TW201940492A - Thermal runaway suppression agent - Google Patents

Thermal runaway suppression agent Download PDF

Info

Publication number
TW201940492A
TW201940492A TW108108827A TW108108827A TW201940492A TW 201940492 A TW201940492 A TW 201940492A TW 108108827 A TW108108827 A TW 108108827A TW 108108827 A TW108108827 A TW 108108827A TW 201940492 A TW201940492 A TW 201940492A
Authority
TW
Taiwan
Prior art keywords
aqueous electrolyte
thermal runaway
trimethylsilyl
compound
secondary battery
Prior art date
Application number
TW108108827A
Other languages
Chinese (zh)
Inventor
撹上健二
青山洋平
Original Assignee
日商艾迪科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商艾迪科股份有限公司 filed Critical 日商艾迪科股份有限公司
Publication of TW201940492A publication Critical patent/TW201940492A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials Engineering (AREA)

Abstract

The present invention addresses the issue of providing a non-aqueous electrolyte secondary battery that has no thermal runaway if an internal short-circuit occurs and no risk of fire or explosion, without increasing size or greatly increasing cost. This agent for suppressing thermal runaway caused by internal short-circuits is for a non-aqueous electrolyte secondary battery having: a positive electrode including a positive electrode active substance comprising a silyl ester compound; a negative electrode including a negative electrode active substance, and a non-aqueous electrolyte. In this suppression method for thermal runaway caused by internal short-circuits in non-aqueous electrolyte secondary batteries, 0.01%-10% by mass of the agent for suppressing thermal runaway caused by internal short-circuits, for use in non-aqueous electrolyte secondary batteries, is mixed with the non-aqueous electrolyte.

Description

熱失控之抑制劑Thermal runaway inhibitor

本發明係關於一種非水電解質二次電池之內部短路所致熱失控之抑制劑、及使用該抑制劑之內部短路所致熱失控之抑制方法。The present invention relates to an inhibitor of thermal runaway caused by an internal short circuit of a non-aqueous electrolyte secondary battery, and a method of suppressing thermal runaway caused by an internal short circuit using the inhibitor.

鋰離子二次電池等非水電解質二次電池由於小型且輕量,且能量密度較高,為高容量,能夠反覆充放電,故而被廣泛地用作攜帶用電腦、手持攝錄影機、資訊終端等攜帶電子機器之電源。又,出於環境問題之考慮,正在進行使用非水電解質二次電池之電動汽車或動力之一部分使用電力之油電混合車之實用化。Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as portable computers, handheld camcorders, and information because they are small, lightweight, and have high energy density, high capacity, and can be repeatedly charged and discharged. Terminals, etc. carry power for electronic equipment. In addition, due to environmental concerns, electric vehicles using non-aqueous electrolyte secondary batteries or hybrid electric vehicles using electric power as part of power are being put into practical use.

非水電解質二次電池包括電極、分隔件、電解質等構件。電解質之主溶劑係使用易燃性之有機溶劑,於因內部短路等而釋出較大能量之情形時,會發生熱失控而有起火或破裂之危險性,因此研究了各種對策。作為此種對策,已知有:使用以聚烯烴作為主成分之多孔質膜作為分隔件之方法(例如參照專利文獻1、2);除分隔件以外,還於正極與負極之間設置多孔質耐熱層之方法(例如參照專利文獻3);以金屬氧化物被覆電極活性物質之表面之方法(例如參照專利文獻4);將含鋰之鎳氧化物作為正極活性物質之方法(例如參照專利文獻5);將橄欖石型磷酸鋰化合物作為正極活性物質之方法(例如參照專利文獻6);將尖晶石結構之鈦酸鋰化合物作為負極活性物質之方法(例如參照專利文獻7);使用不燃性之氟系溶劑作為電解質之主溶劑之方法(例如參照專利文獻8、9);使用不使用有機溶劑之固體電解質作為電解質之方法(例如參照專利文獻10)等。The non-aqueous electrolyte secondary battery includes members such as an electrode, a separator, and an electrolyte. The main solvent of the electrolyte is a flammable organic solvent. When a large amount of energy is released due to an internal short circuit or the like, thermal runaway may occur and there is a danger of fire or cracking. Therefore, various countermeasures have been studied. As such a countermeasure, a method using a porous film containing polyolefin as a main component as a separator is known (for example, refer to Patent Documents 1 and 2); in addition to the separator, a porous material is provided between the positive electrode and the negative electrode. A method of a heat-resistant layer (for example, refer to Patent Document 3); a method of covering a surface of an electrode active material with a metal oxide (for example, refer to Patent Document 4); and a method for using a lithium-containing nickel oxide as a positive electrode active material (for example, refer to Patent Document) 5); a method of using an olivine-type lithium phosphate compound as a positive electrode active material (for example, refer to Patent Document 6); a method of using a spinel structure lithium titanate compound as a negative electrode active material (for example, refer to Patent Document 7); using a non-combustible material A method of using a fluorine-based solvent as the main solvent of the electrolyte (for example, refer to Patent Documents 8 and 9); a method using a solid electrolyte that does not use an organic solvent as the electrolyte (for example, refer to Patent Document 10);

利用以聚烯烴作為主成分之多孔質膜之分隔件防止內部短路時,必須使分隔件較厚;於設置多孔質耐熱層之方法中,電池與多孔質耐熱層之大小相應地增大;於以金屬氧化物被覆電極活性物質之表面之方法中,電極之電極合劑層中所含之電極活性物質之含量相對減少而電池之容量變小;該等方法均喪失小型且輕量、高容量之非水電解質二次電池之優點。於將含鋰之鎳氧化物或橄欖石型磷酸鋰化合物作為正極活性物質之方法或將尖晶石結構之鈦酸鋰化合物作為負極活性物質之方法中,均無法獲得較高之充放電容量。又,於使用氟系溶劑之方法中,由於氟系溶劑價格非常昂貴且必須大量使用,故而會導致成本大幅度增加。於使用固體電解質之方法中,由於使用無流動性之固體電解質材料,故而內部電阻變高,而導致與使用有機溶劑之電解質相比性能降低。When using a porous membrane separator with polyolefin as a main component to prevent internal short circuits, the separator must be made thicker. In the method of providing a porous heat-resistant layer, the size of the battery and the porous heat-resistant layer is increased accordingly; In the method of covering the surface of the electrode active material with a metal oxide, the content of the electrode active material contained in the electrode mixture layer of the electrode is relatively reduced and the capacity of the battery is reduced; all of these methods lose small, lightweight, and high-capacity materials. Advantages of non-aqueous electrolyte secondary batteries. In the method of using a lithium-containing nickel oxide or an olivine-type lithium phosphate compound as a positive electrode active material or a method of using a spinel structure lithium titanate compound as a negative electrode active material, a higher charge-discharge capacity cannot be obtained. Further, in the method using a fluorine-based solvent, since the fluorine-based solvent is very expensive and must be used in a large amount, the cost is greatly increased. In the method using a solid electrolyte, since a non-fluid solid electrolyte material is used, internal resistance becomes high, resulting in a decrease in performance compared to an electrolyte using an organic solvent.

另一方面,例如,於鋰離子二次電池中,使用將六氟磷酸鋰等包含氟原子之鋰鹽溶解於碳酸丙二酯或碳酸二乙酯等碳酸酯系之有機溶劑而成之非水電解質作為電解質,為了提昇循環特性等而研究有進而添加有羧酸矽烷基酯化合物(例如參照專利文獻11~13)、硫酸矽烷基酯化合物(例如參照專利文獻4~5)、磺酸矽烷基酯化合物(例如參照專利文獻14、16)、磷酸矽烷基酯化合物(例如參照專利文獻15、17、18)、硼酸矽烷基酯化合物(例如參照專利文獻15、19)等矽烷基酯化合物之非水電解質。然而,業界尚不知曉:藉由使用添加有矽烷基酯化合物之非水電解質,會成為即便發生內部短路亦不易發生熱失控而無起火或破裂之危險性的非水電解質二次電池。
[先前技術文獻]
[專利文獻]
On the other hand, for example, in a lithium ion secondary battery, a nonaqueous electrolyte obtained by dissolving a lithium salt containing a fluorine atom such as lithium hexafluorophosphate in a carbonate-based organic solvent such as propylene carbonate or diethyl carbonate is used as the electrolyte. In order to improve the cycle characteristics and the like, it has been studied to further add a carboxylic acid silyl ester compound (for example, refer to Patent Documents 11 to 13), a silyl sulfate compound (for example, refer to Patent Documents 4 to 5), and a sulfonic acid silyl ester compound ( For example, refer to Patent Documents 14, 16), non-aqueous electrolytes of silyl ester compounds such as silyl phosphate compounds (eg, refer to Patent Documents 15, 17, 18), silyl borate compounds (eg, refer to Patent Documents 15, 19). However, it is unknown in the industry that by using a non-aqueous electrolyte to which a silyl ester compound is added, it will become a non-aqueous electrolyte secondary battery that is less prone to thermal runaway and has no danger of fire or cracking even if an internal short circuit occurs.
[Prior technical literature]
[Patent Literature]

[專利文獻1]US2018097256
[專利文獻2]US9923181
[專利文獻3]US7759004
[專利文獻4]日本專利特開2011-216300號公報
[專利文獻5]日本專利特開2002-015736號公報
[專利文獻6]US7572548
[專利文獻7]日本專利特開2008-159280號公報
[專利文獻8]US2009253044
[專利文獻9]US8163422
[專利文獻10]US2016315324
[專利文獻11]日本專利特開2002-313416號公報
[專利文獻12]US7410731
[專利文獻13]WO2016/013480
[專利文獻14]US7241536
[專利文獻15]日本專利特開2006-253086號公報
[專利文獻16]US9112236
[專利文獻17]US6379846
[專利文獻18]日本專利特開2004-342607號公報
[專利文獻19]US2002015895
[Patent Document 1] US2018097256
[Patent Document 2] US9923181
[Patent Document 3] US7759004
[Patent Document 4] Japanese Patent Laid-Open No. 2011-216300
[Patent Document 5] Japanese Patent Laid-Open No. 2002-015736
[Patent Document 6] US7572548
[Patent Document 7] Japanese Patent Laid-Open No. 2008-159280
[Patent Document 8] US2009253044
[Patent Document 9] US8163422
[Patent Document 10] US2016315324
[Patent Document 11] Japanese Patent Laid-Open No. 2002-313416
[Patent Document 12] US7410731
[Patent Document 13] WO2016 / 013480
[Patent Document 14] US7241536
[Patent Document 15] Japanese Patent Laid-Open No. 2006-253086
[Patent Document 16] US9112236
[Patent Document 17] US6379846
[Patent Document 18] Japanese Patent Laid-Open No. 2004-342607
[Patent Document 19] US2002015895

本發明之課題在於提供一種非水電解質二次電池,其不會大型化或大幅度增加成本,且即便發生內部短路,亦不易發生熱失控,而無起火或破裂之危險性。The object of the present invention is to provide a non-aqueous electrolyte secondary battery, which does not increase in size or increase cost significantly, and even if an internal short circuit occurs, it is difficult to cause thermal runaway without the risk of fire or cracking.

本發明人等對上述課題進行了努力研究,結果發現,即便為具有以有機溶劑作為溶劑之非水電解質之非水電解質二次電池,藉由在非水電解質中調配矽烷基酯化合物,亦不易發生熱失控,而可防止內部短路所致起火或破裂,從而完成本發明。即,本發明係一種非水電解質二次電池用之內部短路所致熱失控之抑制劑,該熱失控之抑制劑包含矽烷基酯化合物,該非水電解質二次電池具有包含正極活性物質之正極、包含負極活性物質之負極、及非水電解質。The present inventors have made intensive studies on the above problems, and as a result, they have found that it is not easy to formulate a silane alkyl compound in a nonaqueous electrolyte even in a nonaqueous electrolyte secondary battery having a nonaqueous electrolyte using an organic solvent as a solvent. Thermal runaway occurs, which prevents fire or rupture caused by an internal short circuit, thereby completing the present invention. That is, the present invention is a thermal runaway inhibitor caused by an internal short circuit for a nonaqueous electrolyte secondary battery. The thermal runaway inhibitor includes a silane ester compound. The nonaqueous electrolyte secondary battery has a positive electrode including a positive electrode active material, A negative electrode including a negative electrode active material, and a nonaqueous electrolyte.

