TW201941527A - 電壓及電流觸發式切換器以及包含此切換器之降壓型直流對直流轉換器 - Google Patents

電壓及電流觸發式切換器以及包含此切換器之降壓型直流對直流轉換器 Download PDF

Info

Publication number
TW201941527A
TW201941527A TW108109510A TW108109510A TW201941527A TW 201941527 A TW201941527 A TW 201941527A TW 108109510 A TW108109510 A TW 108109510A TW 108109510 A TW108109510 A TW 108109510A TW 201941527 A TW201941527 A TW 201941527A
Authority
TW
Taiwan
Prior art keywords
voltage
current
terminal
trigger switch
patent application
Prior art date
Application number
TW108109510A
Other languages
English (en)
Inventor
和平 汀
喬治 曉
萊恩 葛瑞芬
葉 陶
Original Assignee
加拿大國家研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大國家研究院 filed Critical 加拿大國家研究院
Publication of TW201941527A publication Critical patent/TW201941527A/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種電壓及電流觸發式切換器,當上述切換器兩端之電壓達到導通電壓時導通,當通過上述切換器之電流掉落降至保持電流以下時關閉。上述切換器,其特徵在於包括具有崩潰電壓之齊納二極體。上述齊納二極體被連接將上述切換器之導通電壓,設定成上述齊納二極體之崩潰電壓。亦提供了一種包括這種切換器之降壓型直流對直流轉換器。亦提供了一種具有摩擦電力(tribo-electricity)源或壓電電力(piezo-electricity)源、上述提供的降壓型直流對直流轉換器、以及連接到上述降壓型直流對直流轉換器的輸出的負載之系統。

