WO2018164130A1 - Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device - Google Patents

Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device Download PDF

Info

Publication number
WO2018164130A1
WO2018164130A1 PCT/JP2018/008603 JP2018008603W WO2018164130A1 WO 2018164130 A1 WO2018164130 A1 WO 2018164130A1 JP 2018008603 W JP2018008603 W JP 2018008603W WO 2018164130 A1 WO2018164130 A1 WO 2018164130A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aqueous electrolyte
additive
formula
compound
Prior art date
Application number
PCT/JP2018/008603
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 藤本
佑軌 河野
恭幸 高井
藤田 浩司
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2018164130A1 publication Critical patent/WO2018164130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an additive for non-aqueous electrolyte, a non-aqueous electrolyte, and an electricity storage device.
  • Lithium ion batteries have high working voltage and energy density, and are therefore used as power sources for notebook computers and mobile phones. Since lithium ion batteries have a higher energy density than lead batteries and nickel cadmium batteries, realization of higher capacity of the batteries is expected.
  • the lithium ion battery has a problem that the capacity of the battery decreases as the charge / discharge cycle progresses.
  • the cause of the decrease in capacity is, for example, the decomposition of the electrolyte solution due to the electrode reaction, the decrease in the impregnation property of the electrolyte into the electrode active material layer, and the decrease in the lithium ion intercalation efficiency with a long charge / discharge cycle. It is thought that this is caused by
  • a method of adding various additives to an electrolytic solution has been studied as a method for suppressing a decrease in battery capacity associated with a charge / discharge cycle.
  • Additives are generally decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface. Since the SEI is formed in the first charge / discharge cycle, lithium ions can move back and forth through the SEI while suppressing the consumption of electricity for the decomposition of the electrolyte during the subsequent charge / discharge. That is, it is considered that the formation of SEI plays a major role in suppressing the deterioration of the secondary battery when the charge / discharge cycle is repeated and improving the battery characteristics, storage characteristics, load characteristics, and the like.
  • SEI solid electrolyte interface
  • Patent Documents 1 to 3 examples of the additive for the electrolyte include cyclic monosulfonic acid esters in Patent Documents 1 to 3, sulfur-containing aromatic compounds in Patent Document 4, disulfide compounds in Patent Document 5, and disulfonic acid in Patent Documents 6 to 9. Each ester is disclosed.
  • Patent Documents 10 to 15 disclose electrolytic solutions containing cyclic carbonates or cyclic sulfones.
  • a compound having a low lowest unoccupied molecular orbital (LUMO) energy is an excellent electron acceptor and is considered to be able to form a stable SEI on the surface of an electrode such as a nonaqueous electrolyte secondary battery (for example, non Patent Document 1).
  • LUMO lowest unoccupied molecular orbital
  • Patent Documents 1 to 9 Although some of the conventional additives disclosed in Patent Documents 1 to 9 exhibit low LUMO energy, they have a problem that they are chemically unstable and easily deteriorate due to the influence of moisture and temperature. For example, although disulfonic acid ester shows low LUMO energy, it has low stability to moisture and easily deteriorates. Therefore, when it is stored for a long period of time, strict moisture content and temperature management are required. In general, the lithium ion battery is required to have a heat resistant temperature of about 60 ° C. and the lithium ion capacitor is about 80 ° C. Therefore, the improvement of the non-aqueous electrolyte additive used in the electricity storage device at high temperature is It was one of the important issues.
  • the electrolyte solutions described in Patent Documents 10 to 14 can suppress irreversible capacity reduction to some extent by SEI generated on the negative electrode surface by electrochemical reductive decomposition.
  • SEI formed by the additive in these electrolytes is excellent in the performance of protecting the electrode, it is not sufficient in terms of strength to withstand long-term use. Therefore, there is a problem that SEI is decomposed during use of the electricity storage device or a crack is generated in the SEI to expose the negative electrode surface, resulting in decomposition of the electrolytic solution and deterioration of battery characteristics.
  • the electrolyte solution using an ethylene carbonate compound described in Patent Document 15 as an additive generates a gas such as carbon dioxide when ethylene carbonate is decomposed on the electrode, leading to a decrease in battery performance. Had a problem.
  • the gas generation is particularly remarkable when a charge / discharge cycle is repeated at a high temperature or for a long time.
  • the present invention provides a non-aqueous electrolyte additive that has high storage stability and enables improvement of cycle characteristics and suppression of gas generation with respect to an electricity storage device.
  • the present inventors have found that a compound containing a specific structure exhibits low LUMO energy and is chemically stable. Furthermore, the present inventors can obtain excellent cycle characteristics and suppress gas generation when the compound is used as an additive for a non-aqueous electrolyte in an electricity storage device such as a non-aqueous electrolyte secondary battery. As a result, the present invention has been completed.
  • this invention provides the additive for non-aqueous electrolyte containing the compound represented by following formula (1).
  • X represents a sulfonyl group or a carbonyl group
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an optionally substituted group.
  • the compound represented by the formula (1) is a cyclic sulfone compound. Since the cyclic sulfone compound can cause ring-opening polymerization, it is considered to form strong SEI. Furthermore, the compound of the formula (1) containing a carbonyloxy group or a sulfonyloxy group bonded to the ring is considered to exhibit low LUMO energy and exhibit excellent ionic conductivity. Therefore, it is considered that the compound of the formula (1) can form a stable SEI that can withstand long-term use.
  • an additive for non-aqueous electrolyte that has high storage stability and enables improvement of cycle characteristics and suppression of gas generation with respect to an electricity storage device.
  • the additive for non-aqueous electrolyte according to the present invention forms a stable SEI (solid electrolyte interface) on the electrode surface when used in an electricity storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor.
  • SEI solid electrolyte interface
  • the additive for nonaqueous electrolysis according to the present embodiment contains one or more compounds represented by the following formula (1).
  • X represents a sulfonyl group or a carbonyl group
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an optionally substituted group.
  • a in the formula (1) may be an alkylene group having 1 to 3 carbon atoms substituted with a halogen atom, or an oxyalkylene group having 1 to 3 carbon atoms which may be substituted with a halogen atom.
  • the oxygen atom in the oxyalkylene group may be bonded to the sulfonyl group in the formula (1).
  • the hydrocarbon group (particularly an alkylene group) contained in A may have 1 or 2 carbon atoms. Specific examples of A, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CFHCH 2 -, - CF 2 CH 2 -, - OCH 2 -, and -OCH 2 CH 2- .
  • a carbonyloxy group or a sulfonyloxy group may be bonded to the 3-position of the cyclic sulfone. This compound tends to exhibit particularly low LUMO energy and better ionic conductivity.
  • the compound of the formula (1) may be a compound represented by the following formula (1a) or (1b).
  • X in the formulas (1), (1) ′, (1a) and (1b) may be a sulfonyl group from the viewpoint of lower battery resistance and further suppression of gas generation. That is, the compound of the formula (1) may be a compound represented by the following formula (2a) or (2b).
  • R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b), an alkyl group having 1 to 4 carbon atoms and an alkenyl group having 2 to 4 carbon atoms Group when the alkynyl group having 2 to 4 carbon atoms is substituted, the substituent is, for example, a halogen atom, an aryl group, a halogenated aryl group (for example, 2-fluorophenyl group, 3-fluorophenyl group, 4 A fluorinated aryl group such as a fluorophenyl group or a perfluorophenyl group), an alkoxy group, a halogenated alkoxy group, or a combination thereof.
  • a halogen atom for example, 2-fluorophenyl group, 3-fluorophenyl group, 4 A fluorinated aryl group such as a fluorophenyl group or a perfluorophenyl group
  • R 1 and R 2 when the aryl group is substituted, the substituent is, for example, a halogen atom, an alkyl group, a halogenated alkyl group (for example, a trifluoromethyl group, 2,2,2-trifluoroethyl) A fluorinated alkyl group such as a group), an alkoxy group, a halogenated alkoxy group, or a combination thereof.
  • R 1 and R 2 are each independently a C 1-4 alkyl group optionally substituted with a halogen atom, an aryl group or a halogenated aryl group, or a carbon optionally substituted with a halogen atom.
  • R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are each independently a hydrogen atom from the viewpoint of lowering battery resistance.
  • An alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group, an alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, or a halogen atom It may be an aryl group which may be substituted with an alkyl group or an alkyl halide group.
  • R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) contain groups in which the compounds represented by these formulas have an unsaturated bond
  • each independently a hydrogen atom, an alkenyl group having 2 to 4 carbon atoms that may be substituted with a halogen atom, or 2 to 2 carbon atoms that may be substituted with a halogen atom. It may be an alkynyl group of 4 or an aryl group optionally substituted with a halogen atom, an alkyl group or a halogenated alkyl group.
  • the alkyl group having 1 to 4 carbon atoms may be, for example, a methyl group , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and t-butyl group.
  • a methyl group or an isopropyl group can be selected. These may be substituted with a halogen atom, an aryl group or a halogenated aryl group.
  • Examples of the aryl group bonded to the alkyl group having 1 to 4 carbon atoms include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • Examples of the alkyl group having 1 to 4 carbon atoms substituted with a halogen atom, an aryl group or a halogenated aryl group include benzyl group, trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl group, 1,1 -Difluoroethyl group, 1,2-difluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, 1-fluoro-n-propyl group, 2-fluoro- n-propyl group, 3-fluoro-n-propyl group, 1,1-difluoro-n-propyl group, 1,
  • R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) have 2 to 4 carbon atoms which may be substituted with the halogen atom
  • alkenyl group examples include vinyl group, allyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, isobutenyl group, 1-fluorovinyl group, 2-fluorovinyl.
  • alkenyl group having 2 to 4 carbon atoms an allyl group or a 2-propenyl group can be selected.
  • R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) have 2 to 4 carbon atoms which may be substituted with the halogen atom
  • alkynyl group examples include 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-fluoro-1-propynyl group, and 3,3-difluoro-1-propynyl.
  • R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are substituted with the halogen atom, alkyl group or halogenated alkyl group.
  • the aryl group that may be used include phenyl group, tolyl group, xylyl group, naphthyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3-difluorophenyl group, 2,4 -Difluorophenyl group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, perfluorophenyl group, 3-fluoro-2-methylphenyl group, 4-fluoro-2-methylphenyl group, 5 -Fluoro-2-methylphenyl group, 6-fluoro-2-methylphenyl group, 2-fluoro-3-methylphenyl group, 4-fluoro-3-methylphenyl Group, 5-
  • the halogen atom include an iodine atom, a bromine atom, and a fluorine atom. From the viewpoint that battery resistance tends to be lower, a fluorine atom can be selected as the halogen atom.
  • R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are more excellent in ionic conductivity of the compounds represented by these formulas.
  • each independently may be a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group.
  • R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are each independently from the viewpoint of improving cycle characteristics and suppressing gas generation.
  • An alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group, an alkenyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, or a halogen atom It may be an aryl group which may be substituted with an alkyl group or an alkyl halide group.
  • Examples of the compound represented by the formula (1) include the following formulas (11), (12), (13), (14), (15), (16), (17), (18), (19 ), (20), (21), (22), (23) or (24).
  • Ph represents a phenyl group
  • n represents an integer of 1 to 5.
  • the compound of formula (1) exhibits low LUMO energy and is susceptible to electrochemical reduction. Therefore, non-aqueous electrolytes containing these as additives for non-aqueous electrolytes form stable SEI on the electrode surface when used in power storage devices such as non-aqueous electrolyte secondary batteries and cycle. Battery characteristics such as characteristics, charge / discharge capacity, and internal resistance can be improved. Moreover, since the compound of Formula (1) is stable with respect to moisture and temperature changes, the additive for nonaqueous electrolyte and nonaqueous electrolyte containing them can be stored at room temperature for a long time. is there.
  • the lowest unoccupied molecular orbital (LUMO) energy of the compound represented by the formula (1) may be ⁇ 3.0 eV or more, or 0.0 eV or less.
  • LUMO energy When the LUMO energy is ⁇ 3.0 eV or more, SEI showing high resistance is hardly formed on the negative electrode due to excessive decomposition of the compound.
  • the LUMO energy When the LUMO energy is 0.0 eV or less, more stable SEI can be more easily formed on the negative electrode surface.
  • the LUMO energy may be ⁇ 2.0 eV or more, or ⁇ 0.1 eV or less.
  • lowest unoccupied molecular orbital (LUMO) energy is a value calculated by combining the semi-empirical molecular orbital calculation method PM3 and the density functional method B3LYP method. Specifically, LUMO energy can be calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA).
  • the compound of formula (1) can be synthesized by combining the usual reactions using available raw materials.
  • the compound of formula (1a) which is one of the specific examples, can be synthesized by a method of reacting 3-hydroxysulfolane with a halide such as sulfamoyl chloride.
  • the additive for non-aqueous electrolyte according to this embodiment may contain the compound represented by the formula (1) alone or may contain two or more kinds.
  • the compound represented by the formula (1) may be used in combination with other general components as long as the effect of the present invention is not significantly inhibited.
  • Examples of other general components include a negative electrode protective agent, a positive electrode protective agent, a flame retardant, and an overcharge preventing agent.
  • the non-aqueous electrolyte according to the present embodiment contains the additive for non-aqueous electrolyte, a non-aqueous solvent, and an electrolyte.
  • the content of the additive for nonaqueous electrolyte (or the compound represented by formula (1)) in this nonaqueous electrolyte is 0.005% by mass or more based on the total mass of the nonaqueous electrolyte. Or 10% by mass or less. When the content is 0.005% by mass or more, stable SEI is easily formed by an electrochemical reaction on the electrode surface. When the content is 10% by mass or less, the non-aqueous electrolyte additive can be easily dissolved in the non-aqueous solvent.
  • the content of the non-aqueous electrolyte additive may be 0.01% by mass or more, or 0.1% by mass or more. It may be 0.5% by mass or more. From the same viewpoint, the content of the additive for non-aqueous electrolyte (or the compound represented by the formula (1)) may be 5% by mass or less, or 2.0% by mass or less.
  • the additive for non-aqueous electrolyte (the compound represented by the formula (1)) according to this embodiment may be used in combination with another compound that forms SEI.
  • Other compounds that form SEI include cyclic carbonate compounds, nitrile compounds, isocyanate compounds, C ⁇ C group-containing compounds, SO group-containing compounds, phosphorus-containing compounds, acid anhydrides, cyclic phosphazene compounds, boron-containing compounds, and silicon. Examples thereof include compounds.
  • cyclic carbonate compound examples include 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro-1,3-dioxolan-2-one (DFEC), vinylene carbonate ( VC), vinyl ethylene carbonate (VEC), 4-ethynyl-1,3-dioxolan-2-one (EEC), and the like.
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • DFEC trans or cis-4,5-difluoro-1,3-dioxolan-2-one
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • EEC 4-ethynyl-1,3-dioxolan-2-one
  • nitrile compound examples include acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, and sebaconitrile.
  • succinonitrile, adiponitrile, or a combination thereof may be used.
  • isocyanate compound examples include methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl. And methacrylate.
  • Examples of the C ⁇ C group-containing compound include 2-propynyl methyl carbonate, 2-propynyl acetate, 2-propynyl formate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, and 2-propynyl vinyl sulfonate.
  • Examples include 2-butyne-1,4-diyldimethanesulfonate, 2-butyne-1,4-diyldiformate, and 2,4-hexadiyne-1,6-diyldimethanesulfonate.
  • SO group-containing compound examples include 1,3-propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propene sultone, 2,2-dioxide-1 , 2-oxathiolan-4-yl acetate, 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide, etc., sultone, ethylene sulfite, ethylene sulfate, hexahydrobenzo [1,3 , 2] dioxathiolane-2-oxide (also referred to as 1,2-cyclohexanediol cyclic sulfite) and cyclic sulfites such as 5-vinyl-hexahydro-1,3,2-benzodioxathiol-2-oxide, Butane-2,3-diyldimethanesulfonate, butan
  • Examples of the phosphorus-containing compound include trimethyl phosphate, tributyl phosphate, and trioctyl phosphate, tris (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl) methyl phosphate, Bis (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl) phosphate, 2,2-difluoroethyl phosphate, bis (2,2,2-trifluoroethyl phosphate) ) 2,2,3,3-tetrafluoropropyl, bis (2,2-difluoroethyl) phosphate 2,2,2-trifluoroethyl, bis (2,2,3,3-tetrafluoropropyl) phosphate 2,2,2-trifluoroethyl and phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl)
  • acid anhydride examples include acetic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, and 3-sulfo-propionic anhydride.
  • Examples of the cyclic phosphazene compound include methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
  • Examples of the compound having a silicon atom include hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, octamethylcyclotrisiloxane.
  • Tetrasiloxane decamethylcyclopentasiloxane, trimethylfluorosilane, triethylfluorosilane, tripropylfluorosilane, phenyldimethylfluorosilane, triphenylfluorosilane, vinyldimethylfluorosilane, vinyldiethylfluorosilane, vinyldiphenylfluorosilane, trimethoxyfluoro Silane, triethoxyfluorosilane, dimethyldifluorosilane, diethyldifluorosilane, divinyldifluorosilane, ethylvinyldifluor Silane, methyl trifluorosilane, ethyl trifluorosilane, hexamethyldisiloxane, 1,3-diethyltetramethyldisiloxane, hexaethyldisiloxane, octamethyltrisiloxane, methoxytri
  • Examples of the compound having a boron atom include boroxine, trimethylboroxine, trimethoxyboroxine, triethylboroxine, triethoxyboroxine, triisopropylboroxine, triisopropoxyboroxine, tri-n-propylboroxine, tri-n- Examples include propoxyboroxine, tri-n-butylboroxine, tri-n-butyloxyboroxine, triphenylboroxine, triphenoxyboroxine, tricyclohexylboroxine, and tricyclohexoxyboroxine.
  • the content of the cyclic carbonate compound is 0.001 to 10% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the cyclic carbonate compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases.
  • the content of the cyclic carbonate compound may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the nitrile compound may be 0.001 to 10% by mass based on the total mass of the non-aqueous electrolyte. Good. When the content of the nitrile compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases.
  • the content of the nitrile compound may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the isocyanate compound may be 0.01 to 5% by mass based on the total mass of the non-aqueous electrolyte. Good. When the content of the isocyanate compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the isocyanate compound may be 0.5% by mass or more or 3% by mass or less based on the total mass of the nonaqueous electrolytic solution.
  • the content of the C ⁇ C group-containing compound is 0.01 based on the total mass of the non-aqueous electrolyte. It may be up to 5% by weight. When the content of the C ⁇ C group-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the C ⁇ C group-containing compound may be 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the SO group-containing compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. It may be. When the content of the SO group-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the SO group-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the non-aqueous electrolyte.
  • the content of the phosphorus-containing compound is 0.001 to 5% by mass based on the total mass of the nonaqueous electrolytic solution. May be. When the content of the phosphorus-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the phosphorus-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the cyclic phosphazene compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be.
  • the content of the cyclic phosphazene compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases.
  • the content of the cyclic phosphazene compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the acid anhydride is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the acid anhydride is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the acid anhydride may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the boron-containing compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. In this range, the SEI does not become too thick and the stability of the SEI at higher temperatures is increased.
  • the content of the boron-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the silicon-containing compound is 0.01 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the silicon-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the silicon-containing compound may be 0.1% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • an aprotic solvent can be selected from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low.
  • the aprotic solvent is at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. May be.
  • a cyclic carbonate or a chain carbonate can be selected, and a combination of a cyclic carbonate and a chain carbonate can also be selected.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and FEC.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate.
  • Examples of the lactone include ⁇ -butyrolactone.
  • Examples of the lactam include ⁇ -caprolactam and N-methylpyrrolidone.
  • Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane and the like.
  • Examples of the chain ether include 1,2-diethoxyethane, ethoxymethoxyethane, and the like.
  • Examples of the sulfone include sulfolane.
  • Examples of the nitrile include acetonitrile.
  • Examples of the halogen derivative include 4-fluoro-1,3-dioxolane-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolane-2- ON etc. are mentioned. These non-aqueous solvents may be used alone or in combination of two or more.
  • the electrolyte may be a lithium salt that serves as a source of lithium ions.
  • Electrolyte LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6 and may be at least one selected from the group consisting of LiSbF 6. From the viewpoint of having a high degree of dissociation and an ability to increase the ionic conductivity of the electrolytic solution and further suppressing the performance deterioration of the electricity storage device due to long-term use due to the oxidation-reduction characteristics, LiBF 4 and / or LiPF are used as the electrolyte. 6 may be selected. These electrolytes may be used alone or in combination of two or more.
  • LiBF 4 and / or LiPF 6 When the electrolyte is LiBF 4 and / or LiPF 6 , one or more cyclic carbonates and chain carbonates may be combined as the non-aqueous solvent. In particular, LiBF 4 and / or LiPF 6 may be combined with ethylene carbonate and diethyl carbonate.
  • the concentration of the electrolyte in the non-aqueous electrolyte may be 0.1 to 2.0 mol / L based on the volume of the non-aqueous electrolyte.
  • concentration of the electrolyte is 0.1 mol / L or more, more excellent discharge characteristics or charge characteristics can be obtained.
  • concentration of the electrolyte is 2.0 mol / L or less, the viscosity of the nonaqueous electrolytic solution is difficult to increase, and thus sufficient ion mobility can be secured.
  • the electrolyte concentration may be 0.5 to 1.5 mol / L.
  • the electrolyte (first lithium salt) and a second lithium salt different from the electrolyte may be used in combination.
  • the second lithium salt include lithium difluorophosphate, lithium bisoxalatoborate (LiBOB), lithium tetrafluoro (oxalato) phosphate (LiTFOP), lithium difluorooxalatoborate (LiDFOB), and lithium difluorobisoxalatophosphate.
  • LiDFOP lithium tetrafluoroborate
  • lithium bisfluorosulfonylimide lithium bisfluorosulfonylimide
  • lithium tetrafluoro (oxalato) phosphate lithium salt having a phosphate skeleton such as Li 2 PO 3 F
  • the second lithium salt is lithium difluorophosphate, lithium bisoxalatoborate, lithium tetrafluoro (oxalato) phosphate, lithium difluorooxalatoborate, lithium difluorobisoxalate phosphate, lithium methyl sulfate, lithium ethyl sulfate, and fluorosulfone
  • One or more lithium salts selected from the group consisting of lithium acid may be included.
  • the concentration of the second lithium salt in the non-aqueous electrolyte may be 0.001 to 1.0 mol / L based on the volume of the non-aqueous electrolyte.
  • concentration of the second lithium salt is 0.001 mol / L or more, more excellent charge / discharge characteristics can be obtained under high temperature conditions.
  • concentration of the second lithium salt is 1.0 mol / L or less, the viscosity of the non-aqueous electrolyte is difficult to increase, and thus ion mobility can be sufficiently ensured.
  • the concentration of the second lithium salt may be 0.01 to 0.8 mol / L or 0.01 to 0.5 mol / L.
  • the electricity storage device is composed of the non-aqueous electrolyte and mainly a positive electrode and a negative electrode.
  • Specific examples of the electricity storage device include a non-aqueous electrolyte secondary battery (such as a lithium ion battery) and an electric double layer capacitor (such as a lithium ion capacitor).
  • the nonaqueous electrolytic solution according to the present embodiment is particularly useful in applications of lithium ion batteries and lithium ion capacitors.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of an electricity storage device.
  • An electricity storage device 1 shown in FIG. 1 is a non-aqueous electrolyte secondary battery.
  • the electricity storage device 1 includes a positive electrode plate 4 (positive electrode), a negative electrode plate 7 (negative electrode) facing the positive electrode plate 4, a nonaqueous electrolytic solution 8 disposed between the positive electrode plate 4 and the negative electrode plate 7, and nonaqueous And a separator 9 provided in the electrolytic solution 8.
  • the positive electrode plate 4 includes a positive electrode current collector 2 and a positive electrode active material layer 3 provided on the nonaqueous electrolyte solution 8 side.
  • the negative electrode plate 7 includes a negative electrode current collector 5 and a negative electrode active material layer 6 provided on the nonaqueous electrolyte solution 8 side.
  • the nonaqueous electrolytic solution 8 the nonaqueous electrolytic solution according to the above-described embodiment can be used.
  • FIG. 1 a non-aqueous electrolyte secondary battery is shown as the electricity storage device, but the electricity storage device to which the non-aqueous electrolyte can be applied is not limited to this, and other electricity storage devices such as an electric double layer capacitor. It may be.
  • the positive electrode current collector 2 and the negative electrode current collector 5 may be metal foils made of a metal such as aluminum, copper, nickel, and stainless steel, for example.
  • the positive electrode active material layer 3 contains a positive electrode active material.
  • the negative electrode active material layer 6 contains a negative electrode active material.
  • the negative electrode active material may be a material that can occlude and release lithium, for example.
  • Specific examples of such materials include crystalline carbon (such as natural graphite and artificial graphite), amorphous carbon, carbon materials such as carbon-coated graphite and resin-coated graphite, indium oxide, silicon oxide, tin oxide, zinc oxide and Metal materials such as an oxide material such as lithium oxide, lithium metal, and a metal that can form an alloy with lithium can be given.
  • Specific examples of the metal capable of forming an alloy with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, and Ag. A binary or ternary alloy containing these metals and lithium can also be used as the negative electrode active material.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • a carbon material such as graphite and a Si-based active material such as Si, Si alloy, or Si oxide may be combined as the negative electrode active material.
  • graphite and a Si-based active material may be combined as the negative electrode active material.
  • the ratio of the mass of the Si-based active material to the total mass of the carbon material and the Si-based active material is 0.5% by mass to 95% by mass, 1% by mass to 50% by mass, or 2 It may be not less than 40% by mass.
  • the positive electrode active material layer 3 and the negative electrode active material layer 6 may further contain a binder.
  • the binder include polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, carboxymethyl cellulose, polytetrafluoro Examples thereof include ethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, polyvinyl alcohol, acrylic acid-polyacrylonitrile, polyacrylamide, polymethacrylic acid, and copolymers thereof.
  • the binder may be the same or different between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer 3 and the negative electrode active material layer 6 may further include a conductive auxiliary material for the purpose of reducing resistance.
  • a conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, acetylene black, and ketjen black, and carbon fibers.
  • the separator 9 may be, for example, a single-layer or laminated microporous film, woven fabric, or non-woven porous film made of polyethylene, polypropylene, fluororesin, or the like.
  • each member constituting the electricity storage device can be appropriately set by those skilled in the art.
  • the configuration of the power storage device is not limited to the embodiment of FIG. 1 and can be changed as appropriate.
  • LiPF 6 as an electrolyte was dissolved in the obtained mixed non-aqueous solvent so as to have a concentration of 1.0 mol / L.
  • the compound 11 shown in Table 1 was added as an additive for a non-aqueous electrolyte to prepare a non-aqueous electrolyte.
  • the content ratio of the additive for non-aqueous electrolyte (compound 11) was 0.5% by mass based on the total mass of the non-aqueous electrolyte.
  • Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the content ratio of Compound 11 was 1.0% by mass.
  • Example 3 The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 13 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 4 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 14 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 5 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 15 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 6 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 16 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 7 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 17 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 8 The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 18 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 9 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 19 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 10 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 20 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 11 The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 21 shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 12 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 23a shown in Table 1 and the content ratio was 1.0% by mass. did.
  • Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 11 to 1,3-propane sultone and the content ratio was 1.0% by mass. .
  • Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from compound 11 to vinylene carbonate (VC) and the content ratio was 1.0% by mass.
  • Comparative Example 4 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.
  • Example 5 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 11 to fluoroethylene carbonate (FEC) and the content ratio was 1.0% by mass. .
  • FEC fluoroethylene carbonate
  • Comparative Example 6 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.
  • FEC fluoroethylene carbonate
  • Example 7 A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from Compound 11 to sulfolane and the content ratio was 1.0% by mass.
  • the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 was considered to be partially hydrolyzed and had poor stability.
  • the compounds used in the examples were excellent in stability with almost no change in the peak of 1 H-NMR spectrum.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material and carbon black as a conductivity imparting agent were dry mixed.
  • the obtained mixture was uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) was dissolved as a binder to prepare a slurry.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • the obtained slurry was applied to both surfaces of an aluminum metal foil (square shape, thickness 20 ⁇ m). After removing NMP and drying the coating film, the whole was pressed to obtain a positive electrode sheet having an aluminum metal foil as a positive electrode current collector and a positive electrode active material layer formed on both surfaces thereof.
  • As the negative electrode sheet a commercially available graphite-coated electrode sheet (manufactured by Hosen Co., Ltd., trade name: electrode sheet negative electrode single layer) was used.
  • a negative electrode sheet, a polyethylene separator, a positive electrode sheet, a polyethylene separator, and a negative electrode sheet were laminated in this order to produce a battery element.
  • This battery element was inserted into a bag formed of a laminate film having aluminum (thickness: 40 ⁇ m) and a resin layer covering both sides of the battery element so that the ends of the positive electrode sheet and the negative electrode sheet protrude from the bag. Subsequently, each nonaqueous electrolyte solution obtained in the Examples and Comparative Examples was injected into the bag. The bag was vacuum-sealed to obtain a sheet-like nonaqueous electrolyte secondary battery. Furthermore, in order to improve the adhesiveness between electrodes, the sheet-like nonaqueous electrolyte secondary battery was sandwiched between glass plates and pressurized.
  • non-aqueous electrolyte secondary batteries having the same configuration including the electrolytes of the examples and comparative examples were prepared.
  • This battery was charged to 4.2 V at 25 ° C. with a current corresponding to 0.2 C, and then discharged to 3 V with a current corresponding to 0.2 C for 3 cycles to stabilize the battery.
  • the battery was stored at a high temperature of 60 ° C. and 168 hours. Then, it cooled to room temperature, measured the volume of the battery by Archimedes method, and calculated
  • the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte of each example containing the compound 11, 13 to 21 or 23a which is the compound of the formula (1) is the non-aqueous electrolyte of the comparative example.
  • both the discharge capacity maintenance rate during the cycle test and the suppression of gas generation accompanying charging are superior.
  • the compound of Formula (1) is excellent also in the point that there is little increase in internal resistance by a charging / discharging cycle.
  • SYMBOLS 1 Power storage device (nonaqueous electrolyte secondary battery), 2 ... Positive electrode current collector, 3 ... Positive electrode active material layer, 4 ... Positive electrode plate, 5 ... Negative electrode current collector, 6 ... Negative electrode active material layer, 7 ... Negative electrode Plate, 8 ... non-aqueous electrolyte, 9 ... separator.

