修整;以及依次重複進行如下兩個過程:使用所述第一遮罩堆疊層去除所述階梯區域中的每一者處的交替堆疊層的2M個堆疊層的部分以及對所述第一遮罩堆疊層進行修整。In some embodiments, a method for forming a 3D memory device includes: forming an alternately stacked layer including a plurality of pairs of dielectric layers disposed above a substrate, and forming a stepped region, wherein, in the stepped region Each has a stepped structure having a first number (M) of steps in the first direction, wherein each of the M steps exposes a portion of the surface of the stacked layer of the alternating stacked layers, and The first number M is a positive number. The method also includes removing the M stacked layers of the alternately stacked layers at the first plurality of stepped regions. The method further includes: removing a portion of the 2M stacked layers of the alternately stacked layers at each of the stepped regions using the first mask stacked layer; trimming the first mask stacked layer; and in turn Repeat the following two processes: using the first mask stack layer to remove a portion of the 2M stacked layers of the alternately stacked layers at each of the stepped regions and trimming the first mask stack layer .
在一些實施例中,形成所述階梯區域還包括:在所述交替堆疊層之上形成第二遮罩堆疊層;使用微影製程使所述第二遮罩堆疊層圖案化,以在所述交替堆疊層之上限定階梯區域;使用所述第二遮罩堆疊層去除最頂部電介質層對的部分;對所述第二遮罩堆疊層進行修整;以及依次重複去除和修整直到形成所述M個臺階為止。In some embodiments, forming the stepped region further includes: forming a second mask stack layer on the alternating stack layer; using a lithography process to pattern the second mask stack layer to form A stepped area is defined above the alternately stacked layers; the second mask stack layer is used to remove a portion of the topmost dielectric layer pair; the second mask stack layer is trimmed; and the removal and trimming are repeated sequentially until the M is formed Steps.
在一些實施例中,去除所述交替堆疊層的M個堆疊層包括乾式蝕刻、濕式蝕刻或其組合。In some embodiments, removing the M stacked layers of the alternately stacked layers includes dry etching, wet etching, or a combination thereof.
在一些實施例中,對第一遮罩堆疊層進行修整包括使用等向性乾式蝕刻、濕式蝕刻或其組合來向內且遞增地蝕刻第一遮罩堆疊層。In some embodiments, trimming the first mask stack layer includes using isotropic dry etching, wet etching, or a combination thereof to etch the first mask stack layer inward and incrementally.
在一些實施例中,透過微影製程使所述第一遮罩堆疊層圖案化,以至少在第一方向上暴露階梯區域中的每一者的邊緣並且在第二方向上廣泛覆蓋階梯區域中的每一者。In some embodiments, the first mask stack layer is patterned through a lithography process to expose the edges of each of the step areas at least in the first direction and to cover the step areas widely in the second direction Everyone.
在一些實施例中,第一方向垂直於第二方向,並且第一方向和第二方向兩者都平行於襯底的頂表面。In some embodiments, the first direction is perpendicular to the second direction, and both the first and second directions are parallel to the top surface of the substrate.
在一些實施例中,所述方法還包括在所述襯底上的堆疊儲存區域中形成複數個豎直半導體通道,其中,所述階梯區域中的每一者與所述堆疊儲存區域相鄰。In some embodiments, the method further includes forming a plurality of vertical semiconductor channels in the stacked storage area on the substrate, wherein each of the stepped areas is adjacent to the stacked storage area.
在一些實施例中,微影製程將限定所述第一複數個階梯區域和其它階梯區域,其中,所述第一複數個階梯區域和所述其它階梯區域透過所述堆疊儲存區域分隔開。In some embodiments, the lithography process will define the first plurality of step areas and other step areas, wherein the first plurality of step areas and the other step areas are separated by the stacked storage area.
在一些實施例中,一種用於形成3D記憶體件的方法包括:在襯底之上形成交替堆疊層;在所述交替堆疊層的表面的第一部分之上去除所述交替堆疊層中的第一數量(M)的堆疊層,其中,M大於一;以及在所述交替堆疊層的所述表面的第二部分之上形成階梯結構,其中,所述表面的第二部分包括所述表面的第一部分,並且所述階梯結構中的每一者在第一方向上具有M個臺階,其中,所述M個臺階中的每一者是一級,從而暴露所述交替堆疊層中的堆疊層的表面的部分。In some embodiments, a method for forming a 3D memory device includes: forming an alternately stacked layer over a substrate; removing the first of the alternately stacked layers over a first portion of the surface of the alternately stacked layer A number (M) of stacked layers, where M is greater than one; and a stepped structure is formed above the second portion of the surface of the alternately stacked layers, wherein the second portion of the surface includes the surface The first part, and each of the stepped structures has M steps in the first direction, wherein each of the M steps is one level, thereby exposing the stacked layers of the alternating stacked layers The part of the surface.
在一些實施例中,所述方法還包括依次重複如下兩個過程:使用第一遮罩堆疊層來去除所述階梯結構中的每一者處的所述交替堆疊層中的2M個堆疊層以及對第一遮罩堆疊層進行修整。In some embodiments, the method further includes sequentially repeating the following two processes: using a first mask stacked layer to remove 2M stacked layers of the alternate stacked layers at each of the stepped structures and Trim the first mask stack layer.
在一些實施例中,透過微影製程使所述第一遮罩堆疊層圖案化,以覆蓋每個階梯結構的部分。In some embodiments, the first mask stack layer is patterned through a lithography process to cover a portion of each step structure.
在一些實施例中,形成所述交替堆疊層包括使用化學氣相沉積、物理氣相沉積、等離子體增強CVD、濺射、金屬有機化學氣相沉積、原子層沉積或其組合來沉積所述層。In some embodiments, forming the alternately stacked layers includes depositing the layers using chemical vapor deposition, physical vapor deposition, plasma enhanced CVD, sputtering, metal organic chemical vapor deposition, atomic layer deposition, or a combination thereof .
在一些實施例中,在所述襯底上形成交替堆疊層包括在所述襯底上設置複數個電介質層對。In some embodiments, forming alternating stacked layers on the substrate includes providing a plurality of pairs of dielectric layers on the substrate.
在一些實施例中,形成所述交替堆疊層包括在豎直方向上設置交替的導體/電介質層對。In some embodiments, forming the alternately stacked layers includes arranging alternating pairs of conductor/dielectric layers in the vertical direction.
在一些實施例中,3D記憶體件包括設置在襯底之上的交替堆疊層;包括複數個豎直半導體通道的儲存結構;與所述儲存結構相鄰的第一階梯區域;與所述儲存結構相鄰的第二階梯區域,其中,第二階梯區域透過所述儲存結構與所述第一階梯區域水平分隔開;以及設置在第一和第二階梯區域中的每一者處以暴露所述交替堆疊層中的複數個堆疊層的部分的階梯結構,其中,所述階梯結構包括第一方向上的複數個臺階和第二方向上的第一數量(M)的臺階,其中,所述第一方向上的臺階中的每一者具有2M級。In some embodiments, the 3D memory device includes alternating stacked layers disposed above the substrate; a storage structure including a plurality of vertical semiconductor channels; a first stepped region adjacent to the storage structure; and the storage A second stepped region adjacent to the structure, wherein the second stepped region is horizontally separated from the first stepped region by the storage structure; and provided at each of the first and second stepped regions to expose the A stepped structure of a portion of a plurality of stacked layers in an alternately stacked layer, wherein the stepped structure includes a plurality of steps in a first direction and a first number (M) of steps in a second direction, wherein, the Each of the steps in the first direction has a 2M level.
在一些實施例中,第一方向垂直於第二方向,並且第一方向和第二方向兩者都平行於襯底的頂表面。In some embodiments, the first direction is perpendicular to the second direction, and both the first and second directions are parallel to the top surface of the substrate.
在一些實施例中,所述階梯結構的第二方向上的臺階中的每一者是一級。In some embodiments, each of the steps in the second direction of the stepped structure is one level.
在一些實施例中,第二階梯區域中的階梯結構的最頂部堆疊層比第一階梯區域中的最頂部堆疊層低M級。In some embodiments, the topmost stacked layer of the stepped structure in the second stepped region is M levels lower than the topmost stacked layer in the first stepped region.
在一些實施例中,所述交替堆疊層中的每個堆疊層包括絕緣材料層和犧牲材料層。In some embodiments, each of the alternately stacked layers includes an insulating material layer and a sacrificial material layer.
在一些實施例中,所述交替堆疊層中的每個堆疊層包括絕緣材料層和導電材料層。In some embodiments, each of the alternately stacked layers includes an insulating material layer and a conductive material layer.
在一些實施例中,所述絕緣材料層包括氧化矽或氧化鋁,所述犧牲材料包括多晶矽、氮化矽、多晶鍺、多晶鍺矽或其組合。In some embodiments, the insulating material layer includes silicon oxide or aluminum oxide, and the sacrificial material includes polycrystalline silicon, silicon nitride, polycrystalline germanium, polycrystalline germanium silicon, or a combination thereof.
在一些實施例中,所述導電材料層包括多晶矽、矽化物、鎳、鈦、鉑、鋁、氮化鈦、氮化鉭、氮化鎢或其組合。In some embodiments, the conductive material layer includes polysilicon, silicide, nickel, titanium, platinum, aluminum, titanium nitride, tantalum nitride, tungsten nitride, or a combination thereof.
本領域技術人員根據本公開的說明、權利要求和附圖能夠理解本公開的其它方面。Those skilled in the art can understand other aspects of the present disclosure based on the description, claims, and drawings of the present disclosure.
儘管對具體配置和佈置進行了討論,但應當理解,這只是出於示例性目的而進行的。相關領域中的技術人員將認識到,可以使用其它配置和佈置而不脫離本公開的精神和範圍。對相關領域的技術人員顯而易見的是,本公開還可以用於多種其它應用中。Although specific configurations and arrangements have been discussed, it should be understood that this is for exemplary purposes only. Those skilled in the relevant art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the present disclosure. It will be apparent to those skilled in the relevant art that the present disclosure can also be used in a variety of other applications.
要指出的是,在說明書中提到“一個實施例”、“實施例”、“示例性實施例”、“一些實施例”等指示所述的實施例可以包括特定特徵、結構或特性,但未必每個實施例都包括該特定特徵、結構或特性。此外,這樣的短語未必是指同一個實施例。另外,在結合實施例描述特定特徵、結構或特性時,結合其它實施例(無論是否明確描述)實現這種特徵、結構或特性應在相關領域技術人員的知識範圍內。It should be noted that references to "one embodiment", "embodiments", "exemplary embodiments", "some embodiments", etc. in the specification indicate that the described embodiments may include specific features, structures or characteristics, but Not every embodiment includes this particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. In addition, when a specific feature, structure, or characteristic is described in conjunction with an embodiment, it should be within the knowledge of those skilled in the relevant art to implement such feature, structure, or characteristic in combination with other embodiments (whether or not explicitly described).
