TW201947256A - 都卜勒為基礎之衛星定位系統量測之誤差緩解 - Google Patents
都卜勒為基礎之衛星定位系統量測之誤差緩解 Download PDFInfo
- Publication number
- TW201947256A TW201947256A TW108108845A TW108108845A TW201947256A TW 201947256 A TW201947256 A TW 201947256A TW 108108845 A TW108108845 A TW 108108845A TW 108108845 A TW108108845 A TW 108108845A TW 201947256 A TW201947256 A TW 201947256A
- Authority
- TW
- Taiwan
- Prior art keywords
- gnss
- doppler
- measurement
- measurements
- gnss doppler
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/52—Determining velocity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/22—Multipath-related issues
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/25—Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
- G01S19/254—Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/29—Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
所揭示實施例促進地面定位系統中之準確度並減少誤差,包括SV之都卜勒為基礎之量測中藉由多路徑傳播(例如,地面反射)誘發之誤差。在一些實施例中,可獲得一或多個衛星之一或多個全球導航衛星系統(GNSS)都卜勒量測值及一或多個對應GNSS偽距量測值。可判定對應於該一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於一GNSS都卜勒量測值,可部分地基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之一GNSS偽距量測值來判定該對應GNSS都卜勒估計值。可部分地基於該一或多個GNSS都卜勒估計值來判定UE之一速度。
Description
本文中所揭示之標的物大體上係關於地面定位系統,且詳言之,係關於用於促進準確的都卜勒為基礎之衛星定位系統量測之系統及方法。
諸如全域導航衛星系統(GNSS)之衛星定位系統(SPS)常常用以判定速度、位置或其他與使用者設備(UE)之方位及/或運動有關的參數。距離量測可指代兩個實體,諸如UE與太空載具(SV)(諸如衛星)之間的距離量測(例如,基於傳播延遲)。距離變率量測係指兩個實體,諸如UE與SV之間的距離之變化率。距離變率量測可基於一段時間內兩個距離量測之間的差異而獲得。距離變率量測可指示UE與SV之間的距離在某一時間點是否在減少(UE及/或SV朝向彼此移動),或在某一時間點是否在增加(UE及/或SV遠離彼此移動)。都卜勒頻移(例如,相對於參考信號頻率或預期信號頻率)或與在UE處接收的SV傳輸相關聯的都卜勒頻移之改變可用以判定UE之速度(速度值及行駛方向)。都卜勒為基礎之GNSS量測可受諸如SV信號之地面反射的多路徑傳播影響,從而導致量測不準確。量測不準確可不利地影響速度判定、位置判定、UE行進之距離的判定,及/或UE上之其他位置或導航功能。
在一些實施例中,使用者設備(UE)上之方法可包含:獲得一或多個衛星之一或多個全球導航衛星系統(GNSS)都卜勒量測值及一或多個對應GNSS偽距量測值;判定對應於一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於GNSS都卜勒量測值,部分地基於GNSS都卜勒量測值及對應於GNSS都卜勒量測值之GNSS偽距量測值來判定對應GNSS都卜勒估計值;及至少部分地基於一或多個GNSS都卜勒估計值判定UE之速度。
在另一態樣中,使用者設備(UE)可包含:能夠接收全球導航衛星系統(GNSS)信號之收發器;及耦接至收發器之處理器。處理器可經組態以:獲得一或多個衛星之一或多個GNSS都卜勒量測值及一或多個對應GNSS偽距量測值;判定對應於一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於GNSS都卜勒量測值,部分地基於GNSS都卜勒量測值及對應於GNSS都卜勒量測值之GNSS偽距量測值來判定對應GNSS都卜勒估計值;及至少部分地基於一或多個GNSS都卜勒估計值判定UE之速度。
在另一態樣中,使用者設備(UE)可包含:用於獲得一或多個衛星之一或多個GNSS都卜勒量測值及一或多個對應GNSS偽距量測值的構件;用於判定對應於一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值的構件,其中對於GNSS都卜勒量測值,部分地基於GNSS都卜勒量測值及對應於GNSS都卜勒量測值之GNSS偽距量測值來判定對應GNSS都卜勒估計值;及用於至少部分地基於一或多個GNSS都卜勒估計值判定UE之速度的構件。
在一些實施例中,非暫時性電腦可讀媒體包含可執行指令以組態使用者設備(UE)上之處理器以進行以下操作:獲得一或多個衛星之一或多個GNSS都卜勒量測值及一或多個對應GNSS偽距量測值;判定對應於一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於GNSS都卜勒量測值,部分地基於GNSS都卜勒量測值及對應於GNSS都卜勒量測值之GNSS偽距量測值來判定對應GNSS都卜勒估計值;及至少部分地基於一或多個GNSS都卜勒估計值判定UE之速度。
所揭示之方法可藉由UE使用包括載波相位量測之GNSS信號、來自地面無線系統(其可使用長期演進(LTE)定位協定(LPP)、LPP延伸(LPPe)或其他協定)、慣性量測單元(IMU)及其他感測器之信號之一組合執行。
相關申請案之交叉參考
本申請案主張2018年5月16日申請的標題為「ERROR MITIGATION IN DOPPLER BASED SATELLITE POSITIONING SYSTEM MEASUREMENTS」的美國臨時申請案第62/672,165號之權益及優先權,該美國臨時申請案讓渡給本受讓人,且特此以全文引用之方式併入。
所揭示實施例促進準確度,並減少地面定位系統中之誤差。在一些實施例中,緩解SV之都卜勒為基礎之量測中(例如,在衛星定位系統中)藉由多路徑傳播(例如,地面反射)誘發之誤差,藉此促使準確度提高,並且改良定位相關量測之可靠性。在一些實施例中,所揭示技術可應用於都卜勒為基礎之量測以獲得對應於都卜勒為基礎之量測的都卜勒估計值。都卜勒估計值可減少誤差及/或改良對應都卜勒為基礎之量測的準確度。例如,都卜勒為基礎之量測可連同其他參數一起輸入至數學模型及/或預測模型。數學模型可基於輸入參數輸出都卜勒估計值(例如,基於統計學技術)。預測模型可基於機器學習而獲得,且可基於輸入參數預測都卜勒估計值。都卜勒估計值(例如,由數學模型及/或預測模型輸出)可促使誤差減少,及/或改良下游定位相關操作之準確度。術語「多路徑傳播」用以指UE接收直接(視線)及間接信號(非視線)之混合或僅間接信號時出現的誤差。例如,間接信號可產生於地面反射。術語「定位相關量測」係指可用以判定某一時間的位置、包括某一時間的瞬時速度及/或一段時間內的平均速度之UE速度、UE速度值、一段時間內行進之距離及/或與方位及/或導航有關之其他參數的量測。
都卜勒為基礎之量測利用都卜勒效應。都卜勒效應係關於由於接收器與傳輸器之間的相對運動,所接收信號(例如,在接收器處)之頻率相對於所傳輸信號(例如,由傳輸器傳輸)之頻率的觀測改變。都卜勒量測值可用以判定UE(接收器)與SV之間的距離變率。距離變率係關於UE與SV之間的範圍或距離在一段時間內的改變速率。即使當UE靜止時,SV也在運動。因為SV之軌跡可以是已知的,所以由特定SV傳輸之信號的都卜勒頻移是可預測的,且可用於UE定位判定。在UE亦獨立移動(例如,由於使用者移動)的情況下,都卜勒頻移可能不同於預期或預測頻移。SV之都卜勒頻移的此等變化(相對於預測或預期都卜勒頻移)可用以判定UE之速度(速度值及行駛方向)。例如,當UE在移動時,名義上來自衛星之都卜勒頻移與基於UE之移動(相對於標稱都卜勒頻移)的改變之間的關係可用以判定UE之速度。
術語「使用者裝置」(UD)或「使用者設備」(UE)在本文中可互換地使用,且可指代諸如以下各者之裝置:蜂巢式或其他無線通信裝置、個人通信系統(PCS)裝置、個人導航裝置(PND)、個人資訊管理器(PIM)、個人數位助理(PDA)、膝上型電腦或其他能夠接收無線通信及/或導航信號的合適移動裝置。術語亦意欲包括諸如藉由短程無線、紅外、有線連接或其他連接與個人導航裝置(PND)通信的裝置,無論衛星信號接收、輔助資料接收及/或位置相關處理是發生在該裝置處還是發生在該PND處。UE可表示行動電話、記事本電腦或膝上型電腦,或UE可為車輛或車輛中之系統,其收集量測集,以為了提供即時位置、運動相關資訊、導航資訊及/或用於創建地圖。
另外,術語UD、UE、「行動台」、「移動裝置」或「目標」意欲包括能夠諸如經由網際網路、Wi-Fi、蜂巢式無線網路、DSL網路、封包纜線網路或其他網路與伺服器通信之所有裝置,包括無線及有線通信裝置、電腦、膝上型電腦等,無論衛星信號接收、輔助資料接收及/或位置相關處理是發生在該裝置處,發生在伺服器處,還是發生在與網路相關聯之另一裝置處。
圖 1
展示了說明根據一些所揭示實施例能夠支援定位相關量測之UE 100的某些例示性特徵的示意性方塊圖。在一些實施例中,定位相關量測可包括速度、在一段時間內行進之距離、運動相關參數、定位相關量測等之判定。在一些實施例中,以與所揭示實施例一致之方式,定位相關量測可基於以下各者中之一或多者:GNSS信號量測、RF信號量測(例如,無線區域網路(WLAN)及/或無線廣域網路(WWAN)信號)、IMU及/或基於感測器之量測。
UE 100可例如包括可藉由一或多個連接120(例如,匯流排、管線、光線、鏈路等)彼此以操作方式耦接之一或多個處理器150、記憶體130、收發器110(例如,無線網路介面)及衛星定位系統(SPS)接收器/GNSS接收器140(下文中為「GNSS接收器140」)、光學感測器(OS)180、慣性量測單元(IMU)170、感測器185及顯示器190。在某些實例實施中,UE 100的全部或部分可採取晶片組及/或類似者的形式。在一些實施例中,UE 100可包括機載振盪器及/或時脈(圖1中未示出),該機載振盪器及/或時脈可用以(例如,藉由處理器150)量測事件之間經過的時間。在一些實施例中,UE 100可包括可在內部或外部的一或多個UE天線(未展示)。UE天線可用以傳輸及/或接收由收發器110及/或GNSS接收器140處理之信號。
可啟用GNSS接收器140,以接收與一或多個SPS/GNSS資源相關聯之信號。接收到之SPS/GNSS信號可儲存於記憶體130中及/或供處理器150使用,以判定UE 100之位置或導出其他定位相關量測。在一些實施例中,GNSS接收器140可包括碼相位接收器及載波相位接收器,該載波相位接收器可量測載波相關資訊。載波的頻率通常比其攜載之偽隨機雜訊(PRN)(碼相位)序列高得多,從而可以促進更精確的位置判定及/或定位相關量測。術語「碼相位量測」係指使用粗略擷取(C/A)碼接收器進行之量測,該C/A碼接收器使用PRN序列中含有的資訊來計算UE 100之位置。術語「載波相位量測」係指使用載波相位接收器進行之量測,該載波相位接收器使用載波信號來計算位置。例如對於GPS而言,載波信號可採用1575.42 MHz的信號L1(其攜載狀態訊息及用於定時的偽隨機碼兩者)及1227.60 MHz的L2信號(其攜載更精確的軍用偽隨機碼)之形式。
在一些實施例中,UE 100可部分地基於可以利用都卜勒效應之GNSS都卜勒量測值(例如,基於由GNSS接收器140接收之信號)來判定其速度。都卜勒效應係關於由於接收器與傳輸器之間的相對運動,所接收信號(例如,在接收器處)之頻率相對於所傳輸信號(例如,由傳輸器傳輸)之頻率的觀測改變。因為SV之軌跡可以是已知的,所以由特定SV傳輸之信號的都卜勒頻移是可預測的,且可用於UE位置判定及/或用於定位相關量測。若UE 100亦獨立移動(例如,由於使用者移動),則都卜勒頻移可能不同於預期或預測頻移。SV之都卜勒頻移的此等變化(相對於預測或預期都卜勒頻移)可用以判定UE之速度(速度值及行駛方向)。例如,都卜勒量測值可用以判定UE(接收器)與SV之間的距離變率。距離變率係關於UE與SV之間的範圍或距離在一段時間內的改變速率。為了估計距離變率,UE可藉由對一段較短時間(例如,0.1 s)內的都卜勒量測值求積分,然後將其除以積分區間之持續時間以獲得隨時間變化的積分都卜勒量測值,來求得距離改變(或差量距離)的平均值。