Abstract

Disclosed is an additive for a non-aqueous electrolyte, said additive containing a compound represented by formula (1) below. In the formula (1), X indicates a sulphonyl group or a carbonyl group; R1 and R2 indicate a hydrogen atom, an optionally substituted C1-4 alkyl group, etc.; and A indicates an optionally substituted C1-3 divalent hydrocarbon group, or a divalent group comprising an optionally substituted C1-3 divalent hydrocarbon group and an oxygen atom constituting part of a cyclic structure together with the hydrocarbon group.

Description

非水電解液用添加剤、非水電解液、及び、蓄電デバイスNon-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
 本発明は、非水電解液用添加剤、非水電解液、及び蓄電デバイスに関する。 The present invention relates to an additive for non-aqueous electrolyte, a non-aqueous electrolyte, and an electricity storage device.
 近年、環境問題の解決、持続可能な循環型社会の実現に対する関心が高まるにつれ、リチウムイオン電池に代表される非水電解液二次電池の研究が広範囲に行われている。リチウムイオン電池は、高い使用電圧とエネルギー密度を有していることから、ノート型パソコン、携帯電話等の電源として用いられている。リチウムイオン電池は、鉛電池及びニッケルカドミウム電池と比較して高いエネルギー密度を有していることから、電池の高容量化の実現が期待されている。 In recent years, research on non-aqueous electrolyte secondary batteries represented by lithium ion batteries has been conducted extensively as interest in solving environmental problems and realizing a sustainable recycling society has increased. Lithium ion batteries have high working voltage and energy density, and are therefore used as power sources for notebook computers and mobile phones. Since lithium ion batteries have a higher energy density than lead batteries and nickel cadmium batteries, realization of higher capacity of the batteries is expected.
 しかし、リチウムイオン電池は、充放電サイクルの経過に伴って電池の容量が低下するという問題を有している。容量低下の要因は、例えば、長期間の充放電サイクルに伴って、電極反応による電解液の分解、電極活物質層への電解質の含浸性の低下、更にはリチウムイオンのインターカレーション効率の低下が生じることにあると考えられている。 However, the lithium ion battery has a problem that the capacity of the battery decreases as the charge / discharge cycle progresses. The cause of the decrease in capacity is, for example, the decomposition of the electrolyte solution due to the electrode reaction, the decrease in the impregnation property of the electrolyte into the electrode active material layer, and the decrease in the lithium ion intercalation efficiency with a long charge / discharge cycle. It is thought that this is caused by
 充放電サイクルに伴う電池の容量低下を抑制する方法として、電解液に各種添加剤を入れる方法が検討されている。添加剤は、一般に、最初の充放電時に分解され、電極表面上に固体電解質界面(SEI)と呼ばれる被膜を形成する。最初の充放電サイクルにおいてSEIが形成されるため、その後の充放電において、電解液の分解に電気が消費されることを抑制しながら、SEIを介してリチウムイオンが電極を行き来することができる。すなわち、SEIの形成が、充放電サイクルを繰り返したときの二次電池の劣化を抑制し、電池特性、保存特性及び負荷特性等を向上させることに大きな役割を果たすと考えられている。 A method of adding various additives to an electrolytic solution has been studied as a method for suppressing a decrease in battery capacity associated with a charge / discharge cycle. Additives are generally decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface. Since the SEI is formed in the first charge / discharge cycle, lithium ions can move back and forth through the SEI while suppressing the consumption of electricity for the decomposition of the electrolyte during the subsequent charge / discharge. That is, it is considered that the formation of SEI plays a major role in suppressing the deterioration of the secondary battery when the charge / discharge cycle is repeated and improving the battery characteristics, storage characteristics, load characteristics, and the like.
 電解液用添加剤として、例えば、特許文献1~3には環状モノスルホン酸エステル、特許文献4には含硫黄芳香族化合物、特許文献5にはジスルフィド化合物、特許文献6~9にはジスルホン酸エステルがそれぞれ開示されている。また、特許文献10~15は環状炭酸エステル又は環状スルホンを含有する電解液を開示している。 Examples of the additive for the electrolyte include cyclic monosulfonic acid esters in Patent Documents 1 to 3, sulfur-containing aromatic compounds in Patent Document 4, disulfide compounds in Patent Document 5, and disulfonic acid in Patent Documents 6 to 9. Each ester is disclosed. Patent Documents 10 to 15 disclose electrolytic solutions containing cyclic carbonates or cyclic sulfones.
特開昭63-102173号公報JP 63-102173 A 特開2000-003724号公報JP 2000-003724 A 特開平11-339850号公報JP 11-339850 A 特開平05-258753号公報JP 05-258753 A 特開2001-052735号公報Japanese Patent Laid-Open No. 2001-052735 特開2009-038018号公報JP 2009-038018 A 特開2005-203341号公報Japanese Patent Laid-Open No. 2005-203341 特開2004-281325号公報JP 2004-281325 A 特開2005-228631号公報JP 2005-228631 A 特開平04-87156号公報Japanese Patent Laid-Open No. 04-87156 特開平10-50342号公報Japanese Patent Laid-Open No. 10-50342 特開平08-45545号公報Japanese Patent Laid-Open No. 08-45545 特開2001-6729号公報JP 2001-6729 A 特開昭63-102173号公報JP 63-102173 A 特開平05-074486号公報Japanese Patent Laid-Open No. 05-074486
 最低空分子軌道(LUMO)エネルギーが低い化合物は、優れた電子受容体であり、非水電解液二次電池等の電極表面上に安定なSEIを形成し得ると考えられている(例えば、非特許文献1)。 A compound having a low lowest unoccupied molecular orbital (LUMO) energy is an excellent electron acceptor and is considered to be able to form a stable SEI on the surface of an electrode such as a nonaqueous electrolyte secondary battery (for example, non Patent Document 1).
 特許文献1~9に開示される従来の添加剤のいくつかは、低いLUMOエネルギーを示すものの、それらは化学的に不安定であり、水分及び温度の影響で劣化し易いという問題があった。例えば、ジスルホン酸エステルは低いLUMOエネルギーを示すものの、水分に対する安定性が低く容易に劣化するため、長期間保管する場合には、厳密な水分含有量及び温度の管理を必要とする。一般的にリチウムイオン電池では約60℃、リチウムイオンキャパシタでは約80℃の耐熱温度が求められていることから、蓄電デバイスに用いられる非水電解液用添加剤の高温での安定性の向上は、重要な課題の1つであった。 Although some of the conventional additives disclosed in Patent Documents 1 to 9 exhibit low LUMO energy, they have a problem that they are chemically unstable and easily deteriorate due to the influence of moisture and temperature. For example, although disulfonic acid ester shows low LUMO energy, it has low stability to moisture and easily deteriorates. Therefore, when it is stored for a long period of time, strict moisture content and temperature management are required. In general, the lithium ion battery is required to have a heat resistant temperature of about 60 ° C. and the lithium ion capacitor is about 80 ° C. Therefore, the improvement of the non-aqueous electrolyte additive used in the electricity storage device at high temperature is It was one of the important issues.
 また、従来の添加剤を含有する電解液の場合、充放電サイクルを繰り返しながら長期に亘って蓄電デバイスを使用したときに、蓄電デバイスの電池特性が低下し易いため、サイクル特性の点で更なる改善が求められていた。 In addition, in the case of an electrolytic solution containing a conventional additive, when the power storage device is used over a long period of time while repeating the charge / discharge cycle, the battery characteristics of the power storage device are likely to be deteriorated. There was a need for improvement.
 特許文献10~14に記載されている電解液は、電気化学的還元分解によって負極表面上に生成するSEIによって、不可逆的な容量低下をある程度抑制することができる。しかし、これらの電解液中の添加剤によって形成されたSEIは、電極を保護する性能に優れるものの、長期間の使用に耐えるための強度の点で十分でなかった。そのため、蓄電デバイスの使用中にSEIが分解したり、SEIに亀裂が生じることによって負極表面が露出し、電解液の分解が生じて電池特性が低下するといった問題があった。特許文献15に記載されるエチレンカーボネート系の化合物を添加剤として用いた電解液は、エチレンカーボネートが電極上で分解された際に、二酸化炭素等のガスを発生し、電池性能の低下につながるといった問題を有していた。ガス発生は、高温、又は長期に亘る充放電サイクルを繰り返したときに特に顕著である。 The electrolyte solutions described in Patent Documents 10 to 14 can suppress irreversible capacity reduction to some extent by SEI generated on the negative electrode surface by electrochemical reductive decomposition. However, although SEI formed by the additive in these electrolytes is excellent in the performance of protecting the electrode, it is not sufficient in terms of strength to withstand long-term use. Therefore, there is a problem that SEI is decomposed during use of the electricity storage device or a crack is generated in the SEI to expose the negative electrode surface, resulting in decomposition of the electrolytic solution and deterioration of battery characteristics. The electrolyte solution using an ethylene carbonate compound described in Patent Document 15 as an additive generates a gas such as carbon dioxide when ethylene carbonate is decomposed on the electrode, leading to a decrease in battery performance. Had a problem. The gas generation is particularly remarkable when a charge / discharge cycle is repeated at a high temperature or for a long time.
 このように、非水電解液用添加剤に関して、保存安定性、充放電サイクルを繰り返したときの性能を維持するサイクル特性、又はガス発生の抑制の点で、更なる改善の余地があった。 Thus, regarding the additive for non-aqueous electrolyte, there is room for further improvement in terms of storage stability, cycle characteristics for maintaining performance when the charge / discharge cycle is repeated, or suppression of gas generation.
 本発明は、高い保存安定性を有するとともに、蓄電デバイスに関して、サイクル特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤を提供する。 The present invention provides a non-aqueous electrolyte additive that has high storage stability and enables improvement of cycle characteristics and suppression of gas generation with respect to an electricity storage device.
 本発明者らは、特定の構造を含む化合物が、低いLUMOエネルギーを示し、かつ、化学的に安定であることを見出した。更に本発明者らは、係る化合物を非水電解液用添加剤として非水電解液二次電池等の蓄電デバイスに用いたときに、優れたサイクル特性が得られるとともに、ガス発生が抑制されることを見出し、本発明を完成した。 The present inventors have found that a compound containing a specific structure exhibits low LUMO energy and is chemically stable. Furthermore, the present inventors can obtain excellent cycle characteristics and suppress gas generation when the compound is used as an additive for a non-aqueous electrolyte in an electricity storage device such as a non-aqueous electrolyte secondary battery. As a result, the present invention has been completed.
 すなわち、本発明は、下記式(1)で表される化合物を含む、非水電解液用添加剤を提供する。 That is, this invention provides the additive for non-aqueous electrolyte containing the compound represented by following formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Xは、スルホニル基又はカルボニル基を示し、R及びRはそれぞれ独立して水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数2~4のアルキニル基、又は置換されていてもよいアリール基を示し、Aは、置換されていてもよい炭素数1~3の2価の炭化水素基、又は、置換されていてもよい炭素数1~3の2価の炭化水素基及び該炭化水素基とともに環状構造を構成する酸素原子からなる2価の基を示す。 In the formula (1), X represents a sulfonyl group or a carbonyl group, R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an optionally substituted group. A preferred alkenyl group having 2 to 4 carbon atoms, an optionally substituted alkynyl group having 2 to 4 carbon atoms, or an optionally substituted aryl group, wherein A represents an optionally substituted carbon atom having 1 to 3 divalent hydrocarbon group or a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted and a divalent group comprising an oxygen atom constituting a cyclic structure together with the hydrocarbon group .
 式(1)で表される化合物は、環状スルホン化合物である。環状スルホン化合物は開環重合を起こすことができることから、強固なSEIを形成すると考えられる。更に、環に結合したカルボニルオキシ基又はスルホニルオキシ基を含有する式(1)の化合物は、低いLUMOエネルギーを示し、優れたイオン伝導度を発揮すると考えられる。そのため、式(1)の化合物は、長期間の使用に耐える安定したSEIを形成できると考えられる。 The compound represented by the formula (1) is a cyclic sulfone compound. Since the cyclic sulfone compound can cause ring-opening polymerization, it is considered to form strong SEI. Furthermore, the compound of the formula (1) containing a carbonyloxy group or a sulfonyloxy group bonded to the ring is considered to exhibit low LUMO energy and exhibit excellent ionic conductivity. Therefore, it is considered that the compound of the formula (1) can form a stable SEI that can withstand long-term use.
 本発明によれば、高い保存安定性を有するとともに、蓄電デバイスに関して、サイクル特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤が提供される。本発明に係る非水電解液用添加剤は、非水電解液二次電池、電気二重層キャパシタ等の蓄電デバイスに用いた場合に、電極表面上に安定なSEI(固体電解質界面)を形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善し得る。 According to the present invention, there is provided an additive for non-aqueous electrolyte that has high storage stability and enables improvement of cycle characteristics and suppression of gas generation with respect to an electricity storage device. The additive for non-aqueous electrolyte according to the present invention forms a stable SEI (solid electrolyte interface) on the electrode surface when used in an electricity storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor. Thus, battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance can be improved.
蓄電デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an electrical storage device.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 本実施形態に係る非水電解用添加剤は、下記式(1)で表される化合物を1種又は2種以上含む。 The additive for nonaqueous electrolysis according to the present embodiment contains one or more compounds represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Xは、スルホニル基又はカルボニル基を示し、R及びRはそれぞれ独立して水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数2~4のアルキニル基、又は置換されていてもよいアリール基を示し、Aは、置換されていてもよい炭素数1~3の2価の炭化水素基、又は、置換されていてもよい炭素数1~3の2価の炭化水素基及び該炭化水素基とともに環状構造を構成する酸素原子からなる2価の基を示す。 In the formula (1), X represents a sulfonyl group or a carbonyl group, R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or an optionally substituted group. A preferred alkenyl group having 2 to 4 carbon atoms, an optionally substituted alkynyl group having 2 to 4 carbon atoms, or an optionally substituted aryl group, wherein A represents an optionally substituted carbon atom having 1 to 3 divalent hydrocarbon group or a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted and a divalent group comprising an oxygen atom constituting a cyclic structure together with the hydrocarbon group .
 式(1)中のAは、ハロゲン原子で置換された炭素数1~3のアルキレン基、又は、ハロゲン原子で置換されていてもよい炭素数1~3のオキシアルキレン基であってもよい。オキシアルキレン基中の酸素原子が式(1)中のスルホニル基に結合していてもよい。Aに含まれる炭化水素基(特にアルキレン基)の炭素数は1又は2であってもよい。Aの具体例としては、-CH-、-CHCH-、-CHCHCH-、-CFHCH-、-CFCH-、-OCH-、及び-OCHCH-が挙げられる。 A in the formula (1) may be an alkylene group having 1 to 3 carbon atoms substituted with a halogen atom, or an oxyalkylene group having 1 to 3 carbon atoms which may be substituted with a halogen atom. The oxygen atom in the oxyalkylene group may be bonded to the sulfonyl group in the formula (1). The hydrocarbon group (particularly an alkylene group) contained in A may have 1 or 2 carbon atoms. Specific examples of A, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CFHCH 2 -, - CF 2 CH 2 -, - OCH 2 -, and -OCH 2 CH 2- .
 下記式(1)’のように、カルボニルオキシ基又はスルホニルオキシ基が環状スルホンの三位に結合していてもよい。この化合物は、特に低いLUMOエネルギーを示し、より優れたイオン伝導度を発揮する傾向にある。 As shown in the following formula (1) ', a carbonyloxy group or a sulfonyloxy group may be bonded to the 3-position of the cyclic sulfone. This compound tends to exhibit particularly low LUMO energy and better ionic conductivity.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)’中、X、R及びRはそれぞれ式(1)におけるX、R及びRと同義である。 Wherein (1) ', X, R 1 and R 2 are X in each formula (1), R 1 and R 2 synonymous.
 より電池抵抗が低くなりやすいという観点から、式(1)の化合物が下記式(1a)又は(1b)で表される化合物であってもよい。 From the viewpoint that the battery resistance tends to be lower, the compound of the formula (1) may be a compound represented by the following formula (1a) or (1b).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1a)及び(1b)中、X、R及びRはそれぞれ式(1)におけるX、R及びRと同義である。 Wherein (1a) and (1b), X, R 1 and R 2 are X in each formula (1), R 1 and R 2 synonymous.