Description

電壓及電流觸發式切換器以及包含此切換器之降壓型直流對直流轉換器
本專利申請關於電壓及電流觸發式切換器,且有關於以此切換器為特徵之降壓型直流對直流轉換器。
很多能被收集之能源源,係為電之形式或是能夠容易轉換成電之形式。然而,在大部分實際的狀況下,這些電力源是微弱的,具有過高或過低之電壓,及/或有某些其他問題(例如低佔空比(duty cycle))。因此,對於任何一般需要數伏特之直流電(DC)電壓之相對穩定供給之電子設備,他們很少是直接可利用的。
需要一種簡單實用的方法來有效地將由間歇性高電壓和低電流的低功率能量收集系統(例如摩擦電力發電機或壓電電力發電機)產生的電力轉換成用於低功率電子裝置(例如物聯網(Internet of Things;IoT)應用中的那些低功率電子裝置)的可用形式。
一般來說,為了將高電壓和低電流的低功率能量收集系統產生的電力(例如摩擦電力/壓電電力)轉換為可用形式,降壓型直流對直流轉換器被用於將高電壓和低電流之DC轉為另一個具有較低電壓和較大電流之DC。
市場上有許多可用的降壓型直流對直流轉換器。其中一些降壓型直流對直流轉換器使用電容器和電感器進行能量傳輸,而一些降壓型直流對直流轉換器無電感器,例如那些使用電荷泵(charge pump)和切換式電容器原理之降壓型直流對直流轉換器。
在許多可用於間歇性高電壓和低電流的低功率能量收集系統中,例如用於摩擦能量/壓電能量的收集的低功率能量收集系統,收集的電力是交流電(AC)並且可以具有200-300伏特或更高的開路峰值電壓,以及相應的幾十微安的短路電流。然而,考慮到峰值的極低佔空比(duty cycle),平均電流會顯著降低。由於在大多數實際情況下摩擦電力/壓電電力很弱,其波動很大甚至是間歇性的,所以既存的降壓型直流對直流轉換器, 如果用於這種能量收集應用,則有以下限制: · 為了使它們正常工作,它們的輸入需要在相對較小的範圍內(幾伏特到幾十伏特)的穩定DC,而來自摩擦能量/壓電能量收集裝置的電壓很可能波動很大, 甚至消失; · 它們的輸入電壓不應超過幾十伏特,而摩擦電力/壓電電力範圍的電壓很容易達到200-300伏特或更高; 以及 · 它們本身消耗不算小的功率(幾μA到幾十μA),稱為負擔(overhead)。 所以, i. 大多數摩擦-/壓電-能量收集裝置無法提供這種負擔電力; 以及 ii. 即使在極不可能的情況下這些裝置可以提供負擔功率,上述直流對直流轉換器之效率也會太低,以致在這種低功率情況下運行時不實用。
一些既存的降壓型直流對直流轉換器採用金屬氧化物半導體場效電晶體(MOSFET)作為開關。 雖然乍看之下這似乎是一個可行的選擇,但是使用MOSFET作為開關存在著實用性之問題。 這些問題是: · 通常,高壓兼容之MOSFET在關閉時具有相對較大的漏電流,約為1μA的幾分之一。雖然在大多數其他應用中這小電流可能是可接受的,但在摩擦能量/壓電能量收集的背景下可能不會被忽略,其中能量收集裝置能夠產生的平均電流即使不是更少也是同量級的。結果,由於MOSFET之漏電流,至少很大一部分收集的能量會被浪費。 · MOSFET需要由控制模組驅動,上述控制模組可能包括微控制器系統和能夠產生幾伏特電壓和大電流的驅動器 - 分別克服閘極(gate) - 源極(source)間之導通電壓和閘極電容。這種需求使系統設計和實現複雜化,並且如果沒有正確完成的畫則可能增加額外的限制。 · 對控制模組的需求帶來了另一個潛在的問題:當沒有可用的輔助電源時,例如電池等,系統可能無法自啟動。
一種電壓和電流觸發式切換器,當上述電壓和電流觸發式切換器兩端之電壓達到導通電壓時導通,當通過上述電壓和電流觸發式切換器之電流掉落降至保持電流以下時關閉。上述切換器,以具有崩潰電壓(breakdown voltage)之齊納二極體(zener diode)為特徵。上述齊納二極體被連接將上述切換器之導通電壓,設定為上述齊納二極體之崩潰電壓。亦提供了一種包括這種切換器之降壓型直流對直流轉換器。亦提供了一種具有摩擦電力(tribo-electricity)源或壓電電力(piezo-electricity)源、上述提供之降壓型直流對直流轉換器、以及連接至上述降壓型直流對直流轉換器之輸出之負載的系統。
有利地,上述電壓和電流觸發式切換器之ON狀態轉換,僅由(當電壓和電流觸發式切換器為OFF時)跨越上述電壓和電流觸發式切換器之電壓觸發,並且(當電壓和電流觸發式切換器ON時)上述OFF轉換僅由通過上述電壓和電流觸發式切換器之電流觸發。上述電壓和電流觸發式切換器是自足的(self-contained)或自主的 (autonomous),根本不需要明確的控制模組,更不用說有任何輔助電源。這使得實現非常簡單並且避免了控制模組的負擔。
根據本揭露的一個觀點,本揭露提供了一種電壓和電流觸發式切換器,當上述電壓和電流觸發式切換器兩端的電壓達到導通電壓時導通,當通過上述電壓和電流觸發式切換器的電流下降到保持電流以下時關閉。上述電壓和電流觸發式切換器包括:具有崩潰電壓的齊納二極體,上述齊納二極體被連接將上述電壓和電流觸發式切換器之導通電壓,設定為上述齊納二極體之崩潰電壓。