本發明之熱失控之抑制劑之特徵在於:包含矽烷基酯化合物。作為矽烷基酯化合物,例如可列舉:羧酸矽烷基酯化合物、硫酸矽烷基酯化合物、磺酸矽烷基酯化合物、磷酸矽烷基酯化合物、亞磷酸矽烷基酯化合物、硼酸矽烷基酯化合物等。The thermal runaway inhibitor of the present invention is characterized in that it comprises a silyl ester compound. Examples of the silyl ester compound include a silyl carboxylate compound, a silyl sulfate compound, a silyl sulfonate compound, a silyl phosphate compound, a silyl phosphite compound, and a silyl borate compound.

作為羧酸矽烷基酯化合物,例如可列舉下述通式(1)所表示之羧酸矽烷基酯化合物。Examples of the silyl carboxylate compound include a silyl carboxylate compound represented by the following general formula (1).

[化1]

(式中,R1 ~R3 分別獨立地表示碳數1~6之烴基,X1 表示碳原子數1~10之a價之烴基、或烴基中之亞甲基被氧原子或硫原子取代之碳原子數1~10之a價之基,a表示1~4之數)
[Chemical 1]

(In the formula, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, and X 1 represents an a-valent hydrocarbon group having 1 to 10 carbon atoms, or a methylene group in the hydrocarbon group is replaced by an oxygen atom or a sulfur atom. A carbon number of 1 to 10 with a valence base, a represents a number of 1 to 4)

於通式(1)中,R1 ~R3 分別獨立地表示碳數1~6之烴基。作為碳數1~6之烴基,可列舉:甲基、乙基、丙基、丁基、戊基、己基、異丙基、異丁基、第二丁基、第三丁基、異戊基、新戊基、1-甲基丁基、異己基、乙烯基、環戊基、環己基、苯基等。作為R1 ~R3 ,就熱失控之抑制效果變大而言,較佳為甲基、乙基、苯基,進而較佳為甲基。R1 ~R3 可全部為相同之基,亦可為2~3種基之組合,但於2~3種基之組合之情形時,較佳為1種為甲基。In the general formula (1), R 1 to R 3 each independently represent a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, second butyl, third butyl, and isopentyl , Neopentyl, 1-methylbutyl, isohexyl, vinyl, cyclopentyl, cyclohexyl, phenyl and the like. R 1 to R 3 are preferably a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group, in order to increase the effect of suppressing thermal runaway. All of R 1 to R 3 may be the same base or a combination of 2 to 3 bases, but in the case of a combination of 2 to 3 bases, it is preferable that one of them is a methyl group.

X1 表示碳原子數1~10之a價之烴基、或烴基中之亞甲基被氧原子或硫原子取代之碳原子數1~10之a價之基,a表示1~4之數。於X1 之碳數過大之情形時,有於非水電解質中之溶解性降低或熱失控之抑制效果變低之情況,因此X1 之碳數較佳為1~10,進而較佳為1~6。就羧酸矽烷基酯化合物於非水電解質中之溶解性、及羧酸矽烷基酯化合物之穩定性之觀點而言,a較佳為2~3之數。X 1 represents an a-valent hydrocarbon group having 1 to 10 carbon atoms or an a-valent carbon group having 1 to 10 carbon atoms in which a methylene group in the hydrocarbon group is replaced with an oxygen atom or a sulfur atom, and a represents a number of 1 to 4. When the carbon number of X 1 is too large, the solubility in the non-aqueous electrolyte may be reduced or the effect of suppressing thermal runaway may be reduced. Therefore, the carbon number of X 1 is preferably 1 to 10, and more preferably 1 ~ 6. From the viewpoint of the solubility of the carboxylic acid silane alkyl compound in a non-aqueous electrolyte and the stability of the carboxylic acid silane alkyl compound, a is preferably a number from 2 to 3.

通式(1)所表示之羧酸矽烷基酯化合物可藉由將下述通式(1a)所表示之羧酸或其酸酐利用公知之方法進行矽烷基酯化而獲得。The carboxylic acid silyl ester compound represented by the general formula (1) can be obtained by subjecting a carboxylic acid represented by the following general formula (1a) or an anhydride thereof to a silyl ester by a known method.

[化2]

(式中,X1 與通式(1)含義相同,m表示1~4之數)
[Chemical 2]

(In the formula, X 1 has the same meaning as the general formula (1), and m represents a number of 1 to 4)

通式(1)所表示之羧酸矽烷基酯化合物中,作為a為1之化合物,可列舉:乙酸三甲基矽烷基酯、丙酸三甲基矽烷基酯、丁酸三甲基矽烷基酯、戊酸三甲基矽烷基酯、己酸三甲基矽烷基酯、庚酸三甲基矽烷基酯、辛酸三甲基矽烷基酯、壬酸三甲基矽烷基酯、癸酸三甲基矽烷基酯、2-甲基丙酸三甲基矽烷基酯、2-甲基丁酸三甲基矽烷基酯、3-甲基丁酸三甲基矽烷基酯、第三丁酸三甲基矽烷基酯、2-甲基戊酸三甲基矽烷基酯、2-乙基丁酸三甲基矽烷基酯、異己酸三甲基矽烷基酯、2-乙基己酸三甲基矽烷基酯、異辛酸三甲基矽烷基酯、3,5,5-三甲基己酸三甲基矽烷基酯、丙烯酸三甲基矽烷基酯、甲基丙烯酸三甲基矽烷基酯、丁烯酸三甲基矽烷基酯、苯甲酸三甲基矽烷基酯、甲苯甲酸三甲基矽烷基酯、4-第三丁基苯甲酸三甲基矽烷基酯、萘甲酸三甲基矽烷基酯、苯乙酸三甲基矽烷基酯、萘乙酸三甲基矽烷基酯、4-甲氧基苯甲酸三甲基矽烷基酯、甲氧基乙酸三甲基矽烷基酯、乙氧基乙酸三甲基矽烷基酯、第三丁氧基乙酸三甲基矽烷基酯、苯氧基乙酸三甲基矽烷基酯等。Among the silyl carboxylic acid carboxylate compounds represented by the general formula (1), as the compound where a is 1, trimethylsilyl acetate, trimethylsilyl propionate, and trimethylsilyl butyrate can be listed. Ester, trimethylsilyl valerate, trimethylsilyl hexanoate, trimethylsilyl heptanoate, trimethylsilyl octoate, trimethylsilyl nonanoate, trimethyl decanoate Silyl ester, trimethylsilyl 2-methylpropionate, trimethylsilyl 2-methylbutyrate, trimethylsilyl 3-methylbutyrate, trimethyl tertiary butyrate Silyl ester, trimethylsilyl 2-methylvalerate, trimethylsilyl 2-ethylbutyrate, trimethylsilyl isocaproate, trimethylsilyl 2-ethylhexanoate Ester, trimethylsilyl isooctanoate, trimethylsilyl 3,5,5-trimethylhexanoate, trimethylsilyl acrylate, trimethylsilyl methacrylate, butene Acid trimethylsilyl ester, trimethylsilyl benzoate, trimethylsilyl toluate, trimethylsilyl 4-tert-butylbenzoate, trimethylsilyl naphthalate, Phenylacetic acid Trimethylsilyl ester, trimethylsilyl naphthalate, trimethylsilyl 4-methoxybenzoate, trimethylsilyl methoxyacetate, trimethylsilyl ethoxyacetate Ester, trimethylsilyl butoxyacetate, trimethylsilyl phenoxyacetate, and the like.

通式(1)所表示之羧酸矽烷基酯化合物中,作為a為2之化合物,可列舉:乙二酸雙(三甲基矽烷基)酯、丙二酸雙(三甲基矽烷基)酯、丁二酸雙(三甲基矽烷基)酯、戊二酸雙(三甲基矽烷基)酯、己二酸雙(三甲基矽烷基)酯、庚二酸雙(三甲基矽烷基)酯、辛二酸雙(三甲基矽烷基)酯、壬二酸雙(三甲基矽烷基)酯、癸二酸雙(三甲基矽烷基)酯、富馬酸雙(三甲基矽烷基)酯、馬來酸雙(三甲基矽烷基)酯、檸康酸雙(三甲基矽烷基)酯、中康酸雙(三甲基矽烷基)酯、戊烯二酸雙(三甲基矽烷基)酯、伊康酸雙(三甲基矽烷基)酯、黏糠酸雙(三甲基矽烷基)酯、乙炔二羧酸雙(三甲基矽烷基)酯、環己烷二羧酸雙(三甲基矽烷基)酯、環己烯二羧酸雙(三甲基矽烷基)酯、降烷二羧酸雙(三甲基矽烷基)酯、降烯二羧酸雙(三甲基矽烷基)酯、金剛烷二羧酸雙(三甲基矽烷基)酯、雙環[2.2.1]庚烷-2,3-二羧酸雙(三甲基矽烷基)酯、雙環[2.2.1]庚-5-烯2,3-二羧酸雙(三甲基矽烷基)酯、苯二羧酸雙(三甲基矽烷基)酯、二甲苯二羧酸雙(三甲基矽烷基)酯、呋喃二羧酸雙(三甲基矽烷基)酯、金剛烷二乙酸雙(三甲基矽烷基)酯、(伸乙基二氧基)二乙酸雙(三甲基矽烷基)酯、(伸苯基二氧基)二乙酸雙(三甲基矽烷基)酯、硫代二乙酸雙(三甲基矽烷基)酯、二硫代二乙酸雙(三甲基矽烷基)酯、硫代乙酸丙酸雙(三甲基矽烷基)酯、硫代二丙酸雙(三甲基矽烷基)酯、二硫代二丙酸雙(三甲基矽烷基)酯、伸乙基二硫代二乙酸雙(三甲基矽烷基)酯、噻吩二羧酸雙(三甲基矽烷基)酯等。Among the silyl carboxylic acid carboxylate compounds represented by the general formula (1), examples of the compound in which a is 2 include bis (trimethylsilyl) acetate and bis (trimethylsilyl) malonate. Ester, bis (trimethylsilyl) succinate, bis (trimethylsilyl) glutarate, bis (trimethylsilyl) adipate, bis (trimethylsilyl pimelate) Yl) ester, bis (trimethylsilyl) suberate, bis (trimethylsilyl) azelate, bis (trimethylsilyl) sebacate, bis (trimethyl fumarate) Silyl) ester, maleic acid bis (trimethylsilyl) ester, citraconic acid bis (trimethylsilyl) ester, mesaconic acid bis (trimethylsilyl) ester, pentenedioic acid bis (Trimethylsilyl) ester, bis (trimethylsilyl) iconate, bis (trimethylsilyl) mucofurate, bis (trimethylsilyl) acetylene dicarboxylic acid, cyclic Hexanedicarboxylic acid bis (trimethylsilyl) ester, cyclohexene dicarboxylic acid bis (trimethylsilyl) ester, norbitane dicarboxylic acid bis (trimethylsilyl) ester, norylene dicarboxylate Acid bis (trimethylsilyl) ester, adamantane dicarboxylic acid bis (trimethylsilyl) ester, bicyclo [2.2.1] heptane-2,3- Bis (trimethylsilyl) dicarboxylate, bicyclo [2.2.1] hept-5-ene 2,3-dicarboxylic bis (trimethylsilyl) ester, benzenedicarboxylic acid bis (trimethyl) (Silyl) ester, bis (trimethylsilyl) xylene dicarboxylate, bis (trimethylsilyl) furandicarboxylate, bis (trimethylsilyl) adamantane diacetate, Ethyldioxy) bis (trimethylsilyl) diacetate, (phenylene dioxy) bis (trimethylsilyl) diacetate, bis (trimethylsilyl) thiodiacetate Ester, bis (trimethylsilyl) dithiodiacetate, bis (trimethylsilyl) thiopropionate, bis (trimethylsilyl) thiodipropionate, dithio Bis (trimethylsilyl) dipropionate, bis (trimethylsilyl) diethyldithiodiacetate, bis (trimethylsilyl) thiophene dicarboxylic acid, and the like.