GNSS都卜勒量測值係指載波相位導出之都卜勒量測值及/或接收器產生之都卜勒量測值(例如,由UE 100上之GNSS接收器140產生)兩者。載波相位導出之都卜勒量測值及/或接收器產生之都卜勒量測值(例如,基於UE 100上之GNSS接收器140產生的名義上恆定之參考頻率)兩者均可用以判定速度。接收器產生之GNSS都卜勒量測值可用以判定(接近)瞬時速度,且通常發生在相對較短的時間間隔內。載波相位導出之都卜勒量測值可用以判定兩個量測時期之間的平均速度。載波相位導出之都卜勒量測值通常係在較長的時間跨度上計算的,從而導致都卜勒量測值更平滑。術語量測時期係指接收器進行量測之時刻。量測間隔或量測之間的時間間隔判定量測時期比率或時期比率。在一些實施例中,載波相位導出之都卜勒量測值可藉由時域中之不同載波相位觀測而獲得。
在一些實施例中,UE 100亦可自無線廣域網路(WWAN)(例如,在系統資訊區塊(SIB)中)或無線區域網路(WLAN)接收參考時間傳輸(例如,GNSS時間,諸如全球定位系統(GPS)時間或協調世界時),該等參考時間傳輸可用以維持及/或校正由UE 100維持之時間資訊(例如,基於機載振盪器/時脈)。在一些實施例中,UE 100可量測接收到之信號,包括信號強度、信號到達時間、信號相位、信號頻率及可由處理器150處理之原始量測值。例如,可對來源於SV之信號進行分析及處理以判定都卜勒頻移相對於衛星之標稱或預期都卜勒頻移的變化。在一些實施例中,UE 100及/或處理器150可判定對應於都卜勒量測值之都卜勒估計值。都卜勒估計值可減少誤差及/或改良對應都卜勒量測值之準確度。例如,都卜勒為基礎之量測可連同其他參數一起輸入至數學模型及/或預測模型。數學模型可基於輸入參數輸出都卜勒估計值(例如,基於統計學技術)。預測模型可基於機器學習而獲得,且可基於輸入參數預測都卜勒估計值。都卜勒估計值(例如,由數學模型及/或預測模型輸出)可促使誤差減少,及/或改良其他定位相關計算(例如,速度判定、行進距離等)之準確度。
例如,收發器110可包括能夠經由一或多種類型之無線通信網路傳輸一或多個信號的傳輸器112及接收經由一或多種類型之無線通信網路傳輸的一或多個信號之接收器114。無線通信網路可包括例如:包括蜂巢式網路之WWAN,及/或區域網路(LAN),及/或WLAN及/或無線個人區域網路(WPAN)。舉例而言,區域網路(LAN)可為電機電子工程師學會(IEEE)802.3x網路。WLAN可為IEEE 802.11x網路。WPAN可為藍芽網路、IEEE 802.15x或一些其他類型的網路。技術亦可結合WWAN、WLAN及/或WPAN之任何組合來實施。
在一些實施例中,UE 100亦可包括慣性量測單元(IMU)170。在一些實施例中,可包含3-軸加速度計、3-軸陀螺儀及/或磁力計之IMU 170可將速度、定向及/或其他位置相關資訊提供至處理器150。磁力計可能能夠量測地球磁場之強度及/或方向,且可充當羅盤及/或提供UE 100之行駛方向的指示。在一些實施例中,IMU 170之輸出可以部分地由處理器150使用以判定UE 100之位置及定向。
在一些實施例中,UE 100亦可視情況或另外包括感測器185,該感測器可包括以下各者中之一或多者:高度計、氣壓計、超音波感測器、深度感測器等。在一些實施例中,感測器185可包括磁力計。感測器185可提供輸入至處理器150以促進定位相關功能。例如,由高度計進行之量測可用以提供高度高於經校準位準的指示,而由氣壓計進行之量測可提供大氣壓之指示,其亦可用以獲得高度之判定。一般而言,上文的感測器列表並不詳盡,且感測器185可包括愈來愈多地併入至UE 100中的各種其他感測器類型。
在一些實施例中,UE 100可包含OS 180,該OS 180可包括CCD或CMOS感測器及/或攝影機180。在一些實施例中,OS 180可包括或耦接至雷射雷達單元/雷射以及相關聯的儀器,包括掃描器、光電偵測器及接收器電子器件。OS 180可將光學影像或信號轉換成電子或數位影像,且可將擷得的影像發送至處理器150。例如,在一些實施例中,OS 180可以單獨封裝,且可以操作方式耦接至顯示器190、處理器150及/或UE 100中之其他功能單元。
處理器150可使用硬體、韌體及軟體之一組合來實施。例如,諸如定位引擎(PE)156(下文中為PE 156)之軟體程式碼可儲存於電腦可讀媒體中,該電腦可讀媒體可形成記憶體130的一部分。PE 156可包括便於使用自以下各者中之一或多者導出的資訊之功能性:無線量測(例如,GNSS量測)及/或由OS 180擷得之影像、IMU 170及/或感測器185進行之量測,以上導出過程係獨立的,或者結合接收到之方位輔助資料,以判定位置、UE 100之位置不確定性估計及/或判定其他定位相關量測(例如,速度、行進距離等)。處理器150可使用軟體、韌體及/或諸如特殊應用積體電路(ASIC)、數位信號處理器(DSP)及/或專用處理器之專用電路的某一組合來實施。在一些實施例中,處理器150可執行下文關於圖4至圖6所描述的定位相關功能中之一些或全部。
對於硬體實施,處理器150可實施於一或多個特殊應用積體電路(ASIC)、數位信號處理器(DSP)、數位信號處理裝置(DSPD)、可程式化邏輯裝置(PLD)、場可程式化閘陣列(FPGA)、處理器、控制器、微控制器、微處理器、電子裝置、經設計以執行本文中所描述之功能的其他電子單元,或其一組合內。對於韌體及/或軟體實施,方法可使用執行本文中所描述之功能的程式碼、程序、功能等來實施。有形地包含指令之任何機器可讀媒體可以用於實施本文中所描述的方法。例如,軟體或程式碼(例如,PE 156)可儲存於電腦可讀媒體中,該電腦可讀媒體可形成耦接至處理器150之記憶體130的一部分。程式碼(例如,PE 156)可藉由處理器150讀取及執行。
記憶體130可表示任何資料儲存機構。記憶體可實施於處理器150內或在處理器150外部。如本文中所使用,術語「記憶體」指代任何類型之長期、短期、揮發性、非揮發性或其他記憶體,且不應限於任何特定類型之記憶體或任何特定數目之記憶體或儲存記憶體的媒體的類型。記憶體130可包括(例如)主記憶體及/或輔助記憶體。主記憶體可包括(例如)隨機存取記憶體、唯讀記憶體等。雖然在此實例中說明為與處理器150分離,但應理解,主記憶體的全部或部分可設置於處理器150內,或以其他方式與處理器150共置/耦接。例如,輔助記憶體可包括與主記憶體相同或類似類型的記憶體,及/或一或多個資料儲存裝置或系統,諸如磁碟機、光碟機、磁帶驅動機、固態記憶體驅動器等。在某些實施中,輔助記憶體可以操作方式接受電腦可讀媒體或以其他方式可組態以耦接至電腦可讀媒體。因而,在某些實例實施中,本文中呈現之方法及/或設備可採取一電腦可讀媒體之整體或部分形式,該電腦可讀媒體可包括在上面儲存之電腦可實施指令(諸如PE 156),該等指令若由至少一個處理器150執行則可以操作方式啟用以執行如本文所描述的實例操作之全部或部分。
在一些實施例中,記憶體130可保存程式碼(例如,PE 156)及/或資料,以提高藉由處理器150執行的都卜勒為基礎之GNSS量測、UE速度判定、距離判定、導航及位置判定相關功能的準確度並促進誤差緩解。例如,記憶體160可保存以下各者中之一或多者:SV之曆書/星曆表資料、數學模型及/或預測模型,以部分地基於都卜勒為基礎之GNSS量測來判定都卜勒估計值,及/或促進誤差緩解且改良都卜勒為基礎之GNSS量測、藉由IMU 170及/或感測器185提供之資料、擷得之靜態影像及/或程式結果等的準確度。
電腦可讀媒體可包括實體電腦儲存媒體。儲存媒體可為可由電腦存取之任何可用媒體。借助於實例而非限制,此類非暫時性電腦可讀媒體可包含RAM、ROM、EEPROM、CD-ROM、快閃記憶體或其他光碟儲存裝置,磁碟儲存裝置或其他磁性儲存裝置,或任何其他可用於儲存呈指令及/或資料結構形式的所需程序碼且可由電腦存取的媒體;如本文中所使用,磁碟及光碟包括緊密光碟(CD)、雷射光碟、光學光碟、數位多功能光碟(DVD)、軟性磁碟及藍光光碟,其中磁碟通常以磁性方式再生資料,而光碟藉由雷射以光學方式再生資料。以上之組合亦應包括於電腦可讀媒體之範疇內。電腦可讀媒體160可為記憶體130的一部分。
另外,在一些情況下,在通信設備中,指令及/或資料可作為信號提供。例如,通信設備可包括收發器110,該收發器可經由接收器112接收指示指令及資料之信號。指令及資料可使得一或多個處理器實施本文中概述之功能。
此外,UE 100可包括能夠呈現包括3D影像之彩色影像的螢幕或顯示器190。在一些實施例中,顯示器190可用以顯示由攝影機180擷得之實況影像、圖形使用者介面(GUI)、程式輸出等。在一些實施例中,顯示器190可包含及/或裝有觸控式螢幕,以准許使用者經由虛擬鍵盤、圖標、選單或其他圖形使用者介面(GUI)、使用者手勢及/或諸如觸控筆及其他寫入工具之輸入裝置的某一組合來輸入資料。在一些實施例中,顯示器190可使用液晶顯示器(LCD)顯示器或發光二極體(LED)顯示器(諸如有機LED(OLED)顯示器)實施。在其他具體例中,顯示器190可單獨封裝,且可以操作方式耦接至攝影機180、處理器150及/或UE 100中之其他功能單元。
圖 2
展示能夠以與本文中所揭示之實施例一致的方式向UE 100提供定位相關服務的系統200之架構。在一些實施例中,系統200可用以將方位輔助資料(諸如一或多個GNSS SV 280之更新後的曆書或星曆表資料)傳輸至UE 100。例如,在一些情況下,基於接收到之方位輔助資料,UE 100可獲得GNSS衛星量測值,UE 100可以在本端使用該GNSS衛星量測值來判定其速度等。
如圖2中所說明,UE 100可經由網路230及可與網路230相關聯之基地台天線240-1至240-4(統稱為天線240)與伺服器250通信。在一些情況下,伺服器250可提供方位伺服器、方位輔助伺服器、位置判定實體(PDE)或另一網路實體中的一或多者的功能性。方位及其他資訊可以對於UE 100及伺服器250兩者而言合適的速率進行傳輸。
在一些實施例中,系統100可使用諸如UE 100與伺服器250之間的LPP或LPPe訊息之訊息。LPP協定係熟知的,且被描述於各種公開可用的技術規範中,該等技術規範來自一個被稱為第三代合作夥伴計劃(3GPP)的組織。LPPe已被開放行動聯盟(OMA)定義好,且可與LPP組合使用,使得每一組合LPP/LPPe訊息將為包含嵌入式LPPe訊息之LPP訊息。
在一些實施例中,UE 100可自基地台天線240接收可以用於位置判定之方位輔助資訊,諸如一或多個SV 280之曆書/星曆表資料。天線240可形成無線通信網路的一部分,該無線通信網路可為WWAN、WLAN等。WWAN可為分碼多重存取(CDMA)網路、分時多重存取(TDMA)網路、分頻多重存取(FDMA)網路、正交分頻多重存取(OFDMA)網路、單載波分頻多重存取(SC-FDMA)網路、長期演進(LTE)、WiMax等。
CDMA網路可實施一或多個無線電存取技術(RAT),諸如cdma2000、寬頻CDMA (W-CDMA)等等。Cdma2000包括IS-95、IS-2000及IS-856標準。TDMA網路可實施全球行動通信系統(GSM)、數位進階型行動電話系統(D-AMPS)或某一其他RAT。GSM、W-CDMA及LTE被描述於來自一個被稱為「第三代合作夥伴計劃」(3GPP)的組織之文獻中。Cdma2000描述於來自稱為「第三代合作夥伴計劃2」(3GPP2)之協會的文獻中。3GPP及3GPP2文獻公開可取得。WLAN可為IEEE 802.11x網路。該等技術亦可結合WWAN、WLAN等之任何組合來實施。例如,天線240及網路230可形成例如演進型UMTS地面無線電存取網路(E-UTRAN)(LTE)網路、W-CDMA UTRAN網路、GSM/EDGE無線電存取網路(GERAN)、1xRTT網路、演進資料最佳化(EvDO)網路、WiMax網路或WLAN的一部分。在一些實施例中,UE 100可自由耦接至天線240之基地台傳輸之SIB接收參考時間,諸如GNSS時間。
UE 100亦可自可係GNSS之一部分的諸如SV 280-1、280-2、280-3及/或280-4(下文中被稱作「SV 280」)的一或多個地球軌道太空載具(SV)280接收信號。例如,SV 280可在GNSS群集中,GNSS群集諸如US全球定位系統(GPS)、歐洲伽利略系統、俄羅斯Glonass系統或中國羅盤系統。根據某些態樣,本文中呈現之技術不受限於全域衛星系統。例如,本文中所提供之技術可應用於或以其他方式用於各種區域性系統,諸如日本上空的準天頂衛星系統(QZSS)、印度上空的印度區域性導航衛星系統(IRNSS)及/或可與一或多個全域及/或區域性導航衛星系統相關聯或以其他方式與其一起使用的各種擴增系統(例如,基於衛星之擴增系統(SBAS))。借助於實例而非限制,SBAS可包括提供完整性資訊、差異校正等的擴增系統,諸如廣域擴增系統(WAAS)、歐洲地球同步導航覆疊服務(EGNOS)、多功能衛星擴增系統(MSAS)、GPS輔助地理擴增導航或GPS及地理擴增導航系統(GAGAN)及/或類似者。因此,如本文所使用,SPS/GNSS可包括一或多個全域及/或區域性導航衛星系統及/或擴增系統之任何組合,且SPS/GNSS信號可包括SPS、類SPS及/或與此一或多個SPS/GNSS相關聯之其他信號。SPS/GNSS亦可包括其他非導航專用衛星系統,諸如Iridium或OneWeb。在一些實施例中,GNSS接收器140可經組態以自上文SPS/GNSS/衛星系統中的一或多者接收信號。
為簡單起見,圖2中僅展示一個UE 100、伺服器250及四個SV 280。一般而言,系統100可包含指示為245-k之多個小區(0≤k≤N小區
,其中N小區
為小區的數目),以及額外的網路230、LCS用戶端260、UD 100、伺服器250、(基地台)天線240及SV 280。以與本文中所揭示之實施例一致的方式,系統100可進一步包含小區之混合,該等小區包括微小區及超微型小區。