通常,可以至少部分從上下文中的使用來理解術語。例如,至少部分取決於上下文,本文中使用的術語“一個或複數個”可以用於描述單數意義的特徵、結構或特性,或者可以用於描述複數意義的特徵、結構或特性的組合。類似地,至少部分取決於上下文,諸如“一”或“所述”的術語同樣可以被理解為傳達單數使用或傳達複數使用。此外,可以將術語“基於”理解為未必意在傳達排他性的一組因素,並且相反可以允許存在未必明確描述的額外因素,其同樣至少部分地取決於上下文上下文。Generally, terminology can be understood at least in part from use in context. For example, depending at least in part on the context, the term "one or plural" as used herein may be used to describe features, structures, or characteristics in the singular, or may be used to describe combinations of features, structures, or characteristics in the plural. Similarly, depending at least in part on the context, terms such as "a" or "said" can also be understood to convey singular usage or plural usage. Furthermore, the term "based on" may be understood as a set of factors that are not necessarily intended to convey an exclusivity, and on the contrary may allow additional factors that are not necessarily explicitly described, which are also at least partially dependent on the context.
應當容易理解,本公開中的“在…上”、“在…上方”和“在…之上”的含義應當以最寬方式被解讀,以使得“在…上”不僅表示“直接在”某物“上”而且還包括在某物“上”且其間有居間特徵或層的含義。此外,“在…上方”或“在…之上”不僅表示“在”某物“上方”或“之上”的含義,而且還可以包括其“在”某物“上方”或“之上”且其間沒有居間特徵或層(即,直接在某物上)的含義。It should be easily understood that the meanings of "on", "above", and "on" in this disclosure should be interpreted in the broadest way so that "on" not only means "directly on" The thing "on" also includes something on "on" with intervening features or layers in between. In addition, "above" or "above" not only means "above" or "above" something, but also includes "above" or "above" something. And there is no meaning of intervening features or layers (ie, directly on something).
此外,諸如“在…之下”、“在…下方”、“下部”、“在…上方”、“上部”等空間相關術語在本文中為了描述方便可以用於描述一個元件或特徵與另一個或複數個元件或特徵的關係,如在附圖中示出的。空間相關術語旨在涵蓋除了在附圖所描繪的取向之外的在設備使用或步驟中的不同取向。設備可以以另外的方式被定向(旋轉90度或在其它取向),並且本文中使用的空間相關描述詞可以類似地被相應解釋。In addition, space-related terms such as "below", "below", "lower", "above", "upper", etc. are used herein to describe one element or feature and another for convenience of description Or the relationship of multiple elements or features, as shown in the drawings. Spatially related terms are intended to cover different orientations in the use or steps of the device than those depicted in the drawings. The device can be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially related descriptors used herein can be similarly interpreted accordingly.
如本文中使用的,術語“襯底”是指向其上增加後續材料的材料。襯底包括頂表面和底表面。襯底的頂表面是形成半導體器件的地方,並且因此半導體器件形成於襯底的頂側。底表面與頂表面相對,並且因此襯底的底側與襯底的頂側相對。可以對襯底自身進行圖案化。增加在襯底的頂部上的材料可以被圖案化或可以保持不被圖案化。此外,襯底可以包括寬範圍的半導體材料,例如矽、鍺、砷化鎵、磷化銦等。替代地,襯底可以由諸如玻璃、塑膠或藍寶石晶圓的非導電材料製成。As used herein, the term "substrate" refers to a material on which subsequent materials are added. The substrate includes a top surface and a bottom surface. The top surface of the substrate is where the semiconductor device is formed, and therefore the semiconductor device is formed on the top side of the substrate. The bottom surface is opposite the top surface, and therefore the bottom side of the substrate is opposite the top side of the substrate. The substrate itself can be patterned. The material added on top of the substrate may be patterned or may remain unpatterned. In addition, the substrate may include a wide range of semiconductor materials, such as silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate may be made of a non-conductive material such as glass, plastic or sapphire wafer.
如本文中使用的,術語“層”是指包括具有厚度的區域的材料部分。層具有頂側和底側,其中,底側是相對接近襯底的層的一側,並且頂側是相對遠離襯底的層。層可以在下方或上方結構的整體之上延伸,或者可以具有小於下方或上方結構範圍的範圍。此外,層可以是厚度小於連續結構的厚度的均質或非均質連續結構的區域。例如,層可以位於在連續結構的頂表面和底表面之間或在頂表面和底表面處的任何水平面組之間。層可以水平、垂直和/或沿傾斜表面延伸。襯底可以是層,其中可以包括一個或複數個層,和/或可以在其上、其上方和/或其下方具有一個或複數個層。層可以包括複數個層。例如,互連層可以包括一個或複數個導體和接觸層(其中形成觸點、互連線和/或通孔)和一個或複數個電介質層。As used herein, the term "layer" refers to a portion of material that includes regions with thickness. The layer has a top side and a bottom side, where the bottom side is the side of the layer that is relatively close to the substrate, and the top side is the layer that is relatively far from the substrate. The layer can extend over the entirety of the underlying or superstructure, or can have a range that is less than the extent of the underlying or superstructure. In addition, the layer may be a region of a homogeneous or heterogeneous continuous structure with a thickness less than that of the continuous structure. For example, the layer may be located between the top and bottom surfaces of the continuous structure or between any horizontal plane groups at the top and bottom surfaces. The layer may extend horizontally, vertically and/or along inclined surfaces. The substrate may be a layer, which may include one or a plurality of layers, and/or may have one or a plurality of layers on, above, and/or below it. The layer may include a plurality of layers. For example, the interconnect layer may include one or a plurality of conductors and contact layers (in which contacts, interconnect lines and/or vias are formed) and one or a plurality of dielectric layers.
如本文使用的,術語“標稱/標稱地”是指在產品或過程的設計階段期間設置的用於部件或過程步驟的特性或參數的期望或目標值,以及高於和/或低於期望值的值的範圍。值的範圍可能是由於製造過程或容限中的輕微變化導致的。如本文使用的,術語“關於”指示可以基於與主題半導體器件相關聯的特定技術節點而變化的給定量的值。基於特定技術節點,術語“關於”可以指示給定量的值,其例如在值的10%-30%(例如,值的±10%、±20%或±30%)內變化。As used herein, the term “nominal/nominally” refers to a desired or target value of a characteristic or parameter for a component or process step set during the design phase of a product or process, and above and/or below The range of expected values. The range of values may be due to slight changes in the manufacturing process or tolerances. As used herein, the term "about" indicates a given amount of value that may vary based on the specific technology node associated with the subject semiconductor device. Based on a particular technology node, the term "about" may indicate a given amount of value, which varies, for example, within 10%-30% of the value (eg, ±10%, ±20%, or ±30% of the value).
如本文使用的,術語“3D記憶體件”是指處於橫向取向的襯底上的具有豎直取向的儲存單元電晶體串(在本文中被稱為“記憶體串”,例如NAND串)的半導體器件,以使得所述記憶體串相對於襯底在豎直方向上延伸。如本文使用的,術語“豎直/豎直地”是指名義上垂直於襯底的橫向表面。As used herein, the term "3D memory device" refers to a string of vertically aligned memory cell transistors (referred to herein as a "memory string", such as a NAND string) on a laterally oriented substrate A semiconductor device so that the memory string extends in a vertical direction relative to the substrate. As used herein, the term "vertically/vertically" refers to a lateral surface that is nominally perpendicular to the substrate.
在一些實施例中,NAND串或3D記憶體件包括豎直延伸穿過複數個導體/電介質層對的半導體通道(例如,矽通道)。複數個導體/電介質層對在文中又被稱為“交替的半導體/電介質堆疊層”。交替的導體/電介質堆疊層中的導體層可以被用作字線(電連接一個或複數個控制閘)。字線與半導體通道的交叉點形成了儲存單元。豎直取向的記憶體串需要導電材料(字線板或控制閘)與存取線(例如,字線)之間的電連接,以使得能夠唯一地選擇沿記憶體串的或處於3D記憶體件中的儲存單元中的每一者以用於寫入或讀取功能。In some embodiments, NAND strings or 3D memory devices include semiconductor channels (eg, silicon channels) that extend vertically through a plurality of conductor/dielectric layer pairs. The multiple conductor/dielectric layer pairs are also referred to herein as "alternating semiconductor/dielectric stack layers". The conductor layers in the alternating conductor/dielectric stack can be used as word lines (to electrically connect one or more control gates). The intersection of the word line and the semiconductor channel forms a memory cell. Vertically oriented memory strings require electrical connections between conductive materials (word line boards or control gates) and access lines (eg, word lines) to enable unique selection along the memory string or in 3D memory Each of the storage units in the file is used for writing or reading functions.
在3D記憶體件架構中,用於儲存資料的儲存單元是豎直堆疊的,以形成堆疊儲存結構。3D記憶體件可以包括形成於堆疊儲存結構的一個或複數個側上的階梯結構,以用於(例如)字線扇出的目的,其中,堆疊儲存結構包括複數個半導體通道,其中,半導體通道可以是豎直或水平的。隨著對更高儲存容量的需求持續增大,堆疊儲存結構的豎直級的數量也增大。相應地,需要更厚的遮罩層(例如,光阻(PR)層)來蝕刻具有增多的級的階梯結構。然而,遮罩層厚度的增大可以使對階梯結構的蝕刻控制更具有挑戰性。In the 3D memory device architecture, storage units for storing data are vertically stacked to form a stacked storage structure. The 3D memory device may include a stepped structure formed on one or a plurality of sides of the stacked storage structure for, for example, word line fan-out purposes, wherein the stacked storage structure includes a plurality of semiconductor channels, wherein the semiconductor channels It can be vertical or horizontal. As the demand for higher storage capacity continues to increase, the number of vertical stages of stacked storage structures also increases. Accordingly, a thicker mask layer (for example, a photoresist (PR) layer) is required to etch a stepped structure having an increased number of levels. However, the increase in the thickness of the mask layer can make the etching control of the stepped structure more challenging.