通式(1)所表示之羧酸矽烷基酯化合物中,作為a為3之化合物,可列舉:丙烷三羧酸三(三甲基矽烷基)酯、3-羧基黏糠酸三(三甲基矽烷基)酯、烏頭酸三(三甲基矽烷基)酯、3-丁烯-1,2,3-三羧酸三(三甲基矽烷基)酯、戊烷-1,3,5-三羧酸三(三甲基矽烷基)酯、己烷-1,3,6-三羧酸三(三甲基矽烷基)酯、環己烷三羧酸三(三甲基矽烷基)酯、偏苯三甲酸三(三甲基矽烷基)酯、均苯三酸三(三甲基矽烷基)酯、丁烷四羧酸三(三甲基矽烷基)酯等。Among the silyl carboxylic acid carboxylate compounds represented by the general formula (1), examples of the compound in which a is 3 include tris (trimethylsilyl) propanetricarboxylate and tris (trimethyltrimethylfurfurate). Silyl) ester, tris (trimethylsilyl) aconitate, 3-butene-1,2,3-tricarboxylic acid tris (trimethylsilyl) ester, pentane-1,3,5 -Tris (trimethylsilyl) tricarboxylate, tris (trimethylsilyl) hexane-1,3,6-tricarboxylic acid, tris (trimethylsilyl) cyclohexanetricarboxylic acid Esters, tris (trimethylsilyl) trimellitate, tris (trimethylsilyl) trimellitate, tris (trimethylsilyl) butanetetracarboxylic acid, and the like.

通式(1)所表示之羧酸矽烷基酯化合物中,作為a為4之化合物,可列舉:環丁烷四羧酸四(三甲基矽烷基)酯、環戊烷四羧酸四(三甲基矽烷基)酯、四氫呋喃四羧酸四(三甲基矽烷基)酯、均苯四甲酸四(三甲基矽烷基)酯、萘四羧酸四(三甲基矽烷基)酯等。Among the silyl carboxylic acid carboxylate compounds represented by the general formula (1), as the compound in which a is 4, cyclobutane tetracarboxylic acid tetra (trimethylsilyl) ester, cyclopentane tetracarboxylic acid tetra ( Trimethylsilyl) ester, tetrahydrofuran tetracarboxylic acid tetra (trimethylsilyl) ester, pyromellitic acid tetra (trimethylsilyl) ester, naphthalene tetracarboxylic acid tetra (trimethylsilyl) ester, etc. .

作為硫酸矽烷基酯化合物及磺酸矽烷基酯化合物,例如可列舉下述通式(3)所表示之化合物。Examples of the silyl sulfate compound and the silyl sulfonate compound include compounds represented by the following general formula (3).

[化3]

(式中,R11 ~R14 分別獨立地表示碳數1~6之烴基,c表示0或1之數)
[Chemical 3]

(Wherein R 11 to R 14 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, and c represents a number of 0 or 1)

於通式(3)中,R11 ~R14 表示碳數1~6之烴基。作為碳數1~6之烴基,可列舉通式(1)之R1 ~R3 所例示之基。作為R11 ,就工業上容易獲取原料而言,較佳為甲基或苯基,進而較佳為甲基。作為R12 ~R14 ,就熱失控之抑制效果變大而言,較佳為甲基、乙基、苯基,進而較佳為甲基。In the general formula (3), R 11 to R 14 represent a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbons include the groups exemplified by R 1 to R 3 in the general formula (1). As R 11 , a methyl group or a phenyl group is preferable, and a methyl group is more preferable in terms of easily obtaining raw materials in industry. As R 12 to R 14 , a methyl, ethyl, and phenyl group is preferred, and a methyl group is more preferred in order to increase the effect of suppressing thermal runaway.

c表示0或1之數,於c為0之數之情形時,通式(3)所表示之化合物為硫酸矽烷基酯化合物,於c為1之數之情形時,為磺酸矽烷基酯化合物。c represents a number of 0 or 1. When c is a number of 0, the compound represented by the general formula (3) is a silyl sulfate compound, and when c is a number of 1, it is a silyl sulfonate. Compound.

於通式(3)之c為0之數之情形時,即於通式(3)所表示之化合物為硫酸矽烷基酯化合物之情形時,作為較佳之化合物,可列舉:硫酸雙(三甲基矽烷基)酯、硫酸雙(二甲基苯基矽烷基)酯、硫酸雙(甲基二苯基矽烷基)酯、硫酸雙(三苯基矽烷基)酯等。In the case where c in the general formula (3) is a number of 0, that is, when the compound represented by the general formula (3) is a silyl sulfate compound, as a preferable compound, bis (trimethyl sulfate) can be listed. Silyl) ester, bis (dimethylphenylsilyl) sulfate, bis (methyldiphenylsilyl) sulfate, bis (triphenylsilyl) sulfate, and the like.

於通式(3)之c為1之數之情形時,即於通式(3)所表示之化合物為磺酸矽烷基酯化合物之情形時,作為較佳之化合物,可列舉:甲磺酸三甲基矽烷基酯、甲磺酸二甲基苯基矽烷基酯、苯磺酸三甲基矽烷基酯、甲苯磺酸三甲基矽烷基酯等。In the case where c in the general formula (3) is a number of 1, that is, in the case where the compound represented by the general formula (3) is a silyl sulfonate compound, as a preferable compound, a mesylate three Methylsilyl ester, dimethylphenylsilyl mesylate, trimethylsilyl besylate, trimethylsilyl tosylate, and the like.

作為磷酸矽烷基酯化合物,可列舉矽烷基酯基之一部分被烷基酯基取代之烷基酸性磷酸酯之矽烷基酯化合物,作為亞磷酸矽烷基酯化合物,可列舉矽烷基酯基之一部分被烷基酯基取代之烷基酸性亞磷酸酯之矽烷基酯化合物。作為磷酸矽烷基酯化合物及亞磷酸矽烷基酯化合物,例如可列舉下述通式(4)所表示之化合物。Examples of the silyl phosphate compound include a silyl ester compound of an alkyl acidic phosphoric acid ester in which a part of the silyl ester group is replaced with an alkyl ester group. As the silyl phosphite compound, a part of the silyl ester group is exemplified. Silyl ester compound of alkyl acid phosphite substituted with alkyl ester group. Examples of the silyl phosphate compound and the silyl phosphite compound include compounds represented by the following general formula (4).

[化4]

(式中,R15 ~R18 分別獨立地表示碳數1~6之烴基,d表示0或1~2之數,e表示0或1之數)
[Chemical 4]

(Wherein R 15 to R 18 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, d represents a number of 0 or 1 to 2 and e represents a number of 0 or 1)

於通式(4)中,R15 ~R18 分別獨立地表示碳數1~6之烴基。作為碳數1~6之烴基,可列舉通式(1)之R1 ~R3 所例示之基。作為R15 ,就熱失控之抑制效果變大而言,較佳為甲基、乙基、丁基,進而較佳為甲基。作為R16 ~R18 ,就熱失控之抑制效果變大而言,較佳為甲基、乙基、苯基,進而較佳為甲基。In the general formula (4), R 15 to R 18 each independently represent a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbons include the groups exemplified by R 1 to R 3 in the general formula (1). R 15 is preferably a methyl group, an ethyl group, or a butyl group, and more preferably a methyl group, in order to increase the effect of suppressing thermal runaway. As R 16 to R 18 , in order to increase the effect of suppressing thermal runaway, methyl, ethyl, and phenyl are preferred, and methyl is more preferred.

d表示0或1~2之數,e表示0或1之數。於d為1~2之數之情形時,可設為d為1之數之化合物與d為2之數之化合物之混合物。於e為1之數且d為0之數之情形時,通式(4)所表示之化合物為磷酸矽烷基酯化合物,於e為1之數且d為1~2之數之情形時,為烷基酸性磷酸酯之矽烷基酯化合物。於e為0之數且d為0之數之情形時,通式(4)所表示之化合物為亞磷酸矽烷基酯化合物,於e為0之數且d為1~2之數之情形時,為烷基酸性亞磷酸酯之矽烷基酯化合物。烷基酸性磷酸酯之矽烷基酯化合物及烷基酸性亞磷酸酯之矽烷基酯化合物分別與磷酸矽烷基酯化合物及亞磷酸矽烷基酯化合物相比較,具有製造較容易並且保存穩定性優異之優點。d represents a number of 0 or 1 to 2, and e represents a number of 0 or 1. In the case where d is a number of 1 to 2, a mixture of a compound in which d is a number of 1 and a compound in which d is a number of 2 may be used. When e is a number of 1 and d is a number of 0, the compound represented by the general formula (4) is a silyl phosphate compound, and when e is a number of 1 and d is a number of 1-2, Silyl ester compound of alkyl acid phosphate. When e is a number of 0 and d is a number of 0, the compound represented by the general formula (4) is a silyl phosphite compound, and when e is a number of 0 and d is a number of 1-2 Is a silyl ester compound of an alkyl acid phosphite. Compared with the silyl phosphate compound and the silyl phosphite compound, the silyl ester compound of the alkyl acid phosphoric acid ester and the silyl ester compound of the alkyl acid phosphite have the advantages of being easier to manufacture and having excellent storage stability. .

作為磷酸矽烷基酯化合物(包括烷基酸性磷酸酯之矽烷基酯化合物),可列舉:磷酸三(三甲基矽烷基)酯、磷酸甲基雙(三甲基矽烷基)酯、磷酸二甲基(三甲基矽烷基)酯、磷酸乙基雙(三甲基矽烷基)酯、磷酸二乙基(三甲基矽烷基)酯、磷酸丁基雙(三甲基矽烷基)酯、磷酸二丁基(三甲基矽烷基)酯等。作為亞磷酸矽烷基酯化合物(包括烷基酸性亞磷酸酯之矽烷基酯化合物),可列舉:亞磷酸三(三甲基矽烷基)酯、亞磷酸甲基雙(三甲基矽烷基)酯、亞磷酸二甲基(三甲基矽烷基)酯、亞磷酸乙基雙(三甲基矽烷基)酯、亞磷酸二乙基(三甲基矽烷基)酯、亞磷酸丁基雙(三甲基矽烷基)酯、亞磷酸二丁基(三甲基矽烷基)酯等。Examples of silyl phosphate compounds (including silyl compounds of alkyl acid phosphates) include tris (trimethylsilyl) phosphate, methylbis (trimethylsilyl) phosphate, and dimethyl phosphate. (Trimethylsilyl) ester, ethyl bis (trimethylsilyl) phosphate, diethyl (trimethylsilyl) phosphate, butyl bis (trimethylsilyl) phosphate, phosphoric acid Dibutyl (trimethylsilyl) ester and the like. Examples of the silyl phosphite compounds (including silyl ester compounds of alkyl acid phosphites) include tris (trimethylsilyl) phosphite and methylbis (trimethylsilyl) phosphite. Dimethyl (trimethylsilyl) phosphite, ethyl bis (trimethylsilyl) phosphite, diethyl (trimethylsilyl) phosphite, butyl bis (trimethyl phosphite) Methyl silyl) ester, dibutyl phosphite (trimethyl silyl) ester, and the like.

作為硼酸矽烷基酯化合物,例如可列舉下述通式(5)所表示之化合物。Examples of the silyl borate compound include compounds represented by the following general formula (5).

[化5]

(式中,R19 ~R21 分別獨立地表示碳數1~6之烴基)
[Chemical 5]

(Wherein R 19 to R 21 each independently represent a hydrocarbon group having 1 to 6 carbon atoms)

於通式(5)中,R19 ~R21 分別獨立地表示碳數1~6之烴基。作為碳數1~6之烴基,可列舉通式(1)之R1 ~R3 所例示之基。作為R19 ~R21 ,就熱失控之抑制效果變大而言,較佳為甲基、乙基、苯基,進而較佳為甲基。作為硼酸矽烷基酯化合物,可列舉硼酸三(三甲基矽烷基)等。In the general formula (5), R 19 to R 21 each independently represent a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbons include the groups exemplified by R 1 to R 3 in the general formula (1). As R 19 to R 21 , a methyl, ethyl, and phenyl group is preferred, and a methyl group is more preferred in order to increase the effect of suppressing thermal runaway. Examples of the silyl borate compound include tri (trimethylsilyl) borate.