UE 100可能能夠經由支援定位及方位服務之一或多個網路230與伺服器250無線通信,以獲得初始粗略方位,該初始粗略方位可結合曆書/星曆表資訊用於定位相關量測,如本文中進一步描述。例如,UE 100可使用GNSS都卜勒為基礎之速度判定,且基於GNSS量測值來計算其某一時間的瞬時速度,或在一段時間間隔內的平均速度,及/或在某一時間間隔內的行進距離,及/或其他定位相關參數。在一些實施例中,UE 100可使用GNSS定位(例如,基於偽距量測值)來估計時間間隔開始時的第一位置及時間間隔結束時的第二位置,且基於第一位置與第二位置之間的差來判定行進距離。可基於距離行進及時間間隔長度而獲得其他定位相關參數,例如速度。
在一些實施例中,GNSS量測值可藉由來自以下各者中之一或多者的量測值擴增:IMU 170、感測器185、WWAN/WLAN信號之量測值及/或經由WWAN/WLAN網路接收之資訊。作為一個實例,在某一時間間隔內的GNSS量測值(例如,由UE 100獲得)可進行調整或以其他方式修改以判定對應GNSS估計值。例如,GNSS估計值(其可反映對GNSS量測值之校正、調整或修改)可基於來自IMU 170及/或感測器186之量測值,及/或來自WWAN/WLAN網路之信號,及/或彼時間間隔內的其他參數。參數可輸入至模型(例如,數學及/或預測模型),該模型可輸出GNSS估計值。作為另一實例,IMU 170及/或感測器186及/或來自WWAN/WLAN網路之信號可用以獲得獨立位置估計、某一時間間隔內UE的行進距離、速度及/或其他定位相關參數。在一些實施例中,當GNSS量測值受環境條件影響及/或在一段時間內不可用時,來自IMU 170及/或感測器186之量測值及/或來自WWAN/WLAN網路之信號可用以獲得定位相關參數之估計。
在一些實施例中,UE 100可基於以下各者中之一或多者判定位置(例如,緯度、經度):GNSS量測值、IMU量測值、感測器量測值、WWAN信號量測值、WLAN信號量測值或其某一組合。例如,當四個SV 280可見時,UE 100能夠判定其3維(3D)方位(例如,緯度、經度及高度)。在一些實施例中,UE 100可使用藉由耦接至天線240的基地台(BS)提供之定位參考信號(PRS)以及天線之已知位置來判定其位置。在一些實施例中,UE 100可使用諸如進階前向鏈路三角量測(AFLT)之方法使用傳輸器之已知位置(WWAN或WLAN)來判定其位置。在一些實施例中,UE 100之位置可使用來自IMU 170及/或感測器185之量測值進行判定及/或擴增。
在一些實施例中,UE 100可基於GNSS都卜勒量測值判定其速度。GNSS都卜勒量測值係指載波相位導出之都卜勒量測值及/或接收器產生之都卜勒量測值(例如,由UE 100上之GNSS接收器140產生)兩者。例如,載波相位導出之都卜勒量測值或接收器產生之都卜勒量測值(例如,基於UE 100上之GNSS接收器140產生的名義上恆定之參考頻率)可用以判定速度。在一些實施例中,對應於GNSS都卜勒量測值之GNSS估計值(例如,由數學模型及/或預測模型輸出)可用以判定定位相關量測值,包括速度、行進距離等。
圖 3
說明在某一時間點由UE 100進行的例如SV 280-4的SV量測中之多路徑傳播效應。如圖3中所示,在時間t,UE 100可位於點L 310處。UE 100可相對於參考座標以UE速度350移動。量值或UE 100之速度可例如以公尺/秒或其他適當單位表達。在UE 100處可接收到來自SV 280-4之信號,在時間t,該SV 280-4可位於方位S 330處且以速度370移動。量值或SV 280-4之速度例如以公尺/秒或其他適當單位表達。由UE 100接收之信號可包括直接自SV 280-4接收的沿著路徑P=SL之視線(LOS)信號,及在點G 360處反射的沿著路徑SG及GL之多路徑傳播信號(例如,來自地面反射)。
對於LOS GNSS信號(例如,來自SV 280-4),UE速度350可導致GNSS都卜勒量測值相對於預期或標稱都卜勒頻率發生改變。取決於UE 100相對於SV 280-4之運動方向,GNSS都卜勒量測值的改變可為正面的或負面的。來自SV 280-4之信號的多路徑傳播地面反射可導致在UE 100處觀測到的GNSS都卜勒量測值改變較低(相對於非多路徑傳播的情況下來自SV 280-4之LOS信號的觀測)。因此,基於GNSS都卜勒量測值之速度及其他定位相關量測值的準確度及可靠性可能受到不利影響。例如,當存在多路徑傳播地面反射時,基於對GNSS都卜勒量測值求積分後的速度的行進距離計算值在統計上可能低於UE 100的實際或真實行進距離。
在圖3中,自點L 310(UE 100在時間t所處的位置)至點S 330(SV在時間t所處的位置)之LOS路徑表示為LOS偽距P 380。因此,SV 280-4之都卜勒為基礎之LOS量測值DLOS
隨及之方向餘弦而變。方向餘弦係指兩個向量(例如,上文的及)之間夾角的餘弦。術語偽距係指SV(例如,諸如一個SV 280)與UE(例如,UE 100)之間的估計距離(亦被稱為偽距離)。因為用來計算距離之時間量測值的誤差可能影響距離判定,所以使用術語偽距。藉由判定與至少四個衛星之距離及該等衛星之各別位置,UE可判定其自身在某一給定時間的位置。給定時間的衛星位置可基於衛星軌道參數之知識來判定。衛星之偽距可藉由將光速乘以信號自衛星到達接收器之估計時間來獲得。
在圖3中,至UE 100之非LOS(NLOS)路徑由點S 330至點G 360之路徑R 360及路徑δR(自點G 360至點L 310)構成。NLOS偽距可寫成NLOS偽距=R+δR。因此,SV 280-4的都卜勒為基礎之NLOS量測值DNLOS
隨及之方向餘弦而變,其中隨δR而變。因此,,同時NLOS偽距R+δR>P(LOS偽距)。因此,如上文所概述,多路徑傳播地面反射可導致諸如UE速度、行進距離等位置相關量測值不準確。
因此,一些所揭示實施例促使誤差緩解,且改良地面定位系統中之準確度。例如,可以緩解來自衛星定位系統之都卜勒為基礎之量測中藉由多路徑傳播(例如,地面反射)誘發之誤差,藉此促使準確度提高,並且改良可靠性。在一些實施例中,統計學技術及/或機器學習技術可用以緩解由多路徑傳播(例如,地面反射)產生之誤差。在一些實施例中,方法可包含離線階段,其中統計學技術(例如,線性回歸、最小平方等)用來判定GNSS都卜勒量測值與真實/參考量測值之間的關係,且獲得數學模型。在一些實施例中,在操作過程中(例如,在數學模型創建之後),GNSS都卜勒量測值(例如,由UE 100量測)及/或IMU量測值及/或感測器量測值及/或其他參數可輸入至數學模型,該數學模型可輸出對應GNSS估計值(對應於GNSS都卜勒量測值)及/或UE 100之經校正速度(部分地基於輸入資料)。在一些實施例中,GNSS量測值可由卡爾曼濾波器(例如,該濾波器可形成處理器150的一部分,及/或使用藉由UE 100上之處理器150提供之功能性)輸出,且經卡爾曼濾波之GNSS量測值可輸入至預測模型及/或數學模型。例如,以下各者中之一或多者可輸入至數學模型及/或預測模型:感測器量測值、IMU量測值、無線量測值、GNSS環境參數等,該數學模型及/或預測模型可輸出對應GNSS估計值。在一些實施例中,GNSS估計值可用以判定速度、行進距離及/或其他定位相關參數。
在一些實施例中,離線階段可使用機器學習技術(例如,梯度下降之多變數線性回歸、迭代二分化等),部分地基於以下各者中之一或多者獲得預測模型:GNSS都卜勒量測值,及/或其他量測值(例如,IMU/感測器),及/或輸入參數及真實/參考量測值。術語「機器學習」係指可用以判定輸入資料串流之型樣且關於一些所要輸出作出預測的技術。在學習階段期間,機器學習技術可分析擷得的輸入資料(例如,量測之資料,諸如GNSS都卜勒量測值、IMU量測值及/或感測器量測值,及/或其他與量測有關的參數(例如,環境))及真實/參考資料(例如,真實/參考速度、真實/參考GNSS都卜勒量測值)來獲得預測模型。因此,舉例而言,訓練數據集可包含UE 100的量測值(例如,以下各者中之一或多者:GNSS都卜勒量測值、IMU 170的量測值、來自感測器185之各種定位相關感測器量測值)、環境參數(例如,信號品質、SV 280數目等)及可由其他技術及/或來源獲得之真實參考量測值(例如,真實速度、真實行進距離等)。在學習階段期間,可判定以下兩者之間的關係以創建預測模型:(a)UE 100之量測值(例如,以下各者中的一或多者:GNSS都卜勒量測值及/或IMU量測值及/或感測器量測值)、其他參數;及(b)真實/參考量測值(例如,真實速度、真實行進距離等)。
在一些實施例中,預測模型可包含自動遞減(AR)模型,諸如AR (N)模型,其可基於前N次觀測之資產來預測下一/後續值。預測模型亦可採取以下各者中之一或多者的形式:全連接神經網路(FCN)、迴旋神經網路(CNN)、諸如長短期記憶體(LSTM)或閘控循環單元(GRU)的循環神經網路(RNN),及/或以上網路之一些混合體。因為AR模型可基於過去N次觀測動態地調整預測,因此預測模型中可能包含季節性及一般輸入信號偏差。基於AR之預測模型促進嵌入式平台(例如,作為UE 100中之功能單元及/或應用程序,可以採取移動裝置或其他對並行處理或類神經處理引擎只有有限支援的裝置的形式)中之預測。
在一些實施例中,迴旋神經網路可用以將輸入信號映射至較低維表示,該等較低維表示接著可藉由卡爾曼濾波器進行濾波,得到反向傳播的卡爾曼濾波。在反向傳播的卡爾曼濾波中,由卡爾曼濾波器表示的狀態空間模型可用以使來自有雜訊輸入之預測變穩定,同時使用神經網路之反向傳播技術自主地調諧模型參數。反向傳播卡爾曼濾波之一些做法描述於T. Haarnoja、A. Ajay、S. Levine及P. Abbeel的「Backprop KF: Learning Discriminative Deterministic State Estimators」(關於類神經資訊處理系統的第30屆會議(NIPS 2016),2016年西班牙巴塞羅那)中,其特此以全文引用之方式併入。
在一些實施例中,混合神經網路可在輸入層使用CNN,從而可以促使對於預測有用的特徵/參數自動產生;接下來,RNN層可促使基於CNN產生之表示來學習信號之時間維結構;且輸出層處之CNN/FCN網路可促使RNN層之輸出映射至所要輸出格式。
機器學習演算法(例如,供預測模型使用)亦可包括增強技術,其中複數個弱學習者組合以形成輸入信號空間之強學習者。增強機器學習技術可包括自適應性增強(AdaBoost)及用於漸變增強決策樹之技術,諸如XGBoost及Light GBM。在Light GBM中,舉例而言,排除具有小梯度的輸入,且將彼此排斥的特徵捆綁在一起,從而便於在資料大小較小的情況下進行預測。在一些實施例中,例如在預測模型部署有嵌入式系統(例如,作為UE 100中的功能單元及/或應用程序,可採取移動裝置或其他具有記憶體及/或處理約束之裝置的形式)時可以使用Light GBM。例如,基於Light GBM之預測模型可便於在權重較小的情況下進行預測(例如,都卜勒估計值、速度、行進距離等),因此減少所需要的記憶體及嵌入式系統進行推斷所需要的計算能力。在一些實施例中,可使用現成的或基於庫的Light GBM實施(例如,來自分佈式機器學習工具包(DMTK))。
機器學習技術亦可包括涉及生成對抗網路(GAN)之半監督學習方法,其中沒有真實資訊之數據集與具有真實資訊之數據集組合。在GAN中,模型化係基於兩個網路與之間的互動:(i)可基於雜訊源產生合成資料之產生器網路,及(ii)區別產生器之輸出與真實資料之鑑別器。除了標記資料之外,半監督學習亦可在學習期間使用未標記資料。例如,即使在多數數據集可能未被標記的情況下,GAN亦可促進學習。因此,可以習得數據集之結構,且將其用以產生預測模型。例如,GAN可使用都卜勒量測值、真實資料及以下各者中之一或多者訓練來獲得預測模型:GNSS環境參數、感測器量測值、IMU量測值、無線量測值及/或其他可能影響量測之未標記參數。在一些實施例中,諸如Keras、Tensorflow、PyTorch等機器學習平台可以用於實施及訓練GAN。
實際分佈(例如,真實資料)與學習階段期間的預測分佈(例如,基於輸入GNSS、感測器、無線資料)之間的距離量度可用以判定評論(或見證功能),其能最大限度地區別來自兩種分佈之樣本。評論功能可藉由神經網路判定,且可替代GAN中之鑑別器。在Wasserstein GAN中,距離量度係基於所謂的「地球-移動器距離」,其反映了將預測分佈轉化為實際分佈的最低質量傳遞成本,其中成本量測為質量乘以傳遞(或轉化)距離。在一些實施例中,使用Wasserstein GAN並帶有梯度懲罰值的行動者-評論方法GAN可用以獲得預測模型。
機器學習可使用假定之集合來判定模型選擇。假定之集合被稱為機器學習技術之「感應偏差」。例如,「限制偏差」(一種類型的感應偏差)可限定在學習階段期間使用的模型集合,而「偏好偏差」(另一類型之感應偏差)在學習階段期間產生一些相比其他更佳的模型。例如,具有梯度下降之多變數線性回歸使用:(a)限制偏差,因此僅考慮基於輸入參數值之線性組合的預測模型;及(b)藉由使用梯度下降法判定權重來考慮的優於線性模型的偏好偏差。作為另一實例,迭代二分化可使用:(a)僅考慮樹預測模型的限制偏差,其中每一分支編碼個別輸入參數的檢查順序;及(b)更偏好不太複雜的樹而不是複雜度較大的樹的偏好偏差。