選擇性地,上述電壓和電流觸發式切換器又包括:正端子和負端子;PNP 雙極型接面電晶體(BJT);NPN BJT;第一電阻器;以及第二電阻器;其中,上述正端子連接到上述PNP雙極型接面電晶體的射極(emitter),並連接到上述第一電阻器之第一端子,上述第一電阻器的第二端子連接至上述PNP BJT之基極(base);上述負端子連接至上述NPN BJT的之射極,並連接到第二電阻器的第一端子,上述第二電阻器的第二端子連接至上述NPN BJT的基極;上述PNP BJT之集極(collector)連接至上述NPN BJT之基極,上述NPN BJT的集極連接至上述PNP BJT之基極。
選擇性地,上述齊納二極體連接在上述PNP BJT之集極和上述PNP BJT之基極之間,以及上述NPN BJT之基極和上述NPN BJT之集極之間。
選擇性地,上述齊納二極體連接在上述PNP BJT的集極和上述正端子之間。
選擇性地,上述齊納二極體連接在上述NPN BJT的集極和上述負端子之間。
選擇性地,上述電壓和電流觸發式切換器又包括至少一個控制端子,用於撤銷(over-ride)上述電壓和電流觸發式切換器之其他自主操作。
選擇性地,上述至少一個控制端子包括在上述電壓和電流觸發式切換器中引起ON和/或OFF轉換的一個端子。
選擇性地,上述至少一個控制端子包括用於在上述電壓和電流觸發式切換器中引起ON轉換的第一端子和用於在上述電壓和電流觸發式切換器中引起OFF轉換的第二端子。
選擇性地,上述電壓和電流觸發式切換器包括:正端子和負端子;PMOS電晶體;NMOS電晶體;第一電阻器;以及第二電阻器;其中,上述正端子連接到PMOS電晶體之源極(source)並連接到上述第一電阻器之第一端子,上述第一電阻器的第二端子連接到PMOS電晶體之閘極(gate),上述負端子連接到上述NMOS電晶體之源極並連接到上述第二電阻器的第一端子,上述第二電阻器的第二端子連接到NMOS電晶體之閘極,PMOS的電晶體之汲極(drain)連接到上述NMOS電晶體之閘極,上述NMOS電晶體之汲極連接到上述PMOS電晶體之閘極。
根據本揭露的另一觀點,本揭露提供一種包括如上所述之電壓和電流觸發式切換器之降壓型直流對直流轉換器。
選擇性地,上述電壓和電流觸發式切換器的一個端子接地。
選擇性地,上述降壓型直流對直流轉換器,包括:整流器,用於對在降壓型直流對直流轉換器之輸入端接收的電壓進行整流;第一電容器,被連接以在上述電壓和電流觸發式切換器開路時由整流過之電壓充電;電感器,被連接用於在上述電壓和電流觸發式切換器時接收來自上述第一電容器的放電電流;以及第二電容器,被連接以在上述電壓和電流觸發式切換器再次開路時由來自上述電感器的電流充電。
選擇性地,上述電壓和電流觸發式切換器被連接在上述第一電容器之端子和上述電感器之端子之間。
選擇性地,上述降壓型直流對直流轉換器又包括:肖特基二極體,連接在上述電壓和電流觸發式切換器的輸出和地之間,以在上述第二電容器的充電期間提供低損耗的返馳(fly back)路徑。
選擇性地,上述電壓和電流觸發式切換器之端子被連接在整流器的端子和第一電容器的第一端子之間。
選擇性地,上述降壓型直流對直流轉換器又包括:肖特基二極體,連接在第一電容器的第二端子與地之間,以在上述第二電容器的充電期間提供低損耗的返馳(fly back)路徑。
根據本揭露的另一觀點,提供了一種系統,包括:摩擦電力源;降壓型直流對直流轉換器,如本文所述被連接以接收上述摩擦電力源的輸出;以及負載,連接到降壓型直流對直流轉換器之輸出。
根據本揭露的另一觀點,本揭露提供了一種系統,包括:壓電電力源;降壓型直流對直流轉換器,如本文所述被連接以接收上述壓電電力源的輸出;以及負載,連接到降壓型直流對直流轉換器之輸出。
根據本揭露的另一觀點,本揭露提供了一種直流對直流轉換方法,包括對來自摩擦能量/壓電能量收集裝置的交流(AC)電力進行整流;將整流過之交流電儲存在第一電容器;一旦第一電容器兩端的電壓增加達到由齊納二極體之崩潰電壓設定的導通電壓,即閉路具有由齊納二極體之崩潰電壓設定之導通電壓閾值的電壓和電流(V&I)觸發式切換器(VITSZ),以將儲存在上述第一電容器中的能量傳遞給電感器;開路VITSZ,此由降至閾值電流以下之電流來觸發; 將能量從上述電感器中的電流傳遞到第二電容器之兩端之電壓;以及負載消耗儲存在第二電容器中的能量。
選擇性地,上述直流對直流轉換方法又包括:使用至少一個控制端子用於撤銷上述方法的其他自主操作。
選擇性地,在使用至少一個控制端子中,包括使用在電壓和電流觸發式切換器中引起ON和/或OFF轉換之一個端子。
選擇性地,在使用至少一個控制端子中,包括使用在VITSZ中引起ON轉換之第一端子以及在VITSZ中引起OFF轉換之第二端子。
第1圖是由本揭露的實施例提供的直流對直流轉換器的功能示意圖。此示意圖示出了摩擦-/壓電-電力能量收集裝置100、整流器102(在所示之實施例中包括四個二極體D1、D2、D3和D4)、具有電容C1的電容器104、以及具有由齊納二極體崩潰電壓設定的導通電壓閾值之V&I觸發式切換器106(在下文中為簡潔起見簡稱為VITSZ),具有電感L1的電感器110,具有電容C2的電容器112和負載114,這些依次連接在一起。須注意,負載114不一定是電阻器;負載可以是電阻器、齊納二極體、電池、超級電容器、它們的組合,或是任何形式的電子負載。
以下詳細說明VITSZ 106的選項,也是本揭露的獨立實施例。