於本發明中,就熱失控之抑制效果較高而言,較佳為使用通式(1)所表示之羧酸矽烷基酯化合物。又,較佳為通式(1)中之a為2,較佳為X1 為碳原子數1~10之2價之烴基、或烴基中之亞甲基被氧原子或硫原子取代之碳原子數1~10之2價之基。尤佳為通式(1)中之R1 ~R3 為甲基,a為2,X1 為碳原子數1~6之2價之烴基、或烴基中之亞甲基被硫原子取代之碳原子數1~6之2價之基的化合物。In the present invention, it is preferable to use a silyl carboxylic acid carboxylate compound represented by the general formula (1), since the effect of suppressing thermal runaway is high. In addition, it is preferable that a in the general formula (1) is 2, and X 1 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms, or a carbon in which a methylene group in the hydrocarbon group is replaced by an oxygen atom or a sulfur atom. A divalent radical having 1 to 10 atoms. Particularly preferably, R 1 to R 3 in the general formula (1) are methyl groups, a is 2, X 1 is a divalent hydrocarbon group having 1 to 6 carbon atoms, or a methylene group in the hydrocarbon group is substituted with a sulfur atom. A divalent compound having 1 to 6 carbon atoms.

於本發明中,於非水電解質中調配矽烷基酯化合物作為熱失控之抑制劑。非水電解質中之矽烷基酯化合物之含量較佳為0.01質量%~10質量%,進而較佳為0.05質量%~7質量%,最佳為0.1質量%~5質量%。於非水電解質中之矽烷基酯化合物之含量過少之情形時,無法獲得熱失控之充分之抑制效果,於過多之情形時,無法獲得與調配量相稱之增量效果。關於非水電解質中之矽烷基酯化合物抑制非水電解質二次電池之內部短路所致熱失控之機制,雖不十分明確,但由於在非水電解質二次電池之正極及負極表面見到矽氧烷化合物之附著,故而推測於充放電過程中矽烷基酯化合物分解而於電極表面生成矽氧烷化合物,由此使短路電流絕緣。In the present invention, a silyl ester compound is formulated as a thermal runaway inhibitor in a non-aqueous electrolyte. The content of the silane alkyl compound in the non-aqueous electrolyte is preferably 0.01% by mass to 10% by mass, more preferably 0.05% by mass to 7% by mass, and most preferably 0.1% by mass to 5% by mass. In the case where the content of the silane alkyl compound in the non-aqueous electrolyte is too small, a sufficient suppression effect of thermal runaway cannot be obtained, and in the case where it is too large, an incremental effect commensurate with the formulated amount cannot be obtained. Regarding the mechanism by which the silyl ester compound in the non-aqueous electrolyte suppresses the thermal runaway caused by the internal short circuit of the non-aqueous electrolyte secondary battery, although it is not very clear, the silicon oxide is seen on the positive and negative surfaces of the non-aqueous electrolyte secondary battery. Because of the adhesion of alkane compounds, it is presumed that during the charge and discharge process, the silane ester compound is decomposed to generate a siloxane compound on the electrode surface, thereby insulating the short-circuit current.

作為本發明可應用之非水電解質二次電池之非水電解質,例如可列舉:將電解質溶解於有機溶劑所獲得之液體電解質;將電解質溶解於有機溶劑並利用高分子進行凝膠化所得之高分子凝膠電解質;不含有機溶劑而使電解質分散於高分子中所得之純正高分子電解質等。其中,於具有液體電解質之非水電解質二次電池中,容易因內部短路發生熱失控而起火或爆炸之危險性較高,因此本發明之熱失控之抑制劑較佳為用於具有液體電解質之非水電解質二次電池之非水電解質。Examples of the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery applicable to the present invention include: a liquid electrolyte obtained by dissolving an electrolyte in an organic solvent; and a high electrolyte obtained by dissolving the electrolyte in an organic solvent and gelating with a polymer. Molecular gel electrolytes; pure polymer electrolytes obtained by dispersing electrolytes in polymers without organic solvents. Among them, in a nonaqueous electrolyte secondary battery having a liquid electrolyte, there is a high risk of fire or explosion due to thermal runaway due to an internal short circuit. Therefore, the thermal runaway inhibitor of the present invention is preferably used for a liquid electrolyte Non-aqueous electrolyte for non-aqueous electrolyte secondary batteries.

作為液體電解質及高分子凝膠電解質所使用之電解質,使用先前公知之電解質。以下,對非水電解質二次電池為鋰二次電池之情形時之電解質進行說明,但於鈉二次電池之情形時,使用以鈉原子置換鋰原子所得之電解質。作為液體電解質及高分子凝膠電解質所使用之電解質,可列舉:LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiCF3 CO2 、LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(SO2 F)2 、LiC(CF3 SO2 )3 、LiB(CF3 SO3 )4 、LiB(C2 O4 )2 、LiBF2 (C2 O4 )、LiSbF6 、LiSiF5 、LiSCN、LiClO4 、LiCl、LiF、LiBr、LiI、LiAlF4 、LiAlCl4 、LiPO2 F2 及該等之衍生物等,該等之中,較佳為使用選自由LiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(SO2 F)2 、及LiC(CF3 SO2 )3 以及LiCF3 SO3 之衍生物、及LiC(CF3 SO2 )3 之衍生物所組成之群中之1種以上。液體電解質及高分子凝膠電解質中之電解質之含量較佳為0.5 mol/L~7 mol/L,更佳為0.8 mol/L~1.8 mol/L。As the electrolyte used for the liquid electrolyte and the polymer gel electrolyte, a conventionally known electrolyte is used. Hereinafter, the electrolyte in a case where the non-aqueous electrolyte secondary battery is a lithium secondary battery will be described, but in the case of a sodium secondary battery, an electrolyte obtained by replacing a lithium atom with a sodium atom is used. Examples of the electrolyte used in the liquid electrolyte and the polymer gel electrolyte include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiSbF 6 , LiSiF 5 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, LiAlF 4 , LiAlCl 4 , LiPO 2 F 2 and derivatives thereof, among these, it is preferable to use a member selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , and LiC (CF 3 SO 2 ) 3 and one of LiCF 3 SO 3 derivatives and LiC (CF 3 SO 2 ) 3 derivatives. The content of the electrolyte in the liquid electrolyte and the polymer gel electrolyte is preferably 0.5 mol / L to 7 mol / L, and more preferably 0.8 mol / L to 1.8 mol / L.

作為純正高分子電解質所使用之電解質,例如可列舉:LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(SO2 F)2 、LiC(CF3 SO2 )3 、LiB(CF3 SO3 )4 、LiB(C2 O4 )2Examples of the electrolyte used in the pure polymer electrolyte include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , and LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 .

作為本發明所使用之用於製備液狀非水電解質之有機溶劑,可將非水電解質所通常使用者使用1種或組合2種以上而使用。具體而言,例如可列舉:飽和環狀碳酸酯化合物、飽和環狀酯化合物、亞碸化合物、碸化合物、醯胺化合物、飽和鏈狀碳酸酯化合物、鏈狀醚化合物、環狀醚化合物、飽和鏈狀酯化合物等。As the organic solvent used for the preparation of the liquid non-aqueous electrolyte used in the present invention, one or two or more types of ordinary non-aqueous electrolytes can be used by a user. Specific examples include a saturated cyclic carbonate compound, a saturated cyclic ester compound, a fluorene compound, a fluorene compound, a fluorene amine compound, a saturated chain carbonate compound, a chain ether compound, a cyclic ether compound, and a saturated Chain ester compounds and the like.

上述有機溶劑中,飽和環狀碳酸酯化合物、飽和環狀酯化合物、亞碸化合物、碸化合物及醯胺化合物由於相對介電常數較高,故而發揮提高非水電解質之介電常數之作用,故而較佳,尤佳為飽和環狀碳酸酯化合物。作為飽和環狀碳酸酯化合物,例如可列舉:碳酸乙二酯、碳酸1,2-丙二酯、碳酸1,3-丙二酯、碳酸1,2-丁二酯、碳酸1,3-丁二酯、碳酸1,1-二甲基乙二酯等。作為上述飽和環狀酯化合物,例如可列舉:γ-丁內酯、γ-戊內酯、γ-己內酯、δ-己內酯、δ-辛內酯等。作為上述亞碸化合物,例如可列舉:二甲基亞碸、二乙基亞碸、二丙基亞碸、二苯基亞碸、噻吩等。作為上述碸化合物,例如可列舉:二甲基碸、二乙基碸、二丙基碸、二苯基碸、環丁碸(亦稱作四亞甲基碸)、3-甲基環丁碸、3,4-二甲基環丁碸、3,4-二苯基甲基環丁碸、環丁烯碸、3-甲基環丁烯碸、3-乙基環丁烯碸、3-溴甲基環丁烯碸等,較佳為環丁碸、四甲基環丁碸。作為上述醯胺化合物,可列舉:N-甲基吡咯啶酮、二甲基甲醯胺、二甲基乙醯胺等。Among the above organic solvents, saturated cyclic carbonate compounds, saturated cyclic ester compounds, fluorene compounds, sulfonium compounds, and fluorene amine compounds have a relatively high relative dielectric constant, and therefore play a role in increasing the dielectric constant of the non-aqueous electrolyte. Preferably, it is a saturated cyclic carbonate compound. Examples of the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, and 1,3-butyl carbonate. Diesters, 1,1-dimethylethylene carbonate and the like. Examples of the saturated cyclic ester compound include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-caprolactone, and δ-caprolactone. Examples of the fluorene compound include dimethyl fluorene, diethyl fluorene, dipropyl fluorene, diphenyl fluorene, and thiophene. Examples of the fluorene compound include dimethylfluorene, diethylfluorene, dipropylfluorene, diphenylfluorene, cyclobutylfluorene (also known as tetramethylenefluorene), and 3-methylcyclobutylfluorene. , 3,4-dimethylcyclobutane, 3,4-diphenylmethylcyclobutane, cyclobutene, 3-methylcyclobutene, 3-ethylcyclobutene, 3- Bromomethylcyclobutenefluorene and the like are preferably cyclobutylfluorene and tetramethylcyclobutylfluorene. Examples of the amidamine compound include N-methylpyrrolidone, dimethylformamide, and dimethylacetamide.

上述有機溶劑中,飽和鏈狀碳酸酯化合物、鏈狀醚化合物、環狀醚化合物及飽和鏈狀酯化合物可使輸出密度等電池特性優異,例如可降低非水電解質之黏度,可提高電解質離子之移動性等。又,由於為低黏度,故而可提高低溫下之非水電解質之性能,因此尤佳為飽和鏈狀碳酸酯化合物。作為飽和鏈狀碳酸酯化合物,例如可列舉:碳酸二甲酯、碳酸甲酯乙酯、碳酸二乙酯、碳酸乙基丁酯、碳酸甲基第三丁酯、碳酸二異丙酯、碳酸第三丁基丙酯等。作為上述鏈狀醚化合物或環狀醚化合物,例如可列舉:二甲氧基乙烷、乙氧基甲氧基乙烷、二乙氧基乙烷、四氫呋喃、二氧雜環戊烷、二㗁烷、1,2-雙(甲氧基羰氧基)乙烷、1,2-雙(乙氧基羰氧基)乙烷、1,2-雙(乙氧基羰氧基)丙烷、乙二醇雙(三氟乙基)醚、丙二醇雙(三氟乙基)醚、乙二醇雙(三氟甲基)醚、二乙二醇雙(三氟乙基)醚等,該等之中,較佳為二氧雜環戊烷。Among the above organic solvents, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds can provide excellent battery characteristics such as output density, for example, reduce the viscosity of non-aqueous electrolytes, and increase the electrolyte ions. Mobility, etc. In addition, since the viscosity is low, the performance of a non-aqueous electrolyte at a low temperature can be improved, and therefore a saturated chain carbonate compound is particularly preferred. Examples of the saturated chain carbonate compound include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl third butyl carbonate, diisopropyl carbonate, and carbonic acid. Tributyl propyl and the like. Examples of the chain ether compound or cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, and difluorene. Alkane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethyl Diethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (trifluoroethyl) ether, etc. Among them, dioxolane is preferred.