在一些實施例中,在操作過程中(例如,在預測模型創建之後),GNSS都卜勒量測值(例如,由UE 100量測)及/或IMU量測值及/或感測器量測值及/或其他參數可輸入至預測模型,該預測模型可輸出:對應於輸入資料的所預測GNSS都卜勒估計值及/或UE 100之所預測速度。例如,在操作過程中(例如,在預測模型創建之後),GNSS都卜勒量測值(例如,由UE 100量測)可輸入至預測模型,該預測模型可輸出:部分地基於GNSS都卜勒量測值之所預測GNSS都卜勒估計值。例如,預測模型可使用輸入資料(例如,在學習階段期間收集)之型樣來判定所預測GNSS都卜勒估計值之值,及/或UE 100之所預測速度,及/或所預測行進距離,及/或其他定位相關參數。如本文所使用,術語「預測」係指將值指派給變數。例如,值可指派給以下各者中之一或多者:GNSS都卜勒參數、速度、行進距離及/或定位相關參數,此等參數可由預測模型基於輸入量測值/參數輸出。
圖 4A
展示用於判定使基於參考資料行進之UE距離與以下各者中之一或多者相關的數學模型430的例示性方法400:對應偽距量測值、對應IMU量測值、對應感測器量測值及/或對應GNSS都卜勒量測值。在一些實施例中,相關可進一步基於在量測時存在的GNSS環境參數407。例如,在一個實施例中,數學模型430可藉由使用真實或參考資料使量測之GNSS都卜勒資料與行進距離相關來判定。在一些實施例中,數學模型430可進一步基於在量測時存在的GNSS環境參數407。在一些實施例中,方法400可藉由UE 100上之處理器150及/或PE 156執行。在一些實施例中,方法400可在離線數學模型產生階段期間執行。
在一些實施例中,在方塊410中,(a)UE 100行進的距離(例如,在點P1及P2之間)可使用參考資料判定。例如,UE 100之開始位置(例如,P1)及結束位置(例如,P2)的已知座標可用以判定行進的距離。在一些實施例中,可使用參考資料402,其可提供起點與端點(例如,P1及P2)之間的真實/參考距離。在一些實施例中,參考資料402可藉由使用任何準確距離計算技術判定UE 100的行進距離來獲得。例如,P1及P2之已知座標(例如,緯度、經度及/或高度)可用以判定UE 100的行進距離。
在一些實施例中,在方塊415中,使用參考時間源,可基於以下各者中之一或多者判定UE 100的行進距離:(b)對應偽距量測值及/或(c)對應IMU量測值及/或(d)對應感測器量測值及/或(e)對應GNSS都卜勒量測值及/或(f) (b)至(e)之某一組合。此外,在一些實施例中,可獲得及記錄與量測相關聯的對應GNSS環境參數407。在一些實施例中,以上(b)至(f)中之量測值及GNSS環境參數407可作為運動資料405儲存。
例如,(例如,在以上(e)中),UE 100的行進距離可基於GNSS都卜勒量測值而判定。例如,(例如,對於以上(e)),UE 100之速度可基於GNSS都卜勒量測值而判定,且行進距離可計算為速度(速度之量值)與ΔT(基於參考時間源)的乘積。作為另一實例,(例如,對於以上(b)),至SV 280之偽距量測值可用以判定在時間間隔ΔT期間UE 100在點P1與另一點P2之間的行進距離。作為另一實例,UE 100的行進距離可基於量測值之一組合而判定,該等量測值包括GNSS量測值、IMU 170及/或感測器185的量測值、IMU 170的量測值及/或無線量測值(例如,WWAN及/或WLAN量測值)等中的一或多者。
在一些實施例中,一或多個GNSS環境參數407可輸入至方塊415。可由UE 100基於接收到之GNSS信號獲得、判定及/或量測GNSS環境參數407。GNSS環境參數407可包括SV定位相關參數,諸如可見衛星的數目、精度稀釋(DOP)及可獲得、判定及/或量測之其他環境條件。術語「精度稀釋」係關於導航衛星幾何形狀對定位量測精度的影響。在一些實施例中,GNSS環境參數407可包括以下各者中之一或多者:GNSS時戳(例如,GPS週/秒),及/或GNSS定位參數(例如,緯度、經度、高度),及/或GNSS定位不確定性(例如,水平誤差位置估計、水平誤差位置估計不確定性、高度不確定性),及/或GNSS統計(例如,使用的GPS/Glonass/北斗衛星的數目、定點之間的時間(以秒計)),及/或GNSS導出因數(例如,GNSS航向、GNSS航向不確定性、水平誤差速度估計、水平速度、定位精度稀釋(PDOP)、水平精度稀釋(HDOP)、垂直精度稀釋(VDOP)),及/或方位源/定位類型(例如,是僅GNSS,還是GNSS及感測器輔助,還是基於感測器)。在一些實施例中,一些GNSS環境參數(例如,SV定位相關參數)可作為輔助資料(例如,經由WWAN/WLAN)提供至UE 100。術語精度稀釋(DOP)係指衛星幾何形狀對定位量測精度的影響。DOP可按照HDOP、VDOP及PDOP來表達,可基於衛星(例如,圖2中的SV 280)之位置來判定。在一些實施例中,SV 280之位置可為已知的,且DOP值可基於SV 280之已知位置來判定(例如,由UE 100及/或處理器150)。
在一些實施例中,在方塊420中,可判定是否獲得額外量測值。例如,基於效能及與數學模型有關的其他參數,判定獲得額外量測值(在方塊420中為「Y」),接著可叫用方塊410。在一些實施例中,方法400可迭代進行方塊410、415及420,直至獲得統計學上顯著大量的量測值為止。
若未獲得其他量測值(在方塊420中為「N」),則在方塊430中,統計學技術可基於(a)與以下各者中之一或多者之間的統計學關係判定數學模型430:方塊415中用於各種定位條件的(b)-(f)(例如,基於GNSS環境參數407)。在一些實施例中,數學模型430可使用回歸分析、曲線擬合及/或其他統計學模型化技術來判定。在一些實施例中,數學模型可基於以下兩方之間的統計學關係:一方是(a)真實或參考距離,另一方是以下各者中之一或多者:(b)對應偽距量測值;及/或(c)對應IMU量測值;及/或(d)對應感測器量測值;及/或(e)對應GNSS都卜勒量測值;及/或(f)在各種定位條件下(b)-(e)的某一組合(例如,由GNSS環境參數407表示)。
例如,在一些實施例中,比例因數(K)可自運動資料402中之複數個量測值判定。比例因數K可形成數學模型430的一部分。例如,自運動資料402中之量測值,可依據判定比例因數,其中為基於偽距之距離量測值,為參考距離,且為基於GNSS都卜勒量測值而判定的距離。在一些實施例中,多個比例因數可基於所使用的感測器類型及/或感測器量測值(例如,IMU 170、基於WLAN/WWAN的定位量測值等)之可用性或用途計算出。例如,舉例而言,第一比例因數可僅在GNSS偽距及GNSS都卜勒量測值可用(沒有感測器量測值)時計算出,且舉例而言,第二比例因數可在來自感測器185及/或IMU 170之量測值可用(除了GNSS偽距及GNSS都卜勒量測值之外)的情況下計算出。在一些實施例中,數學模型亦可用以促使僅校正感測器量測值,亦即當GNSS量測值不可用時。作為一個實例,比例因數可計算為與之間的差與與之間的差之比,使得。以上等式僅為一個實例,且各種其他功能可用以判定K。
圖 4B
展示用於使用基於參考資料行進之UE距離及以下各者中之一或多者判定預測模型470的例示性方法450:對應偽距量測值、對應IMU量測值、對應感測器量測值、對應GNSS都卜勒量測值及/或對應GNSS環境參數407。在一些實施例中,方法450可藉由UE 100上之處理器150及/或PE 156執行。在一些實施例中,方法450可在離線模型產生階段期間執行。
在一些實施例中,在方塊410中,(a)UE 100行進的距離(例如,在點P1及P2之間)可使用參考資料判定。例如,UE 100之開始位置(例如,P1)及結束位置(例如,P2)的已知座標可用以判定行進的距離。在一些實施例中,可使用參考資料402,其可提供起點與端點(例如,P1及P2)之間的真實/參考距離。在一些實施例中,參考資料402可藉由使用任何準確距離計算技術判定UE 100的行進距離來獲得。例如,P1及P2之已知座標(例如,緯度、經度及/或高度)可用以判定UE 100的行進距離。
在一些實施例中,在方塊415中,使用參考時間源,可判定以下各者中之一或多者:(b)對應偽距量測值,及/或(c)對應IMU量測值,及/或(d)對應感測器量測值,及/或(e)對應GNSS都卜勒量測值,及/或(f) (b)至(e)之某一組合。此外,在一些實施例中,可獲得及記錄與量測相關聯的對應GNSS環境參數407。在一些實施例中,以上(b)至(f)中之量測值及GNSS環境參數407可作為運動資料405儲存。在一些實施例中,一或多個導出之量測值可基於原始量測值而判定,且記錄為運動資料405。例如,UE 100之速度可基於某一時間間隔內的對應GNSS都卜勒量測值(例如,在以上(e)中獲得)而判定。UE 100之速度可儲存為運動資料405的一部分。
在一些實施例中,一或多個GNSS環境參數407可輸入至方塊415。可由UE 100基於接收到之GNSS信號獲得、判定及/或量測GNSS環境參數407。GNSS環境參數407可包括SV定位相關參數,諸如可見衛星的數目、精度稀釋(DOP)及可獲得、判定及/或量測之其他環境條件。術語「精度稀釋」係關於導航衛星幾何形狀對定位量測精度的影響。在一些實施例中,GNSS環境參數407可包括以下各者中之一或多者:GNSS時戳(例如,GPS週/秒),及/或GNSS定位參數(例如,緯度、經度、高度),及/或GNSS定位不確定性(例如,水平誤差位置估計、水平誤差位置估計不確定性、高度不確定性),及/或GNSS統計(例如,使用的GPS/Glonass/北斗衛星的數目、定點之間的時間(以秒計)),及/或GNSS導出因數(例如,GNSS航向、GNSS航向不確定性、水平誤差速度估計、水平速度、定位精度稀釋(PDOP)、水平精度稀釋(HDOP)、垂直精度稀釋(VDOP)),及/或方位源/定位類型(例如,是僅GNSS,還是GNSS及感測器輔助,還是基於感測器)。在一些實施例中,一些GNSS環境參數(例如,SV定位相關參數)可作為輔助資料(例如,經由WWAN/WLAN)提供給UE 100。
在一些實施例中,在方塊420中,可判定是否獲得額外量測值。例如,基於效能、準確度及與預測模型有關的其他參數,若判定將獲得額外量測值(在方塊420中為「Y」),則可叫用方塊410。在一些實施例中,方法400可迭代進行方塊410、415及420,直至獲得顯著大量的量測值(例如,適於利用指定效能/準確度參數判定預測模型)為止。
若未獲得其他量測值(在方塊420中為「N」),則在方塊430中,可使用機器學習技術,使用運動資料405作為訓練數據集來判定預測模型470。在一些實施例中,機器學習技術可包含具有梯度下降、迭代二分化等多變數線性回歸。機器學習可使用一組假定來判定模型選擇。假定之集合被稱為機器學習技術之「感應偏差」。例如,「限制偏差」(一種類型的感應偏差)可限定在學習階段期間使用的模型集合,而「偏好偏差」(另一類型之感應偏差)在學習階段期間產生一些相比其他更佳的模型。例如,具有梯度下降之多變數線性回歸使用:(a)限制偏差,因此僅考慮基於輸入參數值之線性組合的預測模型;及(b)藉由使用梯度下降法判定權重來考慮的優於線性模型的偏好偏差。作為另一實例,迭代二分化可使用:(a)僅考慮樹預測模型的限制偏差,其中每一分支編碼個別輸入參數的檢查順序;及(b)更偏好不太複雜的樹而不是複雜度較大的樹的偏好偏差。例如,可使用基於light GBM方法之預測模型,其產生節點數目相對較少的增強樹模型。在一些實施例中,可使用上文所描述之機器學習模型中之任一者。例如,以下各者中之一或多者可用以判定預測模型470:AR、CNN、卡爾曼反向傳播、RNN、FCN、混合神經網路、GAN、增強技術等。在一些實施例中,機器學習技術可使用運動資料405(例如,以下各者中之一或多者:GNSS都卜勒量測值,及/或IMU量測值及/或感測器量測值,及/或GNSS環境參數407)及對應真實/參考量測值402來獲得預測模型470。
在一些實施例中,機器學習技術可判定輸入資料串流中之型樣以獲得預測模型470。在學習階段期間,機器學習技術可分析參考資料402及以下各者中之一或多者以獲得預測模型470:GNSS都卜勒量測值,及/或IMU量測值及/或感測器量測值及/或與量測有關的GNSS環境參數407。在學習階段期間,可判定以下兩方之間的關係以創建預測模型470:(a)UE 100的量測值(例如,以下各者中的一或多者:GNSS偽距量測值,及/或GNSS都卜勒量測值,及/或IMU量測值,及/或感測器量測值)、GNSS環境參數407;及(b)參考量測值402。在一些實施例中,可部分地使用基於DMTK之工具來判定預測模型。
在一些實施例中,運動資料405可在訓練之前正規化、隨機化及以其他方式預處理。在一些實施例中,經預處理的運動資料可分成訓練資料(其用以訓練模型來辨識、及之間的關係)及測試資料(其用以基於其訓練來測試模型預測)。該模型迭代進行訓練及測試步驟,直至預測(例如,基於)密切匹配為止。例如,當之預測值匹配某一臨限值內之實際值時,且當匹配發生的預測百分比極高(在某一臨限值內為100%)時,訓練可為完整的。作為另一實例,當速度之預測值(或UE 100之速度的預測量值)匹配某一臨限值內UE 100之參考速度(或速度之參考量值)時,且當匹配發生的預測百分比極高(在某一臨限值內為100%)時,訓練可為完整的。