在本公開中,階梯結構是指一組表面,其包括至少兩個水平表面(例如,沿x-y平面)和至少兩個(例如,第一和第二)豎直表面(例如,沿z軸),從而使每個水平表面鄰接至從該水平表面的第一邊緣向上延伸的第一豎直表面,並且鄰接至從該水平表面的第二邊緣向下延伸的第二豎直表面。所述水平表面中的每一者被稱為階梯結構的“臺階”或“階梯”。在本公開中,水平方向可以指平行於襯底(例如,提供用於在其上形成結構的製作平臺的襯底)的頂表面的方向(例如,x軸或y軸),並且豎直方向可以指垂直於所述結構的頂表面的方向(例如,z軸)。In this disclosure, a stepped structure refers to a set of surfaces that includes at least two horizontal surfaces (eg, along the xy plane) and at least two (eg, first and second) vertical surfaces (eg, along the z-axis) , So that each horizontal surface abuts the first vertical surface extending upward from the first edge of the horizontal surface, and abuts the second vertical surface extending downward from the second edge of the horizontal surface. Each of the horizontal surfaces is called a "step" or "step" of a stepped structure. In the present disclosure, the horizontal direction may refer to a direction (for example, x-axis or y-axis) parallel to the top surface of a substrate (for example, a substrate providing a fabrication platform on which a structure is formed), and a vertical direction It may refer to a direction perpendicular to the top surface of the structure (eg, z-axis).
階梯結構可以透過使用形成於電介質堆疊層之上的遮罩層反復蝕刻電介質堆疊層而由電介質堆疊層形成。在一些實施例中,遮罩層可以包括光阻(PR)層。在本公開中,電介質堆疊層包括複數個交替佈置的電介質層對,並且每個電介質層對的厚度是一級。換言之,電介質層對中的每一者在豎直方向上具有一級的高度。在本公開中,可互換使用的術語“階梯”和“臺階”是指階梯結構的一級或多級,並且臺階(或階梯)暴露電介質層對的表面的部分。在一些實施例中,電介質層對包括交替的第一材料層和第二材料層。在一些實施例中,第一材料層包括絕緣材料層。在一些實施例中,第二材料層包括犧牲材料層或導電材料層。在一些實施例中,一個電介質層對中的第一材料層和第二材料層可以在標稱上具有相同的處於襯底之上的高度,使得一組可以形成一個臺階。在階梯結構的形成期間,對遮罩層進行修整(例如,從電介質堆疊層的邊界向內且遞增地蝕刻),並將其用作蝕刻遮罩,從而對電介質堆疊層的暴露部分進行蝕刻。受到修整的遮罩層的量可以與階梯的尺寸直接相關(例如,由其確定)。可以使用適當的蝕刻(例如,等向性乾式蝕刻或者濕式蝕刻)獲得對遮罩層的修整。可以接連形成並修整一個或複數個遮罩層,以形成階梯結構。可以在對遮罩層進行修整之後,使用適當的蝕刻劑蝕刻每個電介質層對,以去除第一材料層和第二材料層兩者的部分。在形成階梯結構之後,可以去除遮罩層。在一些實施例中,第二材料層是導電材料層,並且因此可以是3D記憶體結構的閘電極(或字線)。在一些實施例中,階梯結構的第二材料層是犧牲材料層,並且之後能夠利用金屬/導體層來替換,以形成3D記憶體結構的閘電極(或字線)。The stepped structure may be formed of a dielectric stack layer by repeatedly etching the dielectric stack layer using a mask layer formed on the dielectric stack layer. In some embodiments, the mask layer may include a photoresist (PR) layer. In the present disclosure, the dielectric stack layer includes a plurality of alternately arranged pairs of dielectric layers, and the thickness of each dielectric layer pair is one level. In other words, each of the pair of dielectric layers has a height of one level in the vertical direction. In the present disclosure, the terms "step" and "step" are used interchangeably to refer to one or more steps of a step structure, and the step (or step) exposes a portion of the surface of the pair of dielectric layers. In some embodiments, the pair of dielectric layers includes alternating layers of first and second materials. In some embodiments, the first material layer includes an insulating material layer. In some embodiments, the second material layer includes a sacrificial material layer or a conductive material layer. In some embodiments, the first material layer and the second material layer in a dielectric layer pair may nominally have the same height above the substrate, so that one group may form a step. During the formation of the stepped structure, the mask layer is trimmed (eg, etched inwardly and incrementally from the boundary of the dielectric stack layer) and used as an etching mask, thereby etching the exposed portion of the dielectric stack layer. The amount of masking layer that is trimmed can be directly related to the size of the step (eg, determined by it). Appropriate etching (eg, isotropic dry etching or wet etching) may be used to obtain trimming of the mask layer. One or more mask layers can be formed and trimmed one after another to form a stepped structure. After trimming the mask layer, each dielectric layer pair may be etched using an appropriate etchant to remove portions of both the first material layer and the second material layer. After the stepped structure is formed, the mask layer can be removed. In some embodiments, the second material layer is a conductive material layer, and thus may be a gate electrode (or word line) of a 3D memory structure. In some embodiments, the second material layer of the stepped structure is a sacrificial material layer, and can then be replaced with a metal/conductor layer to form a gate electrode (or word line) of the 3D memory structure.
階梯結構能夠提供互連方案作為字線扇出,以在互連形成過程之後控制半導體通道。階梯結構中的電介質層對中的每一者與半導體通道的部分交叉。在利用金屬/導體層替換犧牲層中的每一者之後,階梯結構中的導電材料層中的每一者能夠控制半導體通道的部分。互連形成過程的示例包括在階梯結構之上設置或者以其它方式沉積諸如氧化矽、旋塗電介質或者硼磷矽酸鹽玻璃(BPSG)的第二絕緣材料,並對第二絕緣材料平面化。階梯結構中的導電材料層中的每一者被暴露以在平面化的第二絕緣材料中打開複數個接觸孔,並且利用諸如氮化鈦和鎢的一種或多種導電材料填充所述接觸孔,以形成複數個VIA(豎直互連接入)結構。The ladder structure can provide an interconnection scheme as a word line fan-out to control the semiconductor channel after the interconnect formation process. Each of the pair of dielectric layers in the stepped structure crosses a portion of the semiconductor channel. After replacing each of the sacrificial layers with a metal/conductor layer, each of the conductive material layers in the stepped structure can control the portion of the semiconductor channel. Examples of the interconnect formation process include disposing or otherwise depositing a second insulating material such as silicon oxide, spin-on dielectric or borophosphosilicate glass (BPSG) over the stepped structure, and planarizing the second insulating material. Each of the conductive material layers in the stepped structure is exposed to open a plurality of contact holes in the planarized second insulating material, and the contact holes are filled with one or more conductive materials such as titanium nitride and tungsten, In order to form a plurality of VIA (Vertical Interconnect Access) structure.
在本公開中,術語“SC”是指階梯結構內的電介質層對。在一些實施例中,階梯結構包括交替堆疊層,每個堆疊層表示SC層。In this disclosure, the term "SC" refers to a pair of dielectric layers within a stepped structure. In some embodiments, the stepped structure includes alternating stacked layers, each stacked layer representing an SC layer.
圖1示出了具有形成於襯底(未示出)之上(例如,形成於襯底的頂側上)的複數個SC層的結構100。SC層的每一者可以包括具有第一材料層102和第二材料層104的電介質層對。對遮罩堆疊層材料(例如,光阻層)進行沉積和圖案化,以在SC層之上形成遮罩堆疊層152。遮罩堆疊層152限定了SC層的區域101和區域103。區域101處的SC層的頂表面被暴露,並且區域103處的SC層被遮罩堆疊層152覆蓋。在一些實施例中,遮罩堆疊層152可以包括光阻或者基於碳的聚合物材料。在一些實施例中,區域101和區域103兩者是使用包括微影和蝕刻製程在內的一種或多種製程透過遮罩堆疊層152限定的。FIG. 1 shows a
第一材料層102可以是包括氧化矽的絕緣層,並且第二材料層104可以是包括氮化矽的犧牲層,反之亦然。在一些實施例中,接下來利用導電材料層(例如,閘極金屬材料)替換犧牲層,以形成3D記憶體件的字線。在一些實施例中,第二材料層可以是導電材料層。The
在一些實施例中,在其上形成結構100的襯底可以包括用於支撐3D記憶體結構的任何適當材料。例如,襯底可以包括矽、矽鍺、碳化矽、絕緣體上矽(SOI)、絕緣體上鍺(GOI)、玻璃、氮化鎵、砷化鎵、任何適當III-V化合物、任何其它適當材料和/或它們的組合。In some embodiments, the substrate on which the
在一些實施例中,每個SC層的厚度可以彼此相同或不同。在一些實施例中,犧牲層包括不同於絕緣材料層的任何適當材料。例如,犧牲層可以包括多晶矽、氮化矽、多晶鍺、多晶鍺矽、任何其它適當材料和/或它們的組合中的一者或多者。在一些實施例中,犧牲層可以包括氮化矽。絕緣層可以包括任何適當的絕緣材料,例如,氧化矽或氧化鋁。導電材料層可以包括任何適當導電材料。在一些實施例中,導電材料層可以包括多晶矽、矽化物、鎳、鈦、鉑、鋁、氮化鈦、氮化鉭、氮化鎢、任何其它適當材料和/或它們的組合中的一者或多者。絕緣材料層、犧牲材料層和導電材料層的形成可以包括任何適當的沉積方法,例如,化學氣相沉積(CVD)、物理氣相沉積(PVD)、電漿輔助CVD(PECVD)、濺射、金屬有機化學氣相沉積(MOCVD)、原子層沉積(ALD)、任何其它適當沉積方法和/或它們的組合。在一些實施例中,絕緣層、犧牲層和導電材料層均由CVD形成。In some embodiments, the thickness of each SC layer may be the same as or different from each other. In some embodiments, the sacrificial layer includes any suitable material other than an insulating material layer. For example, the sacrificial layer may include one or more of polycrystalline silicon, silicon nitride, polycrystalline germanium, polycrystalline germanium silicon, any other suitable material, and/or combinations thereof. In some embodiments, the sacrificial layer may include silicon nitride. The insulating layer may include any suitable insulating material, for example, silicon oxide or aluminum oxide. The conductive material layer may include any suitable conductive material. In some embodiments, the conductive material layer may include one of polysilicon, silicide, nickel, titanium, platinum, aluminum, titanium nitride, tantalum nitride, tungsten nitride, any other suitable material, and/or combinations thereof Or more. The formation of the insulating material layer, the sacrificial material layer, and the conductive material layer may include any suitable deposition method, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma assisted CVD (PECVD), sputtering, Metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), any other suitable deposition method, and/or combinations thereof. In some embodiments, the insulating layer, the sacrificial layer, and the conductive material layer are all formed by CVD.