作為上述飽和鏈狀酯化合物,較佳為分子中之碳數合計為2~8之單酯化合物及雙酯化合物,作為具體之化合物,例如可列舉:甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸異丁酯、乙酸丁酯、丙酸甲酯、丙酸乙酯、丁酸甲酯、異丁酸甲酯、三甲基乙酸甲酯、三甲基乙酸乙酯、丙二酸甲酯、丙二酸乙酯、丁二酸甲酯、丁二酸乙酯、3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、乙二醇雙乙酸酯、丙二醇雙乙酸酯等,較佳為甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸異丁酯、乙酸丁酯、丙酸甲酯、及丙酸乙酯。As the saturated chain ester compound, monoester compounds and diester compounds having a total of 2 to 8 carbon atoms in the molecule are preferable. Specific examples of the compound include methyl formate, ethyl formate, and methyl acetate. , Ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, trimethyl acetate Ethyl ester, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol Diacetate, propylene glycol diacetate, and the like are preferably methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, and Ethyl propionate.

除此以外,作為用於製備非水電解質之有機溶劑,例如亦可使用乙腈、丙腈、硝基甲烷或該等之衍生物、各種離子液體。In addition, as the organic solvent for preparing the non-aqueous electrolyte, for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used.

作為高分子凝膠電解質所使用之高分子,可列舉:聚環氧乙烷、聚環氧丙烷、聚氯乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯、聚偏二氟乙烯、聚六氟丙烯等。作為純正高分子電解質所使用之高分子,可列舉:聚環氧乙烷、聚環氧丙烷、聚苯乙烯磺酸。凝膠電解質中之調配比率、複合化之方法並無特別限制,可採用本技術領域中公知之調配比率、公知之複合化方法。Examples of the polymer used in the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, Teflon and so on. Examples of the polymer used in the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid. The blending ratio and the method of compounding in the gel electrolyte are not particularly limited, and a well-known compounding ratio and a known compounding method in the technical field can be adopted.

為了提昇矽烷基酯化合物之穩定性,非水電解質較佳為進而含有通式(2)所表示之苯基矽烷化合物。In order to improve the stability of the silane alkyl compound, the non-aqueous electrolyte preferably further contains a phenylsilane compound represented by the general formula (2).

[化6]

(式中,R4 ~R5 分別獨立地表示碳數1~6之烴基,R6 ~R10 分別獨立地表示氫原子、鹵素原子或碳數1~4之烷基,X2 表示b價之烴基,b表示1~3之數)
[Chemical 6]

(Wherein R 4 to R 5 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, R 6 to R 10 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, and X 2 represents a valence of b Hydrocarbon group, b represents a number of 1 to 3)

於通式(2)中,R4 ~R5 分別獨立地表示碳數1~6之烴基。作為碳數1~6之烴基,可列舉通式(1)之R1 ~R3 所例示之基。作為R4 ~R5 ,就熱失控之抑制效果變大而言,較佳為甲基、乙基、苯基,進而較佳為甲基。In the general formula (2), R 4 to R 5 each independently represent a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbons include the groups exemplified by R 1 to R 3 in the general formula (1). As R 4 to R 5 , a methyl, ethyl, and phenyl group is preferred, and a methyl group is more preferred in order to increase the effect of suppressing thermal runaway.

R6 ~R10 分別獨立地表示氫原子、鹵素原子或碳數1~4之烷基。作為鹵素原子,可列舉:氟原子、氯原子、溴原子、碘原子,作為碳數1~4之烷基,可列舉:甲基、乙基、丙基、丁基、異丁基、第二丁基、第三丁基。作為R6 ~R10 ,就工業上容易獲取原料而言,較佳為氫原子。R 6 to R 10 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, and a second group. Butyl, third butyl. As R <6> -R <10> , since a raw material is easily obtained industrially, a hydrogen atom is preferable.

X2 表示b價之烴基,b表示1~3之數。於X2 之碳數過多之情形時,於非水電解質中之溶解性降低,因此X2 之碳數較佳為10以下。X 2 represents a b-valent hydrocarbon group, and b represents a number of 1 to 3. When the carbon number of X 2 is too large, the solubility in the non-aqueous electrolyte is reduced. Therefore, the carbon number of X 2 is preferably 10 or less.

通式(2)所表示之苯基矽烷化合物中,作為較佳之化合物,可列舉:三甲基苯基矽烷、二甲基二苯基矽烷、甲基三苯基矽烷、丁基二甲基苯基矽烷、二甲基辛基苯基矽烷、1,4-雙(三甲基矽烷基)苯、1,2-雙(三甲基矽烷基)苯、1,4-雙(二甲基苯基矽烷基)苯、1,1,1-三(二甲基苯基矽烷基)乙烷等。Among the phenylsilane compounds represented by the general formula (2), preferred compounds include trimethylphenylsilane, dimethyldiphenylsilane, methyltriphenylsilane, and butyldimethylbenzene. Silyl, dimethyloctylphenylsilane, 1,4-bis (trimethylsilyl) benzene, 1,2-bis (trimethylsilyl) benzene, 1,4-bis (dimethylbenzene) Silyl) benzene, 1,1,1-tris (dimethylphenylsilyl) ethane and the like.

於非水電解質所使用之電解質中,有分解而產生酸性物質者,而有因此種酸性物質導致非水電解質二次電池之性能降低或矽烷基酯化合物分解之情況。通式(2)所表示之苯基矽烷化合物會捕捉此種酸性物質,從而抑制非水電解質二次電池之性能之降低或矽烷基酯化合物之分解。通式(2)所表示之苯基矽烷化合物於非水電解質中之添加量較佳為0.1質量%~10質量%,進而較佳為0.5質量%~7質量%,最佳為1質量%~5質量%。於非水電解質中之含量過少之情形時,無法發揮充分之效果,於過多之情形時,有見不到與添加量相稱之增量效果,反而使電池性能降低之情況。Among the electrolytes used in non-aqueous electrolytes, there are cases in which an acidic substance is generated by decomposition, and this type of acidic substance may cause degradation of the performance of the non-aqueous electrolyte secondary battery or decomposition of the silane alkyl compound. The phenyl silane compound represented by the general formula (2) traps such an acidic substance, thereby suppressing degradation of the performance of the non-aqueous electrolyte secondary battery or decomposition of the silane alkyl compound. The amount of the phenylsilane compound represented by the general formula (2) in the non-aqueous electrolyte is preferably 0.1% to 10% by mass, more preferably 0.5% to 7% by mass, and most preferably 1% by mass to 5 mass%. When the content of the non-aqueous electrolyte is too small, a sufficient effect cannot be exerted, and when the content is too large, an incremental effect commensurate with the amount added may not be seen, and the battery performance may be reduced.

非水電解質亦可包含電極覆膜形成劑。作為電極覆膜形成劑,可列舉:碳酸伸乙烯酯、碳酸乙烯基伸乙酯等具有不飽和基之環狀碳酸酯化合物;碳酸二炔丙基酯、碳酸炔丙基甲基酯等具有丙炔基之鏈狀碳酸酯化合物;馬來酸二甲酯、馬來酸二丁酯、富馬酸二甲酯、富馬酸二丁酯、乙炔二羧酸二甲酯等不飽和雙酯化合物;碳酸氯乙二酯、碳酸二氯乙二酯、碳酸氟乙二酯、碳酸二氟乙二酯等鹵化環狀碳酸酯化合物;亞硫酸乙二酯等環狀亞硫酸酯;丙烷磺內酯、丁烷磺內酯等環狀硫酸酯等。The non-aqueous electrolyte may contain an electrode film-forming agent. Examples of the electrode film-forming agent include unsaturated cyclic carbonate compounds such as vinylene carbonate and vinyl ethylene carbonate; and propynes such as dipropargyl carbonate and propargyl carbonate. Chain-like carbonate compounds; unsaturated diester compounds such as dimethyl maleate, dibutyl maleate, dimethyl fumarate, dibutyl fumarate, dimethyl acetylene dicarboxylate; Halogenated cyclic carbonate compounds such as chloroethylene carbonate, dichloroethylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate; cyclic sulfites such as ethylene sulfite; propane sultone, Cyclic sulfates such as butanesultone.

電極覆膜形成劑於電極表面形成稱作SEI(Solid Electrolyte Interface,固體電解質界面)之保護膜,而使電池之充放電效率、循環特性、安全性提昇。有於電極覆膜形成劑之含量過少之情形時無法發揮充分之效果,又,於過多之情形時不僅無法獲得與含量相稱之增量效果反而會造成不良影響的情況,因此,電極覆膜形成劑之含量於非水電解液中,較佳為0.005質量%~10質量%,進而較佳為0.02質量%~5質量%,最佳為0.05質量%~3質量%。The electrode film-forming agent forms a protective film called SEI (Solid Electrolyte Interface) on the electrode surface, which improves the charge and discharge efficiency, cycle characteristics, and safety of the battery. In the case where the content of the electrode film-forming agent is too small, a sufficient effect cannot be exerted. In the case where the content of the electrode film-forming agent is too large, not only an incremental effect commensurate with the content but an adverse effect may be caused. Therefore, the electrode film is formed. The content of the agent in the non-aqueous electrolytic solution is preferably 0.005% to 10% by mass, more preferably 0.02% to 5% by mass, and most preferably 0.05% to 3% by mass.

為了提昇電池壽命,提昇安全性等,非水電解質亦可進而包含例如抗氧化劑、阻燃劑、過度充電防止劑等公知之其他添加劑。In order to improve battery life, safety, and the like, the non-aqueous electrolyte may further include other known additives such as an antioxidant, a flame retardant, and an overcharge preventing agent.

本發明所應用之非水電解質二次電池之包含正極活性物質之正極係於集電體上形成有包含正極活性物質之電極合劑層之電極,例如使用將利用有機溶劑或水使正極活性物質、黏合劑及導電助材漿料化所得者塗佈於集電體並進行乾燥而製成片狀者。The positive electrode containing a positive electrode active material of a non-aqueous electrolyte secondary battery used in the present invention is an electrode formed on the current collector with an electrode mixture layer containing the positive electrode active material. For example, an organic solvent or water is used to make the positive electrode active material, Those obtained by slurrying the binder and the conductive auxiliary material are applied to a current collector and dried to form a sheet.

正極之正極活性物質可使用公知之正極活性物質。以下,對非水電解質二次電池為鋰二次電池之情形時之電解質進行說明,但於鈉二次電池之情形時,使用以鈉原子置換鋰原子所得之正極活性物質。As a positive electrode active material of a positive electrode, a well-known positive electrode active material can be used. Hereinafter, the electrolyte when the non-aqueous electrolyte secondary battery is a lithium secondary battery will be described, but in the case of a sodium secondary battery, a positive electrode active material obtained by replacing a lithium atom with a sodium atom is used.