在一些實施例中,在訓練期間,除了運動資料之外,機器學習亦可使用GNSS環境參數407,使得可訓練預測模型來預測多種GNSS環境條件下的都卜勒量測值及/或速度。在一些實施例中,在訓練之後,預測模型470可基於當前GNSS都卜勒及其他量測值預測瞬時UE速度。總行進距離可計算為瞬時預測速度之總和乘以速度有效時的對應時間間隔。在一些實施例中,可用以判定預測模型470之機器學習技術可包含:線性回歸,及/或廣義加法模型(GAM),及/或回歸神經網路或其變體。GAM將回應或因變數(例如,參考都卜勒量測值)與一些預測子變數(例如,GNSS都卜勒量測值、環境因素等)相關。
GAM基於個別預測子變數與回應變數(或例如相關功能)之間的關係遵循平滑型樣(線性或非線性)及此等功能可基於資料估計且用以預測回應變數的假定來判定預測模型(例如,預測模型470)。
回歸神經網路可基於藉由處理來自結構化域之資料(例如,GNSS都卜勒量測值、偽距、感測器輸入、環境因素等)進行的機器學習來判定預測模型(例如,預測模型470)。回歸神經網路可用以判定回歸問題的預測模型。例如,在學習期間,回歸神經網路中之資訊流動可為雙向的,導致資訊自節點朝向葉順序傳播及自葉朝向節點順序傳播,其中訊息傳遞導致判定預測模型(或推斷系統),該預測模型學習在回歸神經網路之訓練階段期間使用的結構型樣內顯式地編碼的隱藏相依性。在操作過程中,回歸神經網路可藉由按拓樸次序(亦被稱為拓樸類別)遍歷給定結構,對結構化輸入遞歸地應用相同權重集,以產生對變數大小的輸入結構之結構化預測或關於其的標量預測。回歸神經網路可包括循環神經網路(RNN),可將先前時間步驟及隱藏表示組合成當前時間步驟的表示。在一些實施例中,RNN可包括長短期記憶體(LSTM)及相控LSTM(PLSTM)。LSTM係指用於RNN之層的建築單元,方便在任意時間間隔內記憶或記住值。LSTM可包括晶胞(負責記憶體)、輸入閘極、輸出閘極及「忘記」閘極,在此等閘極與晶胞之間具有連接。閘極可使用激活函數來計算加權和之激活,藉此調節通過LSTM連接之值的流動。相控LSTM包括額外時間閘極,其僅在閘極打開時更新記憶體晶胞,其中閘極之打開及關閉(振盪頻率)受參數控制。在來自複數個感測器之輸入可能需要整合但感測器具有相異取樣率(例如,短或長取樣頻率)的情況下,PSLTM促進機器學習及預測。在以異步時間取樣RNN輸入的情況下,PSLTN促進預測模型之判定及使用。在一些實施例中,預測模型470可用以(例如,在後續操作階段期間)基於輸入量測值及GNSS環境參數預測GNSS都卜勒量測值或UE速度。
圖 5A
展示用於基於數學模型430判定經校正UE速度之方法500的流程圖。在一些實施例中,方法500可藉由UE 100及/或UE 100上之處理器150及/或PE 156執行。可執行方法500以在判定一或多個位置相關參數時緩解量測誤差。在一些實施例中,方法500可藉由定位應用及/或導航相關應用觸發,該定位應用及/或導航相關應用可包括用於速度判定及/或用以判定行進距離之功能性。
在方塊510中,可獲得GNSS偽距量測值、GNSS都卜勒量測值、時間量測值及一或多個GNSS環境參數407。在一些實施例中,參考時間源可以用於時間量測。在一些實施例中,可自UE 100可通信耦接至之WWAN及/或WLAN獲得一或多個GNSS環境參數(例如,作為輔助資料)。
在方塊520中,第一(例如,原始)UE速度SF
可部分地基於GNSS都卜勒及時間量測值判定。此外,第二速度可部分地基於時間間隔內之偽距量測值判定。如上文所概述,SF
及可受到多路徑傳播(例如,地面反射)的不利影響。在一些實施例中,SF
及可視情況基於IMU量測值(例如,來自IMU 170)及/或感測器量測值(例如,來自感測器185)進行速度擴增。例如,在一些情況下,在GNSS量測值不可用時,來自IMU 170及/或感測器185之量測值及/或基於WWAN或WLAN信號之定位量測值可用以估計在時間間隔內UE 100之速度。
在方塊530中,經校正速度SC
可使用數學模型430來判定。在一些實施例中,在方塊530中,數學模型430可基於以下各者中之一或多者判定經校正速度SC
:第一UE速度SF
(例如,基於GNSS都卜勒量測值)、第二速度(例如,基於GNSS偽距量測值)、時間量測值及/或GNSS環境參數407。
在一些實施例中,經校正速度SC
可基於比例因數K
而判定為,其中為經校正速度,且g
為、及之函數,其中為基於偽距量測值而判定之速度,且為第一速度。比例因數K
可取決於量測時的環境參數。在一些實施例中,函數g
可基於函數f
,函數f
用以在判定數學模型430時(例如,在圖4A中描繪之階段期間)判定K
。
作為一個實例,經校正速度SC
可判定為第一速度與比例因數(K
)與在第一速度及基於偽距量測值而判定的速度之間的差之乘積的和,得到。前述等式僅為一個實例,且各種其他功能可用以判定。
在一些實施例中,比例因數K
可基於諸如以下各者中之一或多者的GNSS環境參數407進行調整:用於量測之SV 280的數目;及/或是否僅GNSS量測值被使用/可用(例如,沒有IMU 170之量測值及/或感測器185之量測值),及/或GNSS量測值是否擴增有IMU 170之量測值及/或感測器185之量測值;及/或是否僅使用IMU 170之量測值及/或感測器185之量測值(例如,在GNSS量測值不可用時)。
舉例而言,若所用的SV的數目不小於N,且僅使用GNSS量測值(沒有來自感測器185或IMU 170之量測值),則可使用比例因數K
=K1
,而若所用的SV的數目小於N,且使用GNSS量測值以及來自感測器185及/或IMU 170之量測值,則可使用比例因數K
=K2
。在一些實施例中,在GNSS量測值不可用且僅來自感測器185之量測值及/或來自IMU 170之量測值及/或WWAN/WLAN量測值用以進行初始速度判定(例如,在方塊520中)時,可使用比例因數K
=K3
。
GNSS環境參數407可包括SV定位相關參數,諸如可見衛星的數目、精度稀釋(DOP)及可獲得、判定及/或量測之其他環境條件。術語「精度稀釋」係關於導航衛星幾何形狀對定位量測精度的影響。在一些實施例中,GNSS環境參數407可包括以下各者中之一或多者:GNSS時戳(例如,GPS週/秒),及/或GNSS定位參數(例如,緯度、經度、高度),及/或GNSS定位不確定性(例如,水平誤差位置估計、水平誤差位置估計不確定性、高度不確定性),及/或GNSS統計(例如,使用的GPS/Glonass/北斗衛星的數目、定點之間的時間(以秒計)),及/或GNSS導出因數(例如,GNSS航向、GNSS航向不確定性、水平誤差速度估計、水平速度、定位精度稀釋(PDOP)、水平精度稀釋(HDOP)、垂直精度稀釋(VDOP)),及/或方位源/定位類型(例如,是僅GNSS,還是GNSS及感測器輔助,還是基於感測器)。在一些實施例中,一些GNSS環境參數(例如,SV定位相關參數)可作為輔助資料(例如,經由WWAN/WLAN)提供至UE 100。
在方塊540中,以下各者中之一或多者可輸出(例如,至UE 100上之呼叫常式或應用):UE 100之經校正速度SC
;基於SC
之UE 100的位置;基於經校正速度SC
及時間量測值的UE 100行進距離。在一些實施例中,該輸出可顯示給使用者及/或可有聲地輸出(例如,經由UE 100上之揚聲器)。
圖 5B
展示用於基於預測模型470判定所預測UE速度之方法550的流程圖。在一些實施例中,方法550可藉由UE 100及/或UE 100上之處理器150及/或PE 156執行。可執行方法550以在判定一或多個位置相關參數時緩解量測誤差。在一些實施例中,方法500可藉由定位應用及/或導航相關應用觸發,該定位應用及/或導航相關應用可包括用於速度判定及/或用以判定行進距離之功能性。
在方塊510中,可獲得GNSS偽距量測值、GNSS都卜勒量測值、時間量測值及GNSS環境參數407。在一些實施例中,參考時間源可以用於時間量測。在一些實施例中,可自UE 100可通信耦接至之WWAN及/或WLAN獲得一或多個GNSS環境參數(例如,作為輔助資料)。
在任選方塊520中,第一(例如,原始)UE速度SF
可部分地基於GNSS都卜勒及時間量測值判定(在叫用時,或在方塊520形成方法550之部分時)。此外,(在任選方塊520中)第二速度可部分地基於時間間隔內之偽距量測值判定。如上文所概述,SF
及可受到多路徑傳播(例如,地面反射)的不利影響。在一些實施例中,SF
及可視情況基於IMU量測值(例如,來自IMU 170)及/或感測器量測值(例如,來自感測器185)進行速度擴增。例如,在一些情況下,在GNSS量測值不可用時,來自IMU 170及/或感測器185之量測值及/或基於WWAN或WLAN信號之定位量測值可用以估計在時間間隔內UE 100之速度。
在方塊560中,可使用預測模型470判定UE 100之預測速度SML
。在一些實施例中,在方塊560中,預測模型470可基於以下各者中之一或多者判定預測速度SML
:GNSS都卜勒量測值、GNSS偽距量測值、時間量測值及GNSS環境參數407。在一些實施例中,在方塊560中,預測速度可基於SF
及而判定(例如,在圖5B中執行任選方塊520的情況下)。在一些實施例中,包括以下各者中之一或多者的任何可用量測值可被用作預測模型470之輸入:IMU 170之量測值及/或感測器185之量測值及/或WWAN/WLAN量測值。在一些實施例中,可基於機器學習之預測模型470可接受GNSS都卜勒量測值、GNSS偽距量測值、時間量測值及/或GNSS環境參數407以及上文概述之量測值(例如,IMU、感測器及/或WWAN/WLAN量測值)中的一或多者作為輸入,且輸出預測速度SML
。
GNSS環境參數407可包括SV定位相關參數,諸如可見衛星的數目、精度稀釋(DOP)及可獲得、判定及/或量測之其他環境條件。術語「精度稀釋」係關於導航衛星幾何形狀對定位量測精度的影響。在一些實施例中,GNSS環境參數407可包括以下各者中之一或多者:GNSS時戳(例如,GPS週/秒),及/或GNSS定位參數(例如,緯度、經度、高度),及/或GNSS定位不確定性(例如,水平誤差位置估計、水平誤差位置估計不確定性、高度不確定性),及/或GNSS統計(例如,使用的GPS/Glonass/北斗衛星的數目、定點之間的時間(以秒計)),及/或GNSS導出因數(例如,GNSS航向、GNSS航向不確定性、水平誤差速度估計、水平速度、定位精度稀釋(PDOP)、水平精度稀釋(HDOP)、垂直精度稀釋(VDOP)),及/或方位源/定位類型(例如,是僅GNSS,還是GNSS及感測器輔助,還是基於感測器)。在一些實施例中,一些GNSS環境參數(例如,SV定位相關參數)可作為輔助資料(例如,經由WWAN/WLAN)提供至UE 100。
在方塊570中,以下各者中之一或多者可輸出(例如,至UE 100上之呼叫常式或應用):UE 100之經預測速度SML
;基於預測速度之UE 100行進距離、基於預測速度之UE 100的位置及時間量測值。在一些實施例中,該輸出可顯示給使用者及/或可有聲地輸出(例如,經由UE 100上之揚聲器)。在一些實施例中,控制接著可返回至UE 100上之呼叫常式。
圖 6A
展示用於基於數學模型430判定經校正GNSS都卜勒估計值之方法600的流程圖。在一些實施例中,方法600可藉由UE 100及/或UE 100上之處理器150及/或PE 156執行。可執行方法600以在判定一或多個位置相關參數時緩解GNSS都卜勒量測誤差。在一些實施例中,方法600可藉由定位應用(諸如UE 100上之速度判定應用或行進距離應用)觸發。
在方塊610中,可在某一時間間隔內獲得GNSS偽距量測值、GNSS都卜勒量測值(DF
)、時間量測值及GNSS環境參數407。在一些實施例中,參考時間源可以用於時間量測。在一些實施例中,GNSS都卜勒量測值(DF
)可獲自卡爾曼濾波器(例如,使用處理器150實施)。在一些實施例中,GNSS環境參數407中的一或多者可獲自UE 100可通信耦接至之WWAN及/或WLAN(例如,作為輔助資料)。在一些實施例中,視情況在方塊610中,以下各者中之一或多者可用以擴增GNSS偽距量測值:來自IMU 170之量測值及/或來自感測器185之量測值及/或WWAN/WLAN量測值。
在方塊620中,GNSS都卜勒估計值DC
可使用數學模型430判定。在一些實施例中,GNSS都卜勒估計值DC
可校正方塊610中獲得的對應GNSS都卜勒量測值(DF
)。在一些實施例中,在方塊620中,數學模型430可基於以下各者中之一或多者判定GNSS都卜勒估計值DC
:GNSS都卜勒量測值(DF
)、GNSS偽距量測值(P
)、時間量測值及GNSS環境參數407。例如,GNSS都卜勒估計值DC
可判定為DC
=h
(DF , P , E ,
),其中h
為函數(例如,在圖4A中的數學模型創建期間判定)。
GNSS環境參數407可包括SV定位相關參數,諸如可見衛星的數目、精度稀釋(DOP)及可獲得、判定及/或量測之其他環境條件。術語「精度稀釋」係關於導航衛星幾何形狀對定位量測精度的影響。在一些實施例中,GNSS環境參數407可包括以下各者中之一或多者:GNSS時戳(例如,GPS週/秒),及/或GNSS定位參數(例如,緯度、經度、高度),及/或GNSS定位不確定性(例如,水平誤差位置估計、水平誤差位置估計不確定性、高度不確定性),及/或GNSS統計(例如,使用的GPS/Glonass/北斗衛星的數目、定點之間的時間(以秒計)),及/或GNSS導出因數(例如,GNSS航向、GNSS航向不確定性、水平誤差速度估計、水平速度、定位精度稀釋(PDOP)、水平精度稀釋(HDOP)、垂直精度稀釋(VDOP)),及/或方位源/定位類型(例如,是僅GNSS,還是GNSS及感測器輔助,還是基於感測器)。在一些實施例中,一些GNSS環境參數(例如,SV定位相關參數)可作為輔助資料(例如,經由WWAN/WLAN)提供至UE 100。