參考圖2,階梯結構200是透過在結構100上創建臺階105(具有一級臺階的階梯)以及去除遮罩堆疊層152而形成的。在一些實施例中,在臺階105形成之後去除遮罩堆疊層152。臺階105具有一級,包括層246和248,並且臺階105是透過執行蝕刻過程以從由遮罩堆疊層152限定的第一區域101去除單個SC層的至少部分而形成的。在一些實施例中,蝕刻過程包括使用任何適當的蝕刻劑(例如,濕式蝕刻和/或乾式蝕刻)來依次去除第一材料層102和第二材料層104的部分。在一些實施例中,使用兩種不同蝕刻劑分別去除第一材料層102的部分和第二材料層104的部分。用於第一材料層102的蝕刻劑具有足夠高的相對於第二材料層104的蝕刻選擇性,反之亦然。相應地,下層SC層能夠起著蝕刻停止層的作用,從而僅對單個SC層進行圖案化/蝕刻。在一些實施例中,第一材料層和第二材料層是使用諸如反應離子蝕刻(RIE)或者其它乾式蝕刻的非等向性蝕刻來蝕刻的。在一些實施例中,蝕刻劑包括基於碳氟(CF4)的氣體或者基於六氟乙烷(C2F6)的氣體。在一些實施例中,使用(例如,定時濕式蝕刻製程的)一種蝕刻劑來去除第一材料層和第二材料層兩者,並且所述蝕刻劑包括磷酸。在各種實施例中,用於去除單個SC層的方法和蝕刻劑不應受本公開的實施例的限制。Referring to FIG. 2, the stepped
參考圖3,階梯結構300是透過對階梯結構200的頂表面的部分之上的遮罩堆疊層352進行圖案化而形成的。在一些實施例中,遮罩堆疊層352覆蓋臺階105。在一些實施例中,遮罩堆疊層352覆蓋區域101和區域103之間的邊界。在一些實施例中,遮罩堆疊層352可以包括光阻或者基於碳的聚合物材料,例如,光阻層。在一些實施例中,遮罩堆疊層352可以包括任何適當材料。Referring to FIG. 3, the stepped
圖4-圖5展現了利用蝕刻-修整過程的結構400和500,該過程包括蝕刻過程(圖4所示)和修整過程(圖5所示)。Figures 4-5
參考圖4,透過蝕刻過程從階梯結構300去除兩個相繼的SC層,從而創建具有兩級的第二臺階。在一些實施例中,蝕刻過程可以包括將蝕刻過程重複執行兩次。在一些實施例中,創建具有兩級的臺階。在一些實施例中,可以相繼執行兩次蝕刻過程,從而去除兩個相繼的SC層的部分,以在第一區域101內的層438、440、442和444上和/或在第二區域103內的層442、444、446和448上形成臺階。Referring to FIG. 4, two successive SC layers are removed from the
參考圖5,在對遮罩堆疊層352應用修整過程之後形成了遮罩堆疊層552。修整過程包括適當的蝕刻(例如,等向性乾式蝕刻或者濕式蝕刻),並且發生在與襯底表面平行的方向上。受到修整的遮罩層的量可以與階梯的橫向尺寸直接相關。在一些實施例中,遮罩堆疊層552覆蓋由蝕刻過程創建的第一臺階(圖2中所示)。Referring to FIG. 5, the
參考圖6,透過對階梯結構300重複執行蝕刻-修整過程、隨後剝除遮罩堆疊層352而形成交錯階梯結構600。在一些實施例中,重複的蝕刻-修整過程暴露了第二區域103處的奇SC層(例如,層102/104、層610/612、層618/620、層626/628、層634/636等)的頂表面的部分以及區域101處的偶SC層(例如,層606/608、層614/616、層622/624、層630/632、層638/640等)的頂表面的部分。在一些實施例中,可以在交錯階梯結構600的頂部處暴露最頂部的SC層(例如,層646/648)。在一些實施例中,在區域101和103兩者處暴露最頂部的SC層(例如,層646/648)。在一些實施例中,可以在區域101或者區域103處暴露SC層中的每一者。Referring to FIG. 6, a
圖7A-圖7B示出了根據本公開的一些實施例的3D記憶體件700的頂視圖以及對應截面圖表示。7A-7B show a top view and corresponding cross-sectional representation of a
參考圖7A,3D記憶體件700包括堆疊儲存結構區域760以及透過狹縫770分隔開的複數個階梯區域780和790。儘管圖7A示出了一個狹縫770,但是3D記憶體件700可以包括複數個狹縫。堆疊儲存結構區域760可以包括複數個半導體通道。在一些實施例中,階梯區域780和790分佈在與堆疊儲存結構區域760相鄰的不同區域。在一些實施例中,在平行於襯底表面的方向(例如,x方向)上,階梯區域780的每一者與階梯區域790的每一者透過堆疊儲存區域760分隔開。在一些實施例中,在互連形成過程之後,階梯區域780和790提供了字線扇出,從而沿堆疊儲存結構區域760中的半導體通道唯一地選擇儲存單元中的每一者。Referring to FIG. 7A, the
圖7B展現了沿圖7A中指定的線A-A'的階梯區域780的截面圖。在階梯區780中在襯底(未示出)之上形成複數個SC層720。複數個SC層720中的每一者可以由第一材料層和第二材料層的交替堆疊層構成。例如,SC層701在概念上等同於圖1所示的層102和層104的組合,等等。遮罩堆疊層750形成於SC層之上,並且在階梯區域780處覆蓋SC層720的頂表面。在一些實施例中,遮罩堆疊層750可以包括光阻或者基於碳的聚合物材料。在一些實施例中,階梯區域790的截面圖與階梯區域780的截面圖等同。FIG. 7B presents a cross-sectional view of the stepped
圖8A示出了當在階梯區域880和890的每一者處形成第一階梯結構之後的3D記憶體件800的頂視圖的一些實施例。第一階梯結構是透過在3D記憶體件700的階梯區域780處應用重複的蝕刻-修整過程而形成的。在一些實施例中,第一階梯結構在階梯區域880和890中的每一者處具有三個臺階,並且三個臺階中的每一者具有一級。結果,第一階梯暴露了三個最頂部的SC層的部分。在一些實施例中,第一階梯結構在階梯區域880和890中的每一者處具有第一數量(M)的臺階,並且M個臺階中的每一者是一級,其中,第一數量M大於2(M>2)。在一些實施例中,第一階梯結構未形成在堆疊儲存區域860處。FIG. 8A shows some embodiments of the top view of the
圖8B表示圖8A的3D視圖,其中,第一階梯結構在階梯區域880和890中的每一者處具有三個臺階(M=3)。如圖8B所示,第一階梯結構展現出三個臺階(M=3),並且三個臺階中的每一者是一級。在一些實施例中,在第一階梯中沿平行於襯底表面的水平方向(例如,沿y方向或者x方向)形成兩個以上的臺階(M>2),其中,第一階梯暴露M個最頂部的SC層的部分。FIG. 8B represents a 3D view of FIG. 8A in which the first step structure has three steps (M=3) at each of the
圖9A示出了當在複數個階梯區域980和990中的每一者處形成交織階梯結構之後的3D記憶體件900的頂視圖。交織階梯結構是透過在3D記憶體件800的階梯區域880和890中的每一者處的第一階梯結構上形成第二階梯結構而形成的(例如,將第二階梯結構疊加在第一階梯結構上)。第二階梯結構的形成包括使用在3D記憶體件800的頂表面之上形成並且圖案化的遮罩堆疊層(未示出)來應用重複的蝕刻-修整過程。在一些實施例中,遮罩堆疊層可以包括光阻或者基於碳的聚合物材料。遮罩堆疊層在第一方向(例如,x方向)上暴露階梯區域880和890中的每一者的邊緣,並且在第二方向(例如,y方向)上廣泛地覆蓋3D記憶體件800。在一些實施例中,第一方向垂直於第二方向,並且第一方向和第二方向兩者都平行於襯底的表面。結果,蝕刻-修整過程僅發生在圖9A的第一方向(例如,x方向)上。蝕刻-修整過程將去除M個相繼的SC層,並且因此可以包括重複的蝕刻過程或者任何其它濕式/乾式蝕刻過程。因此,在階梯區域980和990中的每一者處產生的交織階梯結構包括第一方向(例如,x方向)上的第二數量(N)的臺階以及第二方向(例如,y方向)上的M個臺階。第一方向上的N個臺階的每一者具有M級,並且第二方向上的M個臺階的每一者具有一級。之後去除遮罩堆疊層以暴露3D記憶體件900的頂表面。在一些實施例中,交錯階梯結構在階梯區域980中的每一者處具有第一方向(例如,x方向)上的四個臺階(N=4)和第二方向(例如,y方向)上的三個臺階(M=3)。在一些實施例中,交織階梯結構在階梯區域980和990中的每一者處具有第一方向(例如,x方向)上的兩個或者更多臺階(N≥2)。在一些實施例中,第二階梯結構未形成在堆疊儲存區域960處。9A shows a top view of the
圖9B表示實施例,其中,交織階梯結構在階梯區域980中的每一者處具有第一方向(例如,x方向)上的四個(N=4)臺階和第二方向(例如,y方向)上的三個臺階(M=3)。沿圖9A指定的線A-A'的截面圖展現了沿第一方向(例如,x方向)的階梯區域980。參考圖9B,沿第一方向(例如,x方向)示出了四個(N=4)臺階,並且形成了四個(N=4)臺階區域(在圖9A中由A1
-A4
指示),其中,四個(N=4)臺階中的每一者具有三個(M=3)級。由於區域A2
與區域A1
相鄰,因而區域A1
處的第一最頂部SC層(SC層912)比區域A2
處的第二最頂部SC層(SC層909)高三(M=3)級。在一些實施例中,在區域A2
中在第二方向(例如,y方向)上形成三個臺階(M=3),並且每個臺階的高度為一級,並且其最頂部SC層(例如,SC層909)比區域A1
處的最頂部SC層(例如,SC層912)低三級(M=3)。在一些實施例中,交織階梯結構在階梯區域980中的每一者處在第一方向(例如,x方向)上具有複數個臺階(例如,N=任何正數),並且第一方向上的複數個臺階中的每一者具有M級。在一些實施例中,階梯區域A3
和A4
具有與區域A1
和A2
相同或類似的結構。在一些實施例中,階梯區域990的截面圖與階梯區域980的截面圖等同。9B represents an embodiment in which the interleaved step structure has four (N=4) steps in a first direction (eg, x direction) and a second direction (eg, y direction) at each of the step regions 980 ) On the three steps (M=3). The cross-sectional view along the line AA′ designated in FIG. 9A exhibits the stepped
圖9C示出了3D記憶體件900的階梯區域980和990中的每一者處的交織階梯結構的示例性3D視圖。交織階梯結構包括第一方向(例如,x方向)上的N個臺階和第二方向(例如,y方向)上的M個臺階。第一方向上的N個臺階中的每一者具有M級,而第二方向上的M個臺階中的每一者具有一級。在一些實施例中,交織階梯結構具有第一方向(例如,x方向)上的二十四個臺階(N=24)和第二方向(例如,y方向)上的三個臺階(M=3),其中,第一方向上的臺階中的每一者具有三(M=3)級,並且第二方向上的臺階中的每一者具有一級。在一些實施例中,交織階梯結構具有第一方向(例如,x方向)上的第二數量(N)的臺階和第二方向(例如,y方向)上的第一數量(M)的臺階,其中,第一方向上的臺階中的每一者具有M級,並且第二方向上的臺階中的每一者具有一級。FIG. 9C shows an exemplary 3D view of the interleaved step structure at each of the
圖10-圖11C表示交錯並且交織的階梯結構的實施例。從3D記憶體件800開始,使用遮罩堆疊層(未示出)暴露第一複數個階梯區域(例如,階梯區域890)並覆蓋第二複數個階梯區域(例如,階梯區域880)。在一些實施例中,遮罩堆疊層可以包括光阻或者基於碳的聚合物材料。在一些實施例中,遮罩堆疊層覆蓋堆疊儲存區域860。應用蝕刻過程來去除所暴露的階梯區域處的M個相繼的SC層。結果,如圖10所示,透過遮罩堆疊層暴露的階梯區域1090處的最頂部SC層比階梯區域1080處的最頂部SC層低M級。然後,在蝕刻過程之後去除遮罩堆疊層。在一些實施例中,蝕刻過程可以是蝕刻過程的重複或者任何其它乾式/濕式蝕刻過程。Figures 10-11C show an embodiment of a stepped structure that is interleaved and interleaved. Beginning with the