作為鋰二次電池之情形時之公知之正極活性物質,例如可列舉:鋰過渡金屬複合氧化物、含鋰之過渡金屬磷酸化合物、含鋰之矽酸鹽化合物、含鋰之過渡金屬硫酸鹽化合物、硫、含硫化合物等。作為上述鋰過渡金屬複合氧化物之過渡金屬,較佳為釩、鈦、鉻、錳、鐵、鈷、鎳、銅等。作為鋰過渡金屬複合氧化物之具體例,可列舉:LiCoO2 等鋰鈷複合氧化物;LiNiO2 等鋰鎳複合氧化物;LiMnO2 、LiMn2 O4 、Li2 MnO3 等鋰錳複合氧化物;利用鋁、鈦、釩、鉻、錳、鐵、鈷、鋰、鎳、銅、鋅、鎂、鎵、鋯等其他金屬置換成為該等鋰過渡金屬複合氧化物之主體之過渡金屬原子之一部分而成者等。作為利用其他金屬置換成為主體之過渡金屬原子之一部分而成之鋰過渡金屬複合氧化物,例如可列舉:Li1.1 Mn1.8 Mg0.1 O4 、Li1.1 Mn1.85 Al0.05 O4 、LiNi0.5 Co0.2 Mn0.3 O2 、LiNi0.8 Co0.1 Mn0.1 O2 、LiNi0.5 Mn0.5 O2 、LiNi0.80 Co0.17 Al0.03 O2 、LiNi0.80 Co0.15 Al0.05 O2 、Li(Ni1/3 Co1/3 Mn1/3 )O2 、LiNi0.6 Co0.2 Mn0.2 O2 LiMn1.8 Al0.2 O4 、LiNi0.5 Mn1.5 O4 、Li2 MnO3 -LiMO2 (M=Co、Ni、Mn)等。作為上述含鋰之過渡金屬磷酸化合物之過渡金屬,較佳為釩、鈦、錳、鐵、鈷、鎳等,作為具體例,例如可列舉:LiFePO4 、LiMnx Fe1-x PO4 (0<x<1)等磷酸鐵化合物類;LiCoPO4 等磷酸鈷化合物類;利用鋁、鈦、釩、鉻、錳、鐵、鈷、鋰、鎳、銅、鋅、鎂、鎵、鋯、鈮等其他金屬置換成為該等鋰過渡金屬磷酸化合物之主體之過渡金屬原子之一部分而成者;Li3 V2 (PO4 )3 等磷酸釩化合物類等。作為含鋰之矽酸鹽化合物,可列舉Li2 FeSiO4 等。作為含鋰之過渡金屬硫酸鹽化合物,可列舉LiFeSO4 、LiFeSO4 F等。該等可僅使用1種,亦可將2種以上組合而使用。Examples of well-known positive electrode active materials in the case of lithium secondary batteries include lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, and lithium-containing transition metal sulfate compounds. , Sulfur, sulfur compounds and so on. As the transition metal of the lithium transition metal composite oxide, vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper, and the like are preferred. Specific examples of the lithium transition metal composite oxide include lithium-cobalt composite oxides such as LiCoO 2 ; lithium-nickel composite oxides such as LiNiO 2 ; lithium-manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3 ; Using aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium and other metals to replace part of the transition metal atoms of the lithium transition metal composite oxide Finished and so on. Examples of the lithium transition metal composite oxide obtained by replacing a part of the transition metal atom as a host with another metal include Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , and LiNi 0.5 Co 0.2 Mn. 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , Li (Ni 1/3 Co 1/3 Mn 1 / 3 ) O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 -LiMO 2 (M = Co, Ni, Mn) and the like. As the transition metal of the lithium-containing transition metal phosphate compound, vanadium, titanium, manganese, iron, cobalt, nickel, and the like are preferable. As specific examples, for example, LiFePO 4 , LiMn x Fe 1-x PO 4 (0 <X <1) and other iron phosphate compounds; LiCoPO 4 and other cobalt phosphate compounds; use aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, niobium, etc. The substitution of other metals to form part of the transition metal atoms of the main body of these lithium transition metal phosphate compounds; vanadium phosphate compounds such as Li 3 V 2 (PO 4 ) 3 and the like. Examples of the lithium-containing silicate compound include Li 2 FeSiO 4 and the like. Examples of the lithium-containing transition metal sulfate compound include LiFeSO 4 and LiFeSO 4 F. These may be used alone or in combination of two or more.

本發明之熱失控之抑制劑可較佳地用於具有較大之充放電容量之非水電解質二次電池。作為具有較大之充放電容量之正極活性物質,可列舉LiCoO2 、LiMn2 O4 、LiNi0.5 Mn1.5 O4 、Li(Ni0.8 Co0.15 Al0.05 )O2 、LiNiX CoY MnZ O2 (X+Y+Z=1、0≦X≦1、0≦Y≦1、0≦Z≦1)、LiNiO2 、Li2 MnO3 -LiMO2 (M=Co、Ni、Mn),本發明之熱失控之抑制劑可較佳地用於具有該等正極活性物質之非水電解質二次電池。The thermal runaway inhibitor of the present invention can be preferably used for a non-aqueous electrolyte secondary battery having a large charge and discharge capacity. Examples of the positive electrode active material having a large charge and discharge capacity include LiCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , and LiNi X Co Y Mn Z O 2 (X + Y + Z = 1, 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1), LiNiO 2 , Li 2 MnO 3 -LiMO 2 (M = Co, Ni, Mn), the thermal runaway of the present invention The inhibitor can be preferably used for a nonaqueous electrolyte secondary battery having such a positive electrode active material.

作為黏合劑,例如可列舉:聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、乙烯-丙烯-二烯共聚物(EPDM)、苯乙烯-丁二烯橡膠(SBR)、丙烯腈丁二烯橡膠(NBR)、苯乙烯-異戊二烯共聚物、聚甲基丙烯酸甲酯、聚丙烯酸酯、聚乙烯醇(PVA)、羧甲基纖維素(CMC)、羧甲基纖維素鈉(CMCNa)、甲基纖維素(MC)、澱粉、聚乙烯吡咯啶酮、聚乙烯(PE)、聚丙烯(PP)、聚環氧乙烷(PEO)、聚醯亞胺(PI)、聚醯胺醯亞胺(PAI)、聚丙烯腈(PAN)、聚氯乙烯(PVC)、聚丙烯酸、聚胺基甲酸酯等。黏合劑之使用量相對於正極活性物質,通常為1質量%~20質量%左右,較佳為2質量%~10質量%。Examples of the adhesive include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and acrylonitrile. Butadiene rubber (NBR), styrene-isoprene copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), carboxymethyl cellulose Sodium (CMCNa), methyl cellulose (MC), starch, polyvinylpyrrolidone, polyethylene (PE), polypropylene (PP), polyethylene oxide (PEO), polyimide (PI), Polyammonium imine (PAI), polyacrylonitrile (PAN), polyvinyl chloride (PVC), polyacrylic acid, polyurethane, and the like. The usage-amount of a binder is about 1-20 mass% with respect to a positive electrode active material, Preferably it is 2-10 mass%.

作為導電助材,例如可列舉:碳黑、科琴黑、乙炔黑、煙囪黑、爐黑、燈黑、熱碳黑、奈米碳管、氣相成長碳纖維(Vapor Grown Carbon Fiber,VGCF)、石墨烯、富勒烯、針狀焦等碳材料;鋁粉、鎳粉、鈦粉等金屬粉末;氧化鋅、氧化鈦等導電性金屬氧化物;La2 S3 、Sm2 S3 、Ce2 S3 、TiS2 等硫化物。關於導電助劑之粒徑,平均粒徑較佳為0.0001 μm~100 μm,更佳為0.01 μm~50 μm。Examples of the conductive auxiliary material include carbon black, Ketjen black, acetylene black, chimney black, furnace black, lamp black, thermal carbon black, nano carbon tubes, Vapor Grown Carbon Fiber (VGCF), Carbon materials such as graphene, fullerene, and needle coke; metal powders such as aluminum powder, nickel powder, and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide; La 2 S 3 , Sm 2 S 3 , and Ce 2 S 3 , TiS 2 and other sulfides. Regarding the particle diameter of the conductive additive, the average particle diameter is preferably 0.0001 μm to 100 μm, and more preferably 0.01 μm to 50 μm.

作為供進行漿料化之溶劑,使用使黏合劑溶解之有機溶劑或水。作為有機溶劑,例如可列舉:N-甲基吡咯啶酮、二甲基甲醯胺、二甲基乙醯胺、甲基乙基酮、環己酮、乙酸甲酯、丙烯酸甲酯、二乙基三胺、N,N-二甲基胺基丙胺、環氧乙烷、四氫呋喃等。溶劑之使用量相對於正極活性物質,通常為10質量%~400質量%左右,較佳為20質量%~200質量%。As the solvent for slurrying, an organic solvent or water which dissolves the adhesive is used. Examples of the organic solvent include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, and diethyl ether. Triamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like. The usage-amount of a solvent is about 10 mass%-400 mass% with respect to a positive electrode active material, Preferably it is 20 mass%-200 mass%.

正極之集電體通常使用鋁、不鏽鋼、鍍鎳鋼等。作為集電體之形狀,可列舉箔狀、板狀、網狀等,較佳為箔狀。箔狀之情形時之箔之厚度通常為1 μm~100 μm。The current collector of the positive electrode is usually made of aluminum, stainless steel, nickel-plated steel, or the like. Examples of the shape of the current collector include a foil shape, a plate shape, and a mesh shape, and a foil shape is preferable. In the case of a foil, the thickness of the foil is usually 1 μm to 100 μm.

本發明所應用之非水電解質二次電池之包含負極活性物質之負極係於集電體上形成有包含負極活性物質之電極合劑層之電極,例如使用將利用有機溶劑或水使負極活性物質、黏合劑及導電助材漿料化所得者塗佈於集電體並進行乾燥而製成片狀者。The negative electrode containing a negative electrode active material of the non-aqueous electrolyte secondary battery used in the present invention is an electrode having an electrode mixture layer containing a negative electrode active material formed on a current collector. For example, an organic solvent or water is used to make the negative electrode active material, Those obtained by slurrying the binder and the conductive auxiliary material are applied to a current collector and dried to form a sheet.

負極之負極活性物質可使用公知之負極活性物質。以下,對非水電解質二次電池為鋰二次電池之情形時之電解質進行說明,但於鈉二次電池之情形時,使用負極活性物質中之具有鋰原子之負極活性物質之鋰原子被鈉原子置換之負極活性物質。As a negative electrode active material of a negative electrode, a well-known negative electrode active material can be used. Hereinafter, the electrolyte in the case where the non-aqueous electrolyte secondary battery is a lithium secondary battery will be described. However, in the case of a sodium secondary battery, the lithium atom of the negative electrode active material having a lithium atom in the negative electrode active material is sodium. Atom-replaced negative active material.

作為公知之負極活性物質,可列舉:碳質材料、鋰、鋰合金、矽、矽合金、氧化矽、錫、錫合金、氧化錫、磷、鍺、銦、氧化銅、硫化銻、氧化鈦、氧化鐵、氧化錳、氧化鈷、氧化鎳、氧化鉛、氧化釕、氧化鎢、氧化鋅、以及LiVO2 、Li2 VO4 、Li4 Ti5 O12 等複合氧化物、導電性聚合物、硫改性聚丙烯腈等。作為碳質材料,並無特別限定,可列舉:天然石墨、人造石墨、富勒烯、石墨烯、石墨纖維短纖、奈米碳管、石墨鬚晶、高配向性熱分解石墨、凝析石墨等結晶性碳、難石墨化碳、易石墨化碳、及石油系焦炭、煤系焦炭、石油系瀝青之碳化物、煤系瀝青之碳化物、酚樹脂-結晶纖維素等樹脂之碳化物等、及將該等部分碳化所得之碳材、爐黑、乙炔黑、瀝青系碳纖維、聚丙烯腈系碳纖維等。再者,於正極活性物質為硫改性聚丙烯腈之情形時,使用硫改性聚丙烯腈以外之負極活性物質作為負極活性物質。Examples of well-known negative electrode active materials include carbonaceous materials, lithium, lithium alloys, silicon, silicon alloys, silicon oxide, tin, tin alloys, tin oxide, phosphorus, germanium, indium, copper oxide, antimony sulfide, titanium oxide, Iron oxide, manganese oxide, cobalt oxide, nickel oxide, lead oxide, ruthenium oxide, tungsten oxide, zinc oxide, and composite oxides such as LiVO 2 , Li 2 VO 4 , Li 4 Ti 5 O 12 , conductive polymers, sulfur Modified polyacrylonitrile and so on. The carbonaceous material is not particularly limited, and examples thereof include natural graphite, artificial graphite, fullerene, graphene, graphite fiber staple fiber, nano carbon tube, graphite whisker, high-alignment pyrolytic graphite, and condensed graphite. Other crystalline carbons, non-graphitizable carbons, easily graphitizable carbons, and petroleum-based coke, coal-based coke, petroleum-based pitch carbides, coal-based pitch carbides, phenol resins-crystalline cellulose and other resin carbides, etc. And carbon materials obtained by carbonizing these portions, furnace black, acetylene black, pitch-based carbon fibers, polyacrylonitrile-based carbon fibers, and the like. When the positive electrode active material is sulfur-modified polyacrylonitrile, a negative electrode active material other than sulfur-modified polyacrylonitrile is used as the negative electrode active material.