在方塊630中,可判定及/或輸出以下各者中之一或多者:基於經校正都卜勒量測值(DC
)之UE 100的速度。在一些實施例中,可結合其他量測值一起使用UE 100之速度(例如,基於經校正都卜勒量測值而判定)以判定UE 100之位置及/或其他定位相關參數。
在方塊640中,基於速度(例如,自GNSS都卜勒估計值獲得)及時間量測值之UE 100的行進距離可判定及/或輸出(例如,至UE 100上之呼叫常式及/或應用)。在一些實施例中,該輸出可顯示給使用者及/或可有聲地輸出(例如,經由UE 100上之揚聲器)。在一些實施例中,控制接著可返回至UE 100上之呼叫常式。
圖 6B
展示用於基於預測模型470判定所預測GNSS都卜勒估計值之方法650的流程圖。在一些實施例中,方法650可藉由UE 100及/或UE 100上之處理器150及/或PE 156執行。可執行方法600以在判定一或多個位置相關參數時緩解量測誤差。在一些實施例中,方法650可藉由定位應用(諸如速度判定應用或行進距離應用)觸發。
在方塊610中,可在某一時間間隔內獲得GNSS偽距量測值、GNSS都卜勒量測值(DF
)、時間量測值及GNSS環境參數407。在一些實施例中,參考時間源可以用於時間量測。在一些實施例中,GNSS都卜勒量測值(DF
)可獲自卡爾曼濾波器(例如,使用處理器150實施)。在一些實施例中,一或多個環境參數可獲自UE 100可通信耦接至之WWAN及/或WLAN(例如,作為輔助資料)。在一些實施例中,視情況在方塊610中,可獲得以下各者中之一或多者:來自IMU 170之量測值及/或來自感測器185之量測值及/或WWAN/WLAN量測值,以用於:(a)輸入至預測模型470(例如,在方塊660中);及/或(b)擴增GNSS偽距量測值。
在方塊660中,可使用預測模型470判定(例如,UE 100之)所預測GNSS都卜勒估計值(DP
)。在一些實施例中,在方塊560中,預測模型470可基於以下各者中之一或多者判定所預測GNSS都卜勒估計值DP
:對應GNSS都卜勒量測值(DF
)、時間量測值及GNSS環境參數407。在一些實施例中,預測模型470可另外基於以下各者中之一或多者判定所預測GNSS都卜勒估計值DP
:來自IMU 170之量測值及/或來自感測器185之量測值及/或WWAN/WLAN量測值(例如,在此等量測值在方塊610中獲得時)。
在方塊670中,可基於所預測都卜勒估計值DP
(例如,在方塊660中判定)而判定UE 100之速度。在一些實施例中,可結合其他量測值一起使用UE 100之速度(例如,基於所預測都卜勒估計值DP
而判定)以判定UE 100之位置及/或其他定位相關參數。
在方塊680中,基於速度(例如,自所預測都卜勒估計值DP
獲得)及時間量測值之UE 100的行進距離可判定及/或輸出(例如,至UE 100上之呼叫常式及/或應用)。在一些實施例中,該輸出可顯示給使用者及/或可有聲地輸出(例如,經由UE 100上之揚聲器)。在一些實施例中,控制接著可返回至UE 100上之呼叫常式。
圖 7
展示用於部分地基於GNSS都卜勒量測值(DF
)及GNSS偽距量測值判定GNSS都卜勒估計值之方法700的流程圖。在一些實施例中,方法700可藉由UE 100及/或UE 100上之處理器150及/或PE 156執行。
在方塊710中,可在一或多個量測時期獲得一或多個衛星之一或多個全球導航衛星系統(GNSS)都卜勒量測值(DF
)及一或多個對應GNSS偽距量測值。
在方塊720中,可判定對應於一或多個GNSS都卜勒量測值(DF
)之一或多個GNSS都卜勒估計值,其中對於每一GNSS都卜勒量測值(DF
),可部分地基於GNSS都卜勒量測值(DF
)及對應於GNSS都卜勒量測值(DF
)之GNSS偽距量測值來判定對應GNSS都卜勒估計值。在一些實施例中,GNSS都卜勒量測值(DF
)可獲自卡爾曼濾波器(例如,使用處理器150實施)。
在一些實施例中,對應GNSS都卜勒估計值可進一步基於與GNSS都卜勒量測值(DF
)相關聯之一或多個GNSS環境參數判定(例如,在方塊720中)。一或多個GNSS環境參數可包含:與GNSS都卜勒量測值相關聯之GNSS時戳;或與GNSS都卜勒量測值(DF
)相關聯之GNSS位置定位;或與GNSS都卜勒量測值(DF
)相關聯之GNSS位置定位不確定性;或與GNSS都卜勒量測值(DF
)相關聯之GNSS航向及GNSS航向不確定性;或與GNSS都卜勒量測值(DF
)相關聯之精度稀釋參數;或與GNSS都卜勒量測值(DF
)相關聯之一種類型的位置定位。
在一些實施例中,對應GNSS都卜勒估計值可藉由判定針對GNSS都卜勒量測值(DF
)的校正來判定(例如,在方塊720中),其中校正可基於GNSS都卜勒量測值(DF
)及對應於GNSS都卜勒量測值(DF
)之偽距量測值而判定。可以對GNSS都卜勒量測值(DF
)應用校正以獲得對應GNSS都卜勒估計值。在一些實施例中,校正可進一步基於以下各者中的至少一者判定:UE之一或多個慣性量測單元(IMU)量測值,或一或多個感測器量測值。在一些實施例中,校正可基於模型705而判定,該模型可採取數學模型的形式。
在一些實施例中,對應GNSS都卜勒估計值可藉由基於GNSS都卜勒量測值(DF
)及對應於GNSS都卜勒量測值(DF
)之GNSS偽距量測值預測對應GNSS都卜勒估計值來判定(例如,在方塊720中),其中對應GNSS都卜勒估計值使用模型705進行預測,該模型可採取基於機器學習之預測模型的形式。在一些實施例中,預測模型可基於以下各者中之一或多者:線性回歸,及/或廣義加法模型(GAM)及/或回歸神經網路(RNN),及/或自動遞減(AR)模型,及/或迴旋神經網路(CNN),及/或卡爾曼反向傳播,及/或全連接網路(FCN),及/或混合神經網路,及/或生成對抗網路(GAN),及/或自適應性增強模型,及/或其變體。在一些實施例中,現成的或基於庫的Light GBM實施可用以(例如,自分佈式機器學習工具包(DMTK))獲得預測模型。在一些實施例中,對應第二GNSS都卜勒估計值可進一步基於以下各者中之一或多者進行預測:UE之慣性量測單元(IMU)量測值或感測器量測值。
在方塊730中,UE之速度可部分地基於GNSS都卜勒估計值判定。在一些實施例中,基於時間間隔內UE之速度,可判定UE之行進距離。在一些實施例中,其他定位相關參數亦可基於GNSS都卜勒估計值而判定。
本文在流程圖及訊息流中所描述的方法可取決於應用藉由各種構件來實施。舉例而言,此等方法可以硬體、韌體、軟體或其任何組合來實施。對於硬體實施,一或多個處理器150可在一或多個特殊應用積體電路(ASIC)、數位信號處理器(DSP)、數位信號處理裝置(DSPD)、可程式化邏輯裝置(PLD)、場可程式化閘陣列(FPGA)、處理器、控制器、微控制器、微處理器、電子裝置、經設計以執行本文中所描述的功能的其他電子單元或其組合內實施。
儘管出於指導目的結合特定實施例說明本發明,但本發明不限於此。可在不脫離範疇的情況下進行各種調整及修改。因此,所附申請專利範圍之精神及範疇不應限於前述描述。
100‧‧‧UE
110‧‧‧收發器
112‧‧‧傳輸器
114‧‧‧接收器
120‧‧‧連接
130‧‧‧記憶體
140‧‧‧衛星定位系統(SPS)接收器/GNSS接收器
150‧‧‧處理器
156‧‧‧定位引擎(PE)
170‧‧‧慣性量測單元(IMU)
180‧‧‧光學感測器(OS)
185‧‧‧感測器
190‧‧‧顯示器
200‧‧‧系統
230‧‧‧網路
240‧‧‧基地台天線
240-1‧‧‧基地台天線
240-2‧‧‧基地台天線
240-3‧‧‧基地台天線
240-4‧‧‧基地台天線
245-2‧‧‧小區
245-3‧‧‧小區
245-4‧‧‧小區
250‧‧‧伺服器
260‧‧‧LCS用戶端
280‧‧‧太空載具(SV)
280-1‧‧‧太空載具(SV)
280-2‧‧‧太空載具(SV)
280-3‧‧‧太空載具(SV)
280-4‧‧‧太空載具(SV)
310‧‧‧點L
330‧‧‧點S
350‧‧‧UE速度
360‧‧‧點G
370‧‧‧速度
380‧‧‧LOS偽距P
400‧‧‧例示性方法
402‧‧‧參考資料
405‧‧‧運動資料
407‧‧‧GNSS環境參數
410‧‧‧方塊
415‧‧‧方塊
420‧‧‧方塊
430‧‧‧數學模型
450‧‧‧例示性方法
470‧‧‧預測模型
510‧‧‧方塊
520‧‧‧方塊
530‧‧‧方塊
540‧‧‧方塊
550‧‧‧方法
560‧‧‧方塊
570‧‧‧方塊
600‧‧‧方法
610‧‧‧方塊
620‧‧‧方塊
630‧‧‧方塊
640‧‧‧方塊
650‧‧‧方法
660‧‧‧方塊
670‧‧‧方塊
680‧‧‧方塊
700‧‧‧方法
705‧‧‧模型
710‧‧‧方塊
720‧‧‧方塊
730‧‧‧方塊
圖 1
展示了說明根據一些所揭示實施例能夠支援定位相關量測之UE的某些例示性特徵的示意性方塊圖。
圖 2
展示能夠以與本文中所揭示之實施例一致的方式向UE 100提供定位相關服務的系統之架構。
圖 3
說明在某一時間點由UE 100進行的例如SV 280-4的SV量測中之多路徑傳播效應。
圖 4A
展示用於判定使基於參考資料行進之UE距離與以下各者中之一或多者相關的數學模型的例示性方法:對應GNSS偽距量測值、對應GNSS都卜勒量測值、對應GNSS環境參數及/或對應IMU/感測器量測值。
圖 4B
展示用於使用基於參考資料行進之UE距離及以下各者中之一或多者判定預測模型的例示性方法:對應GNSS偽距量測值、對應GNSS都卜勒量測值、對應GNSS環境參數及/或對應IMU/感測器量測值。
圖 5A
展示用於基於數學模型判定經校正UE速度之方法的流程圖。
圖 5B
展示用於基於預測模型判定所預測UE速度之方法的流程圖。
圖 6A
展示用於基於數學模型判定經校正GNSS都卜勒估計值之方法的流程圖。
圖 6B
展示用於基於預測模型判定所預測都卜勒估計值之方法的流程圖。
圖 7
展示用於部分地基於GNSS都卜勒量測值及GNSS偽距量測值判定都卜勒估計值之方法的流程圖。
Claims (30)
- 一種在一使用者設備(UE)上之方法,該方法包含: 獲得一或多個衛星之一或多個全球導航衛星系統(GNSS)都卜勒量測值及一或多個對應GNSS偽距量測值; 判定對應於該一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於一GNSS都卜勒量測值,部分地基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之一GNSS偽距量測值判定一對應GNSS都卜勒估計值;及 至少部分地基於該一或多個GNSS都卜勒估計值判定該UE之一速度。
- 如請求項1之方法,其中該對應GNSS都卜勒估計值進一步基於與該GNSS都卜勒量測值相關聯之一或多個GNSS環境參數判定。
- 如請求項2之方法,其中與該GNSS都卜勒量測值相關聯之該一或多個GNSS環境參數包含以下各者中之一或多者: 與該GNSS都卜勒量測值相關聯之一GNSS時戳;或 與該GNSS都卜勒量測值相關聯之一GNSS位置定位;或 與該GNSS都卜勒量測值相關聯之一GNSS位置定位不確定性;或 與該GNSS都卜勒量測值相關聯之一GNSS航向及GNSS航向不確定性;或 與該GNSS都卜勒量測值相關聯之精度稀釋參數;或 與該GNSS都卜勒量測值相關聯之一種類型的位置定位。
- 如請求項1之方法,其中判定該對應GNSS都卜勒估計值包含: 判定針對該GNSS都卜勒量測值之一校正,其中該校正係基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該偽距量測值而判定;及 對該GNSS都卜勒量測值應用該校正以獲得該對應GNSS都卜勒估計值。
- 如請求項4之方法,其中該校正進一步基於以下各者中的至少一者而判定:該UE之一或多個慣性量測單元(IMU)量測值或一或多個感測器量測值。
- 如請求項4之方法,其中該校正係基於一數學模型而判定。
- 如請求項1之方法,其中判定該對應GNSS都卜勒估計值包含: 基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該GNSS偽距量測值預測該對應GNSS都卜勒估計值,其中該對應GNSS都卜勒估計值基於機器學習使用一預測模型來預測。
- 如請求項7之方法,其中該預測模型係基於以下各者中的至少一者: 一廣義加法模型(GAM),或 一回歸神經網路(RNN),或 一迴旋神經網路(CNN),或 一全連接網路(FCN),或 一自適應性增強模型,或 一生成對抗網路(GAN),或 其一組合。
- 如請求項7之方法,其中該對應GNSS都卜勒估計值部分地基於以下各者中之一或多者預測:該UE之慣性量測單元(IMU)量測值或感測器量測值。
- 如請求項1之方法,其進一步包含: 基於一時間間隔內該UE之該速度判定該UE之一行進距離。
- 一種使用者設備(UE),其包含: 一收發器,其能夠接收全球導航衛星系統(GNSS)信號;及 一處理器,其耦接至該收發器,其中該處理器經組態以: 獲得一或多個衛星之一或多個GNSS都卜勒量測值及一或多個對應GNSS偽距量測值; 判定對應於該一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於一GNSS都卜勒量測值,部分地基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之一GNSS偽距量測值判定一對應GNSS都卜勒估計值;及 至少部分地基於該一或多個GNSS都卜勒估計值判定該UE之一速度。