圖11示出了在複數個階梯區域1180和1190中的每一者處具有交錯並且交織的階梯結構的3D記憶體件1100的頂視圖。交錯並且交織的階梯結構是透過在階梯區域1080和1090中的每一者處形成第三階梯結構而形成的。第三階梯結構的形成包括使用在3D記憶體件1000的頂表面之上形成並且圖案化的遮罩堆疊層(未示出)來應用重複的蝕刻-修整過程。在一些實施例中,遮罩堆疊層可以包括光阻或者基於碳的聚合物材料。遮罩堆疊層在第一方向(例如,x方向)上暴露階梯區域1080和1090中的每一者的邊緣,並且在第二方向(例如,y方向)上廣泛地覆蓋3D記憶體件1000。結果,蝕刻-修整過程大部分發生在圖11A的第一方向(例如,x方向)上。蝕刻-修整過程將去除兩倍的M(2M)個相繼的SC層,並且因此可以包括重複的蝕刻過程或者任何其它濕式/乾式蝕刻過程。因此,在階梯區域1180和1190中的每一者處產生的交錯並且交織的階梯結構包括第一方向(例如,x方向)上的總共第三數量(Q)的臺階,其中,Q個臺階中的每一者具有(2M)級。來自階梯區域1190的最頂部SC層比來自階梯區域1180的最頂部SC層低M級。之後去除遮罩堆疊層以暴露3D記憶體件1100。在一些實施例中,交錯並且交織的階梯結構在階梯區域1180和1190中的每一者處在第一方向(例如,x方向)上具有四個臺階(Q=4),並且四個臺階中的每一者具有(2M)級。在一些實施例中,交錯並且交織的階梯結構在階梯區域1180和1190中的每一者處具有第一方向(例如,x方向)上的兩個或更多臺階(Q≥2),並且Q個臺階中的每一者具有(2M)級。在一些實施例中,交錯並且交織的結構在3D記憶體件的階梯區域中的每一者處具有第一方向(例如,x方向)上的第三數量(Q)的臺階以及第二方向(例如,y方向)上的第一數量(M)的臺階,其中,第一方向上的Q個臺階中的每一者具有2M級,第二方向上的M個臺階中的每一者具有一級,並且第一複數個階梯區域處的最頂部SC層比第二複數個階梯區域處的最頂部SC層低M級。在一些實施例中,數量M、N和Q可以是任何正數。在一些實施例中,在互連形成過程之後,階梯區域1180之一和階梯區域1190之一提供了字線扇出,從而沿堆疊儲存結構區域1160中的半導體通道唯一地選擇儲存單元中的每一者。FIG. 11 shows a top view of a
圖11B和圖11C分別表示3D記憶體件1100的階梯區域1180和1190中的每一者處的交錯並且交織的階梯結構的示例性3D視圖。參考圖11B和圖11C,交錯並且交織的階梯結構具有第一方向(例如,x方向)上的四個(Q=4)臺階,並且Q個臺階中的每一者在階梯區域1180和1190中的每一者處具有第二方向(例如,y方向)上的六個臺階(2×M=2×3=6)。來自階梯區域1190的第一最頂部SC層(例如,層1120)比來自階梯區域1180的第二最頂部SC層(例如,層1122)低三級(M=3)。線A-A'、B-B'、C-C'和D-D'對應於圖11A中的那些線。在一些實施例中,階梯區域1190和1180中的每一者展現出交錯並且交織的階梯結構,該結構包括第一方向(例如,x方向)上的Q個臺階以及第二方向(例如,y方向)上的M個臺階。第一方向上的Q個臺階中的每一者具有(2M)級,而第二方向上的M個臺階中的每一者具有一級。階梯區域1190的至少其中之一比階梯區域1180的至少其中之一低M級。在一些實施例中,交錯並且交織的階梯結構具有第一方向(例如,x方向)上的五個臺階(Q=5)和第二方向(例如,y方向)上的三個臺階(M=3),其中,第一方向(例如,x方向)上的Q個臺階中的每一者具有六級(2×M=2×3=6),第二方向(例如,y方向)上的M個臺階中的每一者具有一級,並且階梯區域1190的至少其中之一比階梯區域1180的至少其中之一低三(M=3)級。在一些實施例中,交錯並且交織的階梯結構具有第一方向(例如,x方向)上的四個臺階(Q=4)和第二方向(例如,y方向)上的四個臺階(M=4),其中,第一方向(例如,x方向)上的Q個臺階中的每一者具有八級(2×M=2×4=8),第二方向(y方向)上的M個臺階中的每一者具有一級,並且階梯區域1190比階梯區域1180低四(M=4)級。在一些實施例中,在互連形成過程之後,階梯區域1180的至少其中之一和階梯區域1190的至少其中之一提供了字線扇出,從而沿堆疊儲存結構區域1160中的半導體通道唯一地選擇儲存單元中的每一者。11B and 11C represent exemplary 3D views of the interleaved and interlaced step structure at each of the
本公開的實施例還提供了一種用於形成3D記憶體件中的交錯並且交織的階梯結構的方法。圖12示出了根據一些實施例的用於形成3D記憶體件的示例性方法1200。可以使用方法1200的步驟形成圖1-圖11C中所示的記憶體件結構。應當理解,方法1200中所示的步驟不是窮舉的,並且也可以在所示步驟之前、之後或者之間執行其它步驟。在一些實施例中,示例性方法1200的一些步驟可以被省略或者可以包括此處為簡單起見而未描述的其它步驟。在一些實施例中,方法1200的步驟可以按照不同循序執行和/或可以存在變化。Embodiments of the present disclosure also provide a method for forming a staggered and interwoven step structure in a 3D memory piece. FIG. 12 illustrates an
在步驟1210中,提供用於形成3D記憶體件的襯底。所述襯底可以包括用於形成三維儲存結構的任何適當材料。例如,所述襯底可以包括矽、矽鍺、碳化矽、SOI、GOI、玻璃、氮化鎵、砷化鎵、塑膠板和/或其它適當III-V化合物。In
在步驟1220中,在襯底之上沉積交替堆疊層。交替堆疊層的每個堆疊層表示SC層。SC層可以包括具有第一材料層和第二材料層的電介質層對。在一些實施例中,第一材料層可以是絕緣層,並且第二材料層可以是犧牲層,反之亦然。在一些實施例中,第一材料層可以是絕緣層,並且第二材料層可以是導電材料層,反之亦然。犧牲層可以包括諸如氮化矽、多晶矽、多晶鍺、多晶鍺矽、任何其它適當材料和/或它們的組合的材料。絕緣層可以包括諸如氧化矽、氧化鋁或者其它適當材料的材料。導電材料層可以包括諸如鎢、氮化鈦、氮化鉭、氮化鎢、任何其它適當材料和/或它們的組合的材料。絕緣材料層、犧牲材料層和導電材料層中的每一者可以包括透過一種或多種薄膜沉積製程沉積的材料,所述製程包括但不限於CVD、PVD、ALD或者它們的任何組合。複數個SC層的示例可以是如上文在圖1中所述的交替層102和104。In
在步驟1230,使用遮罩堆疊層對堆疊儲存區域以及SC層的頂表面上的複數個階梯區域進行圖案化。階梯區域中的每一者與堆疊儲存區域相鄰。在一些實施例中,第一複數個階梯區域與複數個第二階梯區域在水平方向上被堆疊儲存區域隔開。在一些實施例中,使用包括微影在內的多種製程透過遮罩堆疊層對堆疊儲存區域和複數個階梯區域進行圖案化。在一些實施例中,遮罩堆疊層可以包括光阻或者基於碳的聚合物材料。堆疊儲存區域和複數個SC層的示例可以是如上文在圖7A中所述的區域760、780和790。在階梯區域中的每一者處形成第一階梯結構。第一階梯結構可以是使用遮罩堆疊層透過重複執行蝕刻-修整過程而在階梯區域中的每一者處形成的。蝕刻-修整過程包括蝕刻過程和修整過程。在一些實施例中,蝕刻過程蝕刻SC層的部分。在一些實施例中,蝕刻過程蝕刻複數個SC層的部分。在一些實施例中,在蝕刻過程中使用一種或多種蝕刻劑,並且蝕刻劑中的每一者對第一材料層進行蝕刻的蝕刻速率比對第二材料層進行蝕刻的蝕刻速率高得多,反之亦然(例如,第一材料層和第二材料層之間的高蝕刻選擇性)。在一些實施例中,由於第一材料層和第二材料層之間的高蝕刻選擇性,蝕刻過程能夠精確地控制對SC層的蝕刻。修整過程包括對遮罩堆疊層的適當蝕刻(例如,等向性乾式蝕刻或者濕式蝕刻),並且所述修整過程發生在與襯底的表面平行的方向上。受到修整的遮罩堆疊層的量與第一階梯結構的橫向尺寸直接相關。在重複的蝕刻-修整過程之後,所得到的第一階梯結構包括第一數量(M)的臺階,其中,M個臺階中的每一者是一級。蝕刻-修整過程可以參考圖1-圖6的描述。第一階梯結構的形成可以參考圖8A-圖8B的描述。At
在步驟1240,對遮罩堆疊層進行圖案化以暴露第一複數個階梯區域,並且覆蓋第二複數個階梯區域。在一些實施例中,遮罩堆疊層覆蓋堆疊儲存區域。在一些實施例中,透過微影製程對遮罩堆疊層進行圖案化。應用與蝕刻-修整過程中使用的蝕刻過程類似的蝕刻過程從所暴露的第一階梯區域中去除第一數量(M)的SC層。在蝕刻過程之後去除遮罩堆疊層。結果,第一複數個階梯區域處的最頂部SC層比第二複數個階梯區域處的最頂部SC層低M級。步驟1250的示例可以參考圖10的描述。At
在步驟1250,對遮罩堆疊層進行圖案化以在第一方向(例如,x方向)上暴露階梯區域中的每一者的邊緣。在一些實施例中,遮罩堆疊層在第二方向(例如,y方向)上廣泛地覆蓋3D記憶體件。可以使用遮罩堆疊層透過重複的蝕刻-修整過程形成交錯並且交織的階梯結構。蝕刻-修整過程包括修整過程和蝕刻過程,蝕刻過程蝕刻兩倍的M(2M)個SC層。由於遮罩堆疊層在第二方向上廣泛地覆蓋3D記憶體件,因而整個重複的蝕刻-修整過程大部分發生在第一方向。之後,在完成重複的蝕刻-修整過程之後去除遮罩堆疊層。交錯並且交織的階梯結構的形成可以參考圖11A-圖11C的描述。At
最終的交錯並且交織的階梯結構包括第一水平方向上的複數個臺階和第二水平方向上的M個臺階。第一水平方向上的複數個臺階中的每一者的高度為2M級,第二水平方向上的M個臺階中的每一者的高度為一級。第一複數個階梯區域處的最頂部SC層比第二複數個階梯區域處的最頂部SC層低M級。第一水平方向垂直於第二水平方向,並且第一和第二水平方向兩者平行於襯底表面。第一複數個階梯區域與第二複數個階梯區域透過堆疊儲存區域隔開。結果,來自第一複數個階梯區域之一和第二複數個階梯區域之一的交錯並且交織的階梯結構能夠暴露每個SC層的頂表面的部分。The final interleaved and interleaved step structure includes a plurality of steps in the first horizontal direction and M steps in the second horizontal direction. The height of each of the plurality of steps in the first horizontal direction is 2M levels, and the height of each of the M steps in the second horizontal direction is one level. The topmost SC layer at the first plurality of step areas is lower than the topmost SC layer at the second plurality of step areas by M levels. The first horizontal direction is perpendicular to the second horizontal direction, and both the first and second horizontal directions are parallel to the substrate surface. The first plurality of step areas and the second plurality of step areas are separated by the stacked storage area. As a result, the interleaved and interlaced step structure from one of the first plurality of step regions and one of the second plurality of step regions can expose a portion of the top surface of each SC layer.