作為黏合劑、導電助材、及供進行漿料化之溶劑,可列舉與正極之情形相同者。上述黏合劑之使用量相對於負極活性物質,通常為1質量%~30質量%左右,較佳為2質量%~15質量%左右。又,上述溶劑之使用量相對於負極活性物質,通常為10質量%~400質量%左右,較佳為20質量%~200質量%。Examples of the binder, the conductive auxiliary material, and the solvent for slurrying are the same as those in the case of the positive electrode. The usage-amount of the said binder is about 1 mass%-30 mass% with respect to a negative electrode active material, Preferably it is about 2 mass%-15 mass%. Moreover, the usage-amount of the said solvent is about 10 mass%-400 mass% normally with respect to a negative electrode active material, Preferably it is 20 mass%-200 mass%.

負極之集電體通常使用銅、鎳、不鏽鋼、鍍鎳鋼、鋁等。作為集電體之形狀,可列舉箔狀、板狀、網狀等,較佳為箔狀。箔狀之情形時之箔之厚度通常為1 μm~100 μm。The current collector of the negative electrode usually uses copper, nickel, stainless steel, nickel-plated steel, aluminum, and the like. Examples of the shape of the current collector include a foil shape, a plate shape, and a mesh shape, and a foil shape is preferable. In the case of a foil, the thickness of the foil is usually 1 μm to 100 μm.

於本發明所應用之非水電解質二次電池中,於正極與負極之間使用分隔件,作為該分隔件,可無特別限定地使用通常使用之高分子之微多孔膜。作為膜,例如可列舉包含以聚乙烯、聚丙烯、聚偏二氟乙烯、聚偏二氯乙烯、聚丙烯腈、聚丙烯醯胺、聚四氟乙烯、聚碸、聚醚碸、聚碳酸酯、聚醯胺、聚醯亞胺、聚環氧乙烷或聚環氧丙烷等聚醚類、羧甲基纖維素或羥丙基纖維素等各種纖維素類、聚(甲基)丙烯酸及其各種酯類等為主體之高分子化合物或其衍生物、該等之共聚物或混合物之膜等,該等膜有被氧化鋁或氧化矽等陶瓷材料或氧化鎂、芳香族聚醯胺樹脂、聚偏二氟乙烯包覆之情況。再者,於非水溶劑電解質為純性高分子電解質之情形時,有不包括分隔件之情況。In the non-aqueous electrolyte secondary battery to which the present invention is applied, a separator is used between the positive electrode and the negative electrode. As the separator, a generally used microporous membrane of a polymer can be used without particular limitation. Examples of the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polyfluorene, polyetherfluorene, and polycarbonate. Polyethers such as polyamine, polyimide, polyethylene oxide or polypropylene oxide, various celluloses such as carboxymethyl cellulose or hydroxypropyl cellulose, poly (meth) acrylic acid and the like Various esters and other polymer compounds or their derivatives, films of these copolymers or mixtures, etc. These films are made of ceramic materials such as alumina or silica, or magnesium oxide, aromatic polyamide resins, Case of polyvinylidene fluoride coating. When the non-aqueous solvent electrolyte is a pure polymer electrolyte, the separator may not be included.

本發明所應用之非水電解質二次電池可為單電池、正極與負極介隔分隔件積層多層而成之積層式電池、或將長條片狀之分隔件、正極及負極捲繞而成之捲繞式電池等任一形態,但就電池之充放電容量較高,容易發生內部短路所致熱失控而言,本發明較佳為用於積層式之非水電解質二次電池或捲繞式之非水電解質二次電池。
[實施例]
The non-aqueous electrolyte secondary battery used in the present invention can be a single cell, a laminated battery formed by stacking a plurality of separators between a positive electrode and a negative electrode, or a long sheet-shaped separator, a positive electrode and a negative electrode wound. Any form such as a wound battery, but in view of the high charge and discharge capacity of the battery, and thermal runaway caused by internal short circuits, the present invention is preferably used for a laminated non-aqueous electrolyte secondary battery or a wound battery Non-aqueous electrolyte secondary battery.
[Example]

以下,藉由實施例及比較例具體地對本發明進行說明,但該等並不對本發明之範圍進行限制。再者,實施例中之「份」或「%」只要未作特別說明,則指基於質量者。Hereinafter, the present invention will be specifically described using examples and comparative examples, but these do not limit the scope of the present invention. In addition, "part" or "%" in the examples means those based on quality unless otherwise specified.

[非水電解質A之製備]
於包含50體積%之碳酸乙二酯、50體積%之碳酸二乙酯之混合溶劑中,使LiPF6 以成為1.0 mol/L之濃度之方式溶解,而獲得非水電解質A。
[Preparation of non-aqueous electrolyte A]
The non-aqueous electrolyte A was obtained by dissolving LiPF 6 in a mixed solvent containing 50% by volume of ethylene carbonate and 50% by weight of diethyl carbonate to a concentration of 1.0 mol / L.

[非水電解質B~E之製備]
於非水電解質A中,使表1之添加劑以成為記載之濃度之方式溶解,而獲得非水電解質B~G。
[Preparation of non-aqueous electrolytes B to E]
In the non-aqueous electrolyte A, the additives in Table 1 were dissolved so as to have the concentrations described, and non-aqueous electrolytes B to G were obtained.

[表1]
[Table 1]

[正極1之製造]
將作為正極活性物質之90.0質量份之Li(Ni1/3 Co1/3 Mn1/3 )O2 (日本化學工業製造,商品名:NCM111)、作為導電助劑之5.0質量份之乙炔黑(電氣化學工業製造)、作為黏合劑之5.0質量份之聚偏二氟乙烯(KUREHA製造)混合至90質量份之N-甲基吡咯啶酮中,使用自轉-公轉混合機進行分散而製備漿料。藉由缺角輪塗佈機法將該漿料組合物連續地塗佈於輥狀之鋁箔(厚度20 μm)之集電體之兩面,於90℃下乾燥3小時。將該輥切成縱50 mm、橫90 mm,將橫邊(短邊)側之一者之兩面之電極合劑層自端部起去除10 mm,而使集電體露出後,於150℃下進行2小時真空乾燥,而製作正極1。
[Manufacture of positive electrode 1]
90.0 parts by mass of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 (manufactured by Japan Chemical Industry, trade name: NCM111) as a positive electrode active material, and 5.0 parts by mass of acetylene black as a conductive additive (Manufactured by the Denki Chemical Industry), 5.0 parts by mass of polyvinylidene fluoride (manufactured by KUREHA) as a binder, mixed with 90 parts by mass of N-methylpyrrolidone, and dispersed using a rotation-revolution mixer to prepare a slurry material. This slurry composition was continuously applied to both sides of a current collector of a roll-shaped aluminum foil (thickness: 20 μm) by a notch wheel coater method, and dried at 90 ° C. for 3 hours. This roll was cut into 50 mm in length and 90 mm in width, and the electrode mixture layer on both sides of one of the lateral side (short side) was removed by 10 mm from the end, and the current collector was exposed, and then the temperature was 150 ° C. Vacuum drying was performed for 2 hours, and the positive electrode 1 was produced.

[正極2之製造]
使用Li(Ni0.8 Co0.15 Al0.05 )O2 代替Li(Ni1/3 Co1/3 Mn1/3 )O2 作為正極活性物質,除此以外,以與正極1之製造相同之順序製作以Li(Ni0.8 Co0.15 Al0.05 )O2 作為正極活性物質之正極2。
[Manufacture of positive electrode 2]
Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 was used in place of Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 as the positive electrode active material, except that it was produced in the same order as the production of the positive electrode 1 Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 was used as the positive electrode 2 of the positive electrode active material.

[負極1之製造]
將作為電極活性物質之92.0質量份之塊狀人造石墨及作為導電助劑之3.5質量份之乙炔黑(電氣化學工業製造)及1.5質量份之奈米碳管(VGCF,昭和電工製造)、作為黏合劑之1.5質量份之苯乙烯-丁二烯橡膠(水分散液,日本瑞翁製造)、及1.5質量份之羧甲基纖維素鈉(Daicel Fine Chem製造)混合至100質量份之水中,使用自轉-公轉混合機進行分散而製備漿料。藉由缺角輪塗佈機法將該漿料組合物連續地塗佈於輥狀之銅箔(厚度10 μm)之集電體之兩面,於90℃下乾燥3小時。將該輥切成縱55 mm、橫95 mm,將橫邊(短邊)側之一者之兩面之電極合劑層自端部起去除10 mm,而使集電體露出後,於150℃下進行2小時真空乾燥,而製作負極1。
[Manufacture of negative electrode 1]
92.0 parts by mass of artificial graphite as an electrode active material, 3.5 parts by mass of acetylene black (manufactured by the Denka Chemical Industry) and 1.5 parts by mass of a carbon nanotube (VGCF, manufactured by Showa Denko) as a conductive additive, as 1.5 parts by mass of a styrene-butadiene rubber (aqueous dispersion, manufactured by Ruon Co., Ltd.) and 1.5 parts by mass of sodium carboxymethyl cellulose (manufactured by Daicel Fine Chem) are mixed into 100 parts by mass of water, Dispersion was performed using a rotation-revolution mixer to prepare a slurry. This slurry composition was continuously applied to both sides of a current collector of a roll-shaped copper foil (thickness: 10 μm) by a notch wheel coater method, and dried at 90 ° C. for 3 hours. This roll was cut into 55 mm in length and 95 mm in width, and the electrode mixture layer on both sides of one of the lateral sides (short sides) was removed from the end by 10 mm to expose the current collector at 150 ° C. Vacuum drying was performed for 2 hours, and the negative electrode 1 was produced.

[負極2之製造]
使用87.0質量份之塊狀人造石墨及5.0質量份之氧化矽(平均粒徑5 μm)代替92.0質量份之塊狀人造石墨作為電極活性物質,除此以外,以與負極1相同之順序製作負極2。
[Manufacture of negative electrode 2]
A negative electrode was fabricated in the same order as the negative electrode 1 except that 87.0 parts by mass of artificial graphite and 5.0 parts by mass of silicon oxide (average particle size: 5 μm) were used instead of 92.0 parts by mass of artificial artificial graphite as an electrode active material. 2.

[積層型層壓電池之製作]
以成為表2所表示之電池容量之方式,將正極及負極介隔分隔件(Celgard公司製造,商品名:Celgard2325)進行積層,並於正極及負極分別設置正極端子及負極端子,而獲得積層體。將所獲得之積層體及非水電解質A~G收容於可撓性膜,而獲得實施例1~8及比較例1~6之積層型之層壓電池。
[Production of laminated battery]
A positive electrode and negative electrode separator (manufactured by Celgard, trade name: Celgard2325) was laminated so as to have the battery capacity shown in Table 2, and a positive electrode terminal and a negative electrode terminal were respectively provided on the positive electrode and the negative electrode to obtain a laminate. . The obtained laminated body and the nonaqueous electrolytes A to G were housed in a flexible film, and laminated batteries of Examples 1 to 8 and Comparative Examples 1 to 6 were obtained.

[表2]
[Table 2]

[充電方法]
於30℃之恆溫槽中,將充電終止電壓設為4.2 V,將放電終止電壓設為2.75 V,以充電率0.1 C、放電率0.1 C進行1次充放電,進行排氣處理。進而將相同條件下之充放電循環進行5次,以充電率0.1 C充電至4.2 V後用於試驗。
[Charging method]
In a constant temperature bath at 30 ° C., the charge termination voltage was set to 4.2 V, the discharge termination voltage was set to 2.75 V, and the charge and discharge were performed once at a charge rate of 0.1 C and a discharge rate of 0.1 C to perform an exhaust treatment. Further, the charge-discharge cycle under the same conditions was performed 5 times, and the charge was performed at a charge rate of 0.1 C to 4.2 V for testing.

[釘刺試驗方法]
將電池固定於開有直徑10 mm之孔之酚系樹脂板上,於孔之中央部,使直徑3 mm、長度65 mm之鐵製之釘以1 mm/s之速度對電池表面垂直地進行穿刺,貫通電池10 mm,保持10分鐘後,將釘拔出。將剛要對電池刺釘之前、刺釘後30秒後、5分鐘後之電池之表面溫度(℃)示於表3。再者,電池之表面溫度係使用熱電偶測定距釘刺部10 mm之電池表面之溫度。
[Nail penetration test method]
Fix the battery on a phenol resin plate with a hole with a diameter of 10 mm. At the center of the hole, make iron nails with a diameter of 3 mm and a length of 65 mm perpendicular to the battery surface at a speed of 1 mm / s. Puncture, penetrate 10 mm of the battery, and hold it for 10 minutes before pulling out the nail. Table 3 shows the surface temperature (° C) of the battery just before the battery is nailed, 30 seconds after the nail is nailed, and 5 minutes after the nail is nailed. In addition, the surface temperature of the battery was measured using a thermocouple, and the surface temperature of the battery was 10 mm from the spiked portion.