 式(1)、(1)’、(1a)及び(1b)中のXは、電池抵抗がより低く、ガス発生がより抑制されるという観点から、スルホニル基であってもよい。すなわち、式(1)の化合物が、下記式(2a)又は(2b)で表される化合物であってもよい。 X in the formulas (1), (1) ′, (1a) and (1b) may be a sulfonyl group from the viewpoint of lower battery resistance and further suppression of gas generation. That is, the compound of the formula (1) may be a compound represented by the following formula (2a) or (2b).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRに関して、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基が置換されている場合、その置換基は、例えば、ハロゲン原子、アリール基、ハロゲン化アリール基(例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、パーフルオロフェニル基等のフッ素化アリール基)、アルコキシ基、ハロゲン化アルコキシ基又はこれらの組み合わせであってもよい。R及びRに関して、アリール基が置換されている場合、その置換基は、例えば、ハロゲン原子、アルキル基、ハロゲン化アルキル基(例えば、トリフルオロメチル基、2,2,2-トリフルオロエチル基等のフッ素化アルキル基)、アルコキシ基、ハロゲン化アルコキシ基又はこれらの組み合わせであってもよい。例えば、R及びRが、それぞれ独立して、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基、ハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基、又は、水素原子であってもよい。 With respect to R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b), an alkyl group having 1 to 4 carbon atoms and an alkenyl group having 2 to 4 carbon atoms Group, when the alkynyl group having 2 to 4 carbon atoms is substituted, the substituent is, for example, a halogen atom, an aryl group, a halogenated aryl group (for example, 2-fluorophenyl group, 3-fluorophenyl group, 4 A fluorinated aryl group such as a fluorophenyl group or a perfluorophenyl group), an alkoxy group, a halogenated alkoxy group, or a combination thereof. With respect to R 1 and R 2 , when the aryl group is substituted, the substituent is, for example, a halogen atom, an alkyl group, a halogenated alkyl group (for example, a trifluoromethyl group, 2,2,2-trifluoroethyl) A fluorinated alkyl group such as a group), an alkoxy group, a halogenated alkoxy group, or a combination thereof. For example, R 1 and R 2 are each independently a C 1-4 alkyl group optionally substituted with a halogen atom, an aryl group or a halogenated aryl group, or a carbon optionally substituted with a halogen atom. An alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group which may be substituted with a halogen atom, an alkyl group or a halogenated alkyl group, or a hydrogen atom It may be.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRは、電池抵抗がより低くなるという観点から、それぞれ独立に、水素原子、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基、又は、ハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基であってもよい。 R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are each independently a hydrogen atom from the viewpoint of lowering battery resistance. An alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group, an alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, or a halogen atom, It may be an aryl group which may be substituted with an alkyl group or an alkyl halide group.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRは、これら式で表される化合物が不飽和結合を有する基を含有するとより強固なSEIを形成するという観点から、それぞれ独立に、水素原子、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基、又はハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基であってもよい。 R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) contain groups in which the compounds represented by these formulas have an unsaturated bond Then, from the viewpoint of forming stronger SEI, each independently, a hydrogen atom, an alkenyl group having 2 to 4 carbon atoms that may be substituted with a halogen atom, or 2 to 2 carbon atoms that may be substituted with a halogen atom. It may be an alkynyl group of 4 or an aryl group optionally substituted with a halogen atom, an alkyl group or a halogenated alkyl group.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRにおいて、前記炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基が挙げられる。炭素数1~4のアルキル基としては、メチル基、又はイソプロピル基を選択することができる。これらはハロゲン原子、アリール基又はハロゲン化アリール基で置換されていてもよい。炭素数1~4のアルキル基に結合するアリール基としては、例えば、フェニル基、トリル基、キシリル基、及びナフチル基が挙げられる。ハロゲン原子、アリール基又はハロゲン化アリール基で置換された炭素数1~4のアルキル基の例としては、ベンジル基、トリフルオロメチル基、1-フルオロエチル基、2-フルオロエチル基、1,1-ジフルオロエチル基、1,2-ジフルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、1-フルオロ-n-プロピル基、2-フルオロ-n-プロピル基、3-フルオロ-n-プロピル基、1,1-ジフルオロ-n-プロピル基、1,2-ジフルオロ-n-プロピル基、1,3-ジフルオロ-n-プロピル基、2,2-ジフルオロ-n-プロピル基、2,3-ジフルオロ-n-プロピル基、3,3-ジフルオロ-n-プロピル基、3,3,3-トリフルオロ-n-プロピル基、2,2,3,3,3-ペンタフルオロ-n-プロピル基、パーフルオロ-n-プロピル基、1-フルオロイソプロピル基、2-フルオロイソプロピル基、1,2-ジフルオロイソプロピル基、2,2-ジフルオロイソプロピル基、2,2’-ジフルオロイソプロピル基、2,2,2,2’,2’,2’-ヘキサフルオロイソプロピル基、1-フルオロ-n-ブチル基、2-フルオロ-n-ブチル基、3-フルオロ-n-ブチル基、4-フルオロ-n-ブチル基、4,4,4-トリフルオロ-n-ブチル基、パーフルオロ-n-ブチル基、2-フルオロ-tert-ブチル基、パーフルオロ-tert-ブチル基、(2-フルオロフェニル)メチル基、(3-フルオロフェニル)メチル基、(4-フルオロフェニル)メチル基、及び(パーフルオロフェニル)メチル基が挙げられる。 In R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b), the alkyl group having 1 to 4 carbon atoms may be, for example, a methyl group , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and t-butyl group. As the alkyl group having 1 to 4 carbon atoms, a methyl group or an isopropyl group can be selected. These may be substituted with a halogen atom, an aryl group or a halogenated aryl group. Examples of the aryl group bonded to the alkyl group having 1 to 4 carbon atoms include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Examples of the alkyl group having 1 to 4 carbon atoms substituted with a halogen atom, an aryl group or a halogenated aryl group include benzyl group, trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl group, 1,1 -Difluoroethyl group, 1,2-difluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, 1-fluoro-n-propyl group, 2-fluoro- n-propyl group, 3-fluoro-n-propyl group, 1,1-difluoro-n-propyl group, 1,2-difluoro-n-propyl group, 1,3-difluoro-n-propyl group, 2,2 -Difluoro-n-propyl group, 2,3-difluoro-n-propyl group, 3,3-difluoro-n-propyl group, 3,3,3-trifluoro-n-propyl group, 2 2,3,3,3-pentafluoro-n-propyl group, perfluoro-n-propyl group, 1-fluoroisopropyl group, 2-fluoroisopropyl group, 1,2-difluoroisopropyl group, 2,2-difluoroisopropyl Group, 2,2′-difluoroisopropyl group, 2,2,2,2 ′, 2 ′, 2′-hexafluoroisopropyl group, 1-fluoro-n-butyl group, 2-fluoro-n-butyl group, 3 -Fluoro-n-butyl group, 4-fluoro-n-butyl group, 4,4,4-trifluoro-n-butyl group, perfluoro-n-butyl group, 2-fluoro-tert-butyl group, perfluoro -Tert-butyl group, (2-fluorophenyl) methyl group, (3-fluorophenyl) methyl group, (4-fluorophenyl) methyl group, and (perfluorophene) Le) and methyl group.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRにおいて、前記ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基としては、例えば、ビニル基、アリル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、イソブテニル基、1-フルオロビニル基、2-フルオロビニル基、1,2-ジフルオロビニル基、1、1―ジフルオロ-1-プロペニル基、2,2-ジフルオロビニル基、パーフルオロビニル基、1-フルオロアリル基、2-フルオロアリル基、3-フルオロアリル基、及びパーフルオロアリル基等が挙げられる。炭素数2~4のアルケニル基としては、アリル基、又は2-プロペニル基を選択することができる。 R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) have 2 to 4 carbon atoms which may be substituted with the halogen atom Examples of the alkenyl group include vinyl group, allyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, isobutenyl group, 1-fluorovinyl group, 2-fluorovinyl. Group, 1,2-difluorovinyl group, 1,1-difluoro-1-propenyl group, 2,2-difluorovinyl group, perfluorovinyl group, 1-fluoroallyl group, 2-fluoroallyl group, 3-fluoroallyl Group, perfluoroallyl group and the like. As the alkenyl group having 2 to 4 carbon atoms, an allyl group or a 2-propenyl group can be selected.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRにおいて、前記ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基としては、例えば、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、3-フルオロ-1-プロピニル基、3,3-ジフルオロ-1-プロピニル基、パーフルオロ-1-プロピニル基、1-フルオロ-2-プロピニル基、1,1-ジフルオロ-2-プロピニル基、3-フルオロ-1-ブチニル基、4-フルオロ-1-ブチニル基、3,4-ジフルオロ-1-ブチニル基、4,4-ジフルオロ-1-ブチニル基、及びパーフルオロ-1-ブチニル基等が挙げられる。炭素数が2~4のアルキニル基としては、2-プロピニル基を選択することができる。 R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) have 2 to 4 carbon atoms which may be substituted with the halogen atom Examples of the alkynyl group include 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-fluoro-1-propynyl group, and 3,3-difluoro-1-propynyl. Group, perfluoro-1-propynyl group, 1-fluoro-2-propynyl group, 1,1-difluoro-2-propynyl group, 3-fluoro-1-butynyl group, 4-fluoro-1-butynyl group, 3, Examples include 4-difluoro-1-butynyl group, 4,4-difluoro-1-butynyl group, and perfluoro-1-butynyl group. As the alkynyl group having 2 to 4 carbon atoms, a 2-propynyl group can be selected.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRにおいて、前記ハロゲン原子、アルキル基又はハロゲン化アルキル基で置換されていてもよいアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、パーフルオロフェニル基、3-フルオロ-2-メチルフェニル基、4-フルオロ-2-メチルフェニル基、5-フルオロ-2-メチルフェニル基、6-フルオロ-2-メチルフェニル基、2-フルオロ-3-メチルフェニル基、4-フルオロ-3-メチルフェニル基、5-フルオロ-3-メチルフェニル基、6-フルオロ-3-メチルフェニル基、2-フルオロ-4-メチルフェニル基、3-フルオロ-4-メチルフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、2-(2,2,2-トリフルオロエチル)フェニル基、3-(2,2,2-トリフルオロエチル)フェニル基、4-(2,2,2-トリフルオロエチル)フェニル基、パーフルオロトリル基、2-フルオロナフタレン-1-イル基、3-フルオロナフタレン-1-イル基、4-フルオロナフタレン-1-イル基、5-フルオロナフタレン-1-イル基、6-フルオロナフタレン-1-イル基、7-フルオロナフタレン-1-イル基、8-フルオロナフタレン-1-イル基、1-フルオロナフタレン-2-イル基、3-フルオロナフタレン-2-イル基、4-フルオロナフタレン-2-イル基、5-フルオロナフタレン-2-イル基、6-フルオロナフタレン-2-イル基、7-フルオロナフタレン-2-イル基、8-フルオロナフタレン-2-イル基、及びパーフルオロナフチル基等が挙げられる。これらはハロゲン原子で置換されていてもよく、その例としては4-フルオロフェニル基が挙げられる。 R 1 and R 2 in formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are substituted with the halogen atom, alkyl group or halogenated alkyl group. Examples of the aryl group that may be used include phenyl group, tolyl group, xylyl group, naphthyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3-difluorophenyl group, 2,4 -Difluorophenyl group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, perfluorophenyl group, 3-fluoro-2-methylphenyl group, 4-fluoro-2-methylphenyl group, 5 -Fluoro-2-methylphenyl group, 6-fluoro-2-methylphenyl group, 2-fluoro-3-methylphenyl group, 4-fluoro-3-methylphenyl Group, 5-fluoro-3-methylphenyl group, 6-fluoro-3-methylphenyl group, 2-fluoro-4-methylphenyl group, 3-fluoro-4-methylphenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 2- (2,2,2-trifluoroethyl) phenyl group, 3- (2,2,2-trifluoroethyl) phenyl group, 4- (2,2,2-trifluoroethyl) phenyl group, perfluorotolyl group, 2-fluoronaphthalen-1-yl group, 3-fluoronaphthalen-1-yl group, 4-fluoronaphthalen-1-yl group, 5 -Fluoronaphthalen-1-yl group, 6-fluoronaphthalen-1-yl group, 7-fluoronaphthalen-1-yl group, 8-fluoronaphthalene-1 Yl group, 1-fluoronaphthalen-2-yl group, 3-fluoronaphthalen-2-yl group, 4-fluoronaphthalen-2-yl group, 5-fluoronaphthalen-2-yl group, 6-fluoronaphthalene-2- Yl group, 7-fluoronaphthalen-2-yl group, 8-fluoronaphthalen-2-yl group, perfluoronaphthyl group and the like. These may be substituted with a halogen atom, and examples thereof include a 4-fluorophenyl group.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のA、R及びRにおいて、「ハロゲン原子で置換されていてもよい」とは、各々の基の少なくとも一つの水素原子がハロゲン原子で置換されていてもよいことを意味する。前記ハロゲン原子としては、例えば、ヨウ素原子、臭素原子、フッ素原子が挙げられる。電池抵抗がより低くなりやすいという観点から、ハロゲン原子としては、フッ素原子を選択することができる。 In A, R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b), “may be substituted with a halogen atom” It means that at least one hydrogen atom of each group may be substituted with a halogen atom. Examples of the halogen atom include an iodine atom, a bromine atom, and a fluorine atom. From the viewpoint that battery resistance tends to be lower, a fluorine atom can be selected as the halogen atom.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRは、これら式で表される化合物がより優れたイオン伝導度を発揮するという観点から、それぞれ独立に、水素原子、又は、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基であってもよい。 R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are more excellent in ionic conductivity of the compounds represented by these formulas. In view of the above, each independently may be a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group.
 式(1)、(1)’、(1a)、(1b)、(2a)及び(2b)中のR及びRは、それぞれ独立に、サイクル特性の改善及びガス発生の抑制の観点から、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基、又は、ハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基であってもよい。 R 1 and R 2 in the formulas (1), (1) ′, (1a), (1b), (2a) and (2b) are each independently from the viewpoint of improving cycle characteristics and suppressing gas generation. An alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group, an alkenyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, or a halogen atom, It may be an aryl group which may be substituted with an alkyl group or an alkyl halide group.
 式(1)で表される化合物としては、例えば、下記式(11)、(12)、(13)、(14)、(15)、(16)、(17)、(18)、(19)、(20)、(21)、(22)、(23)又は(24)に示した化合物が挙げられる。これら式中、Phはフェニル基を示し、nは1~5の整数を示す。 Examples of the compound represented by the formula (1) include the following formulas (11), (12), (13), (14), (15), (16), (17), (18), (19 ), (20), (21), (22), (23) or (24). In these formulas, Ph represents a phenyl group, and n represents an integer of 1 to 5.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)の化合物は、低いLUMOエネルギーを示し、電気化学的還元を受けやすい。そのため、これらを非水電解液用添加剤として含有する非水電解液は、非水電解液二次電池等の蓄電デバイスに用いられたときに、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。また、式(1)の化合物は、水分及び温度変化に対して安定であるため、これらを含む非水電解液用添加剤及び非水電解液は、長期間、室温で保存することが可能である。 The compound of formula (1) exhibits low LUMO energy and is susceptible to electrochemical reduction. Therefore, non-aqueous electrolytes containing these as additives for non-aqueous electrolytes form stable SEI on the electrode surface when used in power storage devices such as non-aqueous electrolyte secondary batteries and cycle. Battery characteristics such as characteristics, charge / discharge capacity, and internal resistance can be improved. Moreover, since the compound of Formula (1) is stable with respect to moisture and temperature changes, the additive for nonaqueous electrolyte and nonaqueous electrolyte containing them can be stored at room temperature for a long time. is there.
 式(1)で表される化合物の最低空分子軌道(LUMO)エネルギーは、-3.0eV以上であってもよく、0.0eV以下であってもよい。LUMOエネルギーが-3.0eV以上であると、化合物の過剰な分解によって負極上に高い抵抗を示すSEIが形成されにくい。LUMOエネルギーが0.0eV以下であると、負極表面により安定なSEIをより容易に形成することができる。同様の観点から、LUMOエネルギーは、-2.0eV以上であってもよく、-0.1eV以下であってもよい。当業者は、式(1)で定義される化合物の範囲内であれば、これら数値範囲内のLUMOエネルギーを示す化合物を過度の試行錯誤なく見出すことができる。 The lowest unoccupied molecular orbital (LUMO) energy of the compound represented by the formula (1) may be −3.0 eV or more, or 0.0 eV or less. When the LUMO energy is −3.0 eV or more, SEI showing high resistance is hardly formed on the negative electrode due to excessive decomposition of the compound. When the LUMO energy is 0.0 eV or less, more stable SEI can be more easily formed on the negative electrode surface. From the same viewpoint, the LUMO energy may be −2.0 eV or more, or −0.1 eV or less. Those skilled in the art can find a compound exhibiting LUMO energy within these numerical ranges within the range defined by the formula (1) without undue trial and error.
 本明細書において、「最低空分子軌道(LUMO)エネルギー」は、半経験的分子軌道計算法であるPM3と密度汎関数法であるB3LYP法とを組み合わせて算出される値である。具体的には、LUMOエネルギーは、Gaussian03(Revision B.03、米ガウシアン社製ソフトウェア)を用いて算出することができる。 In this specification, “lowest unoccupied molecular orbital (LUMO) energy” is a value calculated by combining the semi-empirical molecular orbital calculation method PM3 and the density functional method B3LYP method. Specifically, LUMO energy can be calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA).
 当業者は、式(1)の化合物を、入手可能な原料を用い、通常の反応を組み合わせて合成することができる。例えば、具体例の一つである式(1a)の化合物は、3-ヒドロキシスルホランにスルファモイルクロライド等のハロゲン化物を反応させる方法によって、合成することができる。 Those skilled in the art can synthesize the compound of formula (1) by combining the usual reactions using available raw materials. For example, the compound of formula (1a), which is one of the specific examples, can be synthesized by a method of reacting 3-hydroxysulfolane with a halide such as sulfamoyl chloride.