直流對直流轉換器的操作在以下步驟中描述: 1. 來自摩擦能量/壓電能量收集裝置100的AC電力由整流器102整流成 DC,然後儲存在電容器104中。電容器104的電容C1可以相對較小(至少相對於電容器112的電容C2較小),這樣電壓可以迅速增加。 2. 一旦電容器104兩端的電壓增加達到由齊納二極體的崩潰電壓設定之VITSZ的導通電壓時,表示已經收集了一定量的能量並準備好轉換,VITSZ 106即閉路(close)以將儲存在電容器104中的能量傳遞到電感器110。將能量形式從電容器104兩端的電壓轉為在電感器110的電流的步驟,在本文中稱為第一能量傳遞階段。 3. 一旦上述第一能量傳遞階段完成(由上述電容器104兩端留下的小電壓的事實表明),VITSZ 106即開路(open)(由電流下降到低於閾值電流(被稱為保持電流)觸發)。這使電容器104再次接受所收集的能量。 4. 上面的步驟3亦啟動第二能量傳遞階段,其中能量形式從電感器110中的電流轉為電容器112兩端的電壓。和電容C1相比,電容器112的電容C2相對較大(在一些實施例中更大)。 5. 當C1兩端的電壓再次達到步驟2中提到的閾值時,重複上述步驟。 6. 儲存在電容器112中的功率由負載114消耗。
上述VITSZ具有以下特徵: 1. 上述VITSZ是單向的,因為它兩端的電壓只有一個方向或零。 2. 上述VITSZ通常處於OFF(開路)狀態。當上述VITSZ兩端的電壓從零開始並保持低於導通電壓(由齊納二極體的崩潰電壓設定)時,上述VITSZ保持在OFF狀態。 3. 一旦上述VITSZ兩端的電壓達到導通閾值,它就會以最小的電壓降進入ON(閉路)狀態。OFF到ON的轉換很快,以便最小化過渡能量損失; 以及 4. 上述VITSZ接著保持在ON狀態,直到通過上述VITSZ的電流降至保持電流以下(在此情況下上述切換器迅速返回OFF狀態)。
現在參考第2圖說明由本揭露的實施例提供的VITSZ的示意圖,上述VITSZ可以使用在第1圖的降壓型直流對直流轉換器中。上述VITSZ具有正端子200和負端子202。正端子200連接到PNP雙極型接面電晶體(BJT)204的射極,並連接到電阻器210的第一端子。電阻器210的第二端子連接到 BJT 204之基極。齊納二極體208連接在BJT 204的集極和電阻器210的第二端子之間。更具體地,上述齊納二極體208的陽極連接到BJT 204的集極,而齊納二極體208的陰極連接到電阻器210的第二端子。負端子202連接到NPN BJT 206的射極並連接到電阻器212的第一端子。電阻器212的第二端子連接到BJT 206的基極,PNP BJT 204的集極連接到NPN BJT 206的基極,而NPN BJT 206的集極連接到PNP BJT 204的基極。
齊納二極體208連接在BJT 206的集極和電阻器212的第二端子之間。
在特定實施例中,PNP BJT 204具有零件號碼ZXTP08400BFF,NPN BJT 206具有零件號碼ZXTN08400BFF,並且上述齊納二極體具有零件號碼1N-4135-1。但是,應該清楚地理解,這些只是簡單的示例零件號碼。PNP BJT 204、NPN BJT 206應具有小的漏電流。在這種情況下構成“小”的是由BJT中可接受的損失量相對於能量收集裝置產生的電流來決定的。而且,如下面詳細說明的,齊納二極體208的崩潰電壓設定VITSZ的導通電壓。在第2圖所示的實施例中,電阻器210、212具有2MΩ的電阻,但是實際上可以使用具有其他電阻值的電阻器。
在操作中,跨越正端子200和負端子202的電壓從零開始並且保持低於齊納二極體208的崩潰電壓, PNP BJT 204和NPN BJT 206是關閉的。結果,VITSZ為OFF,通過VITSZ的漏電流由PNP BJT 204、NPN BJT 206的ICBO ’s(當射極開路時的射極-基極漏電流)和齊納二極體208的漏電流組成。對於第2圖中所示的元件,此總和可小於10-20 nA。值得注意的是,該漏電流遠小於MOSFET或傳統矽控整流器(silicon controlled rectifier,SCR)的漏電流。這種小漏電流主要流過兩個電阻器210、212,並且它們之間的合成電壓降不足以觸發PNP BJT 204、NPN BJT 206。當正端子200、負端子202兩端的電壓增加而接近齊納二極體208的崩潰電壓時,上述齊納二極體最終產生足夠大的漏電流以觸發PNP BJT 204、NPN BJT 206之間的強烈之正反饋(positive feedback)。該機制快速地打開PNP BJT 204、NPN BJT 206並使它們飽和。現在,VITSZ處於ON狀態並且具有大約1V的電壓降。齊納二極體208現在關閉並且不再有效,並且只要有足夠的電流通過PNP BJT 204、NPN BJT 206,PNP BJT 204、NPN BJT 206就被鎖定在導通狀態。當電流下降到保持電流以下時,PNP BJT 204、NPN BJT 206將從飽和區域轉移進入線性區域,並且再次透過正反饋,快速地將其自身關閉。這將使VITSZ關閉,並VITSZ為下一個操作週期準備好。PNP BJT 204、NPN BJT 206之間的反饋可以解釋如下。一旦上述電壓降接近齊納二極體208的崩潰電壓,即產生大的崩潰電流。這大電流通過兩個電阻器210、212並使兩個電阻器兩端的電壓足夠大來使PNP BJT 204、NPN BJT 206導通。這在PNP BJT 204、NPN BJT 206中之至少一個的集極中產生大電流。如果左側PNP BJT204首先導通,則PNP BJT204之集極電流將通過NPN BJT 206的基極和射極,使NPN BJT 206導通。 接著,這將導致NPN BJT 206的集極上的大電流,上述大電流將反饋到PNP BJT 204。結果是PNP BJT 204、NPN BJT 206被鎖定在導通狀態,直到電流下降到非常小的閾值。