[表3]
[產業上之可利用性]
[table 3]
[Industrial availability]

根據本發明,可提供一種非水電解質二次電池,其不會大型化或大幅度增加成本,為小型且輕量、高容量,即便發生內部短路,亦不易發生熱失控,而無起火或破裂之危險性。According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery, which does not increase in size or greatly increase costs, is small, lightweight, and high-capacity. Even if an internal short circuit occurs, it is not easy to cause thermal runaway without fire or cracking. Danger.

1‧‧‧正極1‧‧‧ positive

1a‧‧‧正極集電體 1a‧‧‧Positive collector

2‧‧‧負極 2‧‧‧ negative

2a‧‧‧負極集電體 2a‧‧‧Negative current collector

3‧‧‧非水電解質 3‧‧‧ Non-aqueous electrolyte

4‧‧‧正極殼體 4‧‧‧Positive case

5‧‧‧負極殼體 5‧‧‧ negative case

6‧‧‧襯墊 6‧‧‧ pad

7‧‧‧分隔件 7‧‧‧ divider

10‧‧‧硬幣型之非水電解質二次電池 10‧‧‧ coin type non-aqueous electrolyte secondary battery

10'‧‧‧圓筒型之非水電解質二次電池 10'‧‧‧ cylindrical non-aqueous electrolyte secondary battery

11‧‧‧負極 11‧‧‧ Negative

12‧‧‧負極集電體 12‧‧‧ negative current collector

13‧‧‧正極 13‧‧‧Positive

14‧‧‧正極集電體 14‧‧‧Positive collector

15‧‧‧非水電解質 15‧‧‧ Non-aqueous electrolyte

16‧‧‧分隔件 16‧‧‧ divider

17‧‧‧正極端子 17‧‧‧Positive terminal

18‧‧‧負極端子 18‧‧‧ negative terminal

19‧‧‧負極板 19‧‧‧ negative plate

20‧‧‧負極引線 20‧‧‧ Negative lead

21‧‧‧正極板 21‧‧‧Positive plate

22‧‧‧正極引線 22‧‧‧ Positive lead

23‧‧‧殼體 23‧‧‧shell

24‧‧‧絕緣板 24‧‧‧ Insulation Board

25‧‧‧襯墊 25‧‧‧ cushion

26‧‧‧安全閥 26‧‧‧Safety Valve

27‧‧‧PTC元件 27‧‧‧PTC components

圖1係概略性地表示非水電解質二次電池之硬幣型電池之結構之一例之縱截面圖。FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of a non-aqueous electrolyte secondary battery.

圖2係表示非水電解質二次電池之圓筒型電池之基本構成之概略圖。 Fig. 2 is a schematic diagram showing a basic configuration of a cylindrical battery of a non-aqueous electrolyte secondary battery.

圖3係以剖面表示非水電解質二次電池之圓筒型電池之內部結構之立體圖。 3 is a perspective view showing the internal structure of a cylindrical battery of a non-aqueous electrolyte secondary battery in a cross section.

Claims (6)

一種非水電解質二次電池用之內部短路所致熱失控之抑制劑,該熱失控之抑制劑包含矽烷基酯化合物,該非水電解質二次電池具有包含正極活性物質之正極、包含負極活性物質之負極、及非水電解質。An inhibitor of thermal runaway caused by an internal short circuit for a nonaqueous electrolyte secondary battery. The thermal runaway inhibitor includes a silane ester compound. The nonaqueous electrolyte secondary battery has a positive electrode including a positive electrode active material and a negative electrode active material. Negative electrode and non-aqueous electrolyte. 如請求項1之熱失控之抑制劑,其中矽烷基酯化合物係下述通式(1)所表示之羧酸矽烷基酯化合物, [化1] (式中,R1 ~R3 分別獨立地表示碳數1~6之烴基,X1 表示碳原子數1~10之a價之烴基、或烴基中之亞甲基被氧原子或硫原子取代之碳原子數1~10之a價之基,a表示1~4之數)。The thermal runaway inhibitor according to claim 1, wherein the silyl ester compound is a carboxylic acid silyl ester compound represented by the following general formula (1), [Chem. 1] (In the formula, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, and X 1 represents an a-valent hydrocarbon group having 1 to 10 carbon atoms, or a methylene group in the hydrocarbon group is replaced by an oxygen atom or a sulfur atom. A-valent radical having 1 to 10 carbon atoms, a represents a number of 1 to 4). 一種非水電解質二次電池之內部短路所致熱失控之抑制方法,其係將如請求項1或2之熱失控之抑制劑於非水電解質中調配0.01質量%~10質量%。A method for suppressing thermal runaway caused by an internal short-circuit of a non-aqueous electrolyte secondary battery. The thermal runaway inhibitor as claimed in claim 1 or 2 is formulated in a non-aqueous electrolyte in an amount of 0.01% by mass to 10% by mass. 如請求項3之內部短路所致熱失控之抑制方法,其中非水電解質係以有機溶劑作為溶劑之非水電解質。The method for suppressing thermal runaway caused by an internal short circuit according to claim 3, wherein the non-aqueous electrolyte is a non-aqueous electrolyte using an organic solvent as a solvent. 如請求項3之內部短路所致熱失控之抑制方法,其中非水電解質進而含有下述通式(2)所表示之苯基矽烷化合物, [化2] (式中,R4 ~R5 分別獨立地表示碳數1~6之烴基,R6 ~R10 分別獨立地表示氫原子、鹵素原子或碳數1~4之烷基,X2 表示b價之烴基,b表示1~3之數)。The method for suppressing thermal runaway caused by an internal short circuit according to claim 3, wherein the non-aqueous electrolyte further contains a phenylsilane compound represented by the following general formula (2), [Chem 2] (Wherein R 4 to R 5 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, R 6 to R 10 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, and X 2 represents a valence of b Hydrocarbon group, b represents a number of 1 to 3). 如請求項3之內部短路所致熱失控之抑制方法,其中正極活性物質係選自由鋰過渡金屬複合氧化物、含鋰之過渡金屬磷酸化合物、含鋰之矽酸鹽化合物所組成之群中之至少1種。The method for suppressing thermal runaway caused by an internal short circuit according to claim 3, wherein the positive electrode active material is selected from the group consisting of a lithium transition metal composite oxide, a lithium-containing transition metal phosphate compound, and a lithium-containing silicate compound. At least one.
TW108108827A 2018-03-23 2019-03-15 Thermal runaway suppression agent TW201940492A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018056969 2018-03-23
JP2018-056969 2018-03-23

Publications (1)

Publication Number Publication Date
TW201940492A true TW201940492A (en) 2019-10-16

Family

ID=67986398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108108827A TW201940492A (en) 2018-03-23 2019-03-15 Thermal runaway suppression agent

Country Status (4)

Country Link
JP (1) JPWO2019181704A1 (en)
KR (1) KR20200135298A (en)
TW (1) TW201940492A (en)
WO (1) WO2019181704A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788920B (en) * 2020-07-29 2023-01-01 輝能科技股份有限公司 Method for suppressing thermal runaway of lithium batteries
TWI819336B (en) * 2020-07-29 2023-10-21 輝能科技股份有限公司 Thermal runaway suppressant of lithium batteries and the lithium battery capable of suppressing thermal runaway
US12002920B2 (en) 2021-07-09 2024-06-04 Prologium Technology Co., Ltd. Method for suppressing thermal runaway of lithium batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100766A1 (en) * 2021-11-30 2023-06-08 パナソニックエナジ-株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60034838D1 (en) 1999-03-16 2007-06-28 Sumitomo Chemical Co Non-aqueous electrolyte and lithium secondary battery using the same
JP2001283908A (en) 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and non-aqueous electrolyte
JP3394020B2 (en) 2000-06-29 2003-04-07 株式会社東芝 Lithium ion secondary battery
JP2002313416A (en) 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP4448275B2 (en) 2001-05-11 2010-04-07 三星エスディアイ株式会社 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP4607488B2 (en) 2003-04-25 2011-01-05 三井化学株式会社 Nonaqueous electrolyte for lithium battery, method for producing the same, and lithium ion secondary battery
JP3953026B2 (en) 2003-12-12 2007-08-01 松下電器産業株式会社 Electrode plate for lithium ion secondary battery, lithium ion secondary battery and method for producing the same
KR100695109B1 (en) 2005-02-03 2007-03-14 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
JP2006253086A (en) 2005-03-14 2006-09-21 Sony Corp Polymer electrolyte, battery, and manufacturing method of battery
JP5093997B2 (en) 2005-06-30 2012-12-12 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5243035B2 (en) 2005-10-12 2013-07-24 三井化学株式会社 Lithium secondary battery
CN105375064A (en) 2005-10-20 2016-03-02 三菱化学株式会社 Lithium secondary cell and nonaqueous electrolytic solution for use therein
KR20090029835A (en) 2006-07-13 2009-03-23 다이킨 고교 가부시키가이샤 Electrochemical device
JP5150095B2 (en) 2006-12-20 2013-02-20 株式会社東芝 Non-aqueous electrolyte battery
JP5510002B2 (en) 2010-03-31 2014-06-04 Tdk株式会社 Active material manufacturing method and electrode manufacturing method
JP5955629B2 (en) * 2011-11-01 2016-07-20 株式会社Adeka Non-aqueous electrolyte secondary battery
JP2017191634A (en) 2014-07-23 2017-10-19 株式会社Adeka Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution, and compound
WO2016056288A1 (en) 2014-10-10 2016-04-14 住友化学株式会社 Stacked body, separator for non-aqueous electrolyte secondary batteries which includes stacked body, and non-aqueous electrolyte secondary battery
WO2016076145A1 (en) * 2014-11-11 2016-05-19 新日鉄住金化学株式会社 Nonaqueous electrolyte secondary battery
WO2016152266A1 (en) 2015-03-23 2016-09-29 Necエナジーデバイス株式会社 Lithium-ion secondary battery
JP6380221B2 (en) 2015-04-27 2018-08-29 トヨタ自動車株式会社 Active material composite particles, electrode active material layer, and all solid lithium battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788920B (en) * 2020-07-29 2023-01-01 輝能科技股份有限公司 Method for suppressing thermal runaway of lithium batteries
TWI819336B (en) * 2020-07-29 2023-10-21 輝能科技股份有限公司 Thermal runaway suppressant of lithium batteries and the lithium battery capable of suppressing thermal runaway
US12002920B2 (en) 2021-07-09 2024-06-04 Prologium Technology Co., Ltd. Method for suppressing thermal runaway of lithium batteries

Also Published As

Publication number Publication date
KR20200135298A (en) 2020-12-02
WO2019181704A1 (en) 2019-09-26
JPWO2019181704A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6784927B2 (en) Electrolyte for non-aqueous electrolyte batteries, and non-aqueous electrolyte batteries using this
JP6886116B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US9337511B2 (en) Nonaqueous secondary battery
US9379411B2 (en) Non-aqueous electrolyte secondary battery
JP4093699B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2015037451A1 (en) Lithium ion secondary battery
US11757130B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution, and non-aqueous electrolyte solution battery
JP2022547364A (en) Electrolyte and electrochemical and electronic devices containing the electrolyte
WO2016013480A1 (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution and compound
KR102460957B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
TWI634689B (en) Electrolyte and battery
WO2017047626A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
CN114583270A (en) Lithium ion battery
TW201940492A (en) Thermal runaway suppression agent
JP2019053983A (en) Non-aqueous electrolyte additive, electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell
KR102411934B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
TW202123523A (en) A thermal runaway inhibitor
KR102426254B1 (en) Lithium secondary battery comprisng electrolyte additive for lithium secondary battery
JP2018125219A (en) Electrolyte solution for lithium ion secondary battery
WO2018164130A1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2019180946A1 (en) Nonaqueous electrolyte solution for power storage devices
JP2023525314A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
US20220231337A1 (en) Nonaqueous Electrolytic Solution