 式(1a)の化合物を製造する場合の具体例を以下に示す。まず、有機溶媒に3-ヒドロキシスルホランとトリエチルアミンとを溶解させ、次いで、スルファモイルクロライド化合物を滴下し、室温で2時間撹拌する。その後、得られた反応物を水で洗浄し、油層を濃縮することで、目的の化合物を得ることができる。 Specific examples in the case of producing the compound of the formula (1a) are shown below. First, 3-hydroxysulfolane and triethylamine are dissolved in an organic solvent, and then a sulfamoyl chloride compound is added dropwise and stirred at room temperature for 2 hours. Thereafter, the obtained reaction product is washed with water and the oil layer is concentrated, whereby the target compound can be obtained.
 本実施形態に係る非水電解液用添加剤は、前記式(1)で表される化合物を単独で含んでいてもよいし、2種以上を含んでいてもよい。本発明の効果を著しく阻害しない範囲で、前記式(1)で表される化合物を他の一般的な成分と併用してもよい。他の一般的な成分としては、例えば、負極保護剤、正極保護剤、難燃剤、過充電防止剤等が挙げられる。 The additive for non-aqueous electrolyte according to this embodiment may contain the compound represented by the formula (1) alone or may contain two or more kinds. The compound represented by the formula (1) may be used in combination with other general components as long as the effect of the present invention is not significantly inhibited. Examples of other general components include a negative electrode protective agent, a positive electrode protective agent, a flame retardant, and an overcharge preventing agent.
 本実施形態に係る非水電解液は、前記非水電解液用添加剤、非水溶媒、及び電解質を含有する。この非水電解液における非水電解液用添加剤(又は式(1)で表される化合物)の含有量は、非水電解液の全質量を基準として、0.005質量%以上であってもよいし、10質量%以下であってもよい。この含有量が0.005質量%以上であると、電極表面での電気化学反応によって安定なSEIが充分に形成され易くなる。この含有量が10質量%以下であると、非水電解液用添加剤を非水溶媒に容易に溶解させることができる。また、非水電解液用添加剤の含有量を過度に多くしないことにより、非水電解液の粘度上昇を抑制して、イオンの移動度を充分に確保することができる。イオンの移動度が充分に確保されないと、非水電解液の導電性等を充分に確保することができず、蓄電デバイスの充放電特性等に支障をきたすおそれがある。同様の観点から、非水電解液用添加剤(又は式(1)で表される化合物)の含有量は0.01質量%以上であってもよく、0.1質量%以上であってもよく、0.5質量%以上であってもよい。同様の観点から、非水電解液用添加剤(又は式(1)で表される化合物)の含有量は5質量%以下であってもよく、2.0質量%以下であってもよい。 The non-aqueous electrolyte according to the present embodiment contains the additive for non-aqueous electrolyte, a non-aqueous solvent, and an electrolyte. The content of the additive for nonaqueous electrolyte (or the compound represented by formula (1)) in this nonaqueous electrolyte is 0.005% by mass or more based on the total mass of the nonaqueous electrolyte. Or 10% by mass or less. When the content is 0.005% by mass or more, stable SEI is easily formed by an electrochemical reaction on the electrode surface. When the content is 10% by mass or less, the non-aqueous electrolyte additive can be easily dissolved in the non-aqueous solvent. Moreover, by not excessively increasing the content of the additive for non-aqueous electrolyte, an increase in the viscosity of the non-aqueous electrolyte can be suppressed and sufficient ion mobility can be ensured. If the mobility of ions is not sufficiently ensured, the conductivity of the non-aqueous electrolyte cannot be sufficiently ensured, and the charge / discharge characteristics of the electricity storage device may be hindered. From the same viewpoint, the content of the non-aqueous electrolyte additive (or the compound represented by the formula (1)) may be 0.01% by mass or more, or 0.1% by mass or more. It may be 0.5% by mass or more. From the same viewpoint, the content of the additive for non-aqueous electrolyte (or the compound represented by the formula (1)) may be 5% by mass or less, or 2.0% by mass or less.
 非水電解液において、本実施形態に係る非水電解液用添加剤(式(1)で表される化合物)と、SEIを形成する他の化合物とを併用してもよい。SEIを形成する他の化合物としては、環状カーボネート化合物、ニトリル化合物、イソシアネート化合物、C≡C基含有化合物、SO基含有化合物、リン含有化合物、酸無水物、環状ホスファゼン化合物、ホウ素含有化合物、及びケイ素含有化合物等が挙げられる。 In the non-aqueous electrolyte, the additive for non-aqueous electrolyte (the compound represented by the formula (1)) according to this embodiment may be used in combination with another compound that forms SEI. Other compounds that form SEI include cyclic carbonate compounds, nitrile compounds, isocyanate compounds, C≡C group-containing compounds, SO group-containing compounds, phosphorus-containing compounds, acid anhydrides, cyclic phosphazene compounds, boron-containing compounds, and silicon. Examples thereof include compounds.
 前記環状カーボネート化合物としては、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス若しくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(DFEC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)等が挙げられる。前記環状カーボネート化合物としてVC、FEC、VEC又はこれらの組み合わせを用いてもよい。 Examples of the cyclic carbonate compound include 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro-1,3-dioxolan-2-one (DFEC), vinylene carbonate ( VC), vinyl ethylene carbonate (VEC), 4-ethynyl-1,3-dioxolan-2-one (EEC), and the like. As the cyclic carbonate compound, VC, FEC, VEC or a combination thereof may be used.
 前記ニトリル化合物としては、アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリル等が挙げられる。前記ニトリル化合物として、スクシノニトリル、アジポニトリル又はこれらの組み合わせを用いてもよい。 Examples of the nitrile compound include acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, and sebaconitrile. As the nitrile compound, succinonitrile, adiponitrile, or a combination thereof may be used.
 前記イソシアネート化合物としては、メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチルアクリレート、及び2-イソシアナトエチルメタクリレート等が挙げられる。 Examples of the isocyanate compound include methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl. And methacrylate.
 前記C≡C基含有化合物としては、2-プロピニルメチルカーボネート、酢酸-2-プロピニル、ギ酸-2-プロピニル、メタクリル酸-2-プロピニル、メタンスルホン酸-2-プロピニル、ビニルスルホン酸-2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸-2-プロピニル、ジ(2-プロピニル)オギザレート、メチル-2-プロピニルオギザレート、エチル-2-プロピニルオギザレート、グルタル酸ジ(2-プロピニル)、2-ブチン-1,4-ジイルジメタンスルホネート、2-ブチン-1,4-ジイルジホルメート、及び2,4-ヘキサジイン-1,6-ジイルジメタンスルホネート等が挙げられる。 Examples of the C≡C group-containing compound include 2-propynyl methyl carbonate, 2-propynyl acetate, 2-propynyl formate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, and 2-propynyl vinyl sulfonate. 2- (methanesulfonyloxy) propionic acid-2-propynyl, di (2-propynyl) oxalate, methyl-2-propynyl oxalate, ethyl-2-propynyl oxalate, di (2-propynyl) glutarate, Examples include 2-butyne-1,4-diyldimethanesulfonate, 2-butyne-1,4-diyldiformate, and 2,4-hexadiyne-1,6-diyldimethanesulfonate.
 前記SO基含有化合物としては、1,3-プロパンスルトン(PS)、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イルアセテート、又は5,5-ジメチル-1,2-オキサチオラン-4-オン2,2-ジオキシド等のスルトン、エチレンサルファイト、エチレンスルフェート、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、及び5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト、ブタン-2,3-ジイルジメタンスルホネート、ブタン-1,4-ジイルジメタンスルホネート、メチレンメタンジスルホネート、及び1,3-プロパンジスルホン酸無水物等のスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、並びにビス(2-ビニルスルホニルエチル)エーテル等が挙げられる。 Examples of the SO group-containing compound include 1,3-propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propene sultone, 2,2-dioxide-1 , 2-oxathiolan-4-yl acetate, 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide, etc., sultone, ethylene sulfite, ethylene sulfate, hexahydrobenzo [1,3 , 2] dioxathiolane-2-oxide (also referred to as 1,2-cyclohexanediol cyclic sulfite) and cyclic sulfites such as 5-vinyl-hexahydro-1,3,2-benzodioxathiol-2-oxide, Butane-2,3-diyldimethanesulfonate, butane-1,4-diyldimethanesulfonate Sulfonate, methylenemethane disulfonate, sulfonate esters such as 1,3-propanedisulfonic anhydride, divinyl sulfone, 1,2-bis (vinylsulfonyl) ethane, and bis (2-vinylsulfonylethyl) ether It is done.
 前記リン含有化合物としてはリン酸トリメチル、リン酸トリブチル、及びリン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、メチル2-(ジメチルホスホリル)アセテート、エチル2-(ジメチルホスホリル)アセテート、メチル2-(ジエチルホスホリル)アセテート、エチル2-(ジエチルホスホリル)アセテート、2-プロピニル2-(ジメチルホスホリル)アセテート、2-プロピニル2-(ジエチルホスホリル)アセテート、メチル2-(ジメトキシホスホリル)アセテート、エチル2-(ジメトキシホスホリル)アセテート、メチル2-(ジエトキシホスホリル)アセテート、エチル2-(ジエトキシホスホリル)アセテート、2-プロピニル2-(ジメトキシホスホリル)アセテート、2-プロピニル2-(ジエトキシホスホリル)アセテート、ピロリン酸メチル、及びピロリン酸エチル等が挙げられる。 Examples of the phosphorus-containing compound include trimethyl phosphate, tributyl phosphate, and trioctyl phosphate, tris (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl) methyl phosphate, Bis (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl) phosphate, 2,2-difluoroethyl phosphate, bis (2,2,2-trifluoroethyl phosphate) ) 2,2,3,3-tetrafluoropropyl, bis (2,2-difluoroethyl) phosphate 2,2,2-trifluoroethyl, bis (2,2,3,3-tetrafluoropropyl) phosphate 2,2,2-trifluoroethyl and phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl, tris phosphate (1,1,1, , 3,3-hexafluoropropan-2-yl), methyl methylene bisphosphonate, ethyl methylene bisphosphonate, methyl ethylene bisphosphonate, ethyl ethylene bisphosphonate, methyl butylene bisphosphonate, ethyl butylene bisphosphonate, methyl 2- (dimethylphosphoryl) ) Acetate, ethyl 2- (dimethylphosphoryl) acetate, methyl 2- (diethylphosphoryl) acetate, ethyl 2- (diethylphosphoryl) acetate, 2-propynyl 2- (dimethylphosphoryl) acetate, 2-propynyl 2- (diethylphosphoryl) Acetate, methyl 2- (dimethoxyphosphoryl) acetate, ethyl 2- (dimethoxyphosphoryl) acetate, methyl 2- (diethoxyphosphoryl) acetate, ethyl 2- (dietoxy) Phosphoryl) acetate, 2-propynyl 2- (dimethoxyphosphoryl) acetate, 2-propynyl 2- (diethoxyphosphoryl) acetate, methyl pyrophosphate, and ethyl, and the like pyrophosphate.
 前記酸無水物としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、及び3-スルホ-プロピオン酸無水物等が挙げられる。 Examples of the acid anhydride include acetic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, and 3-sulfo-propionic anhydride. .
 前記環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンが挙げられる。 Examples of the cyclic phosphazene compound include methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
前記ケイ素原子を有する化合物としては、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、1,3,5-トリメチル-1,3,5-トリビニルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、トリメチルフルオロシラン、トリエチルフルオロシラン、トリプロピルフルオロシラン、フェニルジメチルフルオロシラン、トリフェニルフルオロシラン、ビニルジメチルフルオロシラン、ビニルジエチルフルオロシラン、ビニルジフェニルフルオロシラン、トリメトキシフルオロシラン、トリエトキシフルオロシラン、ジメチルジフルオロシラン、ジエチルジフルオロシラン、ジビニルジフルオロシラン、エチルビニルジフルオロシラン、メチルトリフルオロシラン、エチルトリフルオロシラン、ヘキサメチルジシロキサン、1,3-ジエチルテトラメチルジシロキサン、ヘキサエチルジシロキサン、オクタメチルトリシロキサン、メトキシトリメチルシラン、エトキシトリメチルシラン、ジメトキシジメチルシラン、トリメトキシメチルシラン、テトラメトキシシラン、ビス(トリメチルシリル)パーオキサイド、酢酸トリメチルシリル、酢酸トリエチルシリル、プロピオン酸トリメチルシリル、メタクリル酸トリメチルシリル、トリフルオロ酢酸トリメチルシリル、メタンスルホン酸トリメチルシリル、エタンスルホン酸トリメチルシリル、メタンスルホン酸トリエチルシリル、フルオロメタンスルホン酸トリメチルシリル、ビス(トリメチルシリル)スルフェート、トリス(トリメチルシロキシ)ボロン、トリス(トリメチルシリル)ホスフェート、及びトリス(トリメチルシリル)ホスファイト等が挙げられる。 Examples of the compound having a silicon atom include hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, octamethylcyclotrisiloxane. Tetrasiloxane, decamethylcyclopentasiloxane, trimethylfluorosilane, triethylfluorosilane, tripropylfluorosilane, phenyldimethylfluorosilane, triphenylfluorosilane, vinyldimethylfluorosilane, vinyldiethylfluorosilane, vinyldiphenylfluorosilane, trimethoxyfluoro Silane, triethoxyfluorosilane, dimethyldifluorosilane, diethyldifluorosilane, divinyldifluorosilane, ethylvinyldifluor Silane, methyl trifluorosilane, ethyl trifluorosilane, hexamethyldisiloxane, 1,3-diethyltetramethyldisiloxane, hexaethyldisiloxane, octamethyltrisiloxane, methoxytrimethylsilane, ethoxytrimethylsilane, dimethoxydimethylsilane, tri Methoxymethylsilane, tetramethoxysilane, bis (trimethylsilyl) peroxide, trimethylsilyl acetate, triethylsilyl acetate, trimethylsilyl propionate, trimethylsilyl methacrylate, trimethylsilyl trifluoroacetate, trimethylsilyl methanesulfonate, trimethylsilyl ethanesulfonate, triethylsilyl methanesulfonate , Trimethylsilyl fluoromethanesulfonate, bis (trimethylsilyl) sulfur , Tris (trimethylsiloxy) boron, tris (trimethylsilyl) phosphate, and tris (trimethylsilyl) phosphite, and the like.
 前記ホウ素原子を有する化合物としては、ボロキシン、トリメチルボロキシン、トリメトキシボロキシン、トリエチルボロキシン、トリエトキシボロキシン、トリイソプロピルボロキシン、トリイソプロポキシボロキシン、トリn-プロピルボロキシン、トリn-プロポキシボロキシン、トリn-ブチルボロキシン、トリn-ブチロキシボロキシン、トリフェニルボロキシン、トリフェノキシボロキシン、トリシクロヘキシルボロキシン、及びトリシクロヘキソキシボロキシン等が挙げられる。 Examples of the compound having a boron atom include boroxine, trimethylboroxine, trimethoxyboroxine, triethylboroxine, triethoxyboroxine, triisopropylboroxine, triisopropoxyboroxine, tri-n-propylboroxine, tri-n- Examples include propoxyboroxine, tri-n-butylboroxine, tri-n-butyloxyboroxine, triphenylboroxine, triphenoxyboroxine, tricyclohexylboroxine, and tricyclohexoxyboroxine.
 前記式(1)で表される化合物と前記環状カーボネート化合物とを併用する場合、当該環状カーボネート化合物の含有量は、非水電解液の全質量を基準として、0.001~10質量%であってもよい。当該環状カーボネート化合物の含有量がこの範囲にあると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該環状カーボネート化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.5質量%以上であってもよい。 When the compound represented by the formula (1) and the cyclic carbonate compound are used in combination, the content of the cyclic carbonate compound is 0.001 to 10% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the cyclic carbonate compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases. The content of the cyclic carbonate compound may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
前記式(1)で表される化合物と前記ニトリル化合物とを併用する場合、当該ニトリル化合物の含有量は、非水電解液の全質量を基準として、0.001~10質量%であってもよい。当該ニトリル化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該ニトリル化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.5質量%以上であってもよい。 When the compound represented by the formula (1) and the nitrile compound are used in combination, the content of the nitrile compound may be 0.001 to 10% by mass based on the total mass of the non-aqueous electrolyte. Good. When the content of the nitrile compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases. The content of the nitrile compound may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
 前記式(1)で表される化合物と前記イソシアネート化合物とを併用する場合、当該イソシアネート化合物の含有量は、非水電解液の全質量を基準として、0.01~5質量%であってもよい。当該イソシアネート化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該イソシアネート化合物の含有量は、非水電解液の全質量を基準として、0.5質量%以上であってもよく、3質量%以下であってもよい。 When the compound represented by the formula (1) and the isocyanate compound are used in combination, the content of the isocyanate compound may be 0.01 to 5% by mass based on the total mass of the non-aqueous electrolyte. Good. When the content of the isocyanate compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases. The content of the isocyanate compound may be 0.5% by mass or more or 3% by mass or less based on the total mass of the nonaqueous electrolytic solution.
 前記式(1)で表される化合物と前記C≡C基含有化合物とを併用する場合、当該C≡C基含有化合物の含有量は、非水電解液の全質量を基準として、0.01~5質量%であってもよい。当該C≡C基含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該C≡C基含有化合物の含有量は、非水電解液の全質量を基準として、0.1質量%以上であってもよい。 When the compound represented by the formula (1) and the C≡C group-containing compound are used in combination, the content of the C≡C group-containing compound is 0.01 based on the total mass of the non-aqueous electrolyte. It may be up to 5% by weight. When the content of the C≡C group-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases. The content of the C≡C group-containing compound may be 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
 前記式(1)で表される化合物と前記SO基含有化合物とを併用する場合、当該SO基含有化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該SO基含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該SO基含有化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1 質量%以上であってもよい。 When the compound represented by the formula (1) and the SO group-containing compound are used in combination, the content of the SO group-containing compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. It may be. When the content of the SO group-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases. The content of the SO group-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the non-aqueous electrolyte.