在步驟1260,在堆疊儲存區域中形成包括半導體通道的儲存結構。其它處理步驟可以包括在3D記憶體件的階梯區域中的每一者處形成互連結構。在一些實施例中,半導體通道被形成並且延伸穿過堆疊儲存區域處的SC層。透過採用導體層替換每個SC層的犧牲材料層而形成3D記憶體件的字線。第一複數個階梯區域之一和第二複數個階梯區域之一處的交錯並且交織的階梯結構暴露了3D記憶體件處的每條字線的部分,這允許互連結構(例如,VIA結構)提供每條字線的扇出,以控制半導體通道中的每一者。At
本公開描述了3D記憶體件及其製作方法的各種實施例。在一些實施例中,3D記憶體件包括設置在襯底上的交替堆疊層、包括複數個豎直半導體通道的儲存結構、與儲存結構相鄰的第一複數個階梯區域以及與儲存結構相鄰的第二複數個階梯區域,其中,第一複數個和第二複數個階梯區域被儲存結構水平隔開。第一階梯區域和第二階梯區域中的每一者還包括具有第一方向上的第一數量(M)的一級臺階和第二方向上的複數個M級臺階的階梯結構。第二階梯區域中的階梯結構的最頂部堆疊層比第一階梯區域中的最頂部堆疊層低M級。The present disclosure describes various embodiments of 3D memory devices and methods of making the same. In some embodiments, the 3D memory device includes alternating stacked layers disposed on the substrate, a storage structure including a plurality of vertical semiconductor channels, a first plurality of stepped regions adjacent to the storage structure, and adjacent to the storage structure The second plurality of step regions, wherein the first plurality and the second plurality of step regions are horizontally separated by the storage structure. Each of the first stepped region and the second stepped region also includes a stepped structure having a first number (M) of first-level steps in the first direction and a plurality of M-level steps in the second direction. The topmost stacked layer of the staircase structure in the second stepped region is M levels lower than the topmost stacked layer in the first stepped region.
在一些實施例中,一種用於形成3D記憶體件的方法包括:形成包括設置於襯底之上的複數個電介質層對的交替堆疊層;形成階梯區域,其中,所述階梯區域中的每一者具有階梯結構,所述階梯結構具有第一方向上的第一數量(M)的臺階,其中,M個臺階中的每一者暴露交替堆疊層中的堆疊層的表面的部分,並且所述第一數量M為正數。所述方法還包括去除第一複數個階梯區域處的交替堆疊層中的M個堆疊層,使用第一遮罩堆疊層去除所述階梯區域中的每一者處的交替堆疊層中的2M個堆疊層的部分,對第一遮罩堆疊層進行修整,以及依次重複使用第一遮罩堆疊層對所述階梯區域中的每一者處的交替堆疊層中的2M個堆疊層的部分進行去除以及對第一遮罩堆疊層進行修整。階梯區域的形成還包括在交替堆疊層之上形成第二遮罩堆疊層,使用微影製程對第二遮罩堆疊層進行圖案化以在所述交替堆疊層之上限定階梯區域,使用所述第二遮罩堆疊層去除最頂部電介質層對的部分,對第二遮罩堆疊層進行修整,以及依次重複所述去除和所述修整直到形成所述M個臺階為止。去除交替堆疊層中的M個堆疊層包括乾式蝕刻、濕式蝕刻或其組合。對第一遮罩堆疊層進行修整包括使用等向性乾式蝕刻、濕式蝕刻或其組合來向內且遞增地蝕刻第一遮罩堆疊層。透過微影製程對第一遮罩堆疊層進行圖案化,從而至少在第一方向上暴露階梯區域中的每一者的邊緣,並且在第二方向上廣泛地覆蓋階梯區域中的每一者,其中,第一方向垂直於第二方向,並且第一方向和第二方向兩者平行於襯底的頂表面。所述方法還包括在襯底上的堆疊儲存區域中形成複數個豎直半導體通道,其中,所述階梯區域中的每一者與堆疊儲存區域相鄰。微影製程用於限定第一複數個階梯區域以及其它階梯區域,其中,第一複數個階梯區域和其它階梯區域透過所述堆疊儲存區域隔開。In some embodiments, a method for forming a 3D memory device includes: forming an alternately stacked layer including a plurality of pairs of dielectric layers disposed on a substrate; forming a stepped region, wherein each of the stepped regions One has a stepped structure having a first number (M) of steps in the first direction, wherein each of the M steps exposes a portion of the surface of the stacked layer in the alternately stacked layers, and the The first number M is a positive number. The method further includes removing M stacked layers of the first plurality of alternating stacked layers at the stepped regions, and using the first mask stacked layer to remove 2M of the alternately stacked layers at each of the stepped regions Part of the stacked layer, trimming the first mask stacked layer, and sequentially using the first mask stacked layer repeatedly to remove the part of the 2M stacked layers of the alternate stacked layers at each of the stepped regions And trimming the first mask stack layer. The formation of the stepped region further includes forming a second mask stacked layer on top of the alternately stacked layers, patterning the second mask stacked layer using a lithography process to define a stepped region above the alternately stacked layer, using the The second mask stack layer removes a portion of the topmost dielectric layer pair, trims the second mask stack layer, and repeats the removal and the trimming sequentially until the M steps are formed. The removal of the M stacked layers in the alternate stacked layers includes dry etching, wet etching, or a combination thereof. Trimming the first mask stack layer includes using isotropic dry etching, wet etching, or a combination thereof to etch the first mask stack layer inward and incrementally. Patterning the first mask stack layer through the lithography process so as to expose the edges of each of the step regions at least in the first direction and to cover each of the step regions widely in the second direction, Wherein the first direction is perpendicular to the second direction, and both the first direction and the second direction are parallel to the top surface of the substrate. The method also includes forming a plurality of vertical semiconductor channels in the stacked storage area on the substrate, wherein each of the stepped areas is adjacent to the stacked storage area. The lithography process is used to define a first plurality of step areas and other step areas, wherein the first plurality of step areas and other step areas are separated by the stacked storage area.
在一些實施例中,一種用於形成3D記憶體件的方法包括:在襯底之上形成交替堆疊層;在所述交替堆疊層的表面的第一部分之上去除所述交替堆疊層中的第一數量(M)的堆疊層,其中,M大於一;以及在所述交替堆疊層的所述表面的第二部分之上形成階梯結構,其中,所述表面的第二部分包括所述表面的第一部分,並且所述階梯結構中的每一者具有第一方向上的M個臺階,其中,所述M個臺階中的每一者是一級,從而暴露所述交替堆疊層中的堆疊層的表面的部分。所述方法還包括依次重複使用第一遮罩堆疊層去除所述階梯結構中的每一者處的交替堆疊層中的2M個堆疊層以及對第一遮罩堆疊層進行修整。透過微影製程對所述第一遮罩堆疊層進行圖案化,以覆蓋每個階梯結構的部分。形成交替堆疊層包括使用化學氣相沉積、物理氣相沉積、電漿輔助CVD、濺射、金屬有機化學氣相沉積、原子層沉積或其組合來沉積所述層。在所述襯底上形成所述交替堆疊層包括在襯底上設置複數個電介質層對。形成交替堆疊層包括在豎直方向上設置交替的導體/電介質層對。In some embodiments, a method for forming a 3D memory device includes: forming an alternately stacked layer over a substrate; removing the first of the alternately stacked layers over a first portion of the surface of the alternately stacked layer A number (M) of stacked layers, where M is greater than one; and a stepped structure is formed above the second portion of the surface of the alternately stacked layers, wherein the second portion of the surface includes the surface The first part, and each of the stepped structures has M steps in the first direction, wherein each of the M steps is one level, thereby exposing the stacked layers of the alternating stacked layers The part of the surface. The method further includes sequentially and repeatedly using the first mask stack layer to remove 2M stacked layers of the alternate stack layers at each of the stepped structures and trimming the first mask stack layer. The first mask stack layer is patterned through a lithography process to cover the part of each step structure. Forming alternating stacked layers includes depositing the layers using chemical vapor deposition, physical vapor deposition, plasma assisted CVD, sputtering, metal organic chemical vapor deposition, atomic layer deposition, or a combination thereof. Forming the alternately stacked layers on the substrate includes providing a plurality of pairs of dielectric layers on the substrate. Forming alternating stacked layers includes arranging alternating pairs of conductor/dielectric layers in the vertical direction.