- 如請求項11之UE,其中處理器經組態以進一步基於與該GNSS都卜勒量測值相關聯之一或多個GNSS環境參數來判定該對應GNSS都卜勒估計值。
- 如請求項12之UE,其中與該GNSS都卜勒量測值相關聯之該一或多個GNSS環境參數包含以下各者中之一或多者: 與該GNSS都卜勒量測值相關聯之一GNSS時戳;或 與該GNSS都卜勒量測值相關聯之一GNSS位置定位;或 與該GNSS都卜勒量測值相關聯之一GNSS位置定位不確定性;或 與該GNSS都卜勒量測值相關聯之一GNSS航向及GNSS航向不確定性;或 與該GNSS都卜勒量測值相關聯之精度稀釋參數;或 與該GNSS都卜勒量測值相關聯之一種類型的位置定位。
- 如請求項11之UE,其中為了判定該對應GNSS都卜勒估計值,該處理器經組態以: 判定針對該GNSS都卜勒量測值之一校正,其中該校正係基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該偽距量測值而判定;及 對該GNSS都卜勒量測值應用該校正以獲得該對應GNSS都卜勒估計值。
- 如請求項14之UE,其中該校正進一步基於以下各者中的至少一者而判定:該UE之一或多個慣性量測單元(IMU)量測值或一或多個感測器量測值。
- 如請求項14之UE,其中該校正係基於一數學模型而判定。
- 如請求項11之UE,其中為了判定該對應GNSS都卜勒估計值,處理器經組態以: 基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該GNSS偽距量測值預測該對應GNSS都卜勒估計值,其中該對應GNSS都卜勒估計值基於機器學習使用一預測模型來預測。
- 如請求項17之UE,其中該預測模型係基於以下各者中的至少一者: 一廣義加法模型(GAM),或 一回歸神經網路(RNN),或 一迴旋神經網路(CNN),或 一全連接網路(FCN),或 一自適應性增強模型,或 一生成對抗網路(GAN),或 其一組合。
- 如請求項17之UE,其中該對應GNSS都卜勒估計值部分地基於以下各者中之一或多者預測:該UE之慣性量測單元(IMU)量測值或感測器量測值。
- 如請求項11之UE,其中處理器經進一步組態以: 基於一時間間隔內該UE之該速度判定該UE之一行進距離。
- 一種使用者設備(UE),其包含: 用於獲得一或多個衛星之一或多個GNSS都卜勒量測值及一或多個對應GNSS偽距量測值的構件; 用於判定對應於該一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值的構件,其中對於一GNSS都卜勒量測值,部分地基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之一GNSS偽距量測值判定一對應GNSS都卜勒估計值;及 用於至少部分地基於該一或多個GNSS都卜勒估計值判定該UE之一速度的構件。
- 如請求項21之UE,其中該對應GNSS都卜勒估計值進一步基於與該GNSS都卜勒量測值相關聯之一或多個GNSS環境參數判定。
- 如請求項21之UE,其中為了判定該對應GNSS都卜勒估計值,該處理器經組態以: 判定針對該GNSS都卜勒量測值之一校正,其中該校正係基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該偽距量測值而判定;及 對該GNSS都卜勒量測值應用該校正以獲得該對應GNSS都卜勒估計值。
- 如請求項23之UE,其中該校正係基於一數學模型而判定。
- 如請求項21之UE,其中用於判定一或多個GNSS都卜勒估計值的構件進一步包含: 用於基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該GNSS偽距量測值來預測該對應GNSS都卜勒估計值的構件,其中用於預測該對應GNSS都卜勒估計值的該構件包含基於機器學習之一預測模型。
- 一種非暫時性電腦可讀媒體,其包含用以組態一使用者設備(UE)上之一處理器以執行以下操作的可執行指令: 獲得一或多個衛星之一或多個GNSS都卜勒量測值及一或多個對應GNSS偽距量測值; 判定對應於該一或多個GNSS都卜勒量測值之一或多個GNSS都卜勒估計值,其中對於一GNSS都卜勒量測值,部分地基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之一GNSS偽距量測值判定一對應GNSS都卜勒估計值;及 至少部分地基於該一或多個GNSS都卜勒估計值判定該UE之一速度。
- 如請求項26之電腦可讀媒體,其中該對應GNSS都卜勒估計值進一步基於與該GNSS都卜勒量測值相關聯之一或多個GNSS環境參數判定。
- 如請求項26之電腦可讀媒體,其中用以判定該對應GNSS都卜勒估計值之該等可執行指令進一步組態該處理器以: 判定針對該GNSS都卜勒量測值之一校正,其中該校正係基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該偽距量測值而判定;及 對該GNSS都卜勒量測值應用該校正以獲得該對應GNSS都卜勒估計值。
- 如請求項28之電腦可讀媒體,其中該校正係基於一數學模型而判定。
- 如請求項26之電腦可讀媒體,其中用以判定該對應GNSS都卜勒估計值之該等可執行指令進一步組態該處理器以: 基於該GNSS都卜勒量測值及對應於該GNSS都卜勒量測值之該GNSS偽距量測值預測該對應GNSS都卜勒估計值,其中該對應GNSS都卜勒估計值基於機器學習使用一預測模型來預測。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862672165P | 2018-05-16 | 2018-05-16 | |
US62/672,165 | 2018-05-16 | ||
US16/108,019 | 2018-08-21 | ||
US16/108,019 US10871576B2 (en) | 2018-05-16 | 2018-08-21 | Error mitigation in doppler based satellite positioning system measurements |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201947256A true TW201947256A (zh) | 2019-12-16 |
TWI812685B TWI812685B (zh) | 2023-08-21 |
Family
ID=68532503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108108845A TWI812685B (zh) | 2018-05-16 | 2019-03-15 | 用於都卜勒為基礎之衛星定位系統量測之誤差緩解的方法、使用者設備及電腦可讀媒體 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10871576B2 (zh) |
EP (1) | EP3794379A2 (zh) |
KR (1) | KR20210009352A (zh) |
CN (1) | CN112105959B (zh) |
TW (1) | TWI812685B (zh) |
WO (1) | WO2020023083A2 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11604287B2 (en) * | 2018-08-09 | 2023-03-14 | Apple Inc. | Machine learning assisted satellite based positioning |
EP3907905B1 (en) | 2018-10-12 | 2023-12-27 | OQ Technology S.à r.l. | Timing synchronization for non-terrestrial cellular wireless communication networks |
US11079495B2 (en) * | 2018-10-31 | 2021-08-03 | Mitsubishi Electric Research Laboratories, Inc. | Position estimation under multipath transmission |
WO2020107022A1 (en) * | 2018-11-23 | 2020-05-28 | Slingshot Aerospace, Inc. | Signal processing workflow engine incorporating graphical user interface for space situational awareness |
US11240773B2 (en) * | 2018-12-07 | 2022-02-01 | Google Llc | Managing doppler and framing impacts in networks |
DE102019211174A1 (de) * | 2019-07-26 | 2021-01-28 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Modells zur Beschreibung mindestens eines umgebungsspezifischen GNSS-Profils |
US11921522B2 (en) * | 2019-11-04 | 2024-03-05 | The Regents Of The University Of California | Sub-meter accurate navigation and cycle slip detection with long-term evolution (LTE) carrier phase measurements |
US11496339B2 (en) * | 2020-04-03 | 2022-11-08 | Samsung Electronics Co., Ltd. | Doppler spread estimation based on supervised learning |
CN111562599B (zh) * | 2020-05-14 | 2021-07-16 | 中国北方工业有限公司 | 一种北斗卫星网络rtd伪距改正数预报模型建立方法 |
CN111796310B (zh) * | 2020-07-02 | 2024-02-02 | 武汉北斗星度科技有限公司 | 一种基于北斗gnss的高精度定位方法、装置及系统 |
US11831679B2 (en) * | 2020-07-14 | 2023-11-28 | T-Mobile Usa, Inc. | Global navigation satellite system interference attack detection |
US20220035972A1 (en) * | 2020-07-28 | 2022-02-03 | Verizon Patent And Licensing Inc. | Systems and methods for denoising gps signals using simulated models |
KR20220017264A (ko) | 2020-08-04 | 2022-02-11 | 삼성전자주식회사 | Gnss에 기초한 이동체의 이동 위치 보정 방법 및 장치. |
US12046129B2 (en) * | 2020-08-20 | 2024-07-23 | Rutgers, The State University Of New Jersey | Computer-based systems configured for space object orbital trajectory predictions and methods thereof |
US12130959B2 (en) * | 2021-03-24 | 2024-10-29 | Peloton Interactive, Inc. | Data systems for wearable augmented reality apparatus |
US12073729B2 (en) * | 2021-04-27 | 2024-08-27 | Rockwell Collins, Inc. | Machine-learned operating system and processor |
CN115604812A (zh) * | 2021-06-28 | 2023-01-13 | 华为技术有限公司(Cn) | 定位方法、装置及系统 |
US12025715B2 (en) | 2021-08-12 | 2024-07-02 | Here Global B.V. | GNSS error resolution |
CN114488230B (zh) * | 2022-01-29 | 2024-05-24 | 清华大学 | 一种多普勒定位方法、装置、电子设备和存储介质 |