 前記式(1)で表される化合物と前記リン含有化合物とを併用する場合、当該リン含有化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該リン含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該リン含有化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1質量%以上であってもよい。 When the compound represented by the formula (1) and the phosphorus-containing compound are used in combination, the content of the phosphorus-containing compound is 0.001 to 5% by mass based on the total mass of the nonaqueous electrolytic solution. May be. When the content of the phosphorus-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases. The content of the phosphorus-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
前記式(1)で表される化合物と前記環状ホスファゼン化合物とを併用する場合、当該環状ホスファゼン化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該環状ホスファゼン化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該環状ホスファゼン化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1質量%以上であってもよい。 When the compound represented by the formula (1) and the cyclic phosphazene compound are used in combination, the content of the cyclic phosphazene compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the cyclic phosphazene compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases. The content of the cyclic phosphazene compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
 前記式(1)で表される化合物と前記酸無水物とを併用する場合、当該酸無水物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該酸無水物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該酸無水物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.5質量%以上であってもよい。 When the compound represented by the formula (1) and the acid anhydride are used in combination, the content of the acid anhydride is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the acid anhydride is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases. The content of the acid anhydride may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
 前記式(1)で表される化合物と前記ホウ素含有化合物とを併用する場合、当該ホウ素含有化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。この範囲では、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該ホウ素含有化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1質量%以上であってもよい。 When the compound represented by the formula (1) and the boron-containing compound are used in combination, the content of the boron-containing compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. In this range, the SEI does not become too thick and the stability of the SEI at higher temperatures is increased. The content of the boron-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
 前記式(1)で表される化合物と前記ケイ素含有化合物とを併用する場合、当該ケイ素含有化合物の含有量は、非水電解液の全質量を基準として、0.01~5質量%であってもよい。当該ケイ素含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該ケイ素含有化合物の含有量は、非水電解液の全質量を基準として、0.1質量% 以上、又は0.5質量%以上であってもよい。 When the compound represented by the formula (1) and the silicon-containing compound are used in combination, the content of the silicon-containing compound is 0.01 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the silicon-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases. The content of the silicon-containing compound may be 0.1% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
 前記非水溶媒としては、得られる非水電解液の粘度を低く抑える観点から、非プロトン性溶媒を選択できる。非プロトン性溶媒は、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、スルホン、ニトリル及びこれらのハロゲン誘導体からなる群より選択される少なくとも1種であってもよい。非プロトン性溶媒としては、環状カーボネート又は鎖状カーボネートを選択でき、環状カーボネート及び鎖状カーボネートの組み合わせを選択することもできる。 As the non-aqueous solvent, an aprotic solvent can be selected from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low. The aprotic solvent is at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. May be. As the aprotic solvent, a cyclic carbonate or a chain carbonate can be selected, and a combination of a cyclic carbonate and a chain carbonate can also be selected.
 前記環状カーボネートとしては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、FEC等が挙げられる。前記鎖状カーボネートとしては、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等が挙げられる。前記脂肪族カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル等が挙げられる。前記ラクトンとしては、例えば、γ-ブチロラクトン等が挙げられる。前記ラクタムとしては、例えば、ε-カプロラクタム、N-メチルピロリドン等が挙げられる。前記環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等が挙げられる。前記鎖状エーテルとしては、例えば、1,2-ジエトキシエタン、エトキシメトキシエタン等が挙げられる。前記スルホンとしては、例えば、スルホラン等が挙げられる。前記ニトリルとしては、例えば、アセトニトリル等が挙げられる。前記ハロゲン誘導体としては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4-クロロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン等が挙げられる。これらの非水溶媒は、単独で用いてもよいし、複数種を混合して用いてもよい。 Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and FEC. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate. Examples of the lactone include γ-butyrolactone. Examples of the lactam include ε-caprolactam and N-methylpyrrolidone. Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane and the like. Examples of the chain ether include 1,2-diethoxyethane, ethoxymethoxyethane, and the like. Examples of the sulfone include sulfolane. Examples of the nitrile include acetonitrile. Examples of the halogen derivative include 4-fluoro-1,3-dioxolane-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolane-2- ON etc. are mentioned. These non-aqueous solvents may be used alone or in combination of two or more.
 前記電解質は、リチウムイオンのイオン源となるリチウム塩であってもよい。電解質は、LiAlCl、LiBF、LiPF、LiClO、LiAsF及びLiSbFからなる群より選択される少なくとも1種であってもよい。解離度が高く電解液のイオン伝導度を高めることができ、更に耐酸化還元特性により長期間の使用による蓄電デバイスの性能劣化を抑制する作用がある観点から、電解質として、LiBF及び/又はLiPFを選択してもよい。これらの電解質は、単独で使用してもよいし、2種以上を併用してもよい。 The electrolyte may be a lithium salt that serves as a source of lithium ions. Electrolyte, LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6 and may be at least one selected from the group consisting of LiSbF 6. From the viewpoint of having a high degree of dissociation and an ability to increase the ionic conductivity of the electrolytic solution and further suppressing the performance deterioration of the electricity storage device due to long-term use due to the oxidation-reduction characteristics, LiBF 4 and / or LiPF are used as the electrolyte. 6 may be selected. These electrolytes may be used alone or in combination of two or more.
 前記電解質がLiBF及び/又はLiPFである場合、非水溶媒として、環状カーボネート及び鎖状カーボネートとをそれぞれ1種以上組み合わせてもよい。特に、LiBF及び/又はLiPFと、炭酸エチレン及び炭酸ジエチルとを組み合わせてもよい。 When the electrolyte is LiBF 4 and / or LiPF 6 , one or more cyclic carbonates and chain carbonates may be combined as the non-aqueous solvent. In particular, LiBF 4 and / or LiPF 6 may be combined with ethylene carbonate and diethyl carbonate.
 非水電解液における前記電解質の濃度は、非水電解液の体積を基準として、0.1~2.0mol/Lであってもよい。前記電解質の濃度が0.1mol/L以上であると、より優れた放電特性または充電特性等が得られる。前記電解質の濃度が2.0mol/L以下であると、非水電解液の粘度が上昇しにくいため、イオンの移動度を充分に確保できる。同様の観点から、電解質の濃度は0.5~1.5mol/Lであってもよい。 The concentration of the electrolyte in the non-aqueous electrolyte may be 0.1 to 2.0 mol / L based on the volume of the non-aqueous electrolyte. When the concentration of the electrolyte is 0.1 mol / L or more, more excellent discharge characteristics or charge characteristics can be obtained. When the concentration of the electrolyte is 2.0 mol / L or less, the viscosity of the nonaqueous electrolytic solution is difficult to increase, and thus sufficient ion mobility can be secured. From the same viewpoint, the electrolyte concentration may be 0.5 to 1.5 mol / L.
 本実施形態に係る非水電解液において、上記電解質(第1のリチウム塩)と、これとは異なる第2のリチウム塩とを併用してもよい。第2のリチウム塩としては、例えば、ジフルオロリン酸リチウム、リチウムビスオキサラトボレート(LiBOB)、リチウムテトラフルオロ(オキサラト)ホスフェート(LiTFOP)、リチウムジフルオロオキサラトボレート(LiDFOB)、リチウムジフルオロビスオキサラトホスフェート(LiDFOP)、テトラフルオロホウ酸リチウム、リチウムビスフルオロスルホニルイミド、リチウム テトラフルオロ(オキサラト)ホスフェート、及びLiPOF等のリン酸骨格を有するリチウム塩、並びに、リチウムトリフルオロ((メタンスルホニル)オキシ)ボレート、リチウムペンタフルオロ((メタンスルホニル)オキシ)ホスフェート、リチウムメチルサルフェート、リチウムエチルサルフェート、リチウム2,2,2-トリフルオロエチルサルフェート、及びフルオロスルホン酸リチウム等のS(=O)基を有するリチウム塩が挙げられる。第2のリチウム塩は、ジフルオロリン酸リチウム、リチウムビスオキサラトボレート、リチウムテトラフルオロ(オキサラト)ホスフェート、リチウムジフルオロオキサラトボレート、リチウムジフルオロビスオキサラトホスフェート、リチウムメチルサルフェート、リチウムエチルサルフェート、及びフルオロスルホン酸リチウムからなる群より選ばれるリチウム塩を一種以上含んでいてもよい。 In the nonaqueous electrolytic solution according to the present embodiment, the electrolyte (first lithium salt) and a second lithium salt different from the electrolyte may be used in combination. Examples of the second lithium salt include lithium difluorophosphate, lithium bisoxalatoborate (LiBOB), lithium tetrafluoro (oxalato) phosphate (LiTFOP), lithium difluorooxalatoborate (LiDFOB), and lithium difluorobisoxalatophosphate. (LiDFOP), lithium tetrafluoroborate, lithium bisfluorosulfonylimide, lithium tetrafluoro (oxalato) phosphate, lithium salt having a phosphate skeleton such as Li 2 PO 3 F, and lithium trifluoro ((methanesulfonyl) Oxy) borate, lithium pentafluoro ((methanesulfonyl) oxy) phosphate, lithium methyl sulfate, lithium ethyl sulfate, lithium 2,2 2-trifluoroethyl sulfate, and lithium salts having an S (= O) groups of the lithium fluorosulfonic acid and the like. The second lithium salt is lithium difluorophosphate, lithium bisoxalatoborate, lithium tetrafluoro (oxalato) phosphate, lithium difluorooxalatoborate, lithium difluorobisoxalate phosphate, lithium methyl sulfate, lithium ethyl sulfate, and fluorosulfone One or more lithium salts selected from the group consisting of lithium acid may be included.
 非水電解液における前記第2のリチウム塩の濃度は、非水電解液の体積を基準として、0.001~1.0mol/Lであってもよい。前記第2のリチウム塩の濃度が0.001mol/L以上であると、高温条件においてより優れた充放電特性が得られる。前記第2のリチウム塩の濃度が1.0mol/L以下であると、非水電解液の粘度が上昇しにくいため、イオンの移動度を充分に確保できる。同様の観点から、第2のリチウム塩の濃度は0.01~0.8mol/Lであってもよく、0.01~0.5mol/Lでもよい。 The concentration of the second lithium salt in the non-aqueous electrolyte may be 0.001 to 1.0 mol / L based on the volume of the non-aqueous electrolyte. When the concentration of the second lithium salt is 0.001 mol / L or more, more excellent charge / discharge characteristics can be obtained under high temperature conditions. When the concentration of the second lithium salt is 1.0 mol / L or less, the viscosity of the non-aqueous electrolyte is difficult to increase, and thus ion mobility can be sufficiently ensured. From the same viewpoint, the concentration of the second lithium salt may be 0.01 to 0.8 mol / L or 0.01 to 0.5 mol / L.
 本実施形態に係る蓄電デバイスは、上記非水電解液と、主として正極及び負極とから構成される。蓄電デバイスの具体例は、非水電解液二次電池(リチウムイオン電池等)及び電気二重層キャパシタ(リチウムイオンキャパシタ等)を含む。本実施形態に係る非水電解液は、リチウムイオン電池、及びリチウムイオンキャパシタの用途において特に有用である。 The electricity storage device according to this embodiment is composed of the non-aqueous electrolyte and mainly a positive electrode and a negative electrode. Specific examples of the electricity storage device include a non-aqueous electrolyte secondary battery (such as a lithium ion battery) and an electric double layer capacitor (such as a lithium ion capacitor). The nonaqueous electrolytic solution according to the present embodiment is particularly useful in applications of lithium ion batteries and lithium ion capacitors.
 図1は、蓄電デバイスの一実施形態を模式的に示す断面図である。図1に示す蓄電デバイス1は、非水電解液二次電池である。蓄電デバイス1は、正極板4(正極)と、正極板4と対向する負極板7(負極)と、正極板4と負極板7との間に配置された非水電解液8と、非水電解液8中に設けられたセパレータ9と、を備える。正極板4は、正極集電体2とその非水電解液8側に設けられた正極活物質層3とを有する。負極板7は、負極集電体5と非水電解液8側に設けられた負極活物質層6とを有する。非水電解液8として、上述の実施形態に係る非水電解液を用いることができる。図1では、蓄電デバイスとして非水電解液二次電池を示したが、当該非水電解液が適用され得る蓄電デバイスはこれに限定されることはなく、電気二重層キャパシタ等のその他の蓄電デバイスであってもよい。 FIG. 1 is a cross-sectional view schematically showing an embodiment of an electricity storage device. An electricity storage device 1 shown in FIG. 1 is a non-aqueous electrolyte secondary battery. The electricity storage device 1 includes a positive electrode plate 4 (positive electrode), a negative electrode plate 7 (negative electrode) facing the positive electrode plate 4, a nonaqueous electrolytic solution 8 disposed between the positive electrode plate 4 and the negative electrode plate 7, and nonaqueous And a separator 9 provided in the electrolytic solution 8. The positive electrode plate 4 includes a positive electrode current collector 2 and a positive electrode active material layer 3 provided on the nonaqueous electrolyte solution 8 side. The negative electrode plate 7 includes a negative electrode current collector 5 and a negative electrode active material layer 6 provided on the nonaqueous electrolyte solution 8 side. As the nonaqueous electrolytic solution 8, the nonaqueous electrolytic solution according to the above-described embodiment can be used. In FIG. 1, a non-aqueous electrolyte secondary battery is shown as the electricity storage device, but the electricity storage device to which the non-aqueous electrolyte can be applied is not limited to this, and other electricity storage devices such as an electric double layer capacitor. It may be.
 正極集電体2及び負極集電体5は、例えば、アルミニウム、銅、ニッケル、及びステンレス等の金属からなる金属箔であってもよい。 The positive electrode current collector 2 and the negative electrode current collector 5 may be metal foils made of a metal such as aluminum, copper, nickel, and stainless steel, for example.
 正極活物質層3は正極活物質を含む。正極活物質は、リチウム含有複合酸化物であってもよい。リチウム含有複合酸化物の具体例は、LiMnO、LiFeO、LiCoO、LiMn、LiFeSiO、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1、LiNiCo(但し、0.01<x<1、0≦y≦1、0≦z≦1、x+y+z=1であり、MはMn、V、Mg、Mo、Nb、Fe、Cu及びAlからなる群より選ばれる少なくとも1種の元素である。)、及びLiFePOを含む。 The positive electrode active material layer 3 contains a positive electrode active material. The positive electrode active material may be a lithium-containing composite oxide. Specific examples of the lithium-containing composite oxide, LiMnO 2, LiFeO 2, LiCoO 2, LiMn 2 O 4, Li 2 FeSiO 4, LiNi 1/3 Co 1/3 Mn 1/3, LiNi 0.5 Co 0.2 Mn 0.3 , LiNi 0.6 Co 0.2 Mn 0.2 , LiNi 0.8 Co 0.1 Mn 0.1 , LiNi x Co y M z O 2 (where 0.01 <x <1, (0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1, and M is at least one element selected from the group consisting of Mn, V, Mg, Mo, Nb, Fe, Cu, and Al.) And LiFePO 4 .
 負極活物質層6は負極活物質を含む。負極活物質は、例えば、リチウムを吸蔵、放出することができる材料であってもよい。このような材料の具体例は、結晶性炭素(天然黒鉛及び人造黒鉛等)、非晶質炭素、炭素被覆黒鉛及び樹脂被覆黒鉛等の炭素材料、酸化インジウム、酸化シリコン、酸化スズ、酸化亜鉛及び酸化リチウム等の酸化物材料、リチウム金属、及びリチウムと合金を形成することができる金属等の金属材料が挙げられる。前記リチウムと合金を形成することができる金属の具体例は、Cu、Sn、Si、Co、Mn、Fe、Sb、及びAgを含む。これらの金属と、リチウムとを含む2元又は3元からなる合金を負極活物質として用いることもできる。これらの負極活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The negative electrode active material layer 6 contains a negative electrode active material. The negative electrode active material may be a material that can occlude and release lithium, for example. Specific examples of such materials include crystalline carbon (such as natural graphite and artificial graphite), amorphous carbon, carbon materials such as carbon-coated graphite and resin-coated graphite, indium oxide, silicon oxide, tin oxide, zinc oxide and Metal materials such as an oxide material such as lithium oxide, lithium metal, and a metal that can form an alloy with lithium can be given. Specific examples of the metal capable of forming an alloy with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, and Ag. A binary or ternary alloy containing these metals and lithium can also be used as the negative electrode active material. These negative electrode active materials may be used alone or in combination of two or more.