當VITSZ關閉時,輸入電壓對電容器104充電。一旦VITSZ導通,電容器104就放電到電感器110。當C1的電荷耗盡時,最終電流將下降。當通過上述電容器的電流下降到非常低的準位(例如1μA時),電容器104的放電完成。當發生這種情況時,VITSZ再次關閉。
(當VITSZ關閉時)VITSZ的ON狀態轉換僅由VITSZ兩端的電壓觸發,並且(當VITSZ接通時)OFF轉換僅由通過VITSZ的電流觸發。 VITSZ是自足的或自主的,根本不需要明確的控制模組,更不用說有任何輔助電源。這使得實現非常簡單並且避免了控制模組的負擔。
在此處所述之第2圖至第5圖的實施例,係採用BJT電晶體。在其他實施例,使用其他的電晶體類型,例如與第2圖至第5圖中所示相同的方式連接的NMOSFET和PMOSFET。然而,這樣的配置可能不會提供與使用BJT電晶體的實施例所給出的一樣低之ON狀態電壓降,並且可能不會提供與使用BJT電晶體的實施例所給出的一樣小之OFF狀態漏電流。
現在參考第3A圖和第3B圖,顯示了由本揭露的實施例提供的其他VITSZ的示意圖。第3A圖的VITSZ與第2圖的VITSZ的不同之處在於,第3A圖的VITSZ存在著齊納二極體300(代替齊納二極體208),齊納二極體300僅觸發NPN BJT 206,然後NPN BJT 206也打開PNP BJT 204。 更具體地,齊納二極體300的陽極連接到PNP BJT 204的集極,齊納二極體208的陰極連接到電阻器210的第一端子。第3B圖的VITSZ與第2圖的VITSZ的不同之處在於,第3B圖的VITSZ存在著齊納二極體302(代替齊納二極體208),齊納二極體302僅觸發PNP BJT 204,然後PNP BJT 204亦打開NPN BJT 206。 齊納二極體302的陽極連接到NPN BJT 206的射極,齊納二極體302的陰極連接到電阻器210的第二端子。這些變化的運作和性能與第2圖的相同。
可以看出,第2圖、第3A圖、第3B圖的實施例的導通電壓由齊納二極體208(或者分別用於第3A圖和第3B圖的齊納二極體300和302)的崩潰電壓設定。這與不包含齊納二極體的傳統SCR形成對比。在這種傳統的SCR中,不是在達到齊納二極體的崩潰電壓時導通,而是輸入端子兩端的電壓保持增加,並且最終地,兩個電晶體中的其中一個將導通。利用齊納二極體,可以精確控制電晶體何時導通。雖然提供了以齊納二極體來控制導通電壓為特徵的特定電路,但是應該理解到,使用齊納二極體以達到相同效果的其他實現也是可能的。
有利地,所提供的VITSZ是自足的或自主的。其狀態轉換僅由其任務參數直接觸發,亦即(當VITSZ為OFF時)其兩端的電壓和(當VITSZ為ON時)通過它的電流。 這意味著切換器不需要任何控制邏輯或驅動器,更不用說所需的相關額外電力(稱為附加消耗(overhead consumption))。
在一些實施例中,除了上面討論的自主能力之外,還提供了額外的機制來控制VITSZ,例如藉由控制模組。例如,可以提供這種方式以微調能量收集效率。
第4圖示出具有額外的控制機制的第一VITSZ示例的示意圖。此VITSZ與第2圖的VITSZ相同,但是包括控制端子400。注意,也可以將這樣的控制端子添加至第3A圖和第3B圖的實施例。在第4圖的實施例中,相對於,施加到控制端子400的正脈衝使VITSZ OFF,並且施加到同一控制端子400的負脈衝使VITSZ ON,所有這些都與目前之切換器狀態無關。
第5圖示出了具有額外的控制機制的第二VITSZ示例的示意圖。此VITSZ與第2圖的VITSZ相同,但是包含透過PNP BJT 500連接的額外的控制端子的OFF端子502和ON端子504。更具體地說。OFF端子502連接到BJT 500的基極,ON端子504連接到PNP BJT 500的集極。PNP BJT 500的射極連接到正端子200(與電阻器210的一個端子), PNP BJT 500的集極連接到電阻器210的另一個端子。在第5圖的實施例中,OFF端子502和ON端子504是負致能的(active negative)。在第5圖的實施例中,相對於正端子200,施加到OFF端子502的負脈衝將VITSZ OFF,並且施加到ON端子504的負脈衝將VITSZ ON(所有這些都與目前之切換器狀態無關)。
現在參考第6圖,示出了由本揭露的實施例提供的第1圖的降壓型直流對直流轉換器的具體實現的詳細示意圖。為方便起見,使用相同的附圖標記,但應理解,第1圖的實現方式不需要第6圖的具體實現方式。在第6圖中,示出了使用四個二極體D1、D2、D3和D4來實現的整流器102。在第1圖中未示出而在第6圖中示出的額外部件是肖特基二極管D6 600,其目的在下面說明。在第6圖中,肖特基二極體D6 600連接在VITSZ 106的輸出和地之間。更具體地,肖特基二極體D6 600的陽極接地,肖特基二極體D6 600的陰極連接到VITSZ 106的輸出。