在一些實施例中,3D記憶體件包括:設置在襯底之上的交替堆疊層;包括複數個豎直半導體通道的儲存結構;與所述儲存結構相鄰的第一階梯區域;以及與所述儲存結構相鄰的第二階梯區域,其中,第二階梯區域透過所述儲存結構與所述第一階梯區域水平隔開。所述3D記憶體件還包括設置在第一階梯區域和第二階梯區域中的每一者處的階梯結構,以暴露所述交替堆疊層中的複數個堆疊層的部分,其中,所述階梯結構包括第一方向上的複數個臺階和第二方向上的第一數量(M)的臺階,其中,第一方向上的臺階中的每一者具有2M級。第一方向垂直於第二方向,並且第一方向和第二方向兩者平行於襯底的頂表面。所述階梯結構的第二方向上的臺階中的每一者是一級。第二階梯區域中的階梯結構的最頂部堆疊層比第一階梯區域中的最頂部堆疊層低M級。所述交替堆疊層中的每個堆疊層包括絕緣材料層和犧牲材料層,或者包括絕緣材料層和導電材料層。所述絕緣材料層包括氧化矽或氧化鋁。所述犧牲層包括多晶矽、氮化矽、多晶鍺、多晶鍺矽或其組合。所述導電材料層包括多晶矽、矽化物、鎳、鈦、鉑、鋁、氮化鈦、氮化鉭、氮化鎢或其組合。In some embodiments, the 3D memory device includes: alternating stacked layers disposed on the substrate; a storage structure including a plurality of vertical semiconductor channels; a first stepped region adjacent to the storage structure; The second stepped region adjacent to the storage structure, wherein the second stepped region is horizontally separated from the first stepped region by the storage structure. The 3D memory device further includes a stepped structure provided at each of the first stepped region and the second stepped region to expose portions of the plurality of stacked layers of the alternating stacked layers, wherein the stepped The structure includes a plurality of steps in the first direction and a first number (M) of steps in the second direction, where each of the steps in the first direction has a level of 2M. The first direction is perpendicular to the second direction, and both the first and second directions are parallel to the top surface of the substrate. Each of the steps in the second direction of the stepped structure is one level. The topmost stacked layer of the staircase structure in the second stepped region is M levels lower than the topmost stacked layer in the first stepped region. Each of the alternately stacked layers includes an insulating material layer and a sacrificial material layer, or includes an insulating material layer and a conductive material layer. The insulating material layer includes silicon oxide or aluminum oxide. The sacrificial layer includes polycrystalline silicon, silicon nitride, polycrystalline germanium, polycrystalline germanium silicon, or a combination thereof. The conductive material layer includes polysilicon, silicide, nickel, titanium, platinum, aluminum, titanium nitride, tantalum nitride, tungsten nitride, or a combination thereof.
對特定實施例的上述說明因此將完全揭示本公開的一般性質,使得他人能夠透過運用本領域技術範圍內的知識容易地對這種特定實施例進行修改和/或調整以用於各種應用,而不需要過度實驗,並且不脫離本公開的一般概念。因此,基於本文呈現的教導和指導,這種調整和修改旨在處於所公開的實施例的等同物的含義和範圍內。應當理解,本文中的措辭或術語是用於說明的目的,而不是為了進行限制,從而本說明書的術語或措辭將由技術人員按照所述教導和指導進行解釋。The above description of specific embodiments will therefore fully reveal the general nature of the present disclosure, enabling others to easily modify and/or adjust such specific embodiments for various applications by applying knowledge within the skill of the art, and There is no need for undue experimentation and without departing from the general concept of this disclosure. Therefore, based on the teachings and guidance presented herein, such adjustments and modifications are intended to be within the meaning and scope of equivalents of the disclosed embodiments. It should be understood that the wording or terminology herein is for illustrative purposes and not for limitation, so that the terminology or wording of this specification will be interpreted by the skilled person in accordance with the teaching and guidance.
上文已經借助於功能方塊描述了本公開的實施例,功能方塊例示了指定功能及其關係的實施方式。在本文中出於方便描述的目的任意地限定了這些功能方塊的邊界。可以限定替代的邊界,只要適當執行指定的功能及其關係即可。The embodiments of the present disclosure have been described above with the aid of functional blocks that exemplify implementations specifying functions and their relationships. The boundaries of these functional blocks are arbitrarily defined herein for the convenience of description. Alternative boundaries can be defined as long as the specified functions and their relationships are properly performed.
發明內容和摘要部分可以闡述發明人所設想的本公開的一個或複數個示例性實施例,但未必是所有示例性實施例,並且因此,並非旨在透過任何方式限制本公開和所附權利要求。The summary and abstract sections may illustrate one or more exemplary embodiments of the present disclosure envisioned by the inventor, but not necessarily all exemplary embodiments, and therefore, are not intended to limit the present disclosure and the appended claims in any way .
本公開的廣度和範圍不應受任何上述示例性實施例的限制,並且應當僅根據以下權利要求書及其等同物來進行限定。The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, and should be limited only by the following claims and their equivalents.
100、400、500‧‧‧結構101、103‧‧‧區域102‧‧‧第一材料層104‧‧‧第二材料層105‧‧‧臺階152、352、552、750‧‧‧遮罩堆疊層200、300、600‧‧‧階梯結構246、248、438~448、606~648、1120、1122‧‧‧層700、800、900、1000、1100‧‧‧3D記憶體件701、720、909、912‧‧‧SC層760、1160‧‧‧堆疊儲存結構區域770、970‧‧‧狹縫780~790、880~890、980~990、1080~1090、1180~1190‧‧‧階梯區域860、960‧‧‧堆疊儲存區域1210~1260‧‧‧步驟A1-A4‧‧‧區域x、y‧‧‧軸100, 400, 500‧‧‧
被併入本文並形成說明書的一部分的附圖例示了本公開的實施例並與說明書一起進一步用以解釋本公開的原理,並使相關領域的技術人員能夠做出和使用本公開。 圖1示出了根據一些實施例的由圖案化光阻堆疊層覆蓋的複數個電介質層對的截面圖。 圖2示出了根據一些實施例的形成具有一級的第一臺階的截面圖。 圖3-圖5示出了根據一些實施例的形成具有兩級的臺階的蝕刻-修整過程的各個階段的透視表示。 圖6示出了根據一些實施例的交錯階梯結構的截面圖。 圖7A示出了根據一些實施例的示例性3D記憶體結構的頂視圖。 圖7B示出了根據一些實施例的階梯區域的截面圖。 圖8A示出了根據一些實施例的當在階梯區域中的每一者處形成階梯結構之後的示例性3D記憶體結構的頂視圖。 圖8B示出了根據一些實施例的階梯區域的3D視圖。 圖9A示出了根據一些實施例的當在階梯區域中的每一者處形成交織階梯結構之後的示例性3D記憶體結構的頂視圖。 圖9B示出了根據一些實施例的階梯區域的截面圖。 圖9C示出了圖9A的階梯區域的3D視圖。 圖10示出了根據一些實施例的示例性3D記憶體結構的頂視圖。 圖11A示出了根據一些實施例的當在階梯區域中的每一者處形成交織並且交錯的階梯結構之後的示例性3D記憶體結構的頂視圖。 圖11B-圖11C示出了圖11A的階梯區域的3D視圖。 圖12是根據一些實施例的用於形成3D記憶體件的示例性方法的流程圖。The drawings incorporated herein and forming a part of the specification illustrate embodiments of the present disclosure and together with the specification are further used to explain the principles of the present disclosure and enable those skilled in the relevant art to make and use the present disclosure. FIG. 1 shows a cross-sectional view of a plurality of pairs of dielectric layers covered by a patterned photoresist stack according to some embodiments. 2 illustrates a cross-sectional view of forming a first step with one stage according to some embodiments. FIGS. 3-5 show perspective representations of various stages of an etch-trimming process to form a step with two levels according to some embodiments. 6 shows a cross-sectional view of a staggered step structure according to some embodiments. 7A shows a top view of an exemplary 3D memory structure according to some embodiments. 7B shows a cross-sectional view of a stepped area according to some embodiments. FIG. 8A illustrates a top view of an exemplary 3D memory structure after forming a stepped structure at each of the stepped regions according to some embodiments. FIG. 8B shows a 3D view of the stepped area according to some embodiments. 9A shows a top view of an exemplary 3D memory structure after forming an interwoven step structure at each of the step regions according to some embodiments. 9B shows a cross-sectional view of a stepped area according to some embodiments. 9C shows a 3D view of the stepped area of FIG. 9A. FIG. 10 shows a top view of an exemplary 3D memory structure according to some embodiments. 11A shows a top view of an exemplary 3D memory structure after forming an interlaced and interleaved step structure at each of the step regions, according to some embodiments. 11B-11C show a 3D view of the stepped area of FIG. 11A. 12 is a flowchart of an exemplary method for forming a 3D memory device according to some embodiments.