 高エネルギー密度化の観点から、前記負極活物質として、黒鉛などの炭素材料と、Si、Si合金、Si酸化物などのSi系の活物質とを組み合わせてもよい。サイクル特性と高エネルギー密度化の両立という観点から、前記負極活物質として、黒鉛と、Si系の活物質とを組み合わせてもよい。係る組み合わせに関して、炭素材料とSi系の活物質との合計質量に対するSi系の活物質の質量の比は、0.5質量%以上95質量%以下、1質量%以上50質量%以下、又は2質量%以上40質量%以下であってもよい。 From the viewpoint of increasing the energy density, a carbon material such as graphite and a Si-based active material such as Si, Si alloy, or Si oxide may be combined as the negative electrode active material. From the viewpoint of achieving both cycle characteristics and high energy density, graphite and a Si-based active material may be combined as the negative electrode active material. Regarding such a combination, the ratio of the mass of the Si-based active material to the total mass of the carbon material and the Si-based active material is 0.5% by mass to 95% by mass, 1% by mass to 50% by mass, or 2 It may be not less than 40% by mass.
 正極活物質層3及び負極活物質層6は、結着剤を更に含んでいてもよい。結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸、ポリビニルアルコール、アクリル酸-ポリアクリロニトリル、ポリアクリルアミド、ポリメタクリル酸、及びこれらの共重合体等が挙げられる。前記結着剤は正極活物質層と負極活物質層で同一であってもよく異なっていてもよい。 The positive electrode active material layer 3 and the negative electrode active material layer 6 may further contain a binder. Examples of the binder include polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, carboxymethyl cellulose, polytetrafluoro Examples thereof include ethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, polyvinyl alcohol, acrylic acid-polyacrylonitrile, polyacrylamide, polymethacrylic acid, and copolymers thereof. The binder may be the same or different between the positive electrode active material layer and the negative electrode active material layer.
 正極活物質層3及び負極活物質層6は、抵抗を低下させる目的で、導電補助材を更に含んでいてもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素質微粒子及び炭素繊維が挙げられる。 The positive electrode active material layer 3 and the negative electrode active material layer 6 may further include a conductive auxiliary material for the purpose of reducing resistance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, acetylene black, and ketjen black, and carbon fibers.
 セパレータ9は、例えば、ポリエチレン、ポリプロピレン、フッ素樹脂等からなる単層又は積層の微多孔性フィルム、織布、不織布多孔質フィルムであってもよい。 The separator 9 may be, for example, a single-layer or laminated microporous film, woven fabric, or non-woven porous film made of polyethylene, polypropylene, fluororesin, or the like.
 蓄電デバイスを構成する各部材の形状、厚み等の具体的な形態は、当業者であれば適宜設定することができる。蓄電デバイスの構成は、図1の実施形態に限られず、適宜変更が可能である。 Specific forms such as the shape and thickness of each member constituting the electricity storage device can be appropriately set by those skilled in the art. The configuration of the power storage device is not limited to the embodiment of FIG. 1 and can be changed as appropriate.
 以下に実施例を掲げて本発明を更に詳しく説明する。ただし、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1.非水電解液の調整
(実施例1)
 炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して混合非水溶媒を得た。得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解した。得られた溶液に、表1に示した化合物11を非水電解液用添加剤として添加し、非水電解液を調製した。非水電解液用添加剤(化合物11)の含有割合は、非水電解液の全質量を基準として0.5質量%とした。
1. Preparation of non-aqueous electrolyte (Example 1)
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume composition ratio of EC: DEC = 30: 70 to obtain a mixed nonaqueous solvent. LiPF 6 as an electrolyte was dissolved in the obtained mixed non-aqueous solvent so as to have a concentration of 1.0 mol / L. To the obtained solution, the compound 11 shown in Table 1 was added as an additive for a non-aqueous electrolyte to prepare a non-aqueous electrolyte. The content ratio of the additive for non-aqueous electrolyte (compound 11) was 0.5% by mass based on the total mass of the non-aqueous electrolyte.
(実施例2)
 化合物11の含有割合を1.0質量%としたこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the content ratio of Compound 11 was 1.0% by mass.
(実施例3)
 非水電解液用添加剤を化合物11から表1に示した化合物13に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 3)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 13 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例4)
 非水電解液用添加剤を化合物11から表1に示した化合物14に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 4
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 14 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例5)
 非水電解液用添加剤を化合物11から表1に示した化合物15に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 5)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 15 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例6)
 非水電解液用添加剤を化合物11から表1に示した化合物16に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 6)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 16 shown in Table 1 and the content ratio was 1.0% by mass. did.
 (実施例7)
 非水電解液用添加剤を化合物11から表1に示した化合物17に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 7)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 17 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例8)
 非水電解液用添加剤を化合物11から表1に示した化合物18に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 8)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 18 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例9)
 非水電解液用添加剤を化合物11から表1に示した化合物19に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 9
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 19 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例10)
 非水電解液用添加剤を化合物11から表1に示した化合物20に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 10)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 20 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例11)
 非水電解液用添加剤を化合物11から表1に示した化合物21に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 11)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 21 shown in Table 1 and the content ratio was 1.0% by mass. did.
(実施例12)
 非水電解液用添加剤を化合物11から表1に示した化合物23aに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 12)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 11 to compound 23a shown in Table 1 and the content ratio was 1.0% by mass. did.
(比較例1)
 化合物11を添加しなかったこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 1)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 11 was not added.
(比較例2)
 非水電解液用添加剤を化合物11から1,3-プロパンスルトンに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 11 to 1,3-propane sultone and the content ratio was 1.0% by mass. .
(比較例3)
 非水電解液用添加剤を化合物11からビニレンカーボネート(VC)に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from compound 11 to vinylene carbonate (VC) and the content ratio was 1.0% by mass.
(比較例4)
 ビニレンカーボネート(VC)の含有割合を2.0質量%としたこと以外は比較例3と同様にして、非水電解液を調製した。
(Comparative Example 4)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.
(比較例5)
 非水電解液用添加剤を化合物11からフルオロエチレンカーボネート(FEC)に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 5)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 11 to fluoroethylene carbonate (FEC) and the content ratio was 1.0% by mass. .
(比較例6)
 フルオロエチレンカーボネート(FEC)の含有割合を2.0質量%としたこと以外は比較例5と同様にして、非水電解液を調製した。
(Comparative Example 6)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.
(比較例7)
 非水電解液用添加剤を化合物11からスルホランに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 7)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from Compound 11 to sulfolane and the content ratio was 1.0% by mass.
2.評価
(LUMOエネルギーの測定)
 実施例で用いた化合物11、13~21及び23aのLUMO(最低空分子軌道)エネルギーを、Gaussian03ソフトウェアにより、半経験的分子軌道計算により求めた。算出されたLUMOエネルギーを表1に示した。
2. Evaluation (measurement of LUMO energy)
The LUMO (lowest unoccupied molecular orbital) energies of compounds 11, 13-21 and 23a used in the examples were determined by semi-empirical molecular orbital calculation with Gaussian 03 software. The calculated LUMO energy is shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(安定性)
 実施例で用いた化合物11、13~21及び23a、並びに、比較例5、6で用いたフルオロエチレンカーボネート(FEC)を、温度40±2℃、湿度75±5%の恒温恒湿環境下で90日間放置する保存試験に供した。保存試験前後の各非水電解液用添加剤のH-核磁気共鳴スペクトル(H-NMR)を測定し、以下の基準で各化合物の安定性を評価した。表2は安定性の評価結果を示す。
A:保存試験前後でH-NMRスペクトルのピーク変化がなかった。
B:保存試験前後でH-NMRスペクトルのわずかなピーク変化が確認された。
C:保存試験前後でH-NMRスペクトルの明らかなピーク変化が確認された。
(Stability)
The compounds 11, 13 to 21 and 23a used in the examples and the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 were used in a constant temperature and humidity environment at a temperature of 40 ± 2 ° C. and a humidity of 75 ± 5%. The sample was subjected to a storage test for 90 days. The 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR) of each additive for the non-aqueous electrolyte before and after the storage test was measured, and the stability of each compound was evaluated according to the following criteria. Table 2 shows the stability evaluation results.
A: There was no peak change in the 1 H-NMR spectrum before and after the storage test.
B: A slight peak change in the 1 H-NMR spectrum was confirmed before and after the storage test.
C: A clear peak change in the 1 H-NMR spectrum was confirmed before and after the storage test.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2に示したように、比較例5、6で用いたフルオロエチレンカーボネート(FEC)は、一部加水分解されていると考えられ、安定性が劣るものであった。一方、実施例で用いた化合物は、H-NMRスペクトルのピークにほとんど変化が見られず、安定性に優れるものであった。 As shown in Table 2, the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 was considered to be partially hydrolyzed and had poor stability. On the other hand, the compounds used in the examples were excellent in stability with almost no change in the peak of 1 H-NMR spectrum.
(非水電解液二次電池の作製)
 正極活物質としてのLiNi1/3Co1/3Mn1/3と、導電性付与剤としてカーボンブラックとを乾式混合した。得られた混合物を、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーをアルミ金属箔(角型、厚さ20μm)の両面に塗布した。NMPを除去し塗膜を乾燥した後、全体をプレスして、正極集電体としてのアルミ金属箔と、その両面上に形成された正極活物質層とを有する正極シートを得た。得られた正極シートの正極活物質層における固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=92:4:4とした。
 負極シートとして、市販の黒鉛塗布電極シート(宝泉社製、商品名:電極シート負極単層)を用いた。
 実施例及び比較例で得られた各非水電解液中にて、負極シート、ポリエチレン製のセパレータ、正極シート、ポリエチレン製のセパレータ及び負極シートの順に積層して、電池要素を作製した。この電池要素を、アルミニウム(厚さ40μm)とその両面を被覆する樹脂層とを有するラミネートフィルムから形成された袋に、正極シート及び負極シートの端部が袋から突き出るように挿入した。次いで、実施例及び比較例で得られた各非水電解液を袋内に注入した。袋を真空封止し、シート状の非水電解液二次電池を得た。更に、電極間の密着性を高めるために、ガラス板でシート状非水電解液二次電池を挟んで加圧した。
(Preparation of non-aqueous electrolyte secondary battery)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material and carbon black as a conductivity imparting agent were dry mixed. The obtained mixture was uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) was dissolved as a binder to prepare a slurry. The obtained slurry was applied to both surfaces of an aluminum metal foil (square shape, thickness 20 μm). After removing NMP and drying the coating film, the whole was pressed to obtain a positive electrode sheet having an aluminum metal foil as a positive electrode current collector and a positive electrode active material layer formed on both surfaces thereof. The solid content ratio in the positive electrode active material layer of the obtained positive electrode sheet was a mass ratio, and was positive electrode active material: conductivity imparting agent: PVDF = 92: 4: 4.
As the negative electrode sheet, a commercially available graphite-coated electrode sheet (manufactured by Hosen Co., Ltd., trade name: electrode sheet negative electrode single layer) was used.
In each of the non-aqueous electrolytes obtained in the examples and comparative examples, a negative electrode sheet, a polyethylene separator, a positive electrode sheet, a polyethylene separator, and a negative electrode sheet were laminated in this order to produce a battery element. This battery element was inserted into a bag formed of a laminate film having aluminum (thickness: 40 μm) and a resin layer covering both sides of the battery element so that the ends of the positive electrode sheet and the negative electrode sheet protrude from the bag. Subsequently, each nonaqueous electrolyte solution obtained in the Examples and Comparative Examples was injected into the bag. The bag was vacuum-sealed to obtain a sheet-like nonaqueous electrolyte secondary battery. Furthermore, in order to improve the adhesiveness between electrodes, the sheet-like nonaqueous electrolyte secondary battery was sandwiched between glass plates and pressurized.
(放電容量維持率及び内部抵抗比の評価)
 得られた非水電解液二次電池に対して、25℃において、充電レートを0.3C、放電レートを0.3C、充電終止電圧を4.2V、及び、放電終止電圧を2.5Vとして充放電サイクル試験を行った。200サイクル後の放電容量維持率(%)及び200サイクル後の内部抵抗比を表3に示した。
 200サイクル後の「放電容量維持率(%)」とは、10サイクル試験後の放電容量(mAh)に対する、200サイクル試験後の放電容量(mAh)の割合(百分率)である。200サイクル後の「内部抵抗比」とは、サイクル試験前の抵抗を1としたときの、200サイクル試験後の抵抗を相対値で示したものである。
(Evaluation of discharge capacity maintenance ratio and internal resistance ratio)
With respect to the obtained nonaqueous electrolyte secondary battery, at 25 ° C., the charge rate was 0.3 C, the discharge rate was 0.3 C, the charge end voltage was 4.2 V, and the discharge end voltage was 2.5 V. A charge / discharge cycle test was conducted. Table 3 shows the discharge capacity retention rate (%) after 200 cycles and the internal resistance ratio after 200 cycles.
The “discharge capacity retention rate (%)” after 200 cycles is the ratio (percentage) of the discharge capacity (mAh) after the 200 cycle test to the discharge capacity (mAh) after the 10 cycle test. The “internal resistance ratio” after 200 cycles represents the resistance after the 200 cycle test as a relative value when the resistance before the cycle test is 1.
(ガス発生量の測定)
 サイクル試験に用いた電池とは別に、実施例及び比較例の各電解液を含む同様の構成の非水電解液二次電池を準備した。この電池を、25℃において、0.2Cに相当する電流で4.2Vまで充電した後、0.2Cに相当する電流で3Vまで放電する操作を3サイクル行なって電池を安定させた。次いで、充電レートを0.3Cとして再度4.2Vまで電池を充電した後、60℃、168時間の高温で電池を保存した。その後、室温まで冷却し、アルキメデス法により電池の体積を測定し、保存前後の体積変化からガス発生量を求めた。
(Measurement of gas generation amount)
Separately from the batteries used in the cycle test, non-aqueous electrolyte secondary batteries having the same configuration including the electrolytes of the examples and comparative examples were prepared. This battery was charged to 4.2 V at 25 ° C. with a current corresponding to 0.2 C, and then discharged to 3 V with a current corresponding to 0.2 C for 3 cycles to stabilize the battery. Next, after charging the battery to 4.2 V again at a charge rate of 0.3 C, the battery was stored at a high temperature of 60 ° C. and 168 hours. Then, it cooled to room temperature, measured the volume of the battery by Archimedes method, and calculated | required the gas generation amount from the volume change before and behind a preservation | save.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3及び表4から、式(1)の化合物である化合物11、13~21又は23aを含む各実施例の非水電解液を用いた非水電解液二次電池は、比較例の非水電解液を用いた非水電解液二次電池と比較して、サイクル試験時における放電容量維持率と、充電にともなうガス発生の抑制の両方の点で優れていることが分かる。また、式(1)の化合物は、充放電サイクルによる内部抵抗の増加が少ない点でも、優れていることが確認された。 From Table 3 and Table 4, the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte of each example containing the compound 11, 13 to 21 or 23a which is the compound of the formula (1) is the non-aqueous electrolyte of the comparative example. Compared with the non-aqueous electrolyte secondary battery using the electrolytic solution, it can be seen that both the discharge capacity maintenance rate during the cycle test and the suppression of gas generation accompanying charging are superior. Moreover, it was confirmed that the compound of Formula (1) is excellent also in the point that there is little increase in internal resistance by a charging / discharging cycle.
 1…蓄電デバイス(非水電解液二次電池)、2…正極集電体、3…正極活物質層、4…正極板、5…負極集電体、6…負極活物質層、7…負極板、8…非水電解液、9…セパレータ。 DESCRIPTION OF SYMBOLS 1 ... Power storage device (nonaqueous electrolyte secondary battery), 2 ... Positive electrode current collector, 3 ... Positive electrode active material layer, 4 ... Positive electrode plate, 5 ... Negative electrode current collector, 6 ... Negative electrode active material layer, 7 ... Negative electrode Plate, 8 ... non-aqueous electrolyte, 9 ... separator.