僅作為示例來提供的特定元件值在第6圖中示出,並且包括 C1 = 2nf; L1 = 3mH; C2 = 10μf;
現在參考第7圖,示出了由本揭露的實施例提供的第1圖之降壓型直流對直流轉換器之另一具體實現的詳細示意圖。第7圖的電路與第6圖的電路非常相似,但第7圖的直流對直流轉換器的特徵是VITSZ 106的一個端子接地。如果有的話,該功能可以促進控制模組的設計和實現。
一些實施例的特徵在於這樣的控制模組電性地連接到它控制的VITSZ。 在一些實施例中,上述控制模組包括用於VITSZ的微控制器和驅動器,並且如果其接地連接到系統其餘部分的共同接地(即第6圖和第7圖中所示的三角形),則使得這種複雜模塊的電磁干擾(electro-magnetic interference,EMI)最小化。這種條件在第7圖中得到滿足,但在第6圖中沒有;因此,如果VITSZ確實需要控制模組,則推薦第7圖中的示意圖,而不是第6圖中的示意圖。在第7圖中,肖特基二極體D6 600連接在電容器104的第二端和地之間。第6圖和第7圖的兩個電路的功能基本相同。更具體地,肖特基二極體D6 600的陽極接地,肖特基二極管D6 600的陰極連接到電容器104的第二端子。
對於第6圖和第7圖的兩個實施例,如前面所述,注意負載114不一定是電阻器; 它可以是電阻器、齊納二極體、電池、超級電容器、它們的組合,或任何形式的電子負載。
第6圖的實施例的測試點1(標記為“1”)處的電壓是正的,而第7圖的實施例此處之電壓是負的,但是兩個實施例的負載電壓都是正的。
對於第6圖和第7圖的兩個實施例,肖特基二極體D6 600為第二能量傳遞階段提供低損耗返馳路徑,上述肖特基二極體D6 600在VITSZ開路時被激活。注意,如果使用一般二極體代替肖特基二極體D6 600,則在第一能量傳遞階段期間可能受益於較小的反向漏電流,但是缺點是在第二能量傳遞階段期間有較大的正向電壓降。作為一種妥協,可以使用肖特基二極體D6 600,因為在第一個能量傳輸階段,肖特基二極體的相對較大的漏電流(大約為1μA)與在電感器110建立的電流(幾十mA)相比是微不足道的;並且在第二能量傳遞階段,肖特基二極體D6 600的正向壓降(幾分之一伏特)與負載電壓(幾伏特)串聯。因此,前者引起的損耗並非無關緊要,而具有較小正向壓降的肖特基二極體是特別有助益的。
當存在時,肖特基二極體D6 600的反向崩潰電壓應該大於C1上的最大可能電壓。一個例子是RFN2L4S,直到至少400 V才會崩潰。
雖然所描述的實施例都假設使用單一個齊納二極體來設定導通電壓,但更一般地,可以串聯連接的一或多個齊納二極體來設置導通電壓。
現在參考第8圖,示出了由本揭露的實施例提供的直流對直流轉換方法的流程圖。上述方法開始於操作800,對來自摩擦能量/壓電能量收集裝置的AC電力進行整流。在操作802中,整流過的電力儲存在第一電容器中。上述第一電容器的電容可以相對較小,至少相對於下面介紹的第二電容器的電容,這使得電壓可以快速增加。在操作804中,一旦第一電容器兩端的電壓增加到由齊納二極體的崩潰電壓設定的導通電壓,表示已經收集了一定量的能量並準備好轉換,具有由齊納二極體崩潰電壓設定的導通電壓閾值之電壓和電流(V&I)觸發式切換器(VITSZ)即閉路,以將儲存在第一電容器中的能量傳輸到電感器。將能量形式從第一電容器兩端的電壓轉為電感器中的電流的步驟,在本文中稱為第一能量傳遞階段。在操作806中,一旦第一能量傳遞階段完成(由第一電容器兩端遺留的小電壓之事實來表明),電壓和電流觸發式切換器即開路(由電流下降到低於閾值電流(被稱為保持電流)來觸發)。這使第一個電容器再次接受收集的能量。在操作806中,切換器被開路之後,在操作808中,發生第二能量傳遞階段,其中能量形式從電感器中的電流轉為第二電容器上兩端的電壓。與第一電容器的電容相比,第二電容器的電容相對較大(在一些實施例中更大)。當第一電容器兩端的電壓再次達到閾值時,重複整個過程。選擇性地,在操作810中,儲存在第二電容器中的能量被負載消耗。
鑒於以上之說明教導,本揭露的許多修改和變化是可能的。因此,應理解,在所附之揭露申請專利範圍的範圍內,本揭露可以不同於本文具體描述的方式實施。
100‧‧‧摩擦能量/壓電能量收集裝置
102‧‧‧整流器
104‧‧‧電容器
106‧‧‧VITSZ
110‧‧‧電感器
112‧‧‧電容器
114‧‧‧負載
200‧‧‧正端子
202‧‧‧負端子
204‧‧‧PNP雙極型接面電晶體(BJT)
206‧‧‧NPN BJT
208‧‧‧齊納二極體
210、212‧‧‧電阻器
300、302‧‧‧齊納二極體
400‧‧‧控制端子
500‧‧‧PNP BJT
502‧‧‧OFF端子
504‧‧‧ON端子
600‧‧‧肖特基二極體D6
800-810‧‧‧操作
現在參考附圖描述本揭露的實施例,其中: 第1圖係說明直流對直流轉換器之示意圖。 第2圖係說明具有由齊納二極體之崩潰電壓設定之導通電壓閾值的電壓和電流(V&I)觸發式切換器(VITSZ)之示意圖。 第3A圖係說明另一個VITSZ之示意圖。 第3B圖係說明又一個VITSZ之示意圖。 第4圖係說明具有附加控制機制之VITSZ之示意圖。 第5圖係說明具有附加控制機制的另一個VITSZ之示意圖。 第6圖係說明降壓型直流對直流轉換器之實施例之示意圖。 第7圖係說明降壓型直流對直流轉換器之另一實施例之示意圖。 第8圖係由本揭露的實施例提供的直流對直流轉換方法的流程圖。