CN118226489A (zh) * | 2024-04-08 | 2024-06-21 | 北京航空航天大学 | Gnss短时中断下基于广义最大相关熵的gnss/ins组合导航方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578678A (en) * | 1983-11-14 | 1986-03-25 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | High dynamic global positioning system receiver |
US6072428A (en) * | 1998-06-03 | 2000-06-06 | Trimble Navigation Limited | Location determination using doppler and pseudorange measurements from fewer than four satellites |
US6297770B1 (en) * | 2000-05-23 | 2001-10-02 | Mitsubishi Denki Kabushiki Kaisha | Global positioning system and global positioning method with improved sensitivity by detecting navigation data inversion boundaries |
US6329946B1 (en) * | 2000-05-31 | 2001-12-11 | Mitsubishi Denki Kabushiki Kaisha | GPS position measuring system and GPS position measuring apparatus |
US6718174B2 (en) * | 2000-10-27 | 2004-04-06 | Qualcomm Incorporated | Method and apparatus for estimating velocity of a terminal in a wireless communication system |
FI111037B (fi) * | 2002-02-25 | 2003-05-15 | Nokia Corp | Menetelmä ja järjestelmä elektroniikkalaitteen sijainnin määrittämiseksi ja elektroniikkalaite |
US6661371B2 (en) * | 2002-04-30 | 2003-12-09 | Motorola, Inc. | Oscillator frequency correction in GPS signal acquisition |
US6664923B1 (en) * | 2002-09-24 | 2003-12-16 | Novatel, Inc. | Position and velocity Kalman filter for use with global navigation satelite system receivers |
JPWO2005017552A1 (ja) * | 2003-08-14 | 2006-10-12 | 富士通株式会社 | 情報処理装置およびgps測位方法 |
JP3806425B2 (ja) * | 2003-12-01 | 2006-08-09 | マゼランシステムズジャパン株式会社 | 衛星測位方法及び衛星測位システム |
JP4151716B2 (ja) * | 2006-07-21 | 2008-09-17 | セイコーエプソン株式会社 | 測位装置、その制御方法及びプログラム |
JP5113407B2 (ja) * | 2007-03-22 | 2013-01-09 | 古野電気株式会社 | Gps複合航法装置 |
US7567208B2 (en) * | 2007-06-29 | 2009-07-28 | Sirf Technology Holdings, Inc. | Position and time determination under weak signal conditions |
US7987047B2 (en) * | 2007-09-10 | 2011-07-26 | Mitsubishi Electric Corporation | Navigation equipment |
US8072371B2 (en) * | 2008-05-23 | 2011-12-06 | Qualcomm Incorporated | Multiple-mode location determining methods and systems |
US8044851B2 (en) | 2009-04-17 | 2011-10-25 | Mstar Semiconductor, Inc. | Method for suppressing multipath errors in a satellite navigation receiver |
CN101937073B (zh) * | 2009-06-30 | 2012-11-28 | 凹凸电子(武汉)有限公司 | Gps卫星的载波频率检测方法和装置及gps接收机 |
JP5652049B2 (ja) | 2010-08-16 | 2015-01-14 | セイコーエプソン株式会社 | 位置算出方法及び受信装置 |
CN102004259A (zh) * | 2010-09-17 | 2011-04-06 | 浙江大学 | 高灵敏度环境下基于多普勒平滑伪距的卫星导航解算定位方法 |
US9602974B2 (en) | 2012-12-28 | 2017-03-21 | Trimble Inc. | Dead reconing system based on locally measured movement |
CN104181561A (zh) * | 2013-05-24 | 2014-12-03 | 凹凸电子(武汉)有限公司 | 一种接收机和卫星定位及测速方法 |
JP6201762B2 (ja) * | 2014-01-08 | 2017-09-27 | 株式会社デンソー | 速度推定装置 |
CN104459747A (zh) * | 2014-12-19 | 2015-03-25 | 北京临近空间飞艇技术开发有限公司 | 一种gnss/ins组合导航方法及系统 |
US9781569B2 (en) * | 2015-03-12 | 2017-10-03 | GM Global Technology Operations LLC | Systems and methods for resolving positional ambiguities using access point information |
US10078138B2 (en) | 2015-09-08 | 2018-09-18 | Apple Inc. | Doppler shift correction using three-dimensional building models |
CN105116431A (zh) | 2015-09-08 | 2015-12-02 | 中国人民解放军装备学院 | 一种惯性导航平台和北斗卫星的高精度超紧耦合导航方法 |
US9945956B2 (en) | 2015-09-08 | 2018-04-17 | Apple Inc. | GNSS positioning using three-dimensional building models |
US10203417B2 (en) * | 2016-01-25 | 2019-02-12 | Topcon Positioning Systems, Inc. | Methods and apparatus for estimating motion parameters of GNSS receiver |
CN106443728A (zh) | 2016-11-18 | 2017-02-22 | 太原理工大学 | 自适应gps/北斗矢量跟踪算法 |
-
2018
- 2018-08-21 US US16/108,019 patent/US10871576B2/en active Active
-
2019
- 2019-03-07 EP EP19841172.0A patent/EP3794379A2/en active Pending
- 2019-03-07 CN CN201980032033.5A patent/CN112105959B/zh active Active
- 2019-03-07 WO PCT/US2019/021121 patent/WO2020023083A2/en unknown
- 2019-03-07 KR KR1020207035791A patent/KR20210009352A/ko not_active Application Discontinuation
- 2019-03-15 TW TW108108845A patent/TWI812685B/zh active
Also Published As
Publication number | Publication date |
---|---|
KR20210009352A (ko) | 2021-01-26 |
CN112105959B (zh) | 2024-04-02 |
EP3794379A2 (en) | 2021-03-24 |
US20190353800A1 (en) | 2019-11-21 |
TWI812685B (zh) | 2023-08-21 |
WO2020023083A3 (en) | 2020-07-23 |
WO2020023083A2 (en) | 2020-01-30 |
US10871576B2 (en) | 2020-12-22 |
CN112105959A (zh) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI812685B (zh) | 用於都卜勒為基礎之衛星定位系統量測之誤差緩解的方法、使用者設備及電腦可讀媒體 | |
US9947100B2 (en) | Exterior hybrid photo mapping | |
CN107850673B (zh) | 视觉惯性测距姿态漂移校准 | |
US10073179B2 (en) | Systems, methods and devices for satellite navigation reconciliation | |
US9611057B2 (en) | Systems, methods and devices for satellite navigation | |
US9677887B2 (en) | Estimating an initial position and navigation state using vehicle odometry | |
US9250083B2 (en) | Heading, velocity, and position estimation with vehicle sensors, mobile device, and GNSS inputs | |
KR102694971B1 (ko) | 시각적인 관성 주행 거리계와 위성 포지셔닝 시스템 기준 프레임들의 정렬 | |
US11808863B2 (en) | Methods and systems for location determination | |
US20110117924A1 (en) | Position determination using a wireless signal | |
US11914055B2 (en) | Position-window extension for GNSS and visual-inertial-odometry (VIO) fusion | |
HUE027043T2 (en) | Positioning on request | |
US20180188382A1 (en) | Selection of gnss data for positioning fusion in urban environments | |
US11802971B2 (en) | Real-time kinematic (RTK) and differential global navigation satellite system (DGNSS) corrections using multiple reference stations | |
US20180188381A1 (en) | Motion propagated position for positioning fusion | |
JP6178385B2 (ja) | 衛星測位の信頼性を推定するための方法および装置 | |
JP2022545327A (ja) | 反射したgnss信号に対する感度を高めること | |
US20220276394A1 (en) | Map-aided satellite selection |