Claims (12)

  1.  下記式(1)で表される化合物を含む、非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは、スルホニル基又はカルボニル基を示し、R及びRはそれぞれ独立して水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数2~4のアルキニル基、又は置換されていてもよいアリール基を示し、Aは、置換されていてもよい炭素数1~3の2価の炭化水素基、又は、置換されていてもよい炭素数1~3の2価の炭化水素基及び該炭化水素基とともに環状構造を構成する酸素原子からなる2価の基を示す。]
    The additive for non-aqueous electrolyte containing the compound represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), X represents a sulfonyl group or a carbonyl group, R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms which may be substituted, or an aryl group which may be substituted; A divalent hydrocarbon group having 1 to 3 carbon atoms, or a divalent hydrocarbon group having 1 to 3 carbon atoms which may be substituted, and a divalent group consisting of an oxygen atom constituting a cyclic structure together with the hydrocarbon group Show. ]
  2.  式(1)で表される前記化合物が、下記式(1a)で表される化合物である、請求項1に記載の非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000002
    [式(1a)中、R、R及びXは式(1)中のR、R及びXと同義である。]
    The additive for non-aqueous electrolyte according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1a).
    Figure JPOXMLDOC01-appb-C000002
    Wherein (1a), R 1, R 2 and X have the same meanings as R 1, R 2 and X in the formula (1). ]
  3.  式(1)で表される前記化合物が、下記式(1b)で表される化合物である、請求項1に記載の非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000003
    [式(1b)中、R、R及びXは式(1)中のR、R及びXと同義である。]
    The additive for non-aqueous electrolyte according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1b).
    Figure JPOXMLDOC01-appb-C000003
    Wherein (1b), R 1, R 2 and X have the same meanings as R 1, R 2 and X in the formula (1). ]
  4.  R及びRが、それぞれ独立して、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基、ハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基、又は、水素原子である、請求項1~3のいずれか一項に記載の非水電解液用添加剤。 R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group, and 2 carbon atoms which may be substituted with a halogen atom. An alkenyl group having 4 to 4, an alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group which may be substituted with a halogen atom, an alkyl group or a halogenated alkyl group, or a hydrogen atom The additive for a non-aqueous electrolyte according to any one of claims 1 to 3.
  5.  前記ハロゲン原子がフッ素原子で、前記ハロゲン化アリール基がフッ素化アリール基で、前記ハロゲン化アルキル基がフッ素化アルキル基である、請求項4に記載の非水電解液用添加剤。 The additive for non-aqueous electrolyte according to claim 4, wherein the halogen atom is a fluorine atom, the halogenated aryl group is a fluorinated aryl group, and the halogenated alkyl group is a fluorinated alkyl group.
  6.  式(1)中のXがスルホニル基である、請求項1~5のいずれか一項に記載の非水電解液用添加剤。 The additive for non-aqueous electrolyte according to any one of claims 1 to 5, wherein X in the formula (1) is a sulfonyl group.
  7.  請求項1~6のいずれか一項に記載の非水電解液用添加剤、非水溶媒、及び電解質を含有する、非水電解液。 A non-aqueous electrolyte containing the additive for non-aqueous electrolyte according to any one of claims 1 to 6, a non-aqueous solvent, and an electrolyte.
  8.  前記非水溶媒が環状カーボネート及び鎖状カーボネートを含む、請求項7に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 7, wherein the nonaqueous solvent contains a cyclic carbonate and a chain carbonate.
  9.  前記電解質がリチウム塩を含む、請求項7又は8に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 7 or 8, wherein the electrolyte contains a lithium salt.
  10.  請求項7~9のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、蓄電デバイス。 An electricity storage device comprising the nonaqueous electrolytic solution according to any one of claims 7 to 9, and a positive electrode and a negative electrode.
  11.  請求項7~9のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、リチウムイオン電池。 A lithium ion battery comprising the nonaqueous electrolytic solution according to any one of claims 7 to 9, and a positive electrode and a negative electrode.
  12.  請求項7~9のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、リチウムイオンキャパシタ。 A lithium ion capacitor comprising the nonaqueous electrolytic solution according to any one of claims 7 to 9, and a positive electrode and a negative electrode.
PCT/JP2018/008603 2017-03-08 2018-03-06 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device WO2018164130A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-043575 2017-03-08
JP2017043575 2017-03-08
JP2017149375 2017-08-01
JP2017-149375 2017-08-01