900‧‧‧3D記憶體件 900‧‧‧3D memory
960‧‧‧堆疊儲存區域 960‧‧‧Stacked storage area
970‧‧‧狹縫 970‧‧‧Slit
980、990‧‧‧階梯區域 980, 990‧‧‧ ladder area
A1~A4‧‧‧區域 A 1 ~A 4 ‧‧‧Area
x、y‧‧‧軸 x, y‧‧‧ axis
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/087519 WO2019218351A1 (en) | 2018-05-18 | 2018-05-18 | Staircase formation in three-dimensional memory device |
WOPCT/CN2018/087519 | 2018-05-18 | ||
??PCT/CN2018/087519 | 2018-05-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI657542B TWI657542B (en) | 2019-04-21 |
TW202005000A true TW202005000A (en) | 2020-01-16 |
Family
ID=64806242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107123434A TWI657542B (en) | 2018-05-18 | 2018-07-06 | Formation of staircase structure in 3d memory |
Country Status (6)
Country | Link |
---|---|
US (2) | US10790295B2 (en) |
JP (1) | JP7089067B2 (en) |
KR (1) | KR102563689B1 (en) |
CN (1) | CN109155317B (en) |
TW (1) | TWI657542B (en) |
WO (1) | WO2019218351A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI793434B (en) * | 2020-07-07 | 2023-02-21 | 大陸商長江存儲科技有限責任公司 | Methods for forming three-dimensional memory devices |
US11695000B2 (en) | 2020-05-27 | 2023-07-04 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US11877448B2 (en) | 2020-05-27 | 2024-01-16 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US11963349B2 (en) | 2020-05-27 | 2024-04-16 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices with backside source contacts |
US12048151B2 (en) | 2020-05-27 | 2024-07-23 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices with backside source contacts |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7089067B2 (en) | 2018-05-18 | 2022-06-21 | 長江存儲科技有限責任公司 | 3D memory device and its formation method |
CN109952644A (en) | 2019-01-31 | 2019-06-28 | 长江存储科技有限责任公司 | Ladder in three-dimensional storage part is formed |
KR102636958B1 (en) | 2019-02-26 | 2024-02-14 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3D memory device and manufacturing method thereof |
CN110174453B (en) * | 2019-05-08 | 2021-08-03 | 中国科学院微电子研究所 | Microelectrode structure, manufacturing method thereof and electronic equipment comprising microelectrode structure |
KR20210021227A (en) * | 2019-08-16 | 2021-02-25 | 삼성전자주식회사 | Semiconductor device with support pattern |
JP2021039965A (en) * | 2019-08-30 | 2021-03-11 | キオクシア株式会社 | Semiconductor storage device and manufacturing method of the same |
CN110707089B (en) * | 2019-09-06 | 2022-11-18 | 长江存储科技有限责任公司 | Method for manufacturing semiconductor device |
CN110828471B (en) * | 2019-10-25 | 2023-02-07 | 长江存储科技有限责任公司 | 3D memory device and method of manufacturing the same |
CN111106122A (en) * | 2019-11-25 | 2020-05-05 | 长江存储科技有限责任公司 | Semiconductor structure and manufacturing method thereof |
CN111108600B (en) * | 2019-12-24 | 2022-07-08 | 长江存储科技有限责任公司 | Three-dimensional memory device and method of forming the same |
WO2021189188A1 (en) | 2020-03-23 | 2021-09-30 | Yangtze Memory Technologies Co., Ltd. | Staircase structure in three-dimensional memory device and method for forming the same |
JP2022540024A (en) | 2020-03-23 | 2022-09-14 | 長江存儲科技有限責任公司 | 3D memory device |
KR102671265B1 (en) * | 2020-03-23 | 2024-05-31 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | Staircase structure and method of forming 3D memory device |
KR20210152471A (en) * | 2020-06-05 | 2021-12-15 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | Stair structure of 3D memory device and method of forming the same |
US11450686B2 (en) | 2020-06-29 | 2022-09-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | High density 3D FERAM |
US11569165B2 (en) * | 2020-07-29 | 2023-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Memory cell array, semiconductor device including the same, and manufacturing method thereof |
CN112201662B (en) * | 2020-09-24 | 2024-03-12 | 上海华力集成电路制造有限公司 | NAND ladder structure forming method |
CN112259538B (en) * | 2020-10-22 | 2022-01-11 | 长江存储科技有限责任公司 | Semiconductor device and manufacturing method thereof |
CN112889152B (en) * | 2021-01-13 | 2024-01-30 | 长江存储科技有限责任公司 | Method for forming steps in three-dimensional memory device |
CN114678366A (en) * | 2022-03-24 | 2022-06-28 | 福建省晋华集成电路有限公司 | Three-dimensional memory device and manufacturing method thereof |
CN115799216A (en) * | 2022-12-20 | 2023-03-14 | 成都皮兆永存科技有限公司 | Interconnection structure of high-density three-dimensional stacked memory and preparation method |
US20240266180A1 (en) * | 2023-02-07 | 2024-08-08 | Applied Materials, Inc. | Enhanced etch selectivity using halides |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5091526B2 (en) * | 2007-04-06 | 2012-12-05 | 株式会社東芝 | Semiconductor memory device and manufacturing method thereof |
JP5330017B2 (en) * | 2009-02-17 | 2013-10-30 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
JP2011142276A (en) | 2010-01-08 | 2011-07-21 | Toshiba Corp | Nonvolatile semiconductor memory device and method of manufacturing the same |
KR101713228B1 (en) * | 2010-06-24 | 2017-03-07 | 삼성전자주식회사 | Semiconductor memory devices having asymmetric wordline pads |
JP2012009701A (en) | 2010-06-25 | 2012-01-12 | Toshiba Corp | Non volatile semiconductor memory device |
KR101744127B1 (en) | 2010-11-17 | 2017-06-08 | 삼성전자주식회사 | Semiconductor devices and methods for fabricating the same |
US8530350B2 (en) | 2011-06-02 | 2013-09-10 | Micron Technology, Inc. | Apparatuses including stair-step structures and methods of forming the same |
JP2013058683A (en) * | 2011-09-09 | 2013-03-28 | Toshiba Corp | Manufacturing method of semiconductor storage device |
KR20140008622A (en) * | 2012-07-10 | 2014-01-22 | 에스케이하이닉스 주식회사 | Semiconductor device and method of manufacturing the same |
US9165823B2 (en) * | 2013-01-08 | 2015-10-20 | Macronix International Co., Ltd. | 3D stacking semiconductor device and manufacturing method thereof |
JP2014183225A (en) * | 2013-03-19 | 2014-09-29 | Toshiba Corp | Nonvolatile semiconductor storage device |
US10147735B2 (en) * | 2015-03-13 | 2018-12-04 | Toshiba Memory Corporation | Semiconductor memory device and production method thereof |
KR102508897B1 (en) | 2015-12-17 | 2023-03-10 | 삼성전자주식회사 | A vertical memory device and methods of forming the same |
KR102536261B1 (en) * | 2015-12-18 | 2023-05-25 | 삼성전자주식회사 | Three dimensional device |
US10049744B2 (en) * | 2016-01-08 | 2018-08-14 | Samsung Electronics Co., Ltd. | Three-dimensional (3D) semiconductor memory devices and methods of manufacturing the same |
KR102512322B1 (en) * | 2016-01-19 | 2023-03-22 | 에스케이하이닉스 주식회사 | Manufacturing method of semiconductor device |
US10559583B2 (en) * | 2016-07-20 | 2020-02-11 | Samsung Electronics Co., Ltd. | Memory device |
KR102450573B1 (en) * | 2016-09-19 | 2022-10-07 | 삼성전자주식회사 | Memory device |
CN106847822B (en) * | 2017-03-08 | 2018-11-16 | 长江存储科技有限责任公司 | 3D nand memory part, manufacturing method and step calibration method |
KR102342552B1 (en) * | 2017-03-09 | 2021-12-23 | 삼성전자주식회사 | Three dimensional semiconductor device and metohd of forming the same |
KR102385564B1 (en) * | 2017-06-13 | 2022-04-12 | 삼성전자주식회사 | Semiconductor device |
KR102373818B1 (en) * | 2017-07-18 | 2022-03-14 | 삼성전자주식회사 | Semiconductor devices |
CN107658224B (en) * | 2017-08-24 | 2019-10-29 | 长江存储科技有限责任公司 | Step structure of three-dimensional storage and forming method thereof |
US11342351B2 (en) * | 2018-01-10 | 2022-05-24 | Samsung Electronics Co., Ltd. | Three-dimensional semiconductor device |
KR102639721B1 (en) * | 2018-04-13 | 2024-02-26 | 삼성전자주식회사 | Three-dimensional semiconductor memory devices |
KR102628007B1 (en) * | 2018-05-09 | 2024-01-22 | 삼성전자주식회사 | Vertical Memory Device |
JP2019201028A (en) * | 2018-05-14 | 2019-11-21 | 東芝メモリ株式会社 | Semiconductor device |
JP7089067B2 (en) | 2018-05-18 | 2022-06-21 | 長江存儲科技有限責任公司 | 3D memory device and its formation method |
-
2018
- 2018-05-18 JP JP2020564251A patent/JP7089067B2/en active Active
- 2018-05-18 CN CN201880000726.1A patent/CN109155317B/en active Active
- 2018-05-18 WO PCT/CN2018/087519 patent/WO2019218351A1/en active Application Filing
- 2018-05-18 KR KR1020207031021A patent/KR102563689B1/en active IP Right Grant
- 2018-07-06 TW TW107123434A patent/TWI657542B/en active
- 2018-07-26 US US16/046,750 patent/US10790295B2/en active Active
-
2020
- 2020-08-27 US US17/004,846 patent/US11997851B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11695000B2 (en) | 2020-05-27 | 2023-07-04 | Yangtze Memory Technologies Co., Ltd. | Three-dimensional memory devices |
US11877448B2 (en) | 2020-05-27 | 2024-01-16 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
US11963349B2 (en) | 2020-05-27 | 2024-04-16 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices with backside source contacts |
US12048151B2 (en) | 2020-05-27 | 2024-07-23 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices with backside source contacts |
TWI793434B (en) * | 2020-07-07 | 2023-02-21 | 大陸商長江存儲科技有限責任公司 | Methods for forming three-dimensional memory devices |
Also Published As
Publication number | Publication date |
---|---|
TWI657542B (en) | 2019-04-21 |
US20200411538A1 (en) | 2020-12-31 |
WO2019218351A1 (en) | 2019-11-21 |
CN109155317A (en) | 2019-01-04 |
JP2021523577A (en) | 2021-09-02 |
US11997851B2 (en) | 2024-05-28 |
JP7089067B2 (en) | 2022-06-21 |
KR20200135869A (en) | 2020-12-03 |
US10790295B2 (en) | 2020-09-29 |
CN109155317B (en) | 2019-11-26 |
KR102563689B1 (en) | 2023-08-03 |
US20190355738A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI657542B (en) | Formation of staircase structure in 3d memory | |
US11545388B2 (en) | Staircase formation in three-dimensional memory device | |
US11114439B2 (en) | Multi-division 3D NAND memory device | |
CN110024126A (en) | Three-dimensional storage part and forming method thereof | |
TW201913972A (en) | Step structure of memory device | |
CN111403397B (en) | 3D NAND memory and manufacturing method thereof | |
US11729977B2 (en) | Multi-division staircase structure of three-dimensional memory device and method for forming the same | |
TW202147579A (en) | Staircase structure in three-dimensional memory device and method for forming the same |