Claims (22)

  1. 一種電壓和電流觸發式切換器,當上述電壓和電流觸發式切換器兩端之一電壓達到一導通電壓時導通,當通過上述電壓和電流觸發式切換器之一電流掉落降至一保持電流以下時關閉;上述電壓和電流觸發式切換器,包括: 一齊納二極體,具有一崩潰電壓,上述齊納二極體被連接以將上述電壓和及電流觸發式切換器之上述導通電壓,設定成上述齊納二極體之上述崩潰電壓。
  2. 如專利申請範圍第1項之電壓和電流觸發式切換器,其中包括: 一正端子和一負端子; 一PNP雙極型接面電晶體(BJT); 一 NPN BJT; 一第一電阻器; 以及 一第二電阻器; 其中,上述正端子連接到上述PNP BJT之一射極,並連接到上述第一電阻器之一第一端子,上述第一電阻器之一第二端子連接至上述PNP BJT之一基極; 上述負端子連接至上述NPN BJT之一射極,並連接到上述第二電阻器之一第一端子,上述第二電阻器之一第二端子連接至上述NPN BJT之一基極; 上述PNP BJT之一集極連接至上述NPN BJT之上述基極,上述NPN BJT之一集極連接至上述PNP BJT之上述基極。
  3. 如專利申請範圍第2項之電壓和電流觸發式切換器,其中上述齊納二極體連接在上述PNP BJT之上述集極和上述PNP BJT之上述基極之間,以及連接在上述NPN BJT之上述基極和上述NPN BJT之上述集極之間。
  4. 如專利申請範圍第2項之電壓和電流觸發式切換器,其中上述齊納二極體連接在上述PNP BJT之上述集極和上述正端子之間。
  5. 如專利申請範圍第2項之電壓和電流觸發式切換器,其中上述齊納二極體連接在上述NPN BJT之上述集極和上述負端子之間。
  6. 如專利申請範圍第1項之電壓和電流觸發式切換器,其中又包括至少一控制端子,用於撤銷上述電壓和電流觸發式切換器之其他自主操作。
  7. 如專利申請範圍第6項之電壓和電流觸發式切換器,其中上述至少一控制端子包括在上述電壓和電流觸發式切換器中引起一ON和/或OFF轉換之一端子。
  8. 如專利申請範圍第6項之電壓和電流觸發式切換器,其中上述至少一控制端子包括用於在上述電壓和電流觸發式切換器中引起一ON轉換之一第一端子和用於在上述電壓和電流觸發式切換器中引起一OFF轉換之一第二端子。
  9. 如專利申請範圍第1項之電壓和電流觸發式切換器,其中包括: 一正端子和一負端子; 一PMOS電晶體; 一NMOS電晶體; 一第一電阻器;以及 一第二電阻器; 其中,上述正端子連接到PMOS電晶體之一源極,並連接到上述第一電阻器之一第一端子,上述第一電阻器之一第二端子連接到上述PMOS電晶體之一閘極; 上述負端子連接到上述NMOS電晶體之一源極並連接到上述第二電阻器之一第一端子,上述第二電阻器之一第二端子連接到上述NMOS電晶體之一閘極; 上述PMOS之電晶體之一汲極連接到上述NMOS電晶體之上述閘極,上述NMOS電晶體之一汲極連接到上述PMOS電晶體之上述閘極。
  10. 一種電子裝置,包括一降壓型直流對直流轉換器,其中上述降壓型直流對直流轉換器包括一電壓和電流觸發式切換器,當上述電壓和電流觸發式切換器兩端之一電壓達到一導通電壓時導通,當通過上述電壓和電流觸發式切換器之一電流掉落降至一保持電流以下時關閉;上述電壓和電流觸發式切換器,包括: 一齊納二極體,具有一崩潰電壓,上述齊納二極體被連接以將上述電壓和電流觸發式切換器之上述導通電壓,設定成上述齊納二極體之上述崩潰電壓。
  11. 如專利申請範圍第10項之電子裝置,其中上述電壓和電流觸發式切換器之一端子接地。
  12. 如專利申請範圍第10項之電子裝置,其中包括: 一整流器,用於對在上述降壓型直流對直流轉換器之一輸入端所接收之一電壓進行整流; 一第一電容器,被連接以在上述電壓和電流觸發式切換器開路時由上述整流過之電壓充電; 一電感器,被連接用於在上述電壓和電流觸發式切換器閉路時接收來自上述第一電容器之一放電電流;以及 一第二電容器,被連接以上述電壓和電流觸發式切換器再次開次時由來自上述電感器之電流充電。
  13. 如專利申請範圍第12項之電子裝置,其中上述電壓和電流觸發式切換器被連接在上述第一電容器之一端子和上述電感器之一端子之間。
  14. 如專利申請範圍第13項之電子裝置,其中又包括: 一肖特基二極體,被連接在上述電壓和電流觸發式切換器之一輸出和地之間,以在上述第二電容器之充電期間提供低一損耗之返馳路徑。
  15. 如專利申請範圍第12項之電子裝置,其中上述電壓和電流觸發式切換器之一端子被連接在上述整流器之一端子和上述第一電容器之第一端子之間。
  16. 如專利申請範圍第15項之電子裝置,其中又包括: 一肖特基二極體,被連接在上述第一電容器之一第二端子與地之間,以在上述第二電容器之充電期間提供一低損耗之返馳路徑。
  17. 如專利申請範圍第12項之電子裝置,其中又包括: 一摩擦電力源; 其中上述降壓型直流對直流轉換器 ,被連接以接收上述摩擦電力源之 一輸出;以及 一負載,連接到上述降壓型直流對直流轉換器之一輸出。
  18. 如專利申請範圍第12項之電子裝置,其中又包括: 一壓電電力源; 其中上述降壓型直流對直流轉換器,被連接以接收上述壓電電力源之一輸出;以及 一負載,連接到上述降壓型直流對直流轉換器之一輸出。
  19. 一種直流對直流轉換方法,包括: 對來自一摩擦能量收集裝置或一壓電能量收集裝置之交流電力進行整流; 將整流過之上述交流電力儲存在一第一電容器; 一旦上述第一電容器兩端之一電壓增加達到由一齊納二極體之一崩潰電壓設定之一導通電壓,即閉路一具有由齊納二極體崩潰電壓設定之導通電壓閾值的電壓和電流(V&I)觸發式切換器(VITSZ),以將儲存在上述第一電容器中之上述能量傳遞給一電感器; 開路VITSZ,此由降至一閾值電流以下之一電流來觸發; 將上述能量從上述電感器中之電流傳遞到一第二電容器之兩端之一電壓;以及 一負載消耗儲存在上述第二電容器中之上述能量。
  20. 如專利申請範圍第19項之直流對直流轉換方法,其中又包括使用至少一控制端子用於撤銷上述方法之其他自主操作。
  21. 如專利申請範圍第20項之直流對直流轉換方法,其中在使用上述至少一控制端子中,包括使用在上述電壓和電流觸發式切換器中引起一ON和/或OFF轉換之一端子。
  22. 如專利申請範圍第20項之直流對直流轉換方法,其中在使用上述至少一控制端子中,包括使用用於在上述VITSZ中引起一ON轉換之一第一端子以及用於在上述VITSZ中引起一OFF轉換之一第二端子。
TW108109510A 2018-03-23 2019-03-20 電壓及電流觸發式切換器以及包含此切換器之降壓型直流對直流轉換器 TW201941527A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/933,970 2018-03-23
US15/933,970 US10476367B2 (en) 2018-03-23 2018-03-23 Voltage and current triggered switch, and step-down DC-DC converters containing such a switch

Publications (1)

Publication Number Publication Date
TW201941527A true TW201941527A (zh) 2019-10-16

Family

ID=67985798

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109510A TW201941527A (zh) 2018-03-23 2019-03-20 電壓及電流觸發式切換器以及包含此切換器之降壓型直流對直流轉換器

Country Status (5)

Country Link
US (1) US10476367B2 (zh)
EP (2) EP3769419A4 (zh)
CA (1) CA3094738A1 (zh)
TW (1) TW201941527A (zh)
WO (1) WO2019178670A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715464B (zh) * 2020-03-17 2021-01-01 宏碁股份有限公司 降壓轉換器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341763A (en) * 1965-08-27 1967-09-12 Globe Union Inc Output control for permanent magnet alternators
US3376500A (en) * 1966-04-25 1968-04-02 Varian Associates Direct reading magnetic field intensity indicating apparatus
US4001663A (en) * 1974-09-03 1977-01-04 Texas Instruments Incorporated Switching regulator power supply
US4878010A (en) * 1987-12-10 1989-10-31 Weber Harold J Electric a.c power switch controller and d.c. power supply method and apparatus
US5343053A (en) 1993-05-21 1994-08-30 David Sarnoff Research Center Inc. SCR electrostatic discharge protection for integrated circuits
US5589753A (en) * 1994-04-11 1996-12-31 Andrew S. Kadah Rate effect motor start circuit
US5627708A (en) * 1995-04-10 1997-05-06 Yin Nan Enterprises Co, Ltd. High power factor electronic stabilizer with protection circuit
TW358283B (en) 1996-06-26 1999-05-11 Oki Electric Ind Co Ltd Remote testing device
CN1168210C (zh) * 2000-06-27 2004-09-22 百利通电子(上海)有限公司 红外线感应照明灯电子开关
WO2006050568A1 (en) 2004-11-12 2006-05-18 Fultec Semiconductor Inc. A surge protection device
EP1855365A1 (en) 2006-05-09 2007-11-14 Raycap Corporation Overvoltage protection device module and method for forming the same
US8120887B2 (en) * 2007-02-28 2012-02-21 Alpha & Omega Semiconductor, Ltd. MOS transistor triggered transient voltage suppressor to provide circuit protection at a lower voltage
US9025296B2 (en) * 2011-01-06 2015-05-05 Littelfuse, Inc. Transient voltage suppressor
US9006999B2 (en) * 2011-09-01 2015-04-14 Renesas Electronics America Inc. Flickering suppressor system for a dimmable LED light bulb
TWI489911B (zh) * 2011-12-30 2015-06-21 Richtek Technology Corp 可全相位啟動三極交流開關之主動洩流電路及使用該主動洩流電路之發光元件電源供應電路與三極交流開關控制方法
US20130250637A1 (en) * 2012-03-21 2013-09-26 National Tsing Hua University Single-Stage Single-Switch Voltage Converter
EP2701294B1 (en) 2012-08-24 2017-11-08 Dialog Semiconductor GmbH Low current start up including power switch
MX357520B (es) * 2014-02-27 2018-07-12 Univ Danmarks Tekniske Convertidor de potencia cd-cd resonante con control de encendido y apagado.
US20180294744A1 (en) 2015-09-04 2018-10-11 Koninklijke Philips N.V. Electrical power generation device and generation method
US9800170B2 (en) * 2015-10-22 2017-10-24 Analog Devices Global Energy harvester open-circuit voltage sensing for MPPT
JP6274289B1 (ja) * 2016-10-18 2018-02-07 オムロン株式会社 電源回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715464B (zh) * 2020-03-17 2021-01-01 宏碁股份有限公司 降壓轉換器

Also Published As

Publication number Publication date
WO2019178670A1 (en) 2019-09-26
US10476367B2 (en) 2019-11-12
EP3769419A4 (en) 2022-08-10
US20190296631A1 (en) 2019-09-26
CA3094738A1 (en) 2019-09-26
EP3769419A1 (en) 2021-01-27
EP4216438A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
TW465168B (en) Synchronous rectification in a flyback converter
JP7066876B2 (ja) 自己バイアス理想ダイオード回路
CN106655747B (zh) 供电电路、开关电源系统及其供电方法
US9504105B2 (en) On-time control for switched mode power supplies
US10601329B2 (en) Switching regulator and power switch controller circuit thereof
KR20060056257A (ko) 스위칭 전원 공급장치 및 스위칭 방법
CN111010040B (zh) 同步整流控制装置、绝缘同步整流型dc/dc转换器、栅极驱动装置、ac/dc转换器
US20190068074A1 (en) Supply voltage generating circuit and associated integrated circuit
JP2017184598A (ja) スイッチング電源装置
KR20100132957A (ko) 보조 전력 공급 전압을 발생시키는 완충용 커패시터
JP4548484B2 (ja) 同期整流型フォワードコンバータ
US9655175B2 (en) Off-time control for switched mode power supplies
JPH0956161A (ja) 力率改善回路
JP5408161B2 (ja) 自励式スイッチング電源回路
Moradzadeh et al. Novel high step-up DC/DC converter structure using a coupled inductor with minimal voltage stress on the main switch
TW201941527A (zh) 電壓及電流觸發式切換器以及包含此切換器之降壓型直流對直流轉換器
JP6116002B2 (ja) Dc−dc電源回路
CN108631565B (zh) 两级式开关电源
US9601996B2 (en) Switching power supply apparatus
US20230275526A1 (en) Rectifying element and voltage converter comprising such a rectifying element
US11611284B2 (en) Isolated switching power converter with multiple outputs
WO2018173381A1 (ja) スイッチング制御装置
US11190107B2 (en) Auxiliary power supply circuit, power supply apparatus, and power supply circuit
TW202224330A (zh) 返馳式轉換器及其控制方法
EP2787639A1 (en) Cascode bipolar transistor circuit