Publications (1)

Publication Number Publication Date
WO2018164130A1 true WO2018164130A1 (en) 2018-09-13

Family

ID=63448860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008603 WO2018164130A1 (en) 2017-03-08 2018-03-06 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Country Status (2)

Country Link
TW (1) TW201840548A (en)
WO (1) WO2018164130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216867A (en) * 2020-09-29 2021-01-12 中国科学院成都有机化学有限公司 Electrolyte additive, lithium ion high-voltage electrolyte and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183655A1 (en) * 2012-06-05 2013-12-12 日本電気株式会社 Lithium secondary cell
WO2014021272A1 (en) * 2012-07-31 2014-02-06 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same
KR20170108589A (en) * 2016-03-18 2017-09-27 삼성에스디아이 주식회사 Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183655A1 (en) * 2012-06-05 2013-12-12 日本電気株式会社 Lithium secondary cell
WO2014021272A1 (en) * 2012-07-31 2014-02-06 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same
KR20170108589A (en) * 2016-03-18 2017-09-27 삼성에스디아이 주식회사 Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216867A (en) * 2020-09-29 2021-01-12 中国科学院成都有机化学有限公司 Electrolyte additive, lithium ion high-voltage electrolyte and lithium ion battery

Also Published As

Publication number Publication date
TW201840548A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
CN110383565B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
JP6472888B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP7045240B2 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes and power storage devices
JP7399626B2 (en) Non-aqueous electrolyte and energy devices using it
JP7187126B2 (en) NON-AQUEOUS ELECTROLYTE AND ELECTRICITY STORAGE DEVICE USING THE SAME
JP2019537195A (en) Electrochemical cells containing bifunctional silyl phosphonates
WO2019187545A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
JP2015069705A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2018164130A1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP2020527284A (en) Heterocyclic Sulfonyl Fluid Additives for Electrolyte Compositions for Lithium Batteries
WO2022158400A1 (en) Non-aqueous electrolyte, and non-aqueous electrolyte battery
EP4283738A1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte battery and compound
JP7113995B1 (en) Electrodes for lithium ion batteries and lithium ion batteries
WO2024034521A1 (en) Secondary battery non-aqueous electrolytic solution, lithium ion battery, and lithium ion capacitor
JP7258205B1 (en) Electrodes for lithium ion batteries and lithium ion batteries
WO2024034522A1 (en) Additive for non-aqueous electrolytic solution, non-aqueous electrolytic solution, and power storage device
US20230019506A1 (en) Electrolyte composition with fluorinated acyclic carbonate and fluorinated cyclic carbonate
US20240105992A1 (en) Nonaqueous Electrolytic Solution, Nonaqueous Electrolytic Solution Battery, and Compound
WO2022158398A1 (en) Nonaqueous liquid electrolyte and nonaqueous liquid electrolyte battery
KR20220108800A (en) Electrolyte composition containing fluorinated acyclic ester and fluorinated cyclic carbonate
JP2022040